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Emergent Lorentz symmetry and chiral anomaly are well known for playing an essential role in anomalous
transport phenomena of Weyl metals. In particular, the former causes a Berry-curvature-induced orbital magnetic
moment to modify the group velocity of Weyl electrons, and the latter results in the chiral magnetic effect to be
responsible for a “dissipationless” longitudinal current channel of the bulk. In this study, we verify that these two
effects can be measured in Shubnikov–de Haas (SdH) quantum oscillations, where a double-peak structure of
the SdH oscillation appears to cause a kink in the Landau fan diagram. We examine three different cases which
cover all possible experimental situations under external electric/magnetic fields and identify the experimental
condition for the existence of the double-peak structure. We claim that interplay of the orbital magnetic moment
and the chiral magnetic effect in SdH quantum oscillations is an interesting feature of the Weyl metal state.
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I. INTRODUCTION

Landau-level “splitting” in Shubnikov–de Haas (SdH)
quantum oscillations is commonly observed in topological
materials such as Dirac metals [1–6] and Weyl metals [7]. This
double-peak structure from each Landau level gives rise to a
kink signature in the Landau fan diagram. This study suggests
the origin of the Landau-level splitting in a Weyl metallic
state.

It is well established that emergent Lorentz symmetry
and chiral anomaly [8–11] play a central role in anomalous
transport phenomena of Weyl metals [12–17]. The relativistic
invariance enforces that the total angular momentum given
by the sum of the spin and orbital angular momentum has to
be conserved. In other words, the Lorentz boost changes not
only the spin angular momentum but also the orbital one. As a
result, a Weyl electron away from the Weyl point carries an ef-
fective angular momentum proportional to the Berry curvature
at each momentum position. This Berry-curvature-induced
orbital angular momentum causes an additional energy contri-
bution given by an effective Zeeman coupling form between
the Berry curvature and an external magnetic field [18–20].
This effective Zeeman energy changes the group velocity de-
pending on the chirality, which is reduced (enhanced) in the
positive (negative) chirality Weyl point.

The chiral anomaly means that U(1) chiral currents cannot
be preserved within the quantum mechanical principle as long
as U(1) charge currents are enforced to be conserved [21–23].
Physical realization of the chiral anomaly is that there exists a
“dissipationless” current channel in the bulk, which gives rise
to charge pumping from a positive-chiral Fermi surface to a
negative-chiral one. More precisely, the time evolution of the
chiral charge is given by the chemical potential difference be-
tween the positive and negative chiral Fermi surfaces, referred

to as the chiral chemical potential μ5 ∝ E · B [24–39], where
E and B are externally applied electric and magnetic fields,
respectively. This so-called chiral magnetic effect is responsi-
ble for |B|2 enhancement of longitudinal magnetoconductivity
[40–48].

In this study, we demonstrate that these two effects cause
a double-peak structure in the SdH quantum oscillation. In
particular, we find criteria on the existence of this double-
peak structure in a time-reversal symmetry-broken Weyl metal
state. This leads us to manipulate the splitting structure as a
function of the external magnetic field in the linear-response
regime. We claim that the interplay of the orbital magnetic
moment and the chiral magnetic effect in SdH quantum oscil-
lations is an interesting feature of the Weyl metal state.

II. ELECTRICAL CONDUCTIVITY OF A
TIME-REVERSAL SYMMETRY-BROKEN WEYL METAL

STATE WITH A PAIR OF CHIRAL FERMI SURFACES

A. General formula of conductivity
for SdH quantum oscillations

Transverse (E ⊥ B) and longitudinal (E ‖ B) quantum os-
cillations of metals under external magnetic fields are given
by

σxx = σ l=0
xx + 2

∞∑
l=1

e−λDlσ (l )
xx

(
cos
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π l

2ζF
+ π

4
− lφ
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4
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, (1)
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FIG. 1. Dispersion relations for a pair of chiral Fermi surfaces. They are modified by the Zeeman-energy contribution from the Berry-
curvature-induced orbital magnetic moment. We also point out that the area of each chiral Fermi surface is further different, which results from
the chiral chemical potential μ5.

in the semiclassical limit [49,50]. Here, σ l=0
xx(zz) is a nonoscilla-

tory conductivity term as a function of the external magnetic
field. σ

l �=0
xx(zz) is an amplitude of the SdH quantum oscilla-

tion, where l is an integer. The complete form of σ
l �=0
xx(zz) is

shown in the Appendix and sections below. λD = π h̄/τq

h̄kF vF ζF
is

the Dingle damping factor, where kF , vF , and τq are Fermi
momentum, Fermi velocity, and relaxation time (given by for-
ward scattering mostly) of electrons, respectively. ζF = eB

2h̄k2
F

is a dimensionless length scale given by the magnetic length
and the Fermi momentum. φ = 2πγ is a phase shift from
the Sommerfeld-Bohr quantization condition. γ is 1/2 in a
conventional metal whereas it is 0 in the presence of the
Berry phase 	B = π , more precisely, given by γ = 1

2 − 	B
2π

.
At present, we do not consider l = 0 terms, and focus on
oscillatory components as a function of the external magnetic
field.

B. Key feature of a Weyl metal phase for SdH quantum
oscillations: Chirality-dependent Fermi-momentum change

An essential point in the SdH quantum oscillation of the
Weyl metal phase is that there are two Fermi momenta de-
pending on the chirality, which originate from two reasons:
(i) Berry-curvature-induced orbital magnetic moment gives
rise to an additional Zeeman energy contribution under the
external magnetic field, modifying the group velocity in a
chirality-dependent way [18–20], and (ii) the chiral chemical
potential μ5 appears to realize the chiral anomaly, referred to
as the chiral magnetic effect [24–39]. See Fig. 1.

Although the linear band structure of ε(k) = h̄vF |k| is
taken into account in Weyl materials, it turns out that this
expression is not complete with respect to the Lorentz invari-

ance. An important point is that the spin angular momentum is
assigned to each momentum point of the chiral Fermi surface
by spin-momentum locking or spin enslavement. If one con-
siders the Lorentz boost, the spin angular momentum has to
be changed. On the other hand, the total angular momentum
is conserved. In this respect there must be an orbital angular
momentum to compensate the change of the spin angular
momentum. Actually, the Berry curvature turns out to play the
role of the orbital angular momentum. This emergent orbital
angular momentum gives rise to an additional Zeeman energy
contribution. As a result, the dispersion relation is modified as
[18–20]

ε(k) = h̄

(
vF − e

h̄
(� · vF)B

)
|k|, (3)

where � = χ k̂
2k2 is the Berry curvature for the chirality

χ = ±1.
We point out that this expression is not well defined near

the Weyl point, where the Berry curvature diverges. It would
be interesting to find a general formula valid near the Weyl
point.

If there is no external magnetic field (B), the Fermi energy
is given by

μ0 = h̄vF kF0. (4)

When there exists an external magnetic field, the Fermi mo-
mentum (k±

F ) for each chiral Fermi surface (χ = ±1) has to
be modified as

μ0 = h̄vF kF0 = h̄k±
F

(
vF − e

h̄
(�± · vF)B

)
. (5)
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Now, we get the Fermi momentum for each chirality with the
external magnetic field in the following way:

k±
F = kF0

2

(
1 +

√
1 ± 2eB

h̄k2
F0

)
= kF0

2
(1 +

√
1 ± 4ζF )

≈ kF0(1 ± ζF ). (6)

Here, kF0 is the Fermi momentum without an external mag-
netic field (the same Fermi momentum for each chirality in
this case) whereas k±

F is the chirality-dependent Fermi mo-
mentum with an external magnetic field. We get the ±ζF

correction due to the dispersion change.
Now, we are going to turn on the E field. As discussed be-

fore, the chiral anomaly is realized by chiral charge pumping
through a dissipationless current channel when both E and B
fields are applied simultaneously in the parallel direction. This
chiral magnetic effect is given by the chiral chemical potential
[24–39,51]:

μ5 = μ+ − μ−
2

= 3

4

v3
F

π2

e2

h̄2c

(
E · B

T 2 + μ2
0/π

2

)
τv

≡ h̄v f aE · B 	 μ0, (7)

where τv is intervalley scattering time. As a result, the chemi-
cal potential for each chiral Fermi surface is given by

μ± = μ0 ± μ5 = h̄vF kF0 ± h̄vF aE · B

= h̄k±
μ5

(
v f ∓ eBv f

2(k±
μ5)2h̄

)
. (8)

Here, we assumed that the dispersion of each chirality is
maintained as Eq. (5) even though their chemical potentials
are modified from μ0.

Solving Eq. (8), we obtain further modifications of the
Fermi momentum k±

μ5 due to μ5 as

k±
μ5 ≈ kF0

(
1 ± eB

2h̄k2
F0

± aEB

kF0

)
= kF0

(
1 ± ζF ± μ5

μ0

)
= kF0 ± δk. (9)

We recall that the μ5/μ0 correction in δk = kF0(ζF + μ5

μ0
)

comes from the chemical potential change, whereas the ζF

correction results from the band dispersion change.

C. SdH quantum oscillations from two types
of chiral Fermi surfaces

Introducing the chirality-dependent Fermi momentum k±
μ5

into the longitudinal conductivity Eq. (2), we obtain the SdH
quantum oscillation for each chiral Fermi surface as follows:

σ osc±
zz = 2

∑
l

e−lλ±
D σ (l )±
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F

+ π

4
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+ π

4

)

=
∑

l
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1
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(
l C3kF0
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)e−l C2kF0

B (1±δk/kF0 ) cos

(
lπ h̄

eB

(
k2

F0 ± 2kF0δk + δk2
) + π

4

)

=
∑

l

C1B
1
2√

l sinh(lλ(1 ± δk/kF0))
e−lλD (1±δk/kF0 ) cos

(
lπ h̄k2

F0

eB
+ l±(E , B) + π

4

)
, (10)

where C1 = τekBT
h̄π

( e
h̄ )

3
2 , C2 = 2π h̄

τqv f e , C3 = 2π2kBT
v f e , λD = C2kF0

B = π h̄/τq

h̄kF vF ζF
, λ = C3kF0

B = π2T
h̄kF vF ζF

, and ζ±
F = eB

2h̄(k±
F )2 . Here,

we observe a key control parameter ±(E , B) in terms of δk = kF0(ζF + μ5

μ0
), more explicitly given by

±(E , B) = 2
π h̄k2

F0

eB

{
±

(
aE · B/kF0 + eB

2h̄k2
F0

)
+ 1

2

(
aE · B/kF0 + eB

2h̄k2
F0

)2}

= π

2ζF

{
±

(
μ5

μ0
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+ 1

2

(
μ5

μ0
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≈ ± ≡ ± π

2ζF

(
μ5

μ0
+ ζF

)
. (11)

For a time-reversal symmetry-broken Weyl metal BixAs1−x with x = 0.04 [41], the parameter  is approximately given by
 ∼ π

2 (1 + 0.0119E · B). Here, we considered kF ∼ 3.8 × 108 (1/m) and vF ∼ 9.3 × 105 (m/s) with the chemical potential
μ0 ∼ h̄vF kF in SI unit. Note that 0.0119 is an estimated value of a/μ0, where μ5 = aE · B.

Expanding 1/ sinh(lλ(1 ± δk/kF0)) and e−lλDδk/kF0 up to the first order in δk/kF0 	 1 as follows:

1/ sinh(x) = 1

x
− x

6
+ 7x3

360
− ..., (12)

e−x = 1 − x + x2

2
− ..., (13)
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we keep l = 2 components and sum SdH quantum oscillations from both chiral Fermi surfaces. As a result, we obtain

σ osc
zz = σ osc+

zz + σ osc−
zz

≈ C1B
1
2
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4
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)(
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eB
+ π

4

)
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(
2π h̄k2

F0
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4
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+
(
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)(
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)(
cos(2) cos

(
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F0

eB
+ π

4

)
+ sin(2) sin

(
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F0
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4

))}
. (14)

The procedure is essentially the same for σ osc
xx , not shown here.

III. ORIGIN OF THE DOUBLE-PEAK STRUCTURE IN THE SDH QUANTUM OSCILLATION AND APPEARANCE
OF THE KINK STRUCTURE IN THE LANDAU FAN DIAGRAM

The above longitudinal conductivity can be analyzed for three cases; two limiting cases and one intermediate case defined
by a control parameter  = π

2ζF
( μ5

μ0
+ ζF ). Two limiting cases will allow/forbid double peaks by Landau-level splitting in the

quantum oscillations whereas the intermediate parameter region discusses more general cases between two such limiting cases.
We note that all oscillating parts of the conductivity will be normalized by σ osc

zz (B = 0) later on.

A. The limit of tan(�) → 0

The first case we consider is when the effect for the sum of SdH oscillations from both chiral Fermi surfaces is minimized.
This occurs when tan() → 0, i.e., /π = 1

2ζF
( μ5

μ0
+ ζF ) = m, where m is an integer. Then, the oscillating component of the

conductivity is expressed as
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+
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+
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2
√
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+ π

4
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. (15)

Recall that we keep all terms only in the first order of δk/kF0. As shown in Eq. (15), there is no δk term in this case. With the
expansion of 1/ sinh(lλ(1 ± δk/kF0)) and e−lλDδk/kF0 up to the first order in δk/kF0, this equation is exactly the same as that of
the conventional SdH oscillation in a metal. In this limit, the effect of the Fermi momentum change can be verified only when
the order of the expansion is higher than the second order. Therefore, the SdH oscillation is almost the same as the conventional
one and it is difficult to see double peaks by Landau-level splitting. See Fig. 2.

B. The limit of tan(�) → ∞
On the other hand, the effect of the sum is maximized when tan() → ∞, i.e., /π = 1

2ζF
( μ5

μ0
+ ζF ) = 1

2 + m, where m is
an integer. In this case, the oscillatory part of the longitudinal conductivity is given by
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zz ≈ ±C1B

1
2
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(
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)
+
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)(
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(
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+ π

4
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−C1B
1
2

e−2λD

2
√
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{(
1 − δk

kF0

)(
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)
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(
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+ π

4

)
+
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)(
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)
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(
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F0
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+ π

4
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≈ ±C1B
1
2

2e−λD

λ
(1 + λD)

(
μ5

μ0
+ ζF

)(
sin

(
π h̄k2

F0

eB
+ π

4

)
∓ e−λD

μ5/μ0 + ζF

1

2
√

2(1 + λD)
cos

(
2π h̄k2

F0

eB
+ π

4

))
. (16)

Here, we keep all the terms in the first order of δk/kF0 again. The coefficients of sine and cosine functions are significantly
modified to those of the previous case. Small factors from the numerator (Dingle factor e−λD ) and the denominator (μ5/μ0 + ζF )
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are competing, so l = 2 components for SdH oscillations [the second term in the last parenthesis in Eq. (16)] may survive
in this limit. In particular, there is a special situation which always satisfies this condition (tan() → ∞) in Weyl metals; an
experimental situation of measuring transverse magnetoresistance. In this experimental setup, μ5 is always zero due to the
orthogonality of E and B, but there is the band-dispersion change due to the Berry curvature, and the ζF correction to the Fermi
momentum exists. See Eq. (6).  is always π/2 in this case, which satisfies the second limit.

To verify this statement, we consider the transverse oscillatory components, given by

σ osc
xx ≈ ±C1B

1
2

e−λD

λ

(1 + λD)

9 + (2kF vF ζF τ )2

(
sin

(
π h̄k2

F0

eB
+ π

4

)
∓ e−λD

ζF

cos
( 2π h̄k2

F0
eB + π

4

)
√

2(1 + λD)

)
. (17)

This result is quite similar to that of Eq. (16). Because of the competition between the numerator (Dingle factor e−λD ) and the
denominator (ζF ) in the second term of Eq. (17), one can expect double peaks in SdH quantum oscillations. See Fig. 3.

C. General experimental setup

In the general case, tan() would be in a range of 0 < tan() < ∞. We can consider this intermediate regime as cos() >

( δk
kF0

) and sin() �= 0. Keeping all terms in the first order of δk/kF0 in Eq. (14), we get an approximate oscillatory expression of
the conductivity as

σ osc
zz ≈ 2C1B

1
2 e−λD

λ

⎧⎨
⎩

√
cos2() + (1 + λD)2

(
δk

kF0

)2

sin2() cos

(
π h̄k2

F0

eB
+ π

4
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)

+e−λD

2
√

2

√
cos2(2) + (1 + 2λD)2

(
δk

kF0

)2

sin2(2) cos

(
2π h̄k2

F0

eB
+ π

4
− 2φ2

)⎫⎬
⎭

≈ 2C1B
1
2 e−λD

λ
cos()

{
cos

(
π h̄k2

F0

eB
+ π

4
− φ1

)
+ e−λD

2
√

2

cos(2)

cos()
cos

(
2π h̄k2

F0

eB
+ π

4
− 2φ2

)}
, (18)

where tan φ1 = (1 + λD) δk
kF0

tan() and tan 2φ2 = (1 + 2λD) δk
kF0

tan(2). One can easily check out that  → 0 and  → π/2
correspond to the first and second limits, respectively.

D. Analyzing each limit with the threshold field Bt

Let us consider a function f (x) with arbitrary phases α and
β, given by

f (x) = cos(1/x − α) + b cos(2/x − 2β ). (19)

This function has the same form as Eqs. (15)–(18),
where b corresponds to e−λD

2
√

2
in the tan() → 0 limit,

e−λD

μ5/μ0+ζF

1
2
√

2(1+λD )
in the tan() → ∞ limit, and e−λD

2
√

2
cos(2)
cos()

in the intermediate regime of 0 < tan() < ∞, respectively.

FIG. 2. The oscillating component of the longitudinal conductiv-
ity (σ osc

zz ) in the tan() → 0 limit.

We also point out that 1/x = π h̄k2
F0

eB , α = φ1 − π/4, and β =
φ2 − π/8. When |b| is small (note that b is a function of the
external magnetic field), the first term in Eq. (19) dominates
over others. We only see the oscillation peaks with the 1/x
period. However, when the external magnetic field B is larger
than a threshold field Bt , |b| becomes larger than a threshold
value bt and the 2/x period term starts to show its effect. Here,
the threshold value bt can be defined by f ′(x) = f ′′(x) = 0.
On the other hand, the vanishing double derivative of f (x)

FIG. 3. The oscillating component of the longitudinal conductiv-
ity σ osc

xx in the tan() → ∞ limit.
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FIG. 4. Landau fan diagram with Landau-level splitting. (a) A
misinterpreted Landau fan diagram when double peaks are not con-
sidered as split peaks. Due to Landau-level splitting, split peaks
appear in the 1/2 period in the Landau fan diagram. This makes a
kink near B = Bt . (b) A corrected version of the Landau fan diagram
with double peaks. Each split peak should locate in the same number
n. + (−) indicates each chirality. The upper red (Ca3As2 [2]) and the
lower black (ZrTe5 [5]) dots came from different samples. Here, we
normalized the magnetic field (B) by each threshold field Bt . See the
text for more details.

sometimes appears in the absence of the vanishing first deriva-
tive of f (x). To avoid this possibility in determining bt , we
suggest considering only the first derivative of f (x), where
its vanishing condition gives a solution, the period of which
differs from the existing one. In this respect the threshold
value may be regarded as qualitative. For the B > Bt region in
any Weyl metals, double peaks in SdH quantum oscillations
have to occur due to the Landau-level splitting as shown in
Fig. 4. We emphasize that one should place the split peaks
on the same number n. If the double peaks are not on the
same number n, the Landau fan diagram might not fit into
linear fitting. This looks like a kink feature near B = Bt as
shown in Fig. 4(a). When the external magnetic field is larger
than the threshold field Bt , the split peaks [indicated by ± in
Fig. 4(b)] should be placed on the same number, and the re-
sulting Landau fan diagram fits into a linear line. Even though
every sample has its different threshold limit, analyzing the
function form of f (x), one can easily find the threshold field
in a physical sense.

The threshold value bt is 1/4 (minimum) when α − β =
mπ
2 whereas bt is 1/2 (maximum) for α − β = (m+1/2)π

2 .
These special values are determined by f ′(x) = f ′′(x) = 0. It
is not simple to express bt as an analytic form for arbitrary α

and β as discussed above, but bt always exists in the range
of 1/4 < bt � 1/2. We show three examples of α − β =

mπ
2 ,

mπ+π/2
2 , and π

8 in Fig. 5. We find the threshold values of
bt and Bt in a numerical way when α and β are arbitrarily
given (whenever bt is given as a number, Bt can be found by
solving b = bt in a numerical way). When |b| is much larger
than 1/2, one can expect to see sufficiently big oscillation
peaks with the 2/x period. In the first limit (tan() → 0), it is
extremely hard to see the 2/x period oscillation peaks because
the maximum value of b is not sufficiently large ( 1

2
√

2
). Even

if the 2/x period oscillation peaks exist, the amplitudes of
them are extremely small compared to that of the 1/x period
oscillations. This is the reason why double peaks are rare in
conventional metals. On the other hand, in Weyl metals, the
amplitude of |b| can be arbitrarily tuned depending on μ5 and
ζF and the system can go to the second limit (tan() → ∞).
In other words, tuning μ5 with the applied electric field, one
can manipulate the double-peak condition in Weyl metals. The
easiest way to control the  parameter in experiments might
be changing the angle between the external electric field E
and the external magnetic field B. One can manipulate the
 parameter from π/2 (at E ⊥ B) to a certain maximum
value (at E ‖ B) by changing the angle. Such tuning of double
peaks (i.e., tuning the Landau-level splitting effect in quantum
oscillations) is possible only in Weyl metals thanks to the
chiral charge pumping. The tuning conditions of double peaks
are summarized in Table I with equations of |b| for certain
conditions.

E. μ5 measurement

Based on the above analysis, we suggest a method to
obtain the μ5 value experimentally. Observing quantum os-
cillations in both transverse and longitudinal directions, one
may evaluate μ5 of the system approximately with the follow-
ing experiment. First, measure the double peaks in the SdH
oscillations for the transverse direction. One might get the
oscillating amplitudes of the 1/x and 2/x components using
the Fourier transform. From Eq. (17), we know that the ratio
of oscillating amplitudes between the 1/x and 2/x compo-
nents should be given as b⊥ = e−λD√

2(1+λD )ζF
. Comparing it to the

measured one, the value of λD can be evaluated (ζF is given by
the oscillating period as usual). Same process in the longitudi-
nal direction can give the information of  = π

2 ( μ5

μ0
/ζF + 1).

Controlling the amplitude of E during the experiment, one can
find the second-limit condition [tan() → ∞] by observing
maximized amplitudes of double peaks. In this limit, one can
use Eq. (16) with the ratio of b‖ = e−λD

μ5/μ0+ζF

1
2
√

2(1+λD )
. Even if

finding the second limit is not successful, one can use Eq. (18)
with the ratio of b‖ = e−λD

2
√

2
cos(2)
cos() in the intermediate region.

From two equations with experimentally given b‖ and b⊥, one
can find the value of  and λD.  immediately gives the value
μ5/μ0.

We introduce one more method of measuring the μ5 di-
rectly. Measure the SdH oscillations at fixed E. Repeat this
measurement for various amplitudes of E. Then, double peaks
will appear when  = mπ + π/2 and disappear when  =
mπ . It means that the double peaks appear when μ5/μ0 =
(2n)ζF , whereas they disappear when μ5/μ0 = (2n + 1)ζF .
Let us define the repeating period of E as Ep. Then, from
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FIG. 5. Oscillating components of the longitudinal conductivity σ osc
zz in general cases. The threshold magnetic field Bt is determined by the

dimensionless parameter b (orange line, which is the ratio of two oscillating conductivities between 1/B and 1/2B periods) with the condition
b = bt [i.e., b(B) > bt when B > Bt ]. Double peaks in quantum oscillations start to appear when the external magnetic field exceeds the
threshold value Bt . The threshold value bt (dashed black line) always exists between 1

4 (green line) and 1
2 (red line). Three different cases with

various values of α and β are shown. (a) α − β = mπ

2 where bt = 1
4 is given as a minimum. (b) α − β = mπ+π/2

2 where bt = 1
2 is given as a

maximum. (c) α − β = π/8 where bt = 3/8 is between the minimum and maximum values. See the text for more details.

Table I, we obtain

μ5(Ep, B)

μ0
= 2ζF (B),

h̄vF aE · B
h̄vF kF0

= 2
eB

2h̄k2
F0

,

∴ a = e

h̄kF0Ep
. (20)

Therefore, one can find the coefficient in front of E · B, which
indicates the value of μ5 from Eq. (20).

IV. SUMMARY

In this paper, we investigated how the Landau-level split-
ting can arise in a time-reversal symmetry-broken Weyl metal
phase. In particular, we verified when a double-peak structure
appears in the SdH quantum oscillations, responsible for a

TABLE I. Condition for the 2/x period peaks in SdH oscillations
depending on the parameter .

 Condition for the 2/x period peaks

Arbitrary  |b| = e−λD

2
√

2
cos(2)
cos() > bt

tan  → 0 |b| = e−�D

2
√

2
> bt

tan  → ∞ |b| = | e−λD

2
√

2(μ5/μ0+ζF )(1+λD )
ζF | > bt

kink structure in the Landau fan diagram. It turns out that
(i) Berry-curvature-induced orbital magnetic moments give
rise to chirality-dependent dispersion relations and (ii) chiral
charge pumping effects cause an effective chiral chemical
potential through the dissipationless current channel of the
bulk sample. As a result, the area of each chiral Fermi surface
becomes different as long as applied electric and magnetic
fields satisfy a physical condition that we discussed in the
main text.

We would like to emphasize that controlling the double-
peak structure by tuning external E and B fields is only
possible in Weyl metals because the Landau-level splitting is
governed by two different factors mentioned above. The other
crucial point is that direct evaluations for the chiral chemical
potential μ5 are possible by tuning external E and B fields.

One may be concerned that actual Dirac and Weyl excita-
tions in solid-state systems do not possess Lorentz invariance.
Particle-hole anisotropy in dispersion and additional crys-
talline anisotropy are some common sources, which destroy
Lorentz invariance. How can one avoid over-interpretation
of data and incorrect extraction of chiral chemical potential?
First, we speculate that the Lorentz symmetry may not play
an essential role at least for the first ingredient (i), where the
existence of the Berry curvature itself is crucial. We recall
that the modification of the group velocity originates from
the effective Zeeman energy term due to the orbital angular
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momentum given by the Berry curvature. As long as the Weyl
point (two-band touching in three dimensions, more precisely)
itself is preserved, we believe that this modification of the
group velocity would be robust. Second, we also believe that
the chiral magnetic effect (ii) would be robust as long as a
pair of Weyl points (two-band touching in three dimensions)
is preserved against Lorentz symmetry breaking. We recall
that the chiral anomaly results from the fact that the UV
regularization parameter cannot but break the chiral symmetry
explicitly if we keep the U(1) charge conservation law. With
Lorentz symmetry breaking, one may be concerned that var-
ious formulas that we used would be modified. For example,
Eq. (3) for the effect (i) will be changed. Accordingly, Eq. (6)
will be also modified. The chiral chemical potential would be
modified, based on the change of the band structure.

Finally, we would like to mention that our second sugges-
tion on how to measure the chiral chemical potential discussed
in Sec. III E can extract out μ5 regardless of the Lorentz
invariance. We suggested how to control the amplitude of
the electric field during measurement of quantum oscillations,
observing the double-peak structure. The electric field affects
the double-peak structure through the chiral magnetic effect.
We can safely extract out the μ5/μ0 ratio based on our exper-
imental procedure.
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APPENDIX: BOLTZMANN TRANSPORT THEORY
WITH BERRY CURVATURE

In this Appendix, we solve the Boltzmann equation to
obtain σxx (transverse conductivity in the x direction, which
is perpendicular to the external magnetic field along the z
direction) of the Weyl metal system in detail. We note that
Ref. [50] has already shown how to obtain σzz with basically
an identical method.

APPENDIX A: CONDUCTIVITY σab

FROM CURRENT DENSITY j

Current density in a Weyl metal phase is expressed as [52]

j = −2e
∫

BZ
f (x, k, t )

[
vk + e

h̄
(vk · �)B + e

h̄
E × �

]
,

(A1)
where f (x, k, t ) is the distribution function, vk is the group
velocity, and � is the Berry curvature in the momentum space.
BZ indicates that the integration range is limited in the first
Brillouin zone.

In the linear response regime, the distribution function is
given by

f (x, k, t ) = f0(ε) + e
∂ f0

∂ε
E · g + O(E2), (A2)

where g is a near-equilibrium distribution function, deter-
mined by the Boltzmann equation.

Inserting this expression into Eq. (A1), we obtain the con-
ductivity tensor as

σab = −2e2
∫

∂ f0

∂ε
gb

(
vk + e

h̄
(vk · �)B

)
a

d3k

(2π )3

+ 2e2

h̄
εabc

∫
�c(k) f0(ε)

d3k

(2π )3
, (A3)

= −2e3
∑
χ=±

∂ f0

∂ε
gbvk (k̂ + χζk ẑ)a

d3k

(2π )3
. (A4)

Here, we assumed an isotropic case for the last equality, where
the Berry curvature �(k) is

�(k) = χ
k̂

2k2
. (A5)

APPENDIX B: BOLTZMANN EQUATION

To obtain σxx, we find gx, governed by the following Boltz-
mann equation [52]:[

ϒ(∂t + iω) − e

h̄
(vk × B) · ∇k

]
g

= vk + e

h̄
(vk · �)B +

∫
BZ

d3k′

(2π )3
(ϒ ′ωk′→kϒ)(g′ − g),

(B1)

where ϒ = 1 + e
h̄ B · �(k) is the phase-space volume factor.

Here, we assume elastic scattering with a weak and short-
range impurity potential. Then, the transition rate ωk′→k is
given by

ωk′→k = 3

2ν(ε)τ (ε)
(1 + k̂′ · k̂)δ(ε − ε′), (B2)

where ν(ε) is the density of states at the energy ε without
external magnetic fields.

Incorporating Eq. (B2) into Eq. (B1), we obtain a self-
consistent equation for gx as follows:(

iωϒ − e

h̄
(vk × B) · ∇k

)
gx − vx(k)

= 3ϒ

16π3

∫
d3k′ϒ ′(g′

x − gx )
1 + k̂′ · k̂
ν(ε)τ (ε)

δ(ε − ε′),

(B3)

where ζk = eB
2h̄k2 is the dimensionless length scale as men-

tioned in the text. Note that we are considering a stationary
solution, so we are dealing with a time-independent solution.

With an azimuthal symmetry, we assume the following
ansatz of gx in the spherical coordinate as

gx(θ, φ) =
∑

m

bm(θ )eimφ. (B4)

Due to the eimφ term in the ansatz, all terms of m > 2 dis-
appear by the azimuthal-angle (φ) integration. The resulting
self-consistent equation of bm with the spherical coordinate
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reads(
iωϒ + 2kζkvk

∂

∂φ

)
gx(θ, φ) − vk sin θ cos φ

= 3ϒ

16τ

∫
dθ ′ϒ ′ sin θ ′[2(b′

0 − gx(θ, φ))(1 + cos θ cos θ ′)

+(b′
1 + b′

−1) sin θ ′ sin θ cos φ

+i(b′
1 − b′

−1) sin θ ′ sin θ sin φ], (B5)

where b′
i = bi(θ ′) and ϒ ′ = ϒ(θ ′).

Comparing all terms between the left and right sides of
Eq. (B5) after the polar-angle (θ ′) integration, we obtain bm(θ )
terms as follows:

b0(θ ) =
3ϒ
8τ

∫
dθ ′ϒ ′ sin θ ′b′

0(1 + cos θ cos θ ′)[
iωϒ + 3ϒ

4τ

(
1 + 1

3χζk cos θ
)]

= α0 + β0 cos θ[
8ωτ

3 i + 2
(
1 + 1

3χζk cos θ
)] , (B6)

b±1(θ ) = sin θ (vk + ϒu±)

ϒ
[
iω + 3

4τ

(
1 + 1

3χζk cos θ
)] ± 2kζkvki

, (B7)

where the constants of α0, β0, and u± are

α0 ≡
∫

dθ ′ϒ ′ sin θ ′b0(θ ′), (B8)

β0 ≡
∫

dθ ′ϒ ′ sin θ ′ cos θ ′b0(θ ′), (B9)

u± ≡ 3

16τ

∫
dθ ′ϒ ′ sin2 θ ′b±1(θ ′). (B10)

In the semiclassical limit where a large number of Landau
levels are filled with weak external magnetic fields, 1

2 k2
F l2

B =
1/2ζF � 1 should be satisfied, where lB ≡

√
h̄

eB is the mag-

netic length. Therefore, ζk = 1/(k2l2
B) 	 1 is satisfied in the

vicinity of the Fermi surface. In this limit, the three constants
α0, β0, and u± can be approximated as

α0 ≈
√

1

2

(
1 − 1

15
χζk + 1

300
(ζk )2

)
, (B11)

β0 ≈ 9

2

(
1 + 2

χζk
+ 2χζk

27

)
α0, (B12)

u± ≈ − ivk

2(−i ± 4τkζkvk + 2τω)

± 8(τkζkv
2 + iωτ 2kζkv

2)ζ 2
k

5(−i ± 4τkζkv + 2τω)2(−3i ± 8τkζkv + 4τω)
.

(B13)

APPENDIX C: EVALUATION OF σxx

Inserting the near-equilibrium distribution function with
the presence of weak external magnetic fields into Eq. (A4),
we obtain σxx as

σxx = − e2

8π3

∑
n

∫∫∫
δ

(
n − 1

4
(sin2 θ/ζk − 2χ cos θ )

)

× ∂ f0

∂ε
vk sin θ cos φk2 sin θgxdφdθdk

= −e2

8π2

∑
l

∫∫
e2π lni ∂ f0

∂ε
vkk2 sin2 θ [b1(θ )+b−1(θ )]dθdk

= −e2

8π2

∑
l

∫ ∞

0

∂ f0

∂ε
vkk2ei π l

2 (ζ−1
k +ζk )

×
∫ π

2

0
e

−π li
2ζk

(cos θ+χζk )2

sin2 θ [b1(θ ) + b−1(θ )]dθdk.

(C1)

Note that δ(n − 1
4 (sin2 θ/ζk − 2χ cos θ )) term comes from

the discreteness of the Fermi surface due to the Bohr-
Sommerfeld quantization condition.

To go further with this expression, we resort to the Poisson
re-summation formula for the second line,

∞∑
n=−∞

δ(x − n) =
∞∑

l=−∞
ei2π lx, (C2)

where x = 1
4 (sin2 θ/ζk − 2χ cos θ ). In Eq. (C1), integrating

over the momentum k can be easily treated because of the
∂ f0

∂ε
≈ − δ(k−kF )

h̄vF
term. On the other hand, an exact integration

over the polar angle (θ ) is not trivial because of the compli-
cated form of b±1(θ ).

Expanding the above expression up to the second order
of ζk in the small ζk limit, the polar-angle integral can be
performed as

∫ π
2

0
e

−π li
2ζk

(cos θ+χζk )2

sin2 θ [b1(θ ) + b−1(θ )]dθ

≈ (
C0 + C′

0ζ
2
k

)
Q0 + C1ζkQ1 + (

C2 + C′
2ζ

2
k

)
Q2

+C3ζkQ3 + C4ζ
2
k Q4, (C3)

where Ci and C′
i are functions of k but independent of θ , and

Qm are defined as

Qm ≡
∫ 1+χζk

−1+χζk

yme− −iπ l
2ζk

y2

dy, y ≡ cos θ + χζk.

Considering an energy ε window near the chemical po-
tential μ, the following approximations should be valid on
Eq. (C3):

ζk =
∞∑

n=0

∂n
ε ζk (ε = μ)

n!
(ε − μ)n ≈ ζF

(
1 − 2(ε − μ)

εF

)
, (C4)

ζ−1
k + ζk ≈ ζ−1

F

(
1 + ζ 2

F

) + 2(ε − μ)

εF ζF

(
1 − ζ 2

F

)
. (C5)

Integrating over θ with this approximation, we find that the
Q1 term vanishes and Qm terms for m > 2 are in higher orders
than O(ζ 2

k ). Resulting integrals for Q0 and Q2 are given by

Q0 =
√

2ζk

il
+ 2ζk (−1)l

π l

e−i π l
2 (ζ−1

k +ζk )

1 − ζ 2
k

,

Q2 = −e
iπ
4

π

√
2ζ 3

k

l3
+ 2ζk (−1)l

π l
e−i π l

2 (ζ−1
k +ζk )

(
i + 2ζk

π l

)
.
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Therefore, σxx up to the order of ζ 2
k is

σxx ≈ σ l=0
xx − e2

8π2

∞∑
l=1

(
vF k2

F

) ∫ ∞

0

∂ f0

∂ε
e

π li
2 (ζ−1

k +ζk ),

×
{

2ζF (−1)l

π l

[
1

1 − ζ 2
k

C0 +
(

i + 2
ζF

π l

)
C2

]

+
√

2ζk

li

[
C0 − C2

ζke
π i
2

lπ

]}
dk, (C6)

where C0 and C2 are

C0 ≈
∑
j=±

4τ

a j
(vF + u j ), (C7)

C2 ≈ −
∑
j=±

4τ

a j
(vF + u j ), (C8)

with

a± ≡ 3 + 4ωτ i ± 8kF vF τζF ,

u± ≈ − ivk

2(−i ± 4kvkτζk + 2τω)

± 8(kvkτζkvk + ikvkτζkvkτω)ζ 2
k

5(−i ± 4kvkτζk + 2τω)2(−3i ± 8kvkτζk + 4τω)
.

In the low temperature limit ( T
εF

	 1), the oscillatory ex-
ponential varies fast but other terms change slowly. Therefore,
we can treat only the oscillating exponential as a function of k
or ε. On the other hand, we keep only up to linear deviations
for the expansion of the exponent near the Fermi energy. Then,

FIG. 6. Conductivity of total (left) and only oscillating parts (right) depending on the dimensionless parameter b with (a) b = 0, (b) b =
0.074, and (c) b = 0.025.
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Eq. (C6) reads

σxx = σ l=0
xx − e2k2

F

8h̄π2

∞∑
l=1

Mle
π li
2ζF

(1+ζ 2
F )

∫ ∞

−∞

e(1+iλl/π )t

(et + 1)2
dt

= σ l=0
xx − e2k2

F

8h̄π2

∞∑
l=1

Ml
λl

sinh(λl )
e

π li
2ζF

(1+ζ 2
F )

, (C9)

where t ≡ ε−μ

T , λ ≡ π2T
εF ζF

(1 − ζ 2
F ), and Ml ≡ C0 −

C2ζF e
π i
4 /π l .

Finally, inserting Eqs. (C7) and (C8) into Eq. (C9), we find
the transverse conductivity along the x direction as

σxx = σ l=0
xx + 2

∑
l

σ (l )
xx

(
cos

(
π l

2ζF
+ π

4

)

+ lπ

ζF
cos

(
π l

2ζF
− π

4

))
, (C10)

where

σ (l )
xx ≡ nee2vF

h̄kF

(
iω + 3

τ

)(
1 + 1

2
1+ωτ i

1+(kF vF τζF )2

) + 1
τ

(kF vF τζF )2

1+(kF vF τζF )2(
iω + 3

τ

)2 + (2kF vF ζF )2

× 3

2π

λl

sinh λl

(
2ζF

l

) 3
2 1

8

≈ nee2vF

h̄kF

1/τ(
iω+ 3

τ

)2+(2kF vF ζF )2

3

2π

λl

sinh λl

(
2ζF

l

) 3
2 1

2
.

APPENDIX D: DOUBLE-PEAK STRUCTURES DEPENDING
ON THE DIMENSIONLESS PARAMETER b

In this Appendix, we discuss how the double-peak struc-
ture appears. As explained in the main text, the double-peak
structure depends on the dimensionless parameter b, which
is the ratio of two oscillating conductivities between 1/B
and 1/2B. The parameter b can be sufficiently large when
tan  → ∞. It is small but still not zero even when tan  →
0. Note that the 1/2B oscillating term can be extremely
small but never zero even if the sample is not a Weyl metal.
As shown in Table I, b in the tan  → 0 limit is propor-
tional to e�d , where �d is the Dingle factor. Depending
on the Dingle factor, the double-peak structure might be
slightly observed. See Figs. 6(a) and 6(b). In this simula-
tion, we adopted physical parameters from a time-reversal
symmetry-broken Weyl metal (BixAs1−x with x = 0.04) [41].
With those parameters, the fingerprint of the 1/2B oscillat-
ing part might exist weakly even in the tan  → 0 limit if
we consider only the oscillating conductivity. What we want
to emphasize here is that the amplitude of the 1/2B oscil-
lating conductivity can be much enhanced in Weyl metals.
Usually, we can extract out the Landau fan diagram from
the peak structure in the symmetric part of the conductivity.
But, it is difficult to find a small component of 1/2B if the
peak is buried in the nonoscillating conductivity as shown
in Fig. 6(b). To observe the Landau-level splitting, sufficient
enhancement of the 1/2B component is necessary as shown
in Fig. 6(c).
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