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Correlated physics in an artificial triangular anti-dot lattice
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This work considers a two-dimensional artificial triangular anti-dot lattice (TAL): a semiconductor-based
artificial crystal hosting Dirac cones, flat bands, and Fermi surface nesting. All such single-particle features have
dramatic implications for the emergent correlated phases. This work predominantly focuses on the existence
of a robust flat band and enumerates the possible correlated phases that follow. We find that the flat band is
generated, in the single-particle theory, when charges align themselves along a kagome lattice with the same
period as the TAL. The correlated phases are studied using complementary techniques of expansion in strong
and weak Coulomb interactions. Our microscopic modeling shows that for the purpose of generating strongly
correlated phases, hole-doped TALs have significant advantages over electron-doped ones.
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I. INTRODUCTION

Systems hosting flat bands have been a strong focus of
recent theoretical and experimental investigations. Moiré su-
perlattice structures such as twisted bilayer graphene [1] and
twisted transition metal dichalcogenides [2] as well as kagome
metals [3] all host flat bands. Interest in these systems stems
from the enhanced effect of Coulomb interactions within the
flat band. A striking example of this is the emergence of
superconductivity in twisted bilayer graphene [4]. In addition
to superconductivity, ferromagnetic and charge density wave
phases have been predicted [5]. Particularly relevant and ex-
citing experimental results come from the vanadium family of
kagome metals, which have recently been found to host super-
conducting and charge-density-wave ground states [6–11].

In this work we consider a flat band which can be generated
in ordinary semiconductors via periodic electrostatic gating.
When the applied potential has hexagonal symmetry and is
sufficiently repulsive, a 2D system of electrons or holes will
develop a flat band and two pairs of Dirac cones [12–14]. An
advantage of this approach to generating a flat band is the
ability to tune its bandwidth by varying either the modulation
strength or the lattice period (which can be tens to hundreds
of nanometers). In what follows we refer to these systems
as triangular anti-dot lattices (TALs) and, for concreteness,
we consider electrons and holes in GaAs. An experimental
realization of the TAL in the weak to moderate modulation
regime has been developed and the results are to be published
[15]. Excitingly, there has been recent experimental progress
in the electron-based TAL [16], which demonstrated key band
structure features. However, the effective kagome bands dis-
cussed here have not yet been considered, nor the use of
holes (instead of electrons). Here we show that the hole band
structure (which must account for spin-orbit coupling) has the
same features of interest, i.e., a flat band and Dirac points, and
we present a numerical technique for computing this.
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We have found that the flat band of TALs, in a sys-
tem with either holes or electrons, can be described by an
effective tight-binding model on an emergent kagome lat-
tice. We compute the effective on-site Hubbard energy, U0,
and hopping parameter, t , and we show that U0/t � 10 for
electrons and �20 for holes. Within this effective model
we consider a number of correlated phases. Specifically, we
consider commensurate and incommensurate charge density
waves (CDWs), the Mott insulator phase, Stoner ferromag-
netism, and electron-electron driven superconductivity. The
effective kagome model has significant consequences for the
CDW and Mott phases since this affects the geometry of the
CDW patterns and the particle densities at which they occur.
We present a set of CDW patterns on the kagome lattice for
different filling fractions of the flat band and identify which
patterns minimize the Coulomb energy. Using our band struc-
ture calculations, we show that a TAL with holes develops a
flat band at a much weaker modulation than electrons and has
significantly stronger interactions.

The electronic band structure and mapping to a Hubbard
model is discussed in Sec. II. Section III covers the hole
band structure and compares the electron and hole flat bands.
Sections IV and V discuss possible strongly and weakly cor-
related phases.

II. ELECTRON FLAT BAND AND EFFECTIVE
KAGOME MODEL

Within a single-electron model we are able to compute both
the energy levels and eigenfunctions of the TAL Hamiltonian
H = p2/2m + U (r) by numerical diagonalization. The super-
lattice potential, U (r), represents a triangular anti-dot array,

U (r) = 2W
3∑

i=1

cos(gi · r),

g1 = 4π√
3a

(0, 1), (1)

g2 = 4π√
3a

(1/2,
√

3/2),
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FIG. 1. (a) First six bands of the TAL electronic band structure. The lattice constant is a = 80 nm and W = 1.0E0 with E0 = 1.57 meV.
Here, � is the origin and K and K ′ are the two nonequivalent Brillouin zone vertices. (b) The same band structure for W = 2.5E0. (c) The three
energy bands of the kagome lattice with nearest-neighbor hopping t > 0. Band indices are indicated in blue in panel (b). (d) Schematic of the
Brillouin zone for the triangular lattice represented by Eq. (1). (e) Close-up of the flat band in panel (b). While there is nonzero band curvature
here, it is small compared with the total width of the three kagome-like bands in panel (b).

where g1,2 are the basic vectors of the reciprocal lattice and
g3 = g2 − g1. The Brillouin zone is shown in Fig. 1(d). For a
triangular lattice with lattice spacing a, the reciprocal vectors
have length |gi| = 4π/

√
3a. In Eq. (1), the parameter W con-

trols the strength of the potential. To have an anti-dot array we
need this to be positive: W > 0 (for W < 0 the same potential
represents an array of dots). Note that a square-lattice poten-
tial is symmetric with respect to the replacement W → −W .
The sinusoidal approximation used in Eq. (1) is justified by
the fact that U (r) is generated via electrostatic gating. This
means that higher harmonics in the potential, G = ng1 + mg2
for |n|, |m| > 1, are suppressed by a factor e−z|G|, where z is
the distance to the gate. For realistic devices, z is sufficiently
large and the higher harmonics are negligible.

Numerical diagonalization of H gives both the band struc-
ture and the electron wave functions (similar to what was
done in Ref. [12]). At a given quasimomentum k within
the Brillouin zone we account for admixture of states with
k′ − k = mg1 + ng2, where m, n are integer numbers. We
truncate the Hamiltonian matrix at sufficiently large values of
these numbers. The single-particle energy can be expressed
in units of E0 = K2/2m∗, where m∗ is the effective mass of
GaAs and |K| = 4π/3a is the momentum at the K point [see
Fig. 1(d)]. This scale determines whether a given value of W is

sufficient to strongly reshape the free-particle dispersion. For
concreteness, we consider a lattice with a = 80 nm in a GaAS
quantum well (E0 = 1.57 meV).

At sufficiently large W , the dispersion mimics that of the
kagome lattice. The 6 lowest energy bands, calculated with
W = 1.0E0 and W = 2.5E0, are shown in Fig. 1 [panels (a)
and (b), respectively). In the same figure, panel (c), we plot
the dispersion of a tight-binding model on the kagome lattice
with nearest-neighbor, positive hopping parameter t , whose
Hamiltonian is

H = t
∑
〈i, j〉

c†
i c j .

Here c†
i is the creation operator for an electron on site i of the

kagome lattice. Comparing Figs. 1(b) and 1(c) we conclude
that bands 3, 4, and 5 of our TAL reproduce the kagome
dispersion very well. Of course, the third band is not perfectly
flat [see Fig. 1(e)] but it is close to flat, and, as discussed
below, it is even less dispersive for holes. Comparing the total
bandwidths of the kagome and TAL dispersions, we can find
the effective hopping matrix element t , which is plotted in
Fig. 2(a), as a function of the modulation amplitude, W . The
typical value of t for electrons is about 0.7 meV.
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FIG. 2. (a) Effective hopping parameter, t , as a function of the potential strength W . We measure t by equating the total bandwidth of the
kagome-like bands [e.g., in Fig. 1(b)] to 6t , the total band width of Fig. 1(c). Blue corresponds to electrons and green corresponds to holes.
(b) Effective Hubbard parameter, U0, within the kagome model, as a function of electrostatic potential strength, W . (c) The ratio, U0/t , between
the effective on-site Hubbard repulsion and the effective hopping parameter as a function of W .

Given the Bloch eigenfunctions, ψm,k , of our Hamiltonian,
we can calculate the total number density of electrons, N (r) =∑

k |ψm,k (r)|2, for given band, m. The map of the number
density corresponding to complete filling of the nearly flat
band, m = 3, is shown in Fig. 3(a), and the map for complete
filling of the kagome-like bands, m = 3, 4, and 5, is shown

FIG. 3. (a) Charge density of the fully filled flat band in Fig. 1(b).
An identical pattern, with reduced intensity, appears for all fractional
fillings of the flat band. (b) Total charge density of bands 3, 4, and 5
in Fig. 1(b). In both panels a = 80 nm and W = 2.5E0.

in Fig. 3(b). In these maps, the large dark spots (low electron
density) are the positions of the anti-dot lattice sites and the
bright spots (high electron density) have the symmetry of
a kagome lattice. This explains why the triangular anti-dot
lattice dispersion emulates that of the kagome model: the
kagome-like bands are generated by the formation of an ef-
fective kagome lattice within the m = 3 energy band.

The bright spots in Fig. 3(a) are well localized and hence a
tight-binding approximation is sensible. Within this approx-
imation, we account for the Coulomb interaction between
electrons by calculating the on-site Hubbard repulsion U0 for
a given kagome lattice site. The calculation of U0 proceeds
by first treating the electron density profile within a single
bright spot as the density n(r) for a single, localized electron.
This means that the total band density N (r) is a sum over
individual, localized functions n(r). We found that n(r) is well
represented by a Gaussian function and we use this fitting in
all calculations. Since it corresponds to the charge density of
a single electron it must be normalized to unity:∫

n(r)d2r = 1,

where, because of the Gaussian fitting, we can take the limits
of this integral to be infinite. We can then compute U0 as

U0 = e2

ε

∫
d2r1d2r2

n(r1)n(r2)

|r1 − r2| .

Here, ε is the dielectric constant. This integral can be com-
puted analytically in terms of the fitting parameters of the
Gaussian n(r). The plot of U0 as a function modulation ampli-
tude W is presented in Fig. 2(b). Our data correspond to GaAs,
for which ε = 12 (as in all other calculations, a = 80 nm). We
find a value for U0 of around 5–6 meV. In comparison to t , we
find that U0/t is less than around 10 [see Fig. 2(c)]. Thus, the
bands m = 3, 4, 5 are mapped to the kagome-lattice Hubbard
model with Hamiltonian

H = t
∑
〈i, j〉

c†
i c j + U0

∑
i

ni,↑ni,↓.

We find that the parameter U0 scales with the lattice constant
a as U0 ∼ 1/

√
a at constant W . Since the kinetic energy, t ,
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scales as t ∼ 1/a2, the ratio U0/t has the following scaling
property:

U0/t ∼ a3/2.

To complete the analysis of the single-electron model we
reiterate that the third band of the anti-dot lattice is nearly
flat, but, unlike the pure kagome model, it is not perfectly
flat. An enlarged plot of the third band of Fig. 1(b) is given
in Fig. 1(e). The minima of this band are at the K points
of the Brillouin zone [Fig. 1(d)]. Therefore, at low filling
of the flat band, the Fermi surface consists of two electron
pockets centered at K and K ′. The band dispersion near these
points is quadratic, E = q2/2m∗, with an effective mass, m∗
[a complete discussion is left to the following section with m∗
versus W plotted in Fig. 7(a)].

III. HOLE BAND STRUCTURE AND COMPARISON
WITH ELECTRONS

The effective kagome model applies to both holes and
electrons; however, the hole superlattice has some significant
advantages when it comes to experimental realizations. In this
section we demonstrate, using band structure calculations,
that holes in a TAL require a much weaker modulation to
achieve the same flat band width and interaction strength as
electrons.

A. Technique for computing hole band structure

In GaAs the conduction band (relevant to electrons) origi-
nates from atomic s orbitals while the valence band (relevant
to holes) originates from atomic p orbitals. The valence p
band has a significant spin-orbit interaction and hence it is
split into a p3/2 subband and a p1/2 subband. Here, J = l +
s = 1/2, 3/2 plays the role of effective spin for each subband.
Due to spin-orbit splitting the p1/2 subband lies 500 meV
below the p3/2 subband and therefore p1/2 is irrelevant to
the low-energy physics considered here. The relevant p3/2

subband corresponds to holes that carry an effective spin of
3/2 and is described by the effective Luttinger Hamiltonian
[17] HL. The total Hamiltonian is

H = HL + w(z) + U (x, y), (2)

where w(z) is a confining potential oriented perpendicular to
the plane of the artificial lattice [again, defined by U (x, y)
from Eq. (1)]. Specifically, w(z) is taken to be an infinite
square well of width d = 15 nm. The Luttinger Hamiltonian
can be written as (Eq. (6) in Ref. [18])

HL = H0 + V,

H0 =
(

γ1 + 5

2
γ̄ − 2γ̄ S2

z

)
p2

⊥
2me

+
(

γ1 − 5

4
γ̄ + γ̄ S2

z

)
p2

‖
2me

,

V = −γ̄

4me
[p2

+S2
− + p2

−S2
+

+ 2pz p+{Sz, S−} + 2pz p−{Sz, S+}], (3)

where p± ≡ px ± ipy and Si are the 4 × 4 spin matrices for a
spin 3/2 particle. For simplicity we used the spherical approx-
imation, γ2 ≈ γ3, with γ̄ ≡ (2γ2 + 3γ3)/5. The parameters
γ1 and γ̄ are taken to be 6.85 and 2.58 respectively, values

corresponding to GaAs. Our approach to solving this problem
begins with defining an orthonormal set of basis wave func-
tions �k,n,σ :

�k,n,σ (r) = φn(z)ψk (x, y)χσ , (4)

where φn(z) is an eigenfunction of the square well, ψk (x, y) is
a plane wave (eigenfunction of the momentum operator), and
χσ is a spin-3/2 spinor (eigenfunction of Sz). As an example,
for σ = +3/2 and arbitrary n = odd and k,

�k,n,σ=3/2(r) =
√

2

d
cos(nπz/d )

1√
A

eik·r‖

⎡
⎢⎣

1
0
0
0

⎤
⎥⎦.

Here, A is the area of the sample and when n is even cos
changes to sin. The wave function is also zero for |z| > d/2
[i.e., in the region forbidden by w(z)]. We can now compute
the matrix elements of the Hamiltonian [Eq. (2)] in the basis
defined by these functions,

H ki ,n,σ

k j ,m,τ

= 〈ki, n, σ |H |k j, m, τ 〉.

With regards to x and y dependence, the nonmodulated part
of the Hamiltonian [in Eq. (2)], HL + w(z), contains only px,
py and has no explicit dependence on the variables x, y. It
follows that this part of H is diagonal in the index ki since
the basis vector � is a plane wave in the x-y plane with wave
vector ki. As for the modulated part of the Hamiltonian, it
is well known that a periodic potential, U (x, y), has nonzero
matrix elements only between plane waves which differ in
momentum by a reciprocal lattice vector. We can thus define a
quasimomentum k and let ki = k + Gi where Gi is a recipro-
cal lattice vector. The matrix elements of the Hamiltonian can
then be written as

H i,n,σ

j,m,τ
(k) = 〈k + Gi, n, σ |H |k + G j, m, τ 〉. (5)

We are now in a position to compute these matrix elements
explicitly. The expression for H0 in Eq. (3) contains only Sz,
p2

z and px, py. Our basis vectors [Eq. (4)] are, by design,
eigenvectors of H0 + w(z). This part of the Hamiltonian is
thus diagonal in all indices i, n, and σ ; its matrix elements
are given by H0 in Eq. (3) with p‖ = k + Gi, p2

z = (nπ/d )2,
and Sz = σ . Thus,

[H0 + w(z)] i,n,σ

j,m,τ

= δi, jδn,mδσ,τ

[(
γ1 + 5

2
γ̄ − 2γ̄ σ 2

)
(nπ/d )2

2me

+
(

γ1 − 5

4
γ̄ + γ̄ σ 2

)
(k + Gi )2

2me

]
.

The periodic potential U (x, y) has matrix elements

(U ) i,n,σ

j,m,τ
= W

3∑
α=1

δ(G j − Gi ± gα )δn,mδσ,τ .

Lastly, the operator V in Eq. (3) contains px and py which
are diagonal in the indices i, j and will thus be replaced by
δi, j (k + Gi )x,y. It also contains Sx,y,z, whose matrix elements
in the indices σ , τ are given, for example, in Ref. [19]. The
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FIG. 4. Bare dispersion for 2D holes in GaAs with an infinite
square confining potential. Here, d = 15 nm and we measure mo-
mentum in units of 2π/a for a = 80 nm (the standard lattice constant
throughout this work). This dispersion is isotropic.

only remaining term is pz, which has matrix elements

(pz ) i,n,σ

j,m,τ

= δi, jδσ,τ

⎧⎨
⎩

0, n = m,

− 2mi
d

[ sin[(n−m)π/2]
(n−m) + sin[(n+m)π/2]

(n+m)

]
, n=odd,

m=even,

+ 2mi
d

[ sin[(n−m)π/2]
(n−m) − sin[(n+m)π/2]

(n+m)

]
, n=even,

m=odd.

The complete matrix for V is then

(V ) i,n,σ

j,m,τ
= −γ̄

4me
δi, j[(k + Gi )

2
+(S2

−)σ,τ

+ (k + Gi )
2
−(S2

+)σ,τ

+ 2(pz )n,m(k + Gi )+{Sz, S−}σ,τ

+ 2(pz )n,m(k + Gi )−{Sz, S+}σ,τ ].

We now have an explicit expression for all the matrix ele-
ments of H = H0 + w(z) + V + U (x, y) in the basis defined
by Eq. (4). Energy levels and eigenvectors of H can then be
determined by numerical diagonalization, provided we trun-
cate the basis. The truncation procedure amounts to choosing

a maximum value for n and a finite set of reciprocal lattice
vectors, Gi, to include in the basis. To determine appropriate
values, we increased the size of the basis until all energy levels
of interest converged. The energy levels in the absence of any
periodic modulation (shown in Fig. 4), computed using this
method, agree with previous calculations [18,20].

B. Hole band structure results

Examples of the hole minibands are presented in Fig. 5. In
these calculations the strength of the spin-orbit interaction is
governed by the ratio d/a between the well width, d , and the
lattice constant, a. We have considered the weak to moder-
ate spin-orbit regime in this work, with d/a ≈ 0.2. The hole
dispersion has a similar form to that of an equivalent electron
system, the two lowest energy bands are Dirac-like, and the
next three bands are kagome-like [see Fig. 5(c), for example].
There are some key differences, however. Holes in an unmod-
ulated device have a nonparabolic dispersion (Fig. 4) and, in
general, will have a different effective mass than electrons.
Because of this, the effective mass for holes is a function of
momentum and does not have a single, well-defined value.
Roughly speaking, however, the unmodulated effective mass
for holes is three times larger than that for electrons. The
second key difference is the spin-orbit interaction. As men-
tioned above, holes in GaAs have a non-negligible spin-orbit
interaction. The presence of this interaction introduces gaps
at the Dirac points and at the flat band that do not exist in
the electron band structure. Note that for larger values of
d/a this causes a much more significant reshaping of the
energy bands (Fig. 6). For example, at d/a = 0.5 and W =
0.5E0 the kagome-like bands disappear and the graphene-like
bands remain with a large gap relative to the total bandwidth
[Fig. 6(b)]. This regime is interesting in connection with arti-
ficial topological insulators [21,22], but is not the main focus
of this work.

Our central finding with regard to the hole band structure
is that the kagome-like bands, including the flat band, develop
at a much weaker modulation than for electrons. For example,
compare Fig. 1(a) for electrons at W = E0 and Fig. 5(c) for
holes at the same W . The hole bands have a well-formed
kagome-like dispersion while the electron bands do not. There
is also a factor 7 difference in the bandwidth of the third
band between holes and electrons, with holes having the much
flatter band. The degree of band flatness is captured by the

FIG. 5. Energy bands for holes, derived from the Hamiltonian in Eq. (2), for various values of W at a = 80 nm and quantum well width
d = 15 nm. Each hole band is doubly degenerate. (a) W = 0.25E0. (b) W = 0.50E0. (c) W = 1.00E0. (d) W = 2.50E0.
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FIG. 6. Lowest 6 bands of the hole band structure for d = 20 nm
(a) and d = 40 nm (b). In both panels W = 0.5E0 and a = 80 nm. In
panel (b) the gap between the two lowest bands is 14% of the total
width of those bands.

curvature around the minimum of the flat band [see Fig. 1(e)].
Since this part of the dispersion is parabolic we can describe
it by an effective mass, ε(k) = k2/2m∗. We compare this
effective mass for holes and electrons in Fig. 7(a), from which
it can be seen that m∗ is 4 to 10 times larger in the hole flat
band than in the electron flat band. Figure 7(a) also shows
that the effective mass m∗ = 0.2me, for example, is reached
at W ≈ 2.5E0 for electrons and W ≈ 0.6E0 for holes. The
third hole band is not just flatter in absolute units; it is also
flatter relative to the total width of the kagome-like bands
[proportional to t ; Fig. 2(a)]. From Fig. 2(a) it can be seen
that t is 2 to 9 times smaller for holes. This decrease in total
bandwidth is compensated by a greater decrease in the width
of the flat band.

To conclude this section we note that one of the ex-
perimental challenges in producing artificial superlattices is
generating a strong periodic modulation, sufficient to signif-
icantly restructure the energy bands of the 2D system. Our
calculations show that hole systems require a much smaller
modulation strength to induce flat bands, and hence access
strongly correlated phases, than equivalent electron systems.

This is the central conclusion of our hole band structure cal-
culation.

IV. POSSIBLE STRONGLY CORRELATED PHASES
WITHIN THE EFFECTIVE KAGOME MODEL

In the present section we discuss some of the possible
strongly correlated phases which could arise in TALs. Here
we use a strong Coulomb coupling expansion; i.e., the emer-
gent correlated phases are those that minimize the Coulomb
energy. In this and the following section we consider only the
most anticipated correlated phases. The possibility of other
phases such a nematic phase or Pomeranchuk instability could
be an interesting avenue of future research.

A. Commensurate charge density waves

The existence of an underlying kagome lattice and the
large value of U0/t [Fig. 2(c)] imply that the on-site localiza-
tion of electrons (or holes) is highly likely. This localization
eliminates on-site Coulomb repulsion; however, longer-range
Coulomb repulsion is still present. For example, the distance
between nearest kagome sites is a/2 = 40 nm. The nearest-
site Coulomb repulsion is then very significant,

V = e2

εa/2
≈ 2.7 meV.

This longer-range Coulomb repulsion can lead to ordering of
the localized electrons (or holes). Thus, in this subsection, we
consider the corresponding possible commensurate CDWs.

These CDWs would exist on the kagome lattice at certain
filling fractions of the kagome-like bands in Fig. 1(b) [or
Fig. 5(c)], each filling fraction having a set of possible CDW
patterns. Here we consider, for the purposes of illustration, the
filling fractions n = 1n0, (3/2)n0, (4/3)n0, and 2n0 measured
relative to complete filling of the lowest two bands and in units
of n0 = 1/Acell. Thus n = 1n0 corresponds to half filling of
the flat band and n = 2n0 corresponds to full filling of the flat
band.

FIG. 7. (a) Effective mass of the flat band [defined around the K points in Fig. 1(e)] as a function of potential strength W for electrons and
holes. The quantity 1/m∗ is roughly proportional to the width of the flat band. (b) Plot of the Stoner parameter, S [Eq. (6)], as a function of W
for both electrons and holes.
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FIG. 8. Summary of results for the average energy per electron of each CDW pattern. Electron density, n, is given in units of one electron
per unit cell. Each energy, Ei, was computed for the corresponding pattern pictured in each cell and the patterns are numbered in order of
increasing energy. Energy is given in meV measured relative to the lowest energy configuration. The rightmost column plots the energy of
each pattern as a function of λ (the screening length) relative to the lowest energy configuration E1. A typical flat band width for electrons
(0.16 meV) is shown in black and λ varies from 0 to 5a.

We can now catalog the set of CDW phases that are pos-
sible within the flat band. For each filling fraction we found
periodic patterns of occupied kagome-lattice sites which give
the correct amount of charge per unit cell. These are presented
in Fig. 8. There can, in general, be more than one pattern at
each filling fraction. For each of these patterns, the Coulomb
energy per electron is

E = 1

2Nsites

Nsites∑
i, j=1

j �=i

e2

εri j
e−ri j/λ,

where i and j represent occupied sites in the CDW, ri j is the
distance between sites, and λ ≈ 3a is the screening length1

(due to screening by image charges in the metallic gate). There
is also Nsites → ∞, which is the number of occupied lattice
sites. To avoid the infinite summation, we define a smaller set
of M occupied sites. This block has to be defined such that

1We find (see the right column of Fig. 8) that the lattice energy is
independent of λ for the range λ ∈ [0.5a, 4a]. Our quoted value of
λ = 3a is simply a value within this range.
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it can be repeated, periodically, to reconstruct the full CDW
pattern. The energy we compute is

E = 1

2M

∑
i=1,M

j �=i

e2

εri j
e−ri j/λ.

The right column of Fig. 8 shows this energy as a function
of λ measured relative to the lowest energy configuration. We
find that different CDW patterns at the same density can be
distinguished by energies which differ on the order of the elec-
tron flat band width and the first column of Fig. 8 identifies the
pattern with minimal energy. Since the CDW phase is insulat-
ing, its signature in transport measurements will be a maximal
value of Rxx when particle density is tuned to one of the
values given in Fig. 8. If we measure the particle density from
the bottom of the lowest energy band then these values are
ntot = 9 × 1010 cm−2, 9.6 × 1010 cm−2, 9.9 × 1010 cm−2,
and 10.8 × 1010 cm−2. Our analysis here has been simplified
by ignoring fluctuation effects. Of course, fluctuations could
be important in the strongly correlated states; however we
believe that they cannot destroy the order.

B. Mott insulator

The Mott insulating phase is related to the CDW phase
but occurs exactly at half filling of the kagome lattice (i.e.,
one particle on each kagome lattice site, n = 3n0). This does
not occur within the flat band but within the band directly
above it, i.e., at half filling of the second kagome-like band
[Figs. 1(b) and 5(c)]. The experimental signature for this
phase is the same as for charge density waves except the
density at which this occurs is ntot = 12.6 × 1010 cm−2. The
effective antiferromagnetic exchange between nearest sites in
the Mott insulator is J = 4t2/U0 ∼ 0.1 meV.

V. POSSIBLE WEAK-COUPLING PHASES

In this section we continue to analyze possible quantum
phases within the flat band [see Fig. 5(a)] using the itinerant
picture. We thus account for the Coulomb interaction pertur-
batively.

The weak Coulomb coupling regime is reached by consid-
ering a weak potential modulation, characterized by W/E0.
For example, in the hole gas, W/E0 � 0.25 corresponds to
weak Coulomb coupling in the kagome flat band. We see from
Fig. 5(a) that for W/E0 = 0.25, the flat band shows significant
dispersion, whereas for W/E0 = 1, this band is nearly disper-
sionsless.

A. Ferromagnetism

We have pointed out above that because of the large value
of U0/t the localization of electrons/holes is likely. Neverthe-
less it is instructive to consider the itinerant picture as well.
This analysis is probably more relevant to the relatively weak
superlattice modulation, W/E0 � 1.

The flat band together with the second Dirac point [e.g.,
Fig. 1(b)] is relevant to the effective kagome model but we
can also consider the flat band in isolation. In TALs the flat

band still has some small dispersion. As mentioned above,
the two minima of the flat band are approximately quadratic
[Fig. 1(e)] and we can assign to them an effective mass
m∗ [Fig. 7(a)]. If we suppose that the chemical potential is
within the quadratic part of the flat band (which amounts to
roughly less than one-third filling of that band) then we can
ask whether the Stoner criterion for ferromagnetism [23] is
satisfied. In our system the Stoner criterion can be written as

S ≡ Acell

3
U0|�0| > 1, (6)

where �0 is the 2D polarization operator, which contains
a factor 2 due there being two minima in the flat band, at
the K, K ′ points. The factor Acell/3 is required by the nor-
malization of our wave functions. To normalize the wave
functions we need to obtain unity after summation over the
three sublattices of the kagome lattice and this introduces a
factor 1/3 to the normalization coefficient. In two dimensions
the polarization operator is

�0 = − m∗

π h̄2 .

We have plotted m∗(W ) and S(W ) in Fig. 7. Within both the
electron and hole flat bands the Stoner parameter, S, takes
values larger than 1, indicating that the lower part of the flat
band is well within the Stoner regime. Such large values fol-
low from S being proportional to the density of states, which
diverges within the flat band. In connection to this point, the
significant difference in S between holes and electrons is due
to the hole flat band width being several times smaller.

The presence of a ferromagnetic phase in a 2D material
can be determined via observation of an anomalous Hall re-
sistivity. The anomalous Hall effect is exhibited in systems
with spin-orbit coupling and manifests as a hysteresis in Rxy,
measured for up and down sweeps of an external magnetic
field (see, for example, Ref. [24]). Since this effect relies on
spin-orbit coupling it is only observable for holes and not
electrons.

B. Incommensurate spin density wave

Suppose we tune the system below the ferromagnetic
Stoner instability, S < 1, such that there is no ferromag-
netism. This is achieved by lowering W/E0. At W = 0.25E0

[Fig. 5(a)], for example, we find that a single “antiparticle”
Fermi surface is formed which centers around � when the
chemical potential is near the top of the third energy band
(i.e., the flat band). We find that there exists a critical chem-
ical potential, μ = μc, such that the Fermi surface exhibits
nesting, with nesting vectors Qi. This Fermi surface and the
nesting vectors are shown in Fig. 9(a). A nested Fermi surface
with nesting vector Q typically promotes spin and/or charge
density wave (SDW/CDW) ordering with wave vector Q, due
to logarithmic enhancement of the polarization operator (and
hence of the corresponding Stoner parameter); we will pursue
these phases in this subsection.

To determine which order (SDW or CDW) is promoted
by nesting, we appeal to the following patch model [25,26],
which is a minimal model to account for interactions on a
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FIG. 9. (a) Nested Fermi surface. Three opposite edges are nested with vectors Q1, Q2, Q3. We have chosen to label pairs of patches, i.e.,
{1, 1′}, which are connected by a Qi vector. (b) The interactions detailed in the patch model (7). (c) The z component of the spin density
wave (10), with ϕ1 = ϕ2 = ϕ3 = (0, 0, 1). Light blue circles represent the positions of the TAL sites. The nesting vectors, Qi, are determined
numerically. The corresponding SDW lattice constant is, from Qi · Li = 2π , found to be |Li| ≈ 2a.

nested Fermi surface,

L(0)
α = 1

2

∑
p,α,σ

[
ψ†

α,σ,p

ψ
†
α′,σ,p

]

×
[

iωn − εα,p 0
0 iωn + εα,p

][
ψα,σ,p

ψα′,σ,p

]
,

L(int)
α = −1

2

∑
pi,α �=β,σ,σ ′

[
g1ψ

†
α,σ,p1

ψ
†
β,σ ′,p2

ψα,σ ′,p3
ψβ,σ,p4

+ g2ψ
†
α,σ,p1

ψ
†
β,σ ′,p2

ψβ,σ ′,p3
ψα,σ,p4

+ g3ψ
†
α,σ,p1

ψ
†
α,σ ′,p2

ψβ,σ ′,p3
ψβ,σ,p4

]

− 1

2

∑
pi,σ,σ ′

g4ψ
†
α,σ,p1

ψ
†
α,σ ′,p2

ψα,σ ′,p3
ψα,σ,p4

. (7)

The model L(0)
α describes the Fermi surface patch α, and its

nesting with patch α′ [see Fig. 9(a)] with all patches treated
as being independent of each other. Here, p represents the
momentum of patch α and σ, σ ′ labels the spin. Our notation
in L(0)

α takes into account the nesting property εα′,p = −εα,p.
Interactions between patches are accounted for in the sec-

ond term of Eq. (7), L(int )
α . Here we account for allowed

four-fermion interaction processes both for fermions in differ-
ent patches and within the same patch. Note that momentum
conservation is assumed, p1 + p2 = p3 + p4 (modulo a recip-
rocal lattice vector Gi), within the summation. The couplings
gi correspond to the following processes: g1 is a patch-
exchange interaction; g2 is a density-density interaction for
fermions on different patches; g3 is pair hopping between
patches; g4 is a density-density interaction for fermions on
the same patch. Such interaction processes are represented in
Fig. 9(b). The interaction process g3 only exists for special
momentum transfer 2Qα = Gi. For the doped flat band, Fermi
surface nesting occurs with vectors 2Qα �= Gi, so we must set
g3 = 0 since it does not conserve momentum (modulo Gi).

We do not consider a nesting driven superconductivity,
which in a previous work [25] was found to be promoted
by g3 �= 0. Instead we restrict our analysis to CDW and
SDW. To treat them on an equal footing, we take the four

component order parameter �μ, with �0 representing CDW
and � = (�1,�2,�3) representing SDW. Using a Hubbard-
Stratonovich decoupling of the four-fermion interactions, the
action is written as a sum over patches S = ∑3

α=1 Sα , with

Sα =
∑
ωn

∑
p∈Dα

(
ψ†

α,p

ψ
†
α′,p

)

×
(

iωn − εα,p �μσμ

�∗
μσμ iωn − εα′,p

)(
ψα,p

ψα′,p

)

+ 1

g2 − 2g1
|�0,α|2 + 1

g2
|�α|2. (8)

Here α′ is the nested FS patch opposite to α, σμ = (σ0, σ ) are
the spin Pauli matrices, and spin indices are suppressed. The
momenta are restricted to lay within a patch region, denoted
p ∈ Dα; this also prevents double counting of states. In the
following we make use of the nesting property εα′,p = −εα,p.
The free energy per patch α is obtained by integrating over
fermionic fields, and subsequently performing an expansion
in bosonic fields �μ, which to quartic order yields

Fα =
(

1

g2 − 2g1
− a(T )

)
�2

0 +
(

1

g2
− a(T )

)
�2

+ b(T )
(|�0|4 + |�|4 + |� × �∗|2 + 4|�|2|�0|2

+� · �(�∗
0 )2 + �∗ · �∗�2

0

)
. (9)

Here,

a(T ) =
∑

ωn,p∈Dα

(
ω2

n + ε2
α,p

)−1
> 0,

b(T ) = 1

2

∑
ωn,p∈Dα

(
ω2

n + ε2
α,p

)−2
> 0.

To minimize the free energy, the quartic term dictates that
the system chooses a purely real vector � ∈ R3 and purely
imaginary scalar �0 ∈ I, or vice versa. Then it is easy to see
that for g1 > 0 the SDW order, �, is favored, while for g1 < 0
the CDW order, �0, is favored. Finally, if g1 = 0, the free en-
ergy has an SO(4) symmetry for the order parameter (�0,�),
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and the system may spontaneously choose any angle in the
SO(4) order parameter manifold, thereby admixing CDW and
SDW. We assume that all interactions are repulsive, implying
that g1 > 0 and hence that SDW dominates. Summing over
all α, and Fourier transforming (extending momentum sum-
mation to Dα → ∞), we obtain the following structure for
the real-space SDW order parameter,

�(r) = �1 cos(Q1 · r) + �2 cos(Q2 · r) + �3 cos(Q3 · r).
(10)

Here �i ∈ R3 are constant real vectors with equal magnitude,
but arbitrary orientation. Hence this order parameter is highly
degenerate. We plot one such realization, �1 = �2 = �3 =
(0, 0, 1), in Fig. 9(c).

This order does not fully gap the charge carriers at the
Fermi surface, and so would not be straightforward to de-
tect in transport measurements. However, the SDW ordering
wave vectors, Qi, reconstruct the Fermi surface to form small
Fermi pockets; such an effect could be measured via, e.g.,
Shubnikov–de Haas oscillations.

C. Superconductivity

It is worthwhile to mention the possibility of nesting-
induced superconductivity, which follows from the approach
developed in Ref. [25]. That work predicts that graphene,
doped such that the Fermi surface passes through the M point
of the Brillouin zone [Fig. 1(d)], will exhibit superconductiv-
ity. The Fermi surface at this point is hexagonal with vertices
which touch the M points. Such a Fermi surface exhibits
nesting and is also found in the band structure of our artificial
lattice when the chemical potential is just above or just below
the Dirac cones [see bands 1, 2 and 4, 5 in Fig. 1(b), for
example]. In this case the nesting vector is equal to a recip-
rocal lattice vector (2Qαβ = Gi) and hence the coupling, g3,
is allowed. Inclusion of this coupling dramatically influences
the phase diagram, promoting d + id superconductivity as the
leading instability [25]. For the band structures we consider in
this work [e.g., Fig. 1(b) and Fig. 5(c)] this situation is realized
at four different values of EF , each of which correspond to
a van Hove singularity in the density of states. That is once
within each of the bands 1, 2, 4, 5 at the energy where those
bands reach the M point (midpoint between K and K ′).

In addition to nesting-induced superconductivity for dop-
ing at the M point, there is a recent proposal for pseudospin

superconductivity in Dirac-like bands which occurs for dop-
ing slightly above or below the K and K ′ points, which has
been worked out for the cases with [27] and without spin-orbit
coupling [28,29]. Such situations are directly relevant to hole
or electron doping in the artificial TAL system considered
here, with chemical potential positioned near either of the two
sets of Dirac bands.

VI. CONCLUSIONS

Previously, two-dimensional artificial triangular anti-dot
lattices in a semiconductor have attracted attention due to the
possibility of studying Dirac and topological physics. In the
present work we shift the focus to electron-electron correla-
tion effects. To be specific we concentrate on GaAs and come
to the following conclusions.

(i) At a sufficiently strong anti-dot potential modulation,
W , the 3rd, 4th, and 5th minibands of the system mimic the
dispersion of an emergent kagome lattice. Hence, we map the
triangular anti-dot system to an effective Hubbard model on a
kagome lattice. The model manifests strong electron-electron
correlations.

(ii) We demonstrate the significant practical experimen-
tal advantage of holes compared to electrons. Due to the
spin-orbit interaction of holes, the strength of the potential
modulation, W , necessary to access the strongly correlated
regime is 2 to 3 times smaller for holes than for electrons.

(iii) We demonstrate that, at a sufficiently large W and
dependent on the value of the chemical potential, the system
develops a Mott transition and also several kinds of commen-
surate charge density waves.

(iv) We also show that, in the regime of not too large
W (precursor to strong correlations) and dependent on the
value of the chemical potential, the system has a robust ferro-
magnetic Stoner instability and also superconducting, charge
density wave, and spin density wave instabilities.
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