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First-principles calculation of nonlinear magneto-optical effects has become an indispensable tool to reveal the
geometric and topological nature of electronic states and to understand light-matter interactions. While intrigu-
ingly rich physics could emerge in magnetic materials, further methodological developments are required to deal
with time-reversal symmetry breaking, due to the degeneracy and gauge problems caused by symmetry and the
low-frequency divergence problem in the existing calculation formalism. Here we present a gauge-covariant and
low-frequency convergent formalism for the first-principles computation. Remarkably, this formalism generally
works for both nonmagnetic and magnetic materials with or without band degeneracy. Reliability and capability
of our method are demonstrated by studying example materials (i.e., bilayers of MnBi2Te4 and CrI3) and
comparing with published results. Moreover, an importance correction term that ensures gauge covariance of
degenerate states is derived, whose influence on physical responses is systematically checked. Our method
enables computation of nonlinear magneto-optical effects in magnetic materials and paves the way for exploring
rich physics created by the interplay of light and magnetism.
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I. INTRODUCTION

Optical materials and phenomena play indispensable roles
in modern science and technology. Along with the devel-
opment of laser technology, nonlinear optical materials in
which the polarization responds nonlinearly to the electric
field of light are discovered and nonlinear optical phenom-
ena such as the bulk photovoltaic effect (BPVE) [1–3] and
the second-harmonic generation (SHG) [4] have been widely
investigated. The BPVE is the generation of a rectification
current driven by light in a single-phase material lacking
inversion symmetry and it originates from the shift current
mechanism [5]. SHG, which is the generation of photons with
twice the frequency of incident photons in noncentrosym-
metric materials, is commonly used as a tool for symmetry
characterization and laser frequency conversion. Remarkably,
the intrinsic connections between optical responses and the
quantum geometry in momentum space have been revealed
recently, giving rise to anomalous optical responses in topo-
logical materials [6–11].

Light-matter interaction in magnetic materials brings up
profound physics due to the interplay between magnetism
and the electromagnetic wave. In the linear regime, the plane
of polarization can be rotated when light is reflected by
or transmitted through magnetic materials, which is called
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the linear magneto-optical Kerr effect or Faraday effect. In
the nonlinear regime, the magnetization-sensitive rectifica-
tion current has recently been proposed in antiferromagnetic
(AFM) bilayers of CrI3 and MnBi2Te4 with parity-time (PT )
symmetry [12–14], whose nonmagnetic counterparts are ab-
sent. Magnetization-sensitive SHG has long been a tool to
probe surface and interface magnetization in metallic materi-
als since 1990s [15–18] and later used to investigate complex
magnetic orders in bulk magnetic oxides, such as in Cr2O3

[19]. Due to the spectral and spatial resolution, SHG is an
indispensable tool to detect magnetic symmetries, orders, do-
mains and phase transitions, especially in low dimensions
[20]. A recent SHG measurement discovered a gigantic signal
from AFM bilayer CrI3 where the microscopic origin of the
large response remains unclear [21].

Theoretical calculations based on first-principles meth-
ods are powerful tools to reveal microscopic correlations
between the energy spectrum, the momentum space geome-
try and optical effects. Moreover, nonlinear magneto-optical
effects are especially powerful in studying AFM insulators
with PT symmetry, where linear magneto-optical effects,
such as magneto-optic Kerr and Faraday effects, are absent.
The nonlinear magneto-optical effects, e.g., magnetization-
sensitive SHG, have been theoretically investigated since
1980s [22–27]. But as the position operator is ill-defined
in periodic systems (e.g., bulk crystals), it is approximated
based on cluster models which is applicable for finite systems
(e.g., molecules) but could be problematic in periodic sys-
tems. Although the problem of position operator in periodic
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systems has been solved along with modern investigations
of the polarization of solids [28,29], several problems still
hinder the theoretical investigation of nonlinear magneto-
optical effects. First, the conventional formalism of nonlinear
magneto-optical effects is ill-defined in the presence of PT
symmetry due to the Kramers-like degeneracy at each k point
in the band structure. The conventional expressions of non-
linear conductivity and electric susceptibility [12,13,30] only
consider nondegenerate bands with an arbitrary phase free-
dom for eigenstates at each k point, which is also called
the U(1)-gauge freedom. However, due to the Kramers-like
degeneracy, formulations under PT symmetry should be in-
variant under an arbitrary 2 × 2 unitary transformation in
the subspace spanned by the doubly degenerate eigenstates,
corresponding to a U(2)-gauge freedom. Although Watanabe
and Yanase [31] have proposed to directly replace the U(1)-
covariant derivative by the U(2)-covariant derivative in the
presence of PT symmetry for magnetization-sensitive shift
current conductivity, detailed derivations are missing.

Second, the conventional expression of second-order
electric susceptibility including SHG has a low-frequency di-
vergent problem by including leading term factors of ω−1 and
ω−2 for gapped insulators with the incident light frequency ω

[30,32,33]. While the low-frequency divergence is frequently
observed in physical properties of metallic materials due to
the response from the Fermi surface [8], the low-frequency
divergence is unphysical in gapped insulators. Even if the
expression has a 0/0 form and is not divergent at ω → 0, the
0/0 form expression can cause sizable numerical instability in
computation [30,32,33]. Fortunately, for SHG susceptibility,
it has been shown that the divergence can be eliminated in
the presence of time-reversal (T ) symmetry [30,32,34–36].
However, the divergence could be problematic for magnetic
materials. The T -symmetry simplified (T -smp) expression in
which T symmetry is only applied to the divergent terms
have been implemented in many computational codes [37–43]
and reasonable agreement between theoretical predictions and
experiments has been reached for nonmagnetic materials [44].
While T -smp expressions can still be used to estimate the
SHG susceptibility in magnetic materials [45], the divergent
terms that are unique to magnetic materials are missing.
More importantly, the same divergence appears in the general
second-order susceptibility (including sum-frequency gener-
ation and difference-frequency generation), which cannot be
removed even under T symmetry. Therefore, it is imperative
to solve the above mentioned problems to facilitate and ad-
vance the first-principles studies of nonlinear magneto-optical
effects.

In this work, we present general solutions to complete
the computational methods for second-order magneto-optical
effects in which the physical consequence of PT symmetry
is derived and investigated, and a full-frequency convergent
formalism of second-order susceptibility is proposed. The
remainder of this article is organized as follows. In Sec. II,
we derive the expressions for second-order magneto-optical
responses based on density matrix perturbation method for
degenerate bands and a full-frequency convergent formalism
for second-order susceptibility including SHG. Section III
discusses the symmetry properties of second-order magneto-
optical responses under T and PT operations, including

charge/spin current and susceptibility. Section IV introduces
the implementation of our methods in first-principles calcu-
lations and computational details. In Sec. V, we investigate
magnetization-sensitive conductivity and susceptibility in two
prototypical two-dimensional AFM materials with PT sym-
metry, which are bilayer CrI3 and MnBi2Te4.

II. BASIC FORMULATION

A. General formulas with Kramers-like degeneracy

The conventional formulas for second-order photocurrent
and electric polarization only consider nondegenerate bands,
and therefore are only U(1)-gauge invariant [13,33]. How-
ever, in magnetic materials with PT symmetry, Kramers-like
degeneracy appears at every k point and the choice of eigen-
states in the doubly degenerate subspace has a gauge freedom
determined by a 2 × 2 unitary matrix. As physical results
are invariant in spite of an arbitrary unitary rotation in the
degenerate subspace, the formulas for physical observables
under PT symmetry should be U(2)-gauge invariant. Clearly,
certain terms are missing in the conventional formula in the
presence of PT symmetry and in what follows, we will
demonstrate that the U(2)-invariant formulas can be retrieved
with special treatment at degeneracy [33].

In the length gauge and under long-wavelength approxi-
mation, the electromagnetic wave is introduced through an
E(t ) · x̂ term to the unperturbed Hamiltonian H0 where a
monochromatic light at frequency ω is written as E(t ) =
E(ω)e−iωt+ c.c. The Hamiltonian in second quantization form
can be found in Appendix A 1. The evaluation of the position
operator x̂ is the key to the calculation of polarization and cur-
rent responses, and the matrix elements of position operator
can be written as [33]

〈nμk|x̂|mνk′〉 = δnmδμν

[
δ(k − k′)ξnμmν

(k) + i
∂

∂k
δ(k − k′)

]
+ (1 − δnmδμν )ξnμmν

(k)δ(k − k′)

= (x̂intra )nμk,mνk′ + (x̂inter )nμk,mνk′ . (1)

|nμk〉 = eik·x̂|unμ
(k)〉 is the eigenstate of H0, and |unμ

(k)〉 is
the periodic part of the Bloch function. We introduced two
subscripts n and μ for bands, where n denotes bands with
different energy, and μ is used in the subspace of degenerate
bands. μ runs from 1 to 2 under PT symmetry, while the fol-
lowing derivations hold for an arbitrary μ value. The diagonal
and off-diagonal parts of ξnμmν

(k) = i〈unμ
(k)|∇k|umν

(k)〉 are
the single band and two-band Berry connections Anμ

(k) and
rnμmν

(k) defined as

ξnμmν
(k) ≡

{
Anμ

(k) if n = m and μ = ν,

rnμmν
(k) otherwise. (2)

In the following formulas, we omit the k dependence for
simplicity. The first (second) term of Eq. (1) is the intra-
band (interband) position matrix element in an infinite crystal
and the position operator matrix element between degenerate
bands (n = m, μ �= ν) are considered in the interband term.
As a result, the polarization can be divided into P = ex =
Pinter + Pintra in which e = −|e| is the charge of an elec-
tron. Similarly, the current density along a direction which is
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defined as the time derivative of electric polarization is divided
into two parts as

〈 ĵa(t )〉 = 1

ih̄

〈[
P̂a

intra (t ), Ĥ (t )
]〉 + d

dt

〈
P̂a

inter (t )
〉

= 〈
ĵa
intra (t )

〉 + d

dt

〈
P̂a

inter (t )
〉
, (3)

where Ĥ (t ) is the total Hamiltonian including the oscillating
electric field.

With the density matrix derived with perturbation expan-
sion in Appendices A 1 and A 2, the zeroth- and first-order
responses including the finite frequency anomalous conduc-
tivity are derived in Appendix A 3. The second-order electric
current and polarization with incoming electric field of fre-
quency ωβ and ωγ and the response frequency ω	 = ωβ + ωγ

are〈
ĵa
intra (t )

〉(2) = e3

2h̄2

∫
[dk]

{
Eb

βEc
γ e−iω	 t

[
fnm
a

mnrc
nμmν

rb
mνnμ

ω	 (ωmn − ωβ − i/τ )

−
fnmrb

mνnμ
rc

nμmν ;a

ωmn − ωβ − i/τ

]
+ (bβ ↔ cγ )

}
(4)

and〈
P̂a

inter (t )
〉(2)

= e3

2h̄2

∫
[dk]

∑
n,l,m

[
[. . .]Eb

βEc
γ e−iω	 t

ωln − ω	 − i/τ
+ (bβ ↔ cγ )

]
,

(5)

where the full expression of 〈P̂a
inter (t )〉(2) can be found in

Appendix A 3 and the Einstein summation convention is
adopted in all formulas for repeated indices. h̄ is the re-
duced Planck’s constant and [dk] = dk/(2π )d is the unit
volume in reciprocal space of d dimension. An infinites-
imal 1/τ is introduced to avoid divergence at resonance,
which can also be regarded as a relaxation rate. a, b, c rep-
resent Cartesian directions, and Eβ is the shorthand notation
for E (ωβ ) which represents the amplitude of an electric
field with frequency ωβ . (bβ ↔ cγ ) is the interchange of
bβ and cγ indices which reflects the fact that physical
responses are irrelevant to the sequence of electric fields
Eb

β and Ec
γ in the expression. fnm, h̄ωnm = (En − Em) and


mn = vmm − vnn are the occupation, energy and group ve-
locity differences between the nth and the mth bands. In
gapped semiconductor at zero temperature, f = 1 for valence
band and f = 0 for conduction band. rb

nμmν ;a = ∂ka rb
nμmν

−
i(Aa

nμ
rb

nμmν
− rb

nμmν
Aa

mν
) is the U(1)-covariant derivative of

rb
nμmν

, where the U(1)-covariant derivative of a nondegenerate
eigenstate |un(k)〉 is |un(k)〉;a = ∂ka |un(k)〉 + iAa

n|un(k)〉 =
(1 − |un(k)〉〈un(k)|)∂ka |un(k)〉 , which represents the projec-
tion of ∂ka |unk〉 onto all states except itself.

It is convenient to use Fourier transformation to convert
results into the frequency domain and define the conductivity
and susceptibility in the frequency domain as

ja(ω	 ) = σ abc(−ω	 ; ωβ, ωγ )Eb(ωβ )Ec(ωγ ),

Pa(ω	 ) = χabc(−ω	 ; ωβ, ωγ )Eb(ωβ )Ec(ωγ ). (6)

In the following, we will write ja
intra (ω)(2) instead of

〈 ĵa
intra (ω)〉(2) as abbreviation to represent the expectation

value.

B. Rectification current from degeneracy

A changing electric polarization gives rise to a current,
and the rectification current (ωβ = −ωγ = ±ω,ω	 = 0) is
of particular interest. If bands are nondegenerate, which
is equivalent to dropping the μ, ν indices, and ωln �= 0 in
Eq. (5), then Pinter (ω	 = 0)(2) is finite, with ω	Pinter (ω	 =
0)(2) = 0, and j(ω	 = 0)(2) = jintra (ω	 = 0)(2) according to
Eq. (3), which can reduce to the well-known U(1)-invariant
formulas of rectification current densities [13,33]. However, if
band degeneracy occurs, e.g., ωln = 0, then degenerate bands
contribute a polarization that is diverging as 1

ω	
when ω	

approaches the static limit according to Eq. (5).
The divergent polarization at ω	 → 0 corresponds to a DC

current as

lim
ω	→0

[−iω	Pa
inter (ω	 )(2)

]
= ie3

2h̄2

∫
[dk]

[
Eb

βEc
γ lim

ω	→0

( −ω	

−ω	 − i/τ

)
fnmrb

mνnμ

×
ra

nμnλ
rc

nλmν
− rc

nμmλ
ra

mλmν

ωmn − ωβ − i/τ
+ (bβ ↔ cγ )

]
, (7)

which contains the Berry connection between degenerate
bands, e.g., rnμnλ

. The total rectification current is

ja(ω	 = 0)(2)

= ja
intra (ω	 = 0)(2) + lim

ω	→0

[−iω	Pa
inter (ω	 )(2)

]
= e3

2h̄2

∫
[dk]

{
Eb

βEc
γ

[
fnm
a

mnrc
nμmν

rb
mνnμ

ω	 (ωmn − ωβ − i/τ )

−
fnmrb

mνnμ
Da

[
rc

nμmν

]
ωmn − ωβ − i/τ

]
+ (bβ ↔ cγ )

}
, (8)

where Da[rb
nμmν

] = ∂ka rb
nμmν

− i
∑

λ(ra
nμnλ

rb
nλmν

− rb
nμmλ

ra
mλmν

)

is the U(N)-covariant derivative of rb
nμmν

and N is the
number of degeneracy determined by the index μ.
Similarly, the U(N)-covariant derivative of degenerate
eigenstates just projects ∂ka |unμ

(k)〉 out of the N-dimensional
degenerate subspace such that Da|unμ

(k)〉 = ∂ka |unμ
(k)〉 +

iAa
nμ

|unμ
(k)〉 + i

∑
ν �=μ ra

nνnμ
|unν

(k)〉 = (1 − ∑
ν |unν

(k)〉
〈unν

(k)|)∂ka |unμ
(k)〉 . Up to now, we have presented a

thorough derivation of the second-order electric current and
have revealed the microscopic origin of the U(N)-covariant
derivative. In Appendix B, we demonstrated an alternative
derivation of the above formulas by including the position
operator matrix between degenerate bands into the intraband
term in Eq. (1).

In the intermediate region where the double degeneracy
protected by PT symmetry is weakly broken with the energy
splitting Edeg, the fundamental formalisms in Eqs. (3)–(5)
should be used to calculate the rectification current. As Edeg

increases from 0 to finite, the rectification current turn to zero
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TABLE I. Transformation rules of basic gauge-invariant quanti-
ties under P , T , and PT , respectively.

Iabc
mn (k) �ab

mn(k) gab
mn(k) 
a

mn(k)

P −Iabc
mn (−k) �ab

mn(−k) gab
mn(−k) −
a

mn(−k)

T −Iabc
nm (−k) −�ab

mn(−k) gab
mn(−k) −
a

mn(−k)

PT Iabc
nm (k) −�ab

mn(k) gab
mn(k) 
a

mn(k)

which is consistent with the U(1)-invariant result and an AC
current peaked at Edeg appears.

Using the Sokhotski–Plemelj theorem, the denominator
can be simplified as (ωmn − ω − i/τ )−1 = P(ωmn − ω)−1 +
iπδ(ωmn − ω), where P indicates principal part. Therefore,
the total rectification current can be divided into four parts
as normal injection current (NIC), magnetic injection current
(MIC), normal shift current (NSC), and magnetic shift current
(MSC):

ja(ω	 = 0)(2)

= [σ abc(0; ω,−ω) + σ abc(0; −ω,ω)] Re{Eb
ωEc

−ω}
+ i[σ abc(0; ω,−ω) − σ abc(0; −ω,ω)] Im{Eb

ωEc
−ω}

= 2
[
σ abc

NSC(ω) + τηabc
MIC(ω)

]
Re{Eb

ωEc
−ω}

+ 2i
[
σ abc

MSC(ω) + τηabc
NIC(ω)

]
Im{Eb

ωEc
−ω}, (9)

with expressions

σ abc
NSC(ω) = −iπe3

4h̄2

∫
[dk] fnm

(
Iabc
mn + Iacb

mn

)
× [δ(ωnm − ω) + δ(ωmn − ω)], (10)

σ abc
MSC(ω) = −iπe3

4h̄2

∫
[dk] fnm

(
Iabc
mn − Iacb

mn

)
× [δ(ωmn − ω) − δ(ωnm − ω)], (11)

ηabc
NIC(ω) = −πe3

2h̄2

∫
[dk] fmn


a
mn

( − i�bc
mn

)
δ(ωnm − ω),

(12)

ηabc
MIC(ω) = −πe3

2h̄2

∫
[dk] fmn


a
mn

(
2gbc

mn

)
δ(ωnm − ω). (13)

The integrand Iabc
mn = ∑

μν rb
mνnμ

Da[rc
nμmν

], the two-band Berry

curvature �bc
mn = −2

∑
μν Im{rb

mνnμ
rc

nμmν
}, the two-band quan-

tum metric gbc
mn = ∑

μν Re{rb
mνnμ

rc
nμmν

} [7,8,46], and the group
velocity difference 
mn are all gauge invariant and their sym-
metry properties are listed in Table I. The above results are
consistent with literature [13,33], and additionally we gener-
alized the formulas of NSC and MSC to a U(N)-invariant form
in the presence of N-fold degeneracy.

C. Low-frequency divergent problem of susceptibility

The general formula for second-order polarization can be
derived through P(ω)(2) = jintra (ω)(2)/(−iω) + Pinter (ω)(2) in
which Berry connection terms containing degenerate bands
are already included in Pinter (ω)(2) in the conventional ex-
pression. Therefore, the expressions of polarization and

susceptibility are compatible with degenerate bands and no
additional modifications are required to fulfill the gauge in-
variant requirement.

However, two terms in the susceptibility with leading fac-
tors ω−1

	 and ω−2
	 originated from j(2)

intra give rise to a divergent
problem in the ω	 → 0 limit with the divergent terms

χabc
dvg (−ω	 ; ωβ, ωγ )

= −ie3

2h̄2ω	

∫
[dk] fnm

[(
rb

mnrc
nm;a

ωmn − ωβ

+ rc
mnrb

nm;a

ωmn − ωγ

)
−
a

mn

ω	

(
rc

nmrb
mn

ωmn − ωβ

+ rb
nmrc

mn

ωmn − ωγ

)]
, (14)

where the imaginary part i/τ in the denominator is not writ-
ten out explicitly. In the case ωβ = −ωγ , the two terms are
related to the shift current and injection current discussed in
Eqs. (10)–(13). In general, the divergence is unphysical in
an insulator with a finite energy gap. Even if χdvg takes a
0/0 form and the divergence can be removed eventually, the
expression in Eq. (14) is unfriendly to numerical calculations
at low frequency. This problem has been noticed in SHG
susceptibility (ωβ = ωγ = ω,ω	 = 2ω) by Sipe and Ghahra-
mani [30] and they discovered that the divergence in SHG can
be removed by applying T symmetry. However, the simpli-
fication does not work in magnetic materials and as a result,
the current SHG expressions might be problematic in study-
ing magnetic materials. Furthermore, applying T symmetry
fails to remove the divergence in the general susceptibility
in Eq. (14). Therefore, the second-order susceptibility for
arbitrary frequencies still suffers from an unphysical divergent
problem even for nonmagnetic materials.

In what follows, we present an alternate expression for the
divergent term which is given by

χabc
dvg (−ω	 ; ωβ, ωγ )

= −ie3

2h̄2

∫
[dk]

fnm

ωmn

[(
ρβrb

mnrc
nm;a

ωmn − ωβ

+ ργ rc
mnrb

nm;a

ωmn − ωγ

)

−
a
mn

ωmn

(
ρ2

βrb
mnrc

nm

ωmn − ωβ

+ ρ2
γ rc

mnrb
nm

ωmn − ωγ

)]
, (15)

where ρβ = ωβ/ω	 and ργ = ωγ /ω	 . As ω	 is com-
pletely removed from the denominator, the above ex-
pression does not have divergence and numerical insta-
bility in the zero-frequency limit and can be applied
to both nonmagnetic and magnetic materials. Equation
(15) is derived from Eq. (14) by the following tech-
niques without assuming T symmetry: exchange of dummy
band indices n and m, integration by parts, and the
equality −ω−1[(ωmn − ω)−1 + (ωnm − ω)−1] = ω−1

nm [(ωmn −
ω)−1 − (ωnm − ω)−1]. Although the U(1)-derivative appears
in the first term of Eq. (15), the full susceptibility can be
rearranged in a way that terms with Berry connection between
degenerate bands are grouped with terms with the U(1)-
covariant derivative to form the U(N)-covariant derivative.

As SHG is one of the most commonly used tool for sym-
metry detection and frequency conversion, we take SHG as an
example to discuss properties of the “divergent” terms. The
full expression of SHG is given in the Appendix C and the
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“divergent” terms are

χabc
dvg (−2ω; ω,ω)

= − ie3

4h̄2

∫
[dk] fnm

[
rc

mnrb
nm;a + rb

mnrc
nm;a

ωmn(ωmn − ω)

− 
a
mn

(
rb

nmrc
mn + rc

nmrb
mn

)
2ω2

mn(ωmn − ω)

]
. (16)

The first term in Eq. (16) survives under T symmetry and
is included in the conventional SHG expression [30,32,35–
43]. In addition, the first term is purely real in the static
limit. However, the second term in Eq. (16) is present only
when T symmetry is broken and therefore it is a unique
term for magnetic materials. We denote the second term by
χnew(−2ω; ω,ω) as it has not been calculated previously.
Unexpectedly, we discovered that although χnew has a low-
frequency ‘divergent’ form in Eq. (14), χnew(2ω = 0; ω =
0, ω = 0) does not contribute to static SHG χ (0; 0, 0) at all,
which can be concluded by permutation of the dummy band
indices in the summation in Eq. (16). Therefore, the low-
frequency ‘divergent’ term χnew can be observed away from
low-frequency regime but negligible in low-frequency regime.

III. SYMMETRY ANALYSIS

A. Charge and spin rectification currents

The coefficients of second-order electro-optical responses
are third-rank tensors, and their nonzero and independent el-
ements are determined by their magnetic point group [47].
As the electric field, polarization and current are all odd
under P , the second-order electro-optical responses are only
present in P-breaking materials, according to Eq. (6). Addi-
tionaly, special attentions are paid to T and PT symmetry and
the symmetry properties of quantum metric, two-band Berry
curvature, and etc. are summarized in Table I. As a result,
both NSC and NIC are even under T while MSC and MIC
are even under PT symmetry according to Eqs. (10)–(13).
Furthermore, the current coupled to Re{Eb(ω)Ec(−ω)} can
be induced both by a linearly polarized light (LPL) and a
circularly polarized light (CPL), while the current coupled
to Im{Eb(ω)Ec(−ω)} can only be induced by CPL with the
direction of current determined by the helicity of light [13,31].

Up to now, we have focused on the charge photocurrent
which is the collective motion of both spin-up and spin-down
electrons. As electrons also carry the spin degree of freedom,
the spin current can also exists. Although it is still challenging
to properly define the spin current in materials with spin-
orbit coupling (SOC) as spin is not a good quantum number
in this circumstance [48], the conventional definition jab =
1/2(vasb + sbva) with v and s the velocity and spin operators
respectively is still appropriate without SOC [49,50].

We adopted the conventional definition to analyze the sym-
metry of spin current. As spin is T odd and P even, the
symmetry of spin current and charge current are opposite un-
der T and PT symmetry. For instance, while the charge
current from the NSC and NIC mechanisms are T even, the
spin current from those mechanisms are T odd. As a result,
spin current from NSC and NIC mechanisms only exists in
magnetic materials. The symmetry analysis of both charge

TABLE II. Existence of charge and spin current under T and PT
symmetry. � means present while × means absent.

σNSC σMSC ηNIC ηMIC

Light LPL CPL CPL LPL
Current charge/spin charge/spin charge/spin charge/spin

T �/× ×/� �/× ×/�
PT ×/� �/× ×/� �/×

and spin currents are summarized in Table II. Additionally,
in whatever situation, the spin current and charge current are
both present. For instance, the charge NSC and spin MIC are
present simultaneously in T -symmetric materials under LPL.

Although the four mechanisms listed in Table II can gen-
erate both charge and spin currents, the microscopic origins
are different. P breaking is the precondition of second-order
charge and spin currents and it usually happens in the crystal-
lographic structure. However, if it is the spin order instead of
the geometric structure that breaks P , the presence of SOC is
imperative for a nonzero charge current but not necessary for
generating spin current.

B. Second-order susceptibility

Despite the intricate expression of second-order sus-
ceptibility, certain symmetry conditions are fulfilled. First,
second-order susceptibility has the intrinsic permutation sym-
metry which states that χabc

2 (−ω	 ; ωβ, ωγ ) is unchanged by
the simultaneous interchange of its last two frequency ar-
guments and its last two Cartesian as χabc

2 (−ω	 ; ωβ, ωγ ) =
χacb

2 (−ω	 ; ωγ , ωβ ). The intrinsic permutation symmetry is
introduced in Eqs. (4) and (5) as a convention. Second, when
all frequencies are detuned from resonance and the small
imaginary part in the denominator can be ignored, the nonlin-
ear susceptibility possesses full permutation symmetry which
states that all of the frequency arguments of the nonlinear
susceptibility can be freely interchanged, as long as the corre-
sponding Cartesian indices are interchanged simultaneously:
χabc

2 (−ω	 ; ωβ, ωγ ) = χbca
2 (ωβ ; ωγ ,−ω	 ). The full permuta-

tion symmetry can be deduced from a consideration of the
form of the electromagnetic field energy within a lossless
medium [51]. Third, in the static limit, the nonzero compo-
nents of the susceptibility tensor are all equal χabc

2 (0; 0, 0) =
χbca

2 (0; 0, 0) = χ cab
2 (0; 0, 0), which is an extension of the full

permutation symmetry in the static limit, also called the Klein-
man’s symmetry. Moreover, the static susceptibility is a purely
real quantity with the expression given in Appendix C.

Furthermore, the second-order susceptibility which is odd
in P can be decoupled into two contributions, a nonmagnetic
response χN which is even in T and a magnetic response χM

which is odd in T with their expressions given in Appendix C.
χN reflects the inversion symmetry breaking from the lattice
and charge density while χM is sensitive to the inversion
symmetry breaking by the magnetic ordering. The principal
part and δ-function part of the nonmagnetic χN are purely
real and imaginary respectively, while the real and imaginary
parts are opposite in the magnetic χM [24,52]. In other words,
χN is purely real and χM is purely imaginary far away from
resonance. As the susceptibility in the static limit is purely
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real, χM does not contribute to the static SHG χ (2ω = 0; ω =
0, ω = 0). Away from the static limit, χM increases linearly
with ω until a resonance.

Moreover, there is an intuitive picture explaining the
presence of the imaginary χM away from resonance as a
consequence of the motion of the optically driven electrons
under the Lorentz force exerted by the magnetic field B of
the ordered state [15]. As the Lorentz force is proportional
to velocity which is the time derivative of the electron dis-
placement, it introduces an imaginary term in the equation
of motion of optically driven electrons. As a result, the os-
cillation amplitude is purely real along the direction of the
driven electric field independent of B, and is purely imaginary
with amplitude proportional to ω|B| (to the lowest order) in
the direction perpendicular to both the driven electric field
and the magnetic field B. Eventually, the imaginary amplitude
leads to the imaginary off-diagonal linear susceptibility and
the imaginary SHG that are proportional to ω|B| away from
resonance. Therefore, the symmetry argument based on our
formula is consistent with the intuitive picture.

Generally, the imaginary part of the susceptibility is re-
sponsible for energy dissipation of the electromagnetic field.
However, in magnetic materials, χM is imaginary even away
from resonance, therefore, the meaning of dissipation needs to
be scrutinized. The derivation of energy dissipation from the
first-order process is in Appendix D. The dissipation rate of
the electromagnetic energy due to the second-order polariza-
tion P(2) is given by

E · d

dt
P(2) = −2i[ω	χabc

2 (−ω	 ; ωβ, ωγ )

− ωβχbac
2 (ωβ ; −ω	,ωγ )

− ωγ χ cab
2 (ωγ ; −ω	,ωβ )]Ea

(−	)E
b
βEc

γ . (17)

For frequencies detuned from resonance, the full-permutation
symmetry of χ2 guarantees that the term in the bracket is
zero. Therefore, only the δ-function part of susceptibility
participates in the dissipation no matter whether it is real or
imaginary.

Moreover, χN and χM also corresponds to different mea-
surable quantities. The sum-frequency generation (SFG)
intensity (I) measured in experiments can be decoupled into a
nonmagnetic term, a magnetic term and interference terms as

I = ∣∣χabc
N EbEc + χabc

M EbEc
∣∣2

= ∣∣χabc
N EbEc

∣∣2 + ∣∣χabc
M EbEc

∣∣2

+ (
χabc

N EbEc
)(

χ
ai j
M EiE j

)∗

+ (
χabc

N EbEc
)∗(

χ
ai j
M EiE j

)
. (18)

For materials with T or PT symmetry, the SFG intensity
is proportional to either the χN term or the χM term. When
both T and PT symmetries are broken, e.g., in a polar fer-
romagnetic, the appearance of the third and the fourth terms
reflects the interference between the magnetic and nonmag-
netic signals and the sign of the interference is determined
by the the direction of the magnetic and the polar orders. As
a result, domains with opposite magnetic/polar orders could
show different SFG intensities which makes SFG an important
tool for multiferroics detection.

IV. COMPUTATIONAL METHODS

A. Implementation of U(2)-covariant derivative

In the following, we present the implementation of the
U(2)-invariant formulas using both orthogonal and nonorthog-
onal basis. The general derivative is usually evaluated through
a sum-over state method [33,53] or the Wannier interpola-
tion method [43,54]. We adopted the Wannier interpolation
method proposed in Ref. [43] for orthogonal basis and the
scheme proposed in Ref. [55] for nonorthogonal basis, while
the Berry connection in both methods is evaluated based on
nondegenerate perturbation theory. Although methods with
orthogonal and nonorthogonal basis sets have different gauge
choices, as the optical responses are gauge invariant, the two
methods are equivalent in principle. While the Wannier inter-
polation method is more computationally efficient, the method
with nonorthogonal basis is more suitable for high-throughput
calculations [55]. For SHG calculations, the three-band sum-
mation in Eq. (C1) requires a large number of bands to achieve
convergence, therefore, the method with nonorthogonal basis
is a more suitable choice to evaluate SHG responses.

We generalized the above mentioned methods by including
degenerate perturbation to evaluate the Berry connection and
the general derivative, which are unavoidable in the presence
of PT symmetry. For the Wannier interpolation method, we
chose a specific gauge which satisfies that [U †(k0)U (k0 +
δk)]nμnν

is purely real for degenerate bands nμ and nν .
Therefore, the non-Abelian connection U †∂kaU between two
degenerate states vanishes, while the non-Abelian connections
between nondegenerate states can be calculated as usual [43],

(
U †∂kaU

)
nμmν

=
{

−
(

U †∂ka (H (W) )U
)

nμmν

En−Em
En �= Em,

0 En = Em,

where H (W ) is the Hamiltonian matrix in the representa-
tion of local Wannier functions and U is a matrix of which
each column is an eigenvector of H (W ). For the method of
nonorthogonal basis, we again chose a specific gauge so that
the matrix elements between degenerate bands in Ref. [55] are
modified as

v†
nμ

S∂kavnν
= − 1

2v†
nμ

(∂ka S)vnν
.

Here S is the overlap matrix of the nonorthogonal basis, v

is a matrix with each column an generalized eigenvector of
H (W ) which is in the representation of a set of complete but
not orthogonal basis. More details can be found in Ref. [55].

B. First-principles methods

First-principles calculations were performed both by Vi-
enna Ab init io Simulation Package (VASP) [56] which is a
plane-wave basis package and by OpenMX which is a pseudo-
atomic basis package [57,58]. The exchange-correlation
functional was parameterized in the PBE form [59]. PAW
pseudopotentials [60] and norm-conserving pseudopotentials
[61] were used in VASP and OpenMX, respectively. We have
included the effect of SOC. For the 3d orbitals in magnetic
ions Mn and Cr, the Hubbard U of 4 eV and 3 eV were
used, respectively [62]. For layered materials, we used DFT-
D3 form van der Waals correction without damping [63].
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FIG. 1. Calculation workflow of optical responses with three dis-
tinct routes. In route I, after first-principles calculations by VASP, a
TB Hamiltonian in orthogonal basis is constructed using Wannier90.
For route II, the difference from route I is that DFT calculations are
done by OpenMX. In route III, a TB Hamiltonian in nonorthogonal
basis is constructed directly from OpenMX.

In VASP, the cut-off energy of plane waves was set to 350 eV
and 450 eV for MnBi2Te4 and CrI3, respectively. In OpenMX,
Cr6.0-s3p3d2 and I9.0-s3p3d2f1 were chosen as our basis for
Cr and I. The convergence criterion for force and electronic
calculations were 10 meV/Å and 10−6 eV. k-point samplings
of 15 × 15 × 1 and 13 × 13 × 1 were used for MnBi2Te4 and
CrI3 in VASP, and a 7 × 7 × 1 k-mesh was adopted for CrI3

in OpenMX. The bilayer structures of CrI3 and MnBi2Te4 are
simulated in slab supercells with additional vacuum thickness
of 15.8 Å and 20.9 Å, respectively.

After getting the converged electronic structures, we either
generated the maximally localized Wannier functions using
Wannier90 [64] or used the nonorthogonal atomic basis from
OpenMX to build the tight-binding (TB) Hamiltonian and
calculate the optical responses [43,55]. We obtained 100 max-
imally localized orbitals for MnBi2Te4 and 112 maximally
localized orbitals for CrI3. In the calculation of MIC and
MSC, we adopted a 400 × 400 × 1 kmesh. For SHG suscep-
tibility, the relaxation rate h̄/τ was set to be 0.05 eV, and the
k-mesh was set to be 50 × 50 × 1 which leads to identical
results as 100 × 100 × 1 k-point sampling. The degenerate
perturbation was applied when the energy difference between
two bands are smaller than Edeg which was set to be 0.5 meV
in our calculations.

The flowchart of our computations including the electronic
structure and optical response calculations is illustrated in
Fig. 1. Three different routes were adopted to calculate optical

FIG. 2. Atomic and magnetic structures of bilayer MnBi2Te4 and
CrI3. (a, b) The side and top view of bilayer AFM-z MnBi2Te4.
(c, d) The side and top view of AFM-z bilayer CrI3. The Cartesian
coordinates adopted in our calculations are marked by solid lines and
the one adopted in Ref. [67] are in the dashed line.

responses. In route I, the electronic structure is calculated by
VASP and then maximally localized Wannier functions are
constructed to obtain the TB Hamiltonian in an orthogonal
basis set. The difference between route II and I is that the elec-
tronic structure is calculated by OpenMX rather than VASP. In
route III, after the self-consistent calculation by OpenMX, we
directly get the TB Hamiltonian in nonorthogonal basis. The
purpose of using multiple packages (VASP and OpenMX) and
different basis sets (orthogonal and nonorthogonal) for TB
Hamiltonian is to examine the influence of different electronic
structures and gauge choices for optical responses separately.

V. EXAMPLE STUDIES AND RESULTS

A. Candidate materials

We considered two prototypical materials: bilayer
MnBi2Te4 [65] and bilayer CrI3 [66], both of which have
interlayer A-type AFM magnetic orders. Both materials
exhibit PT symmetry, which implies that the spatial inversion
symmetry is broken only through the AFM spin order between
two layers while the geometric structure is centrosymmetric
as illustrated in Fig. 2. In this case, only magnetic responses
including MIC, MSC and magnetization-sensitive SHG are
present while normal responses NIC, NSC and nonmagnetic
SHG are forbidden, which makes them a simple platform
to investigate the nonlinear magneto-optical responses.
Additionally, both materials are feasible in experiments
[21,66] and their MIC has been studied theoretically in
literature [12,13,67], which provides valuable results for
comparison. For bilayer MnBi2Te4, we considered AB-type
stacking (same stacking pattern as in bulk) in which each
layer laterally shifted by [1/3, 1/3, 0]. For bilayer CrI3,
multiple stacking orders have been investigated previously
[66], and we focused on the one with AB′ stacking in which
each layer laterally shifted by [1/3, 0, 0] as both MIC
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TABLE III. The stacking order, magnetic point group, magnetic order, and independent tensor components of MIC, MSC, and MSH in
bilayer MnBi2Te4 and bilayer CrI3.

Material Stacking Magnetic point group Magnetic order MIC MSC MSHG

Bilayer MnBi2Te4 AB 3̄′m′ AFM-z xxx none xxx
Bilayer CrI3 AB′ 2/m′ AFM-z xxy, yxx, yyy xxy xxy, yxx, yyy

and MSC are allowed. The stacking order, magnetic order,
magnetic symmetry and independent tensor components are
summarized in Table III.

B. Magnetic injection current

The MIC of bilayer MnBi2Te4 and bilayer CrI3 have been
calculated recently [13,67]. Although previous works have
not considered the U(2)-gauge problem under PT symmetry,
fortunately, MIC is not subjected to modifications in PT
symmetric case as demonstrated in Eq. (13). In the following,
we performed calculations and compared with previous works
to validate our method and results.

In bilayer MnBi2Te4, its interlayer coupling is AFM and
the intralayer coupling is FM. The energy band is highly
dispersive near � point with a small gap of 0.076 eV at
� point as shown in Fig. 3(a). In addition, the comparison
between our band structure (red solid line) and the one from
Ref. [13] (blue dotted line) along high-symmetry line showed
excellent agreement near band edge. Fig. 3(b) shows the MIC
conductivity of bilayer MnBi2Te4 along xxx direction. Our
result again shows an excellent agreement with the Ref. [13].

For bilayer CrI3, to compare the band structure and MIC,
we adopted the same Hubbard U = 1 eV and the same
Cartesian coordinates shown by dashed line in Fig. 2(d) as
Ref. [67]. Figures 3(c) and 3(d) shows the calculated band

FIG. 3. Band structure and MIC conductivity of bilayer
MnBi2Te4 and CrI3. (a, b) Band structure and MIC conductivity of
MnBi2Te4. Our results are in red solid line and the results in Ref. [13]
are in blue dotted line. (c, d) Band structure and MIC conductivity of
CrI3. Our results are in red solid line, while the results in Ref. [67]
are in blue dashed line. The coordinate was set to be the same as
Ref. [67], as illustrated in Fig. 2.

structure and MIC conductivity. The band gap of bilayer CrI3

is 0.89 eV at � point in our calculation and 0.78 eV in the
reference, therefore we applied a 0.11 eV scissor operation to
results in the reference to align the band gap in Fig. 3(c) to
0.89 eV. While the shape of bands is similar near band edge,
noticeable differences exist in many bands. In addition, the
magnetic moment of Cr atom along z axis is 3.12 μB in our
calculation, while 3.21 μB in the reference. As we adopted
the same parameters (Hubbard U , exchange-correlation func-
tional, pseudopotentials, Van der Waals correction) in the
electronic structure calculation, the above discrepancies might
result from small differences in atomic structures. For the MIC
shown in Fig. 3(d), the main characters of our results (red solid
line) are similar to the reference (blue dashed line) including
the location and height of the first peak. However, due to
discrepancies in band structures away from the band edge, the
location and height of other peaks are shifted and modified.
Therefore, combining the results of bilayer MnBi2Te4 and
CrI3, we can conclude that we are able to reproduce MIC
results in literature while the detailed features of MIC are
sensitive to geometric and electronic structures.

C. Magnetic shift current

The correction to ensure U(2)-gauge invariant is essential
in the presence of PT symmetry which hasn’t been consid-
ered in the previous computational works. Here we calculated
the MSC conductivity of AB′ stacking bilayer CrI3 through
three different routes shown in Fig. 1 and alternating be-
tween U(1)-covariant derivative and U(2)-covariant derivative
to demonstrate the influence of the gauge choice. As the
results are very sensitive to details in electronic structure (see
Fig. 6 in the Appendix), we stay with the electronic structure
obtained from OpenMX for comparison.

Figure 4(a) shows the results from orthogonal basis method
(blue dashed line) versus nonorthogonal basis method (red
solid line) (route II versus route III in Fig. 1) with the
same U(2)-gauge-invariant formula. Since the two methods
have different gauge choices, the excellently agreed results
in Fig. 4(a) confirm that our formula of MSC is truly gauge
independent.

In contrast, Fig. 4(b) shows the results of orthogonal ba-
sis method (blue dashed line) versus nonorthogonal basis
method (red solid line) (route II versus route III) both using
U(1)-form formula adopted in previous works. Although the
same electronic structure guarantees that the peak positions
resulted from the delta function in Eq. (11) are exactly the
same, differences in peak height are prominent, especially at
low-frequency region. For instance, they differ by more than
three times at 1.2 eV and there is a shoulder in the red solid
line at 0.8 eV while absent in the blue dashed line. More
importantly, the differences demonstrate that the previous
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FIG. 4. Magnetic shift current of bilayer CrI3 calculated by (a) route II (blue dashed line) compared with route III (red solid line), both
using the U(2)-invariant formula. The gap has been scissored to the same value. (b) The result of nonorthogonal basis (red solid line, route III)
compared with that of orthogonal basis (blue dashed line, route II), both using U(1)-invariant formula. (c) Results of U(2)-invariant formula
(red solid line) versus U(1)-invariant formula (blue dashd line), both using nonorthogonal basis (route III).

formula with U(1)-covariant derivative is gauge dependent
and the results are not reproducible due to different gauge
choices. Therefore, the previous MSC formula with U(1)-
covariant derivative cannot be used to describe physical
observables in PT -symmetric materials.

Furthermore, Fig. 4(c) shows results from U(1)-invariant
formula (blue dashed line) versus U(2)-invariant formula (red
solid line) using nonorthogonal basis (both are in route III).
Noticeable differences are observed at peak values due to the
improper implementation of the covariant derivative in PT -
symmetric materials, implying the necessity of using U(2)-
invariant formula.

D. Magnetic second-harmonic generation

In terms of the SHG response in magnetic materials, there
are three sets of formulas that are available to use: the “DVG”
(short for “divergent”) expression which is the original ex-
pression in Ref. [30] with low-frequency divergent problem
shown in Eq. (14), the “T -SMP” expression in which the
low-frequency divergent terms are simplified by T symmetry
and have been implemented in many calculation packages
[37–43], and the full-frequency convergent expression “CVG”
(short for “convergent”) proposed in this paper as demon-
strated in Eq. (15). The complete formulas of these three sets
of formulas can be found in Appendix C. As the gigantic
SHG susceptibility in AB′ CrI3 has been measured [21] and
calculated using the T -SMP expression recently [45], we
compare the SHG response of bilayer CrI3 along xxy direction
calculated using the DVG, T -SMP and CVG expressions.

Figure 5(a) shows the real and imaginary parts of SHG
calculated using the DVG and the CVG expressions. As the
CVG expression is derived from the DVG expression, re-
sults from both expressions are exactly the same away from
the low-frequency region (>0.1 eV). However, in the low-
frequency region (0–0.1 eV), both the real and imaginary parts
calculated from the DVG expression exhibit divergent prob-
lem which is absent in the CVG expression. Additionally, in
the static limit, the CVG expression converges to exactly zero
which is consistent with our symmetry analysis in Sec. III.

Figure 5(b) shows the real and imaginary parts of SHG
calculated using the T -SMP and the CVG expressions. As
the SHG response in bilayer CrI3 is gigantic, the difference

between the two expressions is hardly observed in Fig. 5(b).
Detailed analyses in Fig. 5(c) demonstrates that the differ-
ences between the two expressions, which is χnew, are roughly
104 pm2/V. The materials and frequency range in which χnew

is considerable is subject to further investigation with more
magnetic materials.

VI. CONCLUSION

In summary, we have given a thorough derivation of
second-order magneto-optical effects, including rectification
current and second-order susceptibility using density matrix
perturbation method. Especially, the formalism of rectification
current conductivity is compatible with both nondegenerate
and degenerate bands and is applicable to both nonmag-
netic and magnetic materials. Additionally, the second-order
susceptibility with ω−1 and ω−2 terms, which suffers from
low-frequency divergent problem, numerical instability and
is dropped conventionally, has been reformulated into a
full-frequency convergent form without any symmetry as-
sumptions. Furthermore, we have implemented the above
formulas to first-principles calculations, which has not been
done for real materials as far as we know, using both orthog-
onal and nonorthogonal basis methods. Two PT -symmetric
magnetic materials, bilayer AFM MnBi2Te4 and CrI3 are used
as examples. We confirmed that our formulas for rectification
current including the MIC and MSC are truly invariant under
U(2)-gauge freedom. Meanwhile, for SHG in magnetic ma-
terials, we found noticeable modifications of SHG responses
from the divergent term. With the vast variety of magnetic
materials, it is expected that our reformulated formalism can
greatly facilitate and advance the theoretical understandings
on nonlinear magneto-optical effects.
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FIG. 5. SHG of bilayer AB′ stacking CrI3 along xxy direction. Upper and lower panels (a) are the real and imaginary part of SHG,
respectively. The black dashed line shows the results of the previous divergent formulas marked as “DVG,” the red solid line shows the results
of complete and modified formulas marked as “CVG.” Panel (b) shows the comparison between the complete and modified formulas (“CVG,”
red solid line) and the conventional used but not complete formulas (T -SMP, blue dashed line). Panel (c) shows the difference between them,
where the blue line is the value of the new term.
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APPENDIX A: BASIC HAMILTONIAN, CURRENT
OPERATOR, AND POLARIZATION OPERATOR

1. Basic Hamiltonian

The Hamiltonian of a semiconductor in an electromagnetic
field, whose magnetic field is negligible and the electric field
is treated in the long-wavelength limit, can be written as [33]

Ĥ (t ) =
∫

ψ̃†(x)[H0 − ex · E(t )]ψ̃ (x)dx, (A1)

where H0 is the unperturbated single particle Hamilto-
nian in the coordinate representation with Bloch eigen-
functions ψnμ

(k; x) and eigenvalues h̄ωn(k), and ψ̃ (x) =∑
n

∑
μ

∫
dkψnμ

(k; x)ânμ
(k) is the field operator with the

annihilation operator for Bloch state as ânμ
(k). n and μ are

the band indices and e = −|e|. The interaction of electric field
and electrons is represented using the length gauge by the
−ex · E(t ) term while the results are equivalent to the velocity
gauge formula [32,68]. The long-wavelength limit is valid as
long as the wavelength of light is much larger than the length
scale of interests.

Combining Eqs. (1) and (A1), we get

Ĥ (t ) =
∫

dkh̄ωnμ
(k)â†

nμ
(k)ânμ

(k)

− e
∫

dkE(t ) · rnμmν
(k)â†

nμ
(k)âmν

(k)

− e
∫

dkE(t ) · â†
nμ

(k)i∂kânμ
(k)

− e
∫

dkE(t ) · Anμ
(k)â†

nμ
(k)ânμ

(k). (A2)

The intraband electric current according to Eq. (3) is

ĵa
intra = e

∫
dkva

nμnμ
(k)â†

nμ
(k)ânμ

(k)

− e2

h̄

∫
dkEbrb

nμmν ;aâ†
nμ

(k)âmν
(k)

− e2

h̄

∫
dkEb�ab

nμ
â†

nμ
(k)ânμ

(k), (A3)

where va
nμnμ

= (1/h̄)∂ka En(k) is the group velocity and �ab
nμ

=
∂ka Ab

nμ
(k) − ∂kbA

a
nμ

(k) is Berry curvature. The interband po-
larization of Eq. (3) is

P̂a
inter = e

∫
dkra

nμmν
(k)â†

nμ
(k)âmν

(k), (A4)

where rb
nμmν ;a = ∂arb

nμmν
− irb

nμmν
(Aa

nμ
− Aa

mν
) is the U(1)-

covariant derivative [33].

2. Dynamics of density operators

The matrix element of density operator is

〈nλk|ρ̂|mμk′〉 = 〈
â†

mμ
(k′)ânλ

(k)
〉
, (A5)

and the initial density operator without perturbation is

ρ̂0 = 1

Z
e−βH0 , (A6)

with the matrix element 〈nλk|ρ̂0|mμk′〉 = fnλ
δnmδλμδ(k −

k′), where the prefactor fnλ
is the band occupation number.
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Switching on illumination at t = −∞, the Heisenberg
equation of motion of the density operator matrix element
reads [51,69,70]

d

dt
ρ̂nλmμ

(t ) = 1

ih̄
[H (t ), ρ̂(t )]nλmμ

− ρ̂nλmμ
(t ) − ρ̂nλmμ

(−∞)

τnλmμ

,

(A7)
where the last term is a phenomenological term describing
scattering processes of electrons with the relaxation time
τnλmν

. Most frequently, the relaxation time is assumed to be
independent of the initial and final states, and therefore the
subscript of τ is dropped.

Expanding the density operator in power of the electric
field as ρ̂(t ) = ρ̂0 + ρ̂1(t ) + ρ̂2(t ) + · · · and inserting it into
Eq. (A7), the equation of motion of density operator can be
rewritten as

ih̄
d ρ̂i+1(t )

dt
= [H0, ρ̂i+1(t )] + [H ′, ρ̂i(t )] − ih̄

ρ̂i+1(t )

τ
, (A8)

which can be solved using the iteration method. The first-
order term of the density operator matrix element is

(ρ̂1)nλk,mμk′ = eEb
βe−iωβ t

h̄

fmnrb
nλmμ

(k)

ωnm − ωβ − i/τ
δ(k − k′), (A9)

and the second-order term is

(ρ̂2)nλk,mμk′ = −e2

h̄2

(�2)nλk,mμk′δ(k − k′)
ωnm(k) − ω	 − i/τ

Eb
βEc

γ e−iω	 t ,

(A10)
with(

�L
2

)
nλk,mμk

=
fln(k)rb

nλlν
(k)rc

lνmμ
(k)

ωnl (k) − ωβ − i/τ
−

fml (k)rb
lνmμ

(k)rc
nλlν

(k)

ωlm(k) − ωβ − i/τ

− i

[
fmn(k)rb

nλmμ
(k)

ωnm(k) − ωβ − i/τ

]
;c

. (A11)

In derivation of Eq. (A10), we have assumed that the system
is a gapped system, in other words, ∂k fn(k) = 0.

3. First- and second-order response functions

The zeroth-order polarization response can be obtained
through Eqs. (1) and (A6) as

Pa
0 = −e

∫
[dk] fnAa

nμ
(k), (A12)

which reproduces the result of modern theory of polarization.
The first-order electric susceptibility is acquired by com-

bining Eqs. (1) and (A9) as

χab
1 (−ω; ω) = e2

h̄

∫
[dk]

fnmra
nμmν

rb
mνnμ

ωmn − ω − i/τ

− e2

ih̄ω

∫
[dk] fn

[
∂

∂ka
Ab

nμ
− ∂

∂kb
Aa

nμ

]
. (A13)

While the first term provides a finite susceptibility, the second
term shows a ω−1 divergence in the static limit (ω → 0) which
indicates the presence of a DC current in the static limit. Us-
ing the continuity relationship, the first-order electric current

conductivity is

σ ab
1 (−ω; ω) = −ie2ω

h̄

∫
[dk]

fnmra
nμmν

rb
mνnμ

ωmn − ω − i/τ

+ e2

h̄

∫
[dk] fn�

ab
nμ

. (A14)

In the static limit, the first term vanishes and the second term
is just the anomalous Hall current [71]. For two-dimensional
insulators with nonzero Chern number, this term contributes a
quantized anomalous Hall current.

For second-order responses, 〈 ja
intra (t )〉(2) has been given

in the main text and the full expression of 〈Pa
inter (t )〉(2) is

given by

〈Pinter (t )〉(2) = e3

2h̄2

∫
[dk]

[. . .]Eb
βEc

γ e−iω	 t

ωln − ω	 − i/τ

= e3

2h̄2

∫
[dk]

ra
nμlν

ωln − ω	 − i/τ

[
fnmrc

lνmλ
rb

mλnμ

ωmn − ωβ − i/τ

−
fml rb

lνmλ
rc

mλnμ

ωlm − ωβ − i/τ
+

i fnl rb
lνnμ;c

ωln − ωβ − i/τ

−
i fnl rb

lνnμ

c

ln

(ωln − ωβ − i/τ )2 +(bβ↔cγ )

]
Eb

βEc
γ e−iω	 t .

(A15)

APPENDIX B: ALTERNATIVE DERIVATION OF THE
U(2)-INVARIANT FORMULATION

Starting from Eq. (1) and considering the position opera-
tor matrix between degenerate bands in the intraband term,
an alternate division of the interband and intraband position
operator matrix elements gives

〈nμk|x̂intra|mνk′〉 = δnmδμν

[
Anμ

(k) + i
∂

∂k
δ(k − k′)

]
+δnm(1 − δμν )rnμmν

(k), (B1)

and

〈nμk|x̂inter|mνk′〉 = (1 − δnm)rnμmν
(k). (B2)

The newly added second term in Eq. (B1) is the origin of the
diverging Pinter (ω	 ) in the ω	 → 0 limit. Following the stan-
dard treatment of the main text, we retrieved the same results
regardless of how the position operator matrix elements are
divided. In the new division, DC current is only from Jintra

term regardless of the presence of the degeneracy condition.

APPENDIX C: FULL EXPRESSION OF SHG AND THE
STATIC LIMIT

In the main text, we focused on the divergent terms in the
second-order susceptibility, while the full expressions consist
of both the nondivergent term originated from Eq. (A15) and
the “apparent” diverging terms in Eq. (15). In addition, as
SHG is frequently measured and computed, we provided the
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full expression of “CVG” SHG as

χabc
2 (−2ω; ω,ω) = χabc

e (−2ω; ω,ω) + χabc
i (−2ω; ω,ω),

(C1)
with

χabc
e (−2ω; ω,ω)

= e3

2h̄2

∫
[dk]

′∑ ra
nμmν

(
rb

mν lλ
rc

lλnμ
+ rc

mν lλ
rb

lλnμ

)
ωln − ωml

×
(

2 fnm

ωmn − 2ω
+ fln

ωln − ω
+ fml

ωml − ω

)
(C2)

is purely the contribution from interband process, and

χabc
i (−2ω; ω,ω)

= ie3

2h̄2

∫
[dk] fnm

[
2
(
Icab
nm + Ibac

nm

)
ωmn(ωmn − 2ω)

+ Icba
mn + Ibca

mn

ωmn(ωmn − ω)

+
(
gab

nm − i
2�ab

nm

)

c

mn + (
gac

nm − i
2�ac

nm

)

b

mn

ω2
mn

×
(

1

ωmn − ω
− 4

ωmn − 2ω

)
− Iacb

mn + Iabc
mn

2ωmn(ωmn − ω)
− 
a

mngbc
nm

2ω2
mn(ωmn − ω)

]
(C3)

is the contribution of the mixed interband and intraband pro-
cesses where the last two terms are showned in Eq. (16). If we
remove the last term, then we get the “T -smp” formula, which
is derived assuming time-reversal symmetry. If we replace the
last two terms by Eq. (14), then we obtain the “DVG” formula
which suffered from the low frequency divergent problem.
Again, the small imaginary part i/τ in the denominator is not
written out explicitly. The

∑′ in Eq. (C2) means that the in
the summation, n, m, l are not equal to each other. In addition
to the new term derived in Eq. (16), our full expression also
satisfies that each term is gauge-covariant regardless of the
degeneracy condition. This is achieved by restricting n, m, l
not equal to each other in the three-band summation term
and rearranging the rest terms not obeying this restriction
(terms including connections in degenerate sub space) with
the U(1)-covariant derivative to construct the U(2)-covariant
derivative.

The SHG susceptibility described in Eqs. (C2) and (C3) is
made up of terms of the form

∫
A

ωmn−ω−i/τ . The T -even part

of the susceptibility χN takes the form of
∫

Re A
ωmn−ω−i/τ and the

T -odd part χM takes the form of
∫

Im A
ωmn−ω−i/τ . Therefore, in

the limit τ → ∞, the principal part and δ-function part of the
nonmagnetic χN are purely real and imaginary respectively,
while the real and imaginary parts are opposite in the magnetic
χM [24,52].

The SHG susceptibility at the static limit is an important
criterion for the application of nonlinear crystals and we rear-
ranged the static susceptibility in a form that directly represent

the Kleinman’s symmetry as

χabc
e (0; 0, 0) = e3

6h̄2

∫
[dk]

′∑
P(abc) Re{ra

nμmν
rb

mν lλrc
lλnμ

}

× ωm fnl + ωp fmn + ωn flm

ωmnωlnωml
(C4)

and

χabc
i (0; 0, 0) = − e3

4h̄2

∫
[dk]

fnm

ω2
mn

P(abc) Im{Iabc
nm }, (C5)

where P(abc) denotes full permutation of indices a, b, c.

APPENDIX D: THE RELATIONSHIP BETWEEN ENERGY
DISSIPATION AND SUSCEPTIBILITY

In T -symmetric systems, the imaginary part of suscepti-
bility which only contains the δ-function part characterizes
the dissipation of the electromagnetic field energy, while the
real part does not contain δ-function terms. In T -breaking
systems, the susceptibility is complex in general, and the
imaginary part of the susceptibility is not related to dissipa-
tion. For example, the power of dissipation in the first order

FIG. 6. Band structure and MSC conductivity of bilayer CrI3

calculated from that from route II compared with route I, both
using U(2) invariant formulas with first-principles packages VASP
and OpenMX. We have applied a scissor operation to the results of
OpenMX to increase the gap to the same value as that of VASP.
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gives

E · dP1

dt
=

∑
ω

iω
[−χab

1 (−ω; ω)+χba
1 (ω; −ω)

]
Ea

−ωEb
ω + c.c.

=
∑

ω

πe2ω

h̄

∫
[dk] fnm

[
ra

nmrb
mnEa

−ωEb
ω + c.c.

]
× δ(ωmn − ω). (D1)

Therefore, in T -breaking systems, the dissipation is not re-
lated to the imaginary part of χ1, rather, it depends only on
the δ-function part which is not purely imaginary.

APPENDIX E: BAND STRUCTURE OF BILAYER CrI3

Figure 6 shows the band structure and MSC conductiv-
ity calculated from routes I and II using the U(2)-invariant
formula, where the electronic structures are obtained from
different first-principles packages while other parameters are
essentially the same. The electronic structures calculated from
the two packages are slightly different in many aspects includ-
ing bandgap values and band dispersion as shown in Fig. 6(a).
For instance, the band gap is 0.89 eV from VASP and 0.51 eV
from OpenMX. Even though the scissor operator has been
applied to align the bandgap in Fig. 4(b), different features in
MSC are still observed re-emphasizing that the optical current
is sensitive to the electronic structure and it is difficult to
compare results from different packages.
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