
PHYSICAL REVIEW B 105, 075127 (2022)

Band geometry from position-momentum duality at topological band crossings
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We show that the position-momentum duality offers a transparent interpretation of the band geometry at
the topological band crossings. Under this duality, the band geometry with Berry connection is dual to the
free-electron motion under gauge field. This identifies the trace of quantum metric as the dual energy in
momentum space. The band crossings with Berry defects thus induce the dual energy quantization in the
trace of quantum metric. For the Z nodal-point and nodal-surface semimetals in three dimensions, the dual
Landau level quantization occurs owing to the Berry charges. Meanwhile, the two-dimensional (2D) Dirac points
exhibit the Berry vortices, leading to the quantized dual axial rotational energies. Such a quantization naturally
generalizes to the three-dimensional (3D) nodal-loop semimetals, where the nodal loops host the Berry vortex
lines. The Z2 monopoles bring about additional dual axial rotational energies, which originate from the links
with additional nodal lines. Nontrivial band geometry generically induces finite spread in the Wannier functions.
While the spread manifest quantized lower bounds from the Berry charges, logarithmic divergences occur from
the Berry vortices. The band geometry at the band crossings may be probed experimentally by a periodic-drive
measurement.
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I. INTRODUCTION

The modern study of gapless topological systems has
uncovered various unconventional band crossings with fasci-
nating phenomena. In two dimensions the band crossings may
take the form of nodal points [1,2] and nodal lines [3]. Mean-
while, in three dimensions there exist nodal points [4–14],
nodal lines [4,15–21], and nodal surfaces [18,20,22,23]
(Fig. 1). These band crossings can occur in the solid-state
semimetals [4], topological superconductors [24–29], and
spin liquids [30]. Recent studies of synthetic quantum matter
present another set of platforms for the band crossings, includ-
ing the ultracold atomic systems [31,32], photonic systems
[33], and superconducting circuits [34,35]. Distinct band-
topology classifications are defined based on the symmetries
and the band-crossing structures [20,36]. For the gapless topo-
logical systems, the topological classifications involve the Z
and Z2 classifications. Various types of integer topological
invariants are proposed as the indicators of these classifica-
tions. For example, a three-dimensional (3D) Z nodal point
[Fig. 1(a)] carries a Berry monopole, leading to a quantized
Chern number under an enclosing-surface integration [37].
The inflation of a Z nodal point may realize a Z nodal
surface [Fig. 1(b)] [26,27], where the Berry-charge scenario
still applies [22]. A 3D nodal line in a combined parity and
time-reversal PT -symmetric system can carry a Z2 monopole
[17,19]. The according topological invariant corresponds to
the linking number with additional nodal lines [Fig. 1(d)] [21].

The band crossings also bring about nontrivial quantum ge-
ometry of the bands [38]. The band geometry is characterized
by the quantum metric, which measures the state variation

under momentum change [39–41]. The components of quan-
tum metric may be probed experimentally, for example, by
a periodic drive [42,43]. Recent studies uncovered various
manifestations of the quantum metric. The integrated trace
of quantum metric defines a lower bound of the spread of
Wannier functions [44–48], which can be measured directly
in the experiments [42,49–54]. The finite spread can trigger
anomalous superfluid stiffness on flat bands, leading to the ge-
ometric enhancement of flat-band superconductivity [38,55–
59]. It can also lead to finite current noise even in the insu-
lating phase [60]. Other works adopted the quantum metric
as an indicator of phase transitions [61–63], fractional Chern
insulators [64–66], excitons [67], and orbital susceptibilities
[68,69].

While the bulk of the literature focused on the extrinsic
manifestations of the quantum metric, its intrinsic character
has not received sufficient investigation. This direction was
explored recently in the context of nodal-point semimetals.
The trace of quantum metric has received a transparent inter-
pretation in the chiral multifold semimetals [38]. Under the
position-momentum duality, the trace of quantum metric is
dual to the kinetic energy on the Haldane sphere [70], thereby
acquiring a dual Landau level quantization from the Berry
monopole. On the other hand, the integrated determinant of
quantum metric over an enclosing surface was proposed as a
measure of the Berry defect [71,72]. These results exemplified
the nature of the quantum metric at the nodal points. A natural
question then arises as whether these scenarios are applicable
to the other topological systems.

In this work, we show that the position-momentum duality
[38] offers a unified framework of the band geometry at the
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FIG. 1. Band crossings in the 3D Brillouin zone. (a) Nodal point.
(b) Nodal surface. (c) Z2-trivial nodal loop. (d) Z2-nontrivial nodal
loop.

topological band crossings. Under this duality, the band geom-
etry with Berry connection is dual to the free-electron motion
under gauge field. This identifies the trace of quantum metric
as the dual energy in momentum space. The band crossings
with Berry defects thus induce the dual energy quantization
in the trace of quantum metric. For the 3D Z nodal-point
and nodal-surface semimetals, the dual Landau level quan-
tization occurs owing to the Berry charges. Meanwhile, the
two-dimensional (2D) Dirac points exhibit the Berry vortices,
leading to the quantized dual axial rotational energies. Such
a quantization naturally generalizes to the 3D nodal-loop
semimetals, where the nodal loops host the Berry vortex lines.
The Z2 monopoles bring about additional dual rotational en-
ergies, which originate from the links with additional nodal
lines. The spread of Wannier functions manifests quantized
lower bounds from the Berry charges, while logarithmic di-
vergences occur from the Berry vortices. Our duality-based
analysis paves the way for advanced comprehension of non-
trivial band geometry at the topological band crossings.

II. POSITION-MOMENTUM DUALITY

We begin with an introduction to the band geometry. Con-
sider a band with the Bloch eigenstate |uk〉, which generically
evolves under the variation of momentum k. Such an evo-
lution manifests the variations in the phase and the state. A
quantitative measure is provided by the quantum geometric
tensor [73]

Tabk = 〈
∂ka uk

∣∣(1 − |uk〉〈uk|)
∣∣∂kbuk

〉
, (1)

with the spatial indices a, b = x, y, z. The real part gabk =
Re[Tabk] is the quantum or Fubini-Study metric [39–41],
which captures the quantum distance under state variation 1 −
|〈uk|uk+dk〉|2 = gabkdkadkb. On the other hand, the imaginary
part measures the phase variation and the according Berry flux
Bak = −εabcIm[Tbck] [37,74]. Define the Berry connection
Ak = 〈uk|i∇k|uk〉 as a momentum-space gauge field under
nontrivial band geometry [37]. The quantum metric and the
Berry flux become [75]

gabk = 1
2 〈uk|{ra, rb}|uk〉, Bk = ∇k × Ak, (2)

where the position r = i∇k − Ak is a momentum-space
covariant derivative. The effect of Berry flux as a momentum-
space “magnetic field” has been studied extensively [37].

Here we focus on the quantum metric and search for useful
indications to the band geometry.

The individual components of the quantum metric are usu-
ally complicated and hard to interpret. Nevertheless, the trace
of quantum metric takes a profound form [38]

Trgk = 〈|r|2〉, (3)

where the expectation value 〈· · · 〉 = 〈uk| · · · |uk〉 of
momentum-space Laplacian |r|2 is measured. Significantly,
this quantity captures the “dual energy” of a free particle in
momentum space, which carries a half-unity “dual mass”
and experiences the Berry connection. We thus establish
a position-momentum duality between the band geometry
and the free-particle motion under gauge field. The duality
presents a feasible solution to the interpretation of the band
geometry. If the duality leads to a simple free-particle model
with well-studied solution, the trace of quantum metric can
be understood under a direct inference.

A similar concept of position-momentum duality was pro-
posed previously in the contexts of harmonic traps [76–78]
and fractional Chern insulators [65,66]. These works adopted
the confinement potential V (r) ∼ |r|2 to insert the band-
geometry contribution into the actual electronic energy. In
comparison, our analysis directly identifies the trace of quan-
tum metric as the true dual energy in momentum space. This
deepens the comprehension of the band geometry as the dual
free-particle theory of general bands.

III. DUAL ENERGY QUANTIZATION
IN BAND GEOMETRY

We now introduce how the position-momentum duality
operates on the nontrivial band geometry. Here we focus
on the gapless topological systems, where approximate ro-
tation symmetries can occur near the band crossings. Under
such symmetries, simple models become available to the dual
free-particle theories. A band crossing can host a defect of
Berry connection and induce nontrivial band geometry. We
will show that this feature is encoded in the “dual energy
quantization” in the trace of the quantum metric. This scenario
is applicable to the Z and Z2 gapless topological systems with
the Berry charges and Berry vortices.

A. Berry charges: Dual Haldane spheres

We first study the 3D Z gapless topological systems with
the Berry charges. As a paradigmatic example, we present
the analysis of the chiral multifold semimetals (CMS) [38],
which constitute a large family of Z nodal-point semimetals.
The band crossings in these gapless topological systems occur
at distinct points [Fig. 1(a)] [4–7]. At each nodal point, the
low-energy theory manifests the chiral fermions with mul-
tifold degeneracy [Fig. 2(a)]. A minimal model exhibits a
rotationally symmetric spin-s Hamiltonian with an integer or
half-integer spin s = 1/2, 1, 3/2, . . . ,

HCMS,k = vk · S. (4)

Here v is the effective velocity, k = kk̂ with radial magnitude
k and direction k̂, and S = (Sx, Sy, Sz ) is the spin-s repre-
sentation. There are 2s + 1 bands in this model, carrying the
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FIG. 2. The band structures in the minimal models for the
(a) nodal-point, (b) nodal-surface, (c) Z2-trivial nodal-loop, and
(d) Z2-nontrivial nodal-loop semimetals. The band crossings are
indicated by the same colors as in Fig. 1. The points belonging to
the same band crossing are connected by a dashed curve.

dispersion energies εsn
k = vkn with n = −s,−s + 1, . . . , s. In

accordance with the Berry flux Bsn
k = −(n/k2)k̂, the nodal

point at k = 0 carries a quantized Berry monopole qsn =
−n. This monopole charge corresponds to the Chern number
Csn = (1/2π )

∮
dSk · Bsn

k = 2qsn = −2n under an enclosing-
surface integration, which is the topological invariant. The
rotationally symmetric structure around the monopole indi-
cates the duality to a Haldane sphere [70,79,80]. Analogous
to the quantum Hall effect on the Haldane sphere, the “dual
Landau level quantization” occurs in the trace of quantum
metric herein [38]. An alternative form of the Hamiltonian
HCMS,k = vkk̂ · S indicates that the wave functions are in-
dependent of k. Due to the absence of radial contribution,
the trace of quantum metric Trgsn

CMS,k = 〈|�sn|2/k2〉 measures
the dual rotational energy of the dynamical angular momen-
tum �sn = rsn × k. Note that the angular momentum under
rotation symmetry takes the form Lsn = �sn + qsnk̂. With
|�sn|2 = |Lsn|2 − (qsn)2, we obtain the quantized trace of the
quantum metric

Trgsn
CMS,k = 1

k2
[s(s + 1) − (qsn)2], (5)

labeled by the angular momentum s and the monopole charge
qsn. This exemplifies the quantized band geometry from the
dual Haldane sphere in the Z nodal-point semimetals.

The duality can also be adopted to the Z nodal-surface (NS)
semimetals [22], which accommodate two-band crossings on
closed surfaces [Fig. 1(b)]. The Z nodal surfaces may be real-
ized, for example, from a pair of degenerate chiral multifold
semimetallic points P±. When the degeneracy is broken by
an energy splitting �ε0 = ε+

0 − ε−
0 > 0 [Fig. 2(b)], the bands

from different nodal points cross at spherical nodal surfaces.
As inflated nodal points [26], these nodal surfaces inherit the
Z topological structures of the original nodal points. Con-
sider the low-energy theory of a nodal surface at the energy
εNS ∈ (ε−

0 , ε+
0 ), which is formed by the n+th and n−th original

bands. For the lower band of the nodal surface, the band eigen-
state corresponds to the n∓th original band inside(outside) the
nodal surface. This implies the occurrence of different Berry
fluxes Bin/out

k = Bsn∓
k and according Chern numbers Cin/out =

Csn∓ in the two regions. A topological invariant is defined by
the change of Chern number across the nodal surface �C =
Cout − Cin [22]. The quantum metric can also be inferred
directly, with the individual components derived for the spin-
1/2 case in Ref. [81]. Here we present an interpretation based
on the duality. The low-energy theory is dual to a free-particle
model with a “uniformly charged magnetic spherical shell”
and a magnetic monopole at the origin. While the monopole
charge is q = Cin/2, the spherical shell carries the total charge
Q = �C/2 corresponding to the topological invariant. The
Berry charges induce the dual Landau level quantization in
the trace of quantum metric

Trgin/out
NS,k = Trgsn∓

CMS,k. (6)

Such a quantization holds generically for the bands near all
nodal surfaces. Notably, the band geometry exhibit different
structures on different sides of the nodal surfaces. This feature
is attributed to the Berry charges at the nodal surfaces and is
generic in the Z nodal-surface semimetals.

B. Berry vortices: Quantization of dual axial rotational energy

We next turn to the analysis of gapless topological systems
with Berry vortices. Before diving into the 3D systems, we
discuss how the dual energy quantization occurs at the 2D
Dirac points (2DDP). This example will serve as an important
hint to the 3D nodal-loop semimetals.

A minimal model at the 2D Dirac points takes a rotationally
symmetric form [1]

Hl
2DDP,k = v(k2l

+ σ− + k2l
− σ+), (7)

with k± = kx ± iky, l = 1/2, 1, 3/2, . . . , and Pauli matrices
σ± = (σ x ± iσ y)/2. This system contains two bands with
dispersion energies ε±

k = ±vk2l , which become degenerate
at the Dirac point k = 0. The Berry connection forms a
vortex structure around the Dirac point, thereby driving the
±2π l phase windings in the band eigenstates. Accordingly,
the Berry flux experiences a singularity at the Dirac point
and vanishes everywhere else. The trace of quantum metric
is determined by this Berry vortex structure. According to
the Hamiltonian Hl

2DDP,k = vk2l (k̂2l
+ σ− + k̂2l

− σ+), the wave
functions are k-independent. Without the radial contribution,
the trace of quantum metric measures the dual axial rotational
energy Trgln

2DDP,k = 〈(�ln
z )2/k2〉. Here �ln

z = Lln
z serves as the

angular momentum due to the absence of Berry monopole.
The magnitude |Lln

z | = l corresponds to the ±2π l phase wind-
ing around the Dirac point. We arrive at the dual energy
quantization in the trace of quantum metric

Trgln
2DDP,k = l2

k2
, (8)
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consistent with a direct calculation for l = 1/2 in graphene
[56]. Our duality-based analysis demonstrates a natural inter-
pretation to the band geometry from the Berry vortices.

The result at the 2D Dirac points can be generalized to
the 3D nodal-loop semimetals, where the band crossings take
place along closed loops [Fig. 1(c)] [15–21]. Consider a min-
imal two-band model of the nodal-loop semimetals [25,82]

HNL,k(�) = k2
⊥ − �

2m
σ x + vzkzσ

y, (9)

where k⊥ = (k2
x + k2

y )1/2 and � > 0. This system shows a
nodal loop in the kx-ky plane at charge neutrality [Fig. 2(c)],
which is defined by the major radius kR = √

�. Assume an
isotropic dispersion around the nodal loop v⊥=kR/m=vz=v.
A linearization at low energy leads to the l = 1/2 case of the
general minimal model [83,84]

Hl
NL,k = v

(
k2l

r,+σ− + k2l
r,−σ+)

, (10)

where kr,± = (k⊥ − kR) ± ikz are defined around the nodal
loop. This model obeys two rotation symmetries, which are
about the tangential axis and the center line k⊥ = 0 of the
nodal loop, respectively. The two bands exhibit the dispersion
energies ε±

k = ±vk2l
r , where kr = [(k⊥ − kR)2 + k2

z ]1/2 is the
minor radius from the nodal loop. Importantly, the model
serves as a “stacking” of the 2D Dirac-point systems along
the nodal loop. This identifies the nodal loop as a Berry vortex
line, which is a generalization from the Berry vortex at the 2D
Dirac point. The ±2π l phase winding now occurs around the
tangential axis of the nodal loop. Accordingly, the Berry flux
experiences a singularity along the nodal loop and vanishes
everywhere else. The Berry vortex line induces the dual rota-
tional energy of the axial angular momentum |Lln

φ | = l , where

φ̂ is the tangent unit vector along the nodal loop. The trace of
quantum metric thus exhibits the dual energy quantization

Trgln
NL,k = l2

k2
r

, (11)

similar to the result at the 2D Dirac points. Note that the
nodal loop in HNL,k(�) shrinks to a point and vanishes when
� decreases across zero. Such a self annihilation can occur
under the combined parity and time-reversal PT symmetry,
which imposes the reality condition on the systems. Since the
nodal loop can be annihilated by itself, it is Z2-trivial under
PT symmetry in the topological classification [17].

There also exist nodal loops which are Z2-nontrivial under
PT symmetry [17,19–21]. Consider a minimal model of the
Z2-nontrivial nodal loops [17]

HZ2NL,k = vkxσ
x + vkyτ

yσ y + vkzσ
z + mτ xσ x, (12)

where the Pauli matrices σ a and τ a are defined. This model
accommodates four bands with the dispersion energies ε±±

k =
±v[(k⊥ ± kR)2 + k2

z ]1/2 for kR = |m|/v. At finite |m| > 0, the
two middle bands form a nodal loop at charge neutrality with
the major radius kR [Fig. 2(d)]. These two bands obey the
same rotation symmetries as the model of Z2-trivial nodal
loops. Similar to the Z2-trivial nodal loop with l = 1/2, the
nodal loop herein serves as a Berry vortex line for a ±π

phase winding. An important difference is the interplay with
additional nodal lines k⊥ = 0 at finite energy [21]. For the

upper (lower) band, an additional nodal line occurs at the
band crossing with the highest (lowest) band. This additional
nodal line penetrates the center of the nodal loop, leading to
a topologically nontrivial “link” [Fig. 1(d)]. The link with the
additional nodal line defines a Z2 monopole at the nodal loop.
This monopole drives the nodal loop Z2-nontrivial, which
shrinks to a point (when m = 0) at most under changing m.
The Z2-nontrivial nodal loops can only be annihilated through
the pair annihilation. Such an annihilation may occur, for
example, between two nodal loops which are linked to the
same nodal line.

The link of the Z2 monopole is encoded in the band geome-
try. We calculate the quantum metric for the two middle bands
in the minimal model. The individual components of quan-
tum metric are complicated, with the special cases derived at
kz = 0 in Ref. [81]. Nevertheless, the trace of quantum metric
is amiable according to the duality. It can be shown that the
wave functions are independent of the minor and major radial
components kr and kR. This indicates the absence of radial
contributions in the trace of quantum metric, leaving only
the angular contributions. We further uncover that each wave
function is a tensor product of two Z2-trivial wave functions,
which are related to the nodal loop and the additional nodal
line, respectively. A direct calculation obtains the according
dual axial rotational energy in the trace of quantum metric

TrgZ2NL,k = 1

4k2
r

+ 1

4k2
⊥

. (13)

The first term is the dual axial rotational energy from the nodal
loop, which is identical to the Z2-trivial case with l = 1/2.
Meanwhile, the second term captures the dual rotational en-
ergy of the axial angular momentum |Ln

z | = 1/2 about the
additional nodal line. This additional term clearly indicates
the link of the Z2 monopole, which is absent for the Z2-trivial
nodal loop. We thus arrive at a clear interpretation of the
nontrivial band geometry in the Z2 nodal-loop semimetals.

IV. PRACTICAL MANIFESTATIONS

We identified various types of dual energy quantization in
the band geometry. An important question is whether these
results can be observed in the practical systems. A direct
manifestation of the band geometry occurs in the spread
of Wannier functions [38,44–47,85]. For the Wannier func-
tions of a band, the spread functional � = 〈|∇k|2〉 − |〈∇k〉|2
exhibits the gauge-invariant lower bound �GI = V0� with
� = ∫

k Trgk. Here V0 is the unit-cell volume and
∫

k =∫
dd k/(2π )d with d = 2, 3 is the integral over the Bril-

louin zone. As the integrated trace of quantum metric, the
gauge-invariant lower bound originates solely from the band
geometry. Since the trace of quantum metric is positive-
semidefinite, a further estimation �SR = ∫

SR,k Trgk � � can
be obtained by the focus on a specific subregion (SR). For
the gapless topological systems, the trace of quantum metric
reaches the maxima at the band crossings with Berry defects.
The subregions near the band crossings thus support good
estimations to the lower bound.
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For the 3D chiral multifold semimetals, the estimated lower
bound is quantized [38]

�sn
CMF = V0�k

4π2
2[s(s + 1) − (qsn)2]. (14)

Here �k is an ultraviolet (UV) radial cutoff in the focused
subregion. The quantized result also applies to the other gap-
less topological systems with Berry charges, such as the Z
nodal-surface semimetals. Significantly different features are
manifest from the Berry vortices. For the 2D Dirac points, the
estimated lower bound is logarithmically divergent [62,86]

�ln
2DDP = V0

2π
l2 ln k

∣∣�k

0 . (15)

Such a logarithmic divergence is naturally generalized to the
Z2-trivial nodal loops

�ln
NL = V0kR

2π
l2 ln kr

∣∣�kr

0 . (16)

The Z2-nontrivial nodal loops exhibit additional logarithmic
divergences

�Z2NL − �
(1/2)(±1/2)
NL ∼ ln k⊥

∣∣�
max
kR

�min
kR

(17)

from the additional nodal lines. This distinguishes the esti-
mated lower bound of the Z2-nontrivial nodal loop from the
Z2-trivial one. Due to the logarithmic divergences, the band
geometry may have strong manifestations at the band cross-
ings with Berry vortices. Note that the full sets of bands are
still Wannierizable with finite spreads [87]. The seeming con-
tradiction can be resolved by choosing the “smooth gauges”
for the full sets of bands [88]. Under the transformation to a
smooth gauge, the singular Bloch functions in the band basis
are transformed into regular functions in the whole Brillouin
zone. The finite spreads can then be yielded from these regular
Bloch functions.

In the practical systems, the rotation symmetries may be
broken under lower crystalline symmetries or away from the
band crossings. Under the breakdown of rotation symmetries,
the simple quantization rules may be broken. Nevertheless,
the results in our analysis may remain close to the quantized
values until the band crossing structures completely change.
Consider the integrated trace of quantum metric at a fixed
radius k in a 3D Z nodal point or 2D Dirac point. When
a perturbation breaks the rotation symmetry, the quantized
Berry charge or Berry vortex may still pull the nonquantized
result close to the original quantization. A stronger symmetry
breaking may push the system across a topological phase
transition, where the Berry charge or Berry vortex changes.
The integrated trace of quantum metric may become divergent

across the topological phase transition and fall into the vicinity
of another quantized value [62,86]. Similar effects can also
occur at the 3D nodal loops and nodal surfaces.

The gauge-invariant lower bound can be probed directly
with a periodic drive [42]. Under a linear shake along a direc-
tion â, the integrated quantum metric

∫
k gaak of the occupied

bands corresponds to the excitation rate. The integrated trace
of quantum metric is then obtained from the measurements
along all directions, which determines the gauge-invariant
lower bound. Such a measurement was performed experi-
mentally in an ultracold atomic Floquet Chern insulator [50].
Most of the current measurements apply to the integrated
trace of quantum metric of all occupied bands. The probe
with momentum and band resolutions will advance the under-
standing of band geometry in the gapless topological systems
[42,43,89].

V. DISCUSSION

We showed that the position-momentum duality offers a
transparent interpretation of the band geometry at the topo-
logical band crossings. The trace of quantum metric provides
a unified framework through this duality, which is achieved by
encoding the dual rotational energy about the band crossings
with nontrivial Berry defects. This scenario applies to the
Berry charges at the 3D Z nodal points and nodal surfaces,
as well as the Berry vortices at the 2D Dirac points, 3D Z2-
trivial and nontrivial nodal loops. Our duality-based analysis
offers a feasible route toward further understanding of non-
trivial band geometry. The investigations in the other gapless
topological systems, such as the gapless topological supercon-
ductors [24–29] and spin liquids [30], degenerate bands with
non-Abelian Berry connections [62], or higher-dimensional
systems with tensor monopoles [43,71], may serve as inter-
esting topics for future work.
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