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Structural analysis based on unsupervised learning: Search for a characteristic low-dimensional
space by local structures in atomistic simulations

Ryo Tamura ,1,2,3,* Momo Matsuda,4 Jianbo Lin ,1,5 Yasunori Futamura ,4,5,6

Tetsuya Sakurai ,4,5,6,† and Tsuyoshi Miyazaki 1,6,‡

1International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0044, Japan
2Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, Tsukuba 305-0044, Japan

3Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8568, Japan
4Department of Computer Science, University of Tsukuba, Tsukuba 305-8573, Japan
5Center for Artificial Intelligence, University of Tsukuba, Tsukuba 305-8573, Japan

6Master’s/Doctoral Program in Life Science Innovation, University of Tsukuba, Tsukuba 305-8577, Japan

(Received 10 July 2021; revised 11 January 2022; accepted 18 January 2022; published 3 February 2022)

Owing to the advances in computational techniques and the increase in computational power, atomistic
simulations of materials can simulate large systems with higher accuracy. Complex phenomena can be observed
in such state-of-the-art atomistic simulations. However, it has become increasingly difficult to understand what
is actually happening and mechanisms, for example, in molecular dynamics (MD) simulations. We propose an
unsupervised machine learning method to analyze the local structure around a target atom. The proposed method,
which uses the two-step locality preserving projections (TS-LPP), can find a low-dimensional space wherein the
distributions of data points for each atom or groups of atoms can be properly captured. We demonstrate that
the method is effective for analyzing the MD simulations of crystalline, liquid, and amorphous states and the
melt-quench process from the perspective of local structures. The proposed method is demonstrated on a silicon
single-component system, a silicon-germanium binary system, and a copper single-component system.
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I. INTRODUCTION

The recent progress in atomistic simulations is remark-
able. This approach can be implemented to simulate large
systems with higher accuracy with the help of advanced
computational techniques and improved computational power.
Compared with the classical molecular dynamics (MD) sim-
ulation, which uses empirical atomic force fields, the MD
simulation based on the density functional theory (DFT),
which is called first-principles MD (FPMD), is reliable even
for new materials or unknown phases considering the lack of
experimental information [1–9]. With the progress in large-
scale DFT calculation techniques [10], FPMD simulations for
larger system sizes can be realized. Machine-learning (ML)
techniques can construct atomic force fields, which can repro-
duce the DFT results quite accurately [11–19]. With such ML
force fields, the computation time is greatly reduced, and long-
term MD simulations of large systems are possible [20,21].

As recent FPMD simulations can be utilized for explaining
various phenomena and complex structural changes, it has
become increasingly difficult to understand what is actually
happening during such simulations. In some cases, a local
or global unknown phase or structure is encountered. Even
well-known materials may have a hidden structural order in
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the middle range [22–24]. To analyze the structural proper-
ties of materials, radial distribution functions (RDFs) or pair
correlation functions have been traditionally used [25–27].
Recently, analysis based on the persistent homology diagram
has been employed [28–30]. However, these methods require
statistics over many atoms or from a long-time profile. For
FPMD simulations with a large system size, the system may
not be in a single phase or can be irregular. Thus it is desirable
to develop an analysis method with small statistics based on
the local structure of the atoms.

To solve this problem, some methods for local structure de-
tection have been proposed [31–37]. A common feature is that
a local structure around each atom in a snapshot is expressed
by a relatively high-dimensional descriptor (high-dimensional
vector). The bond order parameter, smooth overlap of atomic
positions (SOAP), and atom-centered symmetry functions
(ACSF) are typically used as descriptors. The data sets, where
the descriptors for many atoms are collected, are analyzed
using supervised or unsupervised ML methods, such as neural
networks to detect the differences in the local structures for
each atom. These methods have been used to detect differ-
ences in local structures of crystal [31], amorphous [34], and
supercooled liquid compounds [37].

In this study, we propose an unsupervised learning-based
method to analyze local structures with the same motivation
as that for previous studies. Specifically, the method aims
to find a low-dimensional space, where the distributions of
datapoints for each atom or groups of atoms can be accu-
rately captured. The major difference between the proposed
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FIG. 1. Schematic of unsupervised learning based structural analysis.

method and previous methods for local structure detection
is that we use locality preserving projections (LPP) to per-
form dimensionality reduction. This allows us to obtain a
linear transformation from a high-dimensional descriptor to
a low-dimensional space, similar to that achieved through
principal component analysis (PCA). The advantage to use
linear transformation is that the exact linear transformation of
new data points (out-of-samples) can be achieved. In addition,
by a linear transformation, data mapping to low-dimensional
space, which reflects the original data structure in the high-
dimensional space, can be realized. We should note that there
are many successful reports of the structural analyses, es-
pecially in the development of useful reaction coordinates,
using nonlinear dimensionality reduction techniques such as
a sketch-map method [38,39]. However, nonlinear transfor-
mation may sometimes significantly change the original data
structure in the low-dimensional space.

The proposed method has three steps, as shown in Fig. 1
(detailed in Sec. II). Firstly, a high-dimensional descrip-
tor, which is called as locally averaged atomic fingerprints
(LAAF) descriptor, is introduced to represent the local struc-
ture. The LAAF descriptor shows a two-body correlation for
the target atom and its neighboring atoms. Here, the LAAF
descriptor using two-body correlation is the simplest descrip-
tor belonging to the ACSF. Although many better descriptors
have been developed, we adopt the simplest descriptor to
verify the usefulness of our dimensionality reduction method.
Secondly, a dimensionality reduction scheme is employed.
As a dimensionality reduction method, the two-step locality
preserving projections (TS-LPP) method, in which the cal-
culations by conventional LPP [40] are repeated two times,

is proposed. It is important that the dimensionality reduction
is unsupervised because it should detect the atoms in a new
or unknown phase. Moreover, dimensionality reduction will
ensure that a more reliable measure is introduced to evaluate
the similarity between the two data. In the low-dimensional
space, the classification of new data points (i.e., out-of-sample
points) is expected to be more robust. Thirdly, in the low-
dimensional space, we extract relations of each atom in terms
of the local structure, perform the classification of new data
points, and detect singular atoms which characterize the struc-
ture and drive phase transitions.

To validate the proposed unsupervised learning-based
structural analysis method, we introduce the results of some
examples. First, we perform unsupervised clustering of the
local structure data sampled from snapshots of silicon in
the crystalline, liquid, and amorphous phases in Sec. III A.
To realize the unsupervised method, the information of the
detected phases during dimensionality reduction is not used.
The widely used PCA method cannot find a low-dimensional
space where the three phases are clearly divided using their
local structures. In contrast, in a low-dimensional space ob-
tained by TS-LPP method, three well-separated groups, each
of which corresponds to its correct phase, are obtained. Fur-
thermore, we discuss why TS-LPP works well in comparison
to PCA and LPP. Next, we focus on the structural analysis
of the melt-quench process from liquid to amorphous forma-
tion in the silicon system in Sec. III B. Since linear mapping
function for datapoints is available with the TS-LPP method,
we can analyze new datapoints in the low-dimensional space.
Thus each atom in the snapshots from the melt-quench pro-
cess is plotted and analyzed in a low-dimensional space. We
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address the behavior of the atoms in the process and the amor-
phous structures depending on the melt-quench processes. In
addition, the silicon-germanium binary system and the copper
system are targeted for the proposed unsupervised learning-
based structural analysis in Secs. III C and III D. Discussion
and Summary are given in Sec. IV.

II. METHODS

In this section, we explain an unsupervised learning-based
method to analyze the local structure. The proposed structural
analysis method uses the LAAF descriptor to express the local
structure of each atom as high-dimensional vectors and the
TS-LPP as the dimensionality reduction method. In addition,
the setups of the FPMD and classical MD methods to generate
snapshots of MD simulations are introduced.

A. LAAF descriptor

To express the local structure of the target atom using a
high-dimensional vector, we use the atomic fingerprint pro-
posed by Botu and Ramprasad [41]. For single-component
systems, the atomic fingerprint vector of the ith atom is
written as

Vi(ηm; Rc) =
∑
j �=i

exp[−(ri j/ηm)2] f (ri j ; Rc), (1)

f (ri j ; Rc) =
{

0.5[cos(πri j/Rc)2 + 1] (ri j � Rc)

0 (ri j > Rc)
, (2)

where f (ri j ; Rc) is the cutoff function with cutoff Rc, which
is related to the locality of the structural order in the two-
body distribution function. Furthermore, ri j = |ri − r j | is the
distance between the position ri of the ith atom and the po-
sition r j of the jth neighbor atom, and ηm(m = 1, . . . , M ) is
the decay rate with distance. Thus an M-dimensional atomic
fingerprint vector for ith atom is obtained as

Vi(Rc) = (Vi(η1; Rc),Vi(η2; Rc), . . . ,Vi(ηM ; Rc)). (3)

The LAAF descriptor with cutoff Ra from ith atom corre-
sponds to the locality with respect to the statistics (similarity)
around the target atom and is calculated by

Vav
i (Rc, Ra ) = 1

N∈Ra

∑
j∈Ra

V j (Rc), (4)

where N∈Ra is the number of atoms within the average radius
Ra from the ith atom, and the sum is computed for the jth atom
within Ra from the ith atom. If Ra and Rc are sufficiently small,
the LAAF descriptor expresses the local structure around the
ith atom. As Ra and Rc increase, locality decreases. In this
study, we set M = 100, and ηm is defined by a logarithmic
grid up to Rc.

In addition, the LAAF descriptor for binary systems can
be defined in a straightforward manner. We consider a system
consisting of two elements, a and b. The atomic fingerprint
vectors of the ith atom of element a are defined as

V a
i∈a(ηm; Rc) =

∑
j∈a.and. j �=i

exp[−(ri j/ηm)2] f (ri j ; Rc), (5)

V b
i∈a(ηm; Rc) =

∑
j∈b

exp[−(ri j/ηm)2] f (ri j ; Rc), (6)

where the former and latter equations capture the structure of
elements a and b around the ith atom, respectively. When we
use ηm(m = 1, . . . , M ), a 2M-dimensional atomic fingerprint
vector for the ith a element atom is obtained as

Vi∈a(Rc) = (
V a

i∈a(η1; Rc),V a
i∈a(η2; Rc), . . . ,V a

i∈a(ηM ; Rc),

V b
i∈a(η1; Rc),V b

i∈a(η2; Rc), . . . ,V b
i∈a(ηM ; Rc)

)
. (7)

Using the cutoff Ra, the LAAF descriptor for the a-element
atom can be calculated as

Vav
i∈a(Rc, Ra ) = 1

Na,∈Ra

∑
j∈Ra

V j∈a(Rc), (8)

where Na,∈Ra is the number of a-element atoms within the
average radius Ra from the ith atom and the sum is computed
for the jth a-element atom within Ra from the ith atom. To
calculate the LAAF descriptor for the b-element atom, a is
swapped with b in the equations.

B. TS-LPP method

We propose the TS-LPP method as a dimensionality re-
duction method and an automated determination technique
for the hyperparameters. The flow of this algorithm is shown
in Fig. 2. Consider the case in which the dimension of the
LAAF descriptors is M and the dimension of the target low-
dimensional space is dr . In TS-LPP, the initial dimension
reduction from M-dimensional space to dm-dimensional space
(dr < dm < M) is performed by conventional LPP [40].

The LPP method is as follows (see Fig. 2). The input
data matrix X is composed of M-dimensional feature vectors
{xi}i=1,...,N , where N is the number of data points. In this study,
xi is the ith LAAF descriptor, which is standardized by the z
score. The method begins with a calculation of the weighted
adjacency matrix W where each component is defined as
follows:

Wi j =
{

exp [−‖xi − x j‖]/2σ 2 (i �= j)

0 (i = j)
, (9)

where σ is a hyperparameter, and this adjacency matrix is
the N × N matrix. To create the knn-nearest-neighbor graph
(similarity graph), for each column in W , the off-diagonal
elements, except those related to the knn-nearest-neighbor data
points, are forced to 0. Here, we fix knn = 7. Next, to represent
the adjacency matrix as a symmetric matrix, the following
operation is performed: Wi j = max(Wi j,Wji ) [42]. Further-
more, we introduce the degree matrix D, which is the N × N
diagonal matrix given as

D =
⎛
⎝d1 · · · 0

...
. . .

...

0 · · · dN

⎞
⎠, (10)

where each diagonal component is defined as

di =
N∑

j=1

Wi j . (11)

Using W and D, the graph Laplacian is defined as

L = D − W. (12)
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FIG. 2. Procedure of the two-step locality preserving projection (TS-LPP) method. The input data matrix X is constructed by the M-
dimensional feature vector xi defined by the LAAF descriptor sampled from molecular dynamics simulations. Through a similarity graph with
an adjacency matrix W , similar data are embedded to the closer positions in low-dimensional space, and a linear mapping matrix Y is obtained
by solving the generalized eigenvalue problem. In TS-LPP, first, the embedded data in the middle-dimensional space, which is larger than the
target dimension, is calculated. Subsequently, dimension reduction to the final target dimension is performed again. In the low-dimensional
space, we extract the relations of each atom in terms of the local structure using the TS-LPP method.

In LPP, we solve the following generalized eigenvalue
problem:

X �LXy = λX �DXy. (13)

Here, {λi, yi} is the ith eigenvalue and eigenvector of this
problem, which are arranged in ascending order.

Let dr denote the target dimension for dimension reduction.
Then, the mapping matrix by LPP from M-dimensional space
to dr-dimensional space is given by

Y = (y1, y2, . . . , ydr ). (14)

Using this mapping matrix, the feature vector x is mapped to
the low-dimensional vector x′ with dr dimensions as

x′ = xY. (15)

In the numerical calculation for obtaining Y , the low-rank ap-
proximation is used to improve the numerical stability, which
is explained in Appendix.

In TS-LPP, we conduct LPP from dm-dimensional space
to dr-dimensional space. Thus dm is a hyperparameter in this
method. Furthermore, to perform LPP, another hyperparam-
eter σ exists to prepare the weighted adjacency matrix. To
determine the appropriate hyperparameters dm and σ , the
Calinski-Harabasz score (Pseudo-F) [43] is used. This score is
defined as the ratio between the intra-cluster and inter-cluster
dispersions. This score is large when the distances between
clusters are large, and each cluster is dense. A grid search
for hyperparameters dm and σ is performed to maximize the
Calinski-Harabasz score, using scikit-learn [44]. To evaluate
the score, the labels obtained by the k-means method [45]
with a fixed cluster number are used. Thus it is necessary to
analyze the cluster number dependency of the score. However,
as shown in the results, this dependency is not critical, and

the cluster number is not an important factor. Therefore we
try several values of cluster numbers and adopt the cluster
number with which the distributions of datapoints for each
atom or groups of atoms can be properly captured in the
low-dimensional space. The scheme mentioned above is un-
supervised because information about the correct state of the
training data is not used. Note that the common value of σ is
used in the first and second LPP calculations.

C. Characteristic of TS-LPP method

To demonstrate the advantage of TS-LPP method, we in-
troduce an example when a 2D synthetic data set is widely
distributed along the y axis and the distance � between the
two classes in the x axis is gradually decreased. The prepared
synthetic data set is shown in Fig. 3. As we discuss later,
similar data structure is observed in the distribution of the
data generated by the MD simulations in this work. This
2D synthetic data set is randomly generated from the normal
distribution with mean of 0 and standard deviation of 10−6

for x axis and 0.98 for y axis, respectively. Each class has
500 datapoints and the distance between these classes along
x axis is changed as � = 1.2, 0.2, and 0.0. In this demonstra-
tion, hyperparameter σ is fixed as 5. In Fig. 3(a), we show
scatter plots in the case of � = 1.2. Using dimensionality
reduction methods, we intend to obtain 1D space that allow
one to (linearly) separate class 1 (orange) and 2 (blue). In
the panels representing PCA, LPP, and TS-LPP results, we
show not only the first principal axis (shown as x axis) derived
by a dimensionality reduction but also the second axis (y
axis) in order to see the behaviors of the linear maps. As
shown in the left most panel (original) of the figure, class
1 and 2 can be separated on x axis. The most widespread y
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FIG. 3. Two dimensional synthetic data where the two classes are widely distributed along the y axis and the distance between the classes
in the x axis is gradually decreased as (a) 1.2, (b) 0.2, and (c) 0.0. The original data, PCA, LPP, and TS-LPP results are shown.

axis cannot be used to distinguish class 1 and 2. This data
distribution makes the first axis of PCA which fails to sep-
arate class 1 and 2. In contrast, both LPP and TS-LPP are
successful to determine the first axis that can separate the
classes.

Furthermore, the results of LPP and TS-LPP are different
when the distance between two classes is smaller (� = 0.2) as
shown in Fig. 3(b). While the first axis of LPP cannot separate
the classes as with PCA, the distance between the classes on
the second axis is larger. TS-LPP applies LPP again to the 2D
space obtained by LPP. The resulting first axis successfully
separates the classes. Note that even if LPP is performed after
PCA, the classes are not separated in the principal axis. We
also show the case of � = 0 in Fig. 3(c). In this case, the
distance between class 1 and 2 along the x axis is zero, and all

methods unsurprisingly fail to separate the classes. For PCA,
the most widespread y axis is chosen as the first axis, which is
also reasonable.

This validation on synthetic data shows that TS-LPP per-
forms well when the intraclass variation is large and the
interclass distance is fairly small. In addition, if the distance
between the classes is large enough, the data can be separated
even with a single LPP. These results can be explained by
the locality preserving nature of LPP. In LPP, close data in
the original space are mapped to close positions in the low-
dimensional space. In other words, if the distance between two
classes is too small, the data will be mapped to close positions
in the first axis, and the two data sets will be mixed in the
low-dimensional space. On the other hand, even if the distance
between the two classes is not large in the original space, this
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FIG. 4. Two melt-quench processes to prepare the amorphous states.

distance is extended in the second axis by LPP. This situation
is not observed by PCA, and thus this is an advantage to use
LPP. As will be demonstrated in Sec. III, this aspect of LPP or
TS-LPP is important to find out the subtle differences between
the similar data of local structures in different phases.

D. MD simulations

To generate MD simulation results for silicon single-
component system and silicon-germanium binary system, we
perform FPMD simulations using a linear-scaling method
with the CONQUEST code [46,47]. The accuracy of this calcu-
lation method is explained in Refs. [48–50]. The local density
approximation with the standard Ceperley-Alder exchange-
correlation functional is used. Using the SIESTA code [51],
Troullier-Martins-type norm-conserving pseudopotentials and
the pseudo-atomic orbital basis sets are generated. We employ
a minimal basis set with a cutoff energy for the charge density
grid of 80 Hartree. The density matrix minimization (DMM)
method realizes linear-scaling FPMD simulations [52]. The
cutoff range of the auxiliary density matrix in the DMM
method is 16.0 Bohr. Using the Nose-Hoover chain ther-
mostats, canonical ensemble (NVT) simulations [53] are
carried out.

For the copper single-component system, classical MD
simulations with an effective medium theory (EMT) poten-
tial are performed using the atomic simulation environment
(ASE) package [54]. We prepare initial structures for crys-
talline or liquid states with the Maxwell-Boltzmann distribu-
tion of the velocity at the targeted temperatures. NVT-MD
simulations are conducted using the time step of 1 fs and

Langevin thermostat with a friction value of 0.01 atomic
unit.

III. RESULTS

To show a potential of our method, the results of the pro-
posed unsupervised structural analysis are presented in this
section. The target systems are the silicon single-component
system, silicon and germanium binary system prepared by
FPMD simulations, and the copper single-component system
prepared by classical MD simulations.

A. Structural analysis of crystalline, liquid, and amorphous
states in Si system

To verify the efficiency of the proposed unsupervised struc-
tural analysis method, we work on a silicon system in the
crystalline, liquid, and amorphous phases as the simplest case.
We show that TS-LPP can find the low-dimensional space
where the three states are completely divided even if Ra and
Rc values are small.

The various structures in the three states are prepared by
the FPMD simulations for a system containing 1000 silicon
atoms at constant temperature and constant volume. FPMD
simulations are performed for the crystalline states at 300
and 1200 K; liquid states at 3000, 5000, and 9000 K; and
the four amorphous states labeled as 1a, 1b, 2a, and 2b at
300 K. The amorphous states are prepared using two different
melt-quench processes, as shown in Fig. 4. The total time of
the FPMD simulations is 19 ps in both cases. The RDFs for
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these states are shown in Fig. S1 [55], and these results are
consistent with those previously reported [56–60].

1. Distributions of datapoints in the 2D spaces obtained by
TS-LPP, LPP, and PCA

To find a low-dimensional space, we prepare a target data
set including atoms expressed by the LAAF descriptor in the
crystalline states at 300 and 1200 K, the liquid states at 3000
and 9000 K, and the amorphous states 1a and 1b at 300 K.
The number of datapoints in each state is 200, and the total
number of data is 1200. Figure 5(a) shows the distributions
in 2D space (dr = 2) obtained by the TS-LPP method de-
pending on two parameters Ra and Rc. Rc is related to the
locality of the structural order in the two-body distribution
function, and Ra corresponds to the locality with respect to
the statistics (similarity) around the target atom. Thus local
structure analysis can be performed when these parameters
are sufficiently small. Note that, to determine the appropriate
hyperparameters, the cluster number is fixed as three, because
we assume that the data will be grouped into three clusters.
However, as will be shown later, this value has little effects on
the results.

By increasing Ra and Rc, the distributions of datapoints
for the three states are distinguished. When Ra = 4 Å and
Rc = 4 Å, the three distributions are well distinguished, al-
though a small overlap between the crystalline and amorphous
states is observed. The case of Ra = 4 Å and Rc = 5 Å is
the best result when the three states are completely divided.
The typical interatomic distance between Si atoms is 2.2 Å
for the nearest and 3.8 Å for the next-nearest-neighbor atoms.
This information is included in the LAAF descriptor when
Rc = 5 Å at least. This means that when the LAAF descriptor
of a target atom is analyzed, if the atomic fingerprints for
the nearest-neighbor and next-nearest-neighbor atoms are also
considered, the phase of the target atom can be identified
perfectly.

We consider the results depending on the number of clus-
ters for determining hyperparameters. Figure 5(b) shows the
distributions in the reduced two dimensions for different clus-
ter numbers. The values of the optimized hyperparameters are
also provided. It is encouraging that the results are almost the
same. This suggests the present analysis method can extract a
useful low-dimensional space to classify the local structures
without any preceding information.

To compare the results by other dimensionality reduc-
tion methods, where the linear transformation to a low-
dimensional space can be obtained, the distributions by PCA
and LPP are shown for the case of Ra = 4 Å and Rc = 5 Å
in Fig. 6. The three distributions overlap with each other in
both methods. The PCA method extracts a component (or
dimension) showing the largest possible variance under the
constraint that it is orthogonal to the preceding components.
In both first and second principal components, the minimum
and maximum data points originate from the liquid state. In
the original LAAF descriptor space, the variation of the data
points in the liquid state is probably much larger than that
in the crystalline or amorphous state. Hence, efficient clus-
tering to distinguish the data points of the amorphous or the
crystalline states from the liquid states is difficult. Thus PCA

does not seem to work with such a data structure (distributions
depending on the cutoff values are shown in Fig. S2 [55]). On
the other hand, if the values of Ra and Rc increase, LPP can
create a 2D space where the three states are completely di-
vided (distributions depending on the cutoff values are shown
in Fig. S3 [55]). We conclude that TS-LPP is an effective
dimensionality reduction method for distinguishing atoms by
local structures when Ra and Rc are sufficiently small.

In addition, the results obtained by other conven-
tional dimensionality reduction methods are summarized in
Fig. S4 [55], and it is found that these methods are not as effi-
cient as TS-LPP. Recently, several reports have suggested that
two-step analysis for dimension reduction is useful, such as
PCA-LPP, PCA-t-SNE, and PCA-UMAP [61–64]. Our results
show that there is a useful case even if the same dimension-
ality reduction method is repeated in the two-step analysis,
although the different algorithms are usually combined. In
Sec. III A 3, we will discuss why the TS-LPP can create a
better 2D space than PCA and LPP.

2. Performance for out-of-sample points

For the proposed method to be capable of various ap-
plications, it is also important to locate new data points
(out-of-sample points), which are not included in the data
set used to create the low-dimensional space. Note that some
dimensionality reduction methods, such as neural networks
and t-SNE, cannot be applied to a new data set using a linear
mapping function. For this purpose, we prepare a new data set
from nine FPMD simulations and plot the new data points in
the low-dimensional spaces shown in Figs. 5(a) and 6 for dr =
2, using the linear mapping function obtained by the PCA,
LPP, and TS-LPP methods when Ra = 4 Å and Rc = 5 Å. The
new data set contains 200 data points for each MD trajectory.
To prepare out-of-sample points, for the crystalline 300 and
1200 K, liquid 3000 and 9000 K, and amorphous 300 K 1a and
1b, the new data points in different snapshots from the training
data are selected. On the other hand, none of the data from the
trajectories of MD simulations of the liquid phase at 5000 K,
2a and 2b of the amorphous phase at 300 K are used as the
training data, and thus all of the data from the MD trajectories
are out-of-sample points. To evaluate the relationship between
the new data and its correct state, we assign each new data
point into the crystalline, liquid, or amorphous state, by the k-
nearest-neighbor method with k = 10 using the data sets in the
low-dimensional spaces. Then, for each FPMD simulation, we
count the number of test data assigned to the correct state in
the low-dimensional space. Figure 7 shows the ratio of the
agreement in the case of dr = 2. The classification using PCA
does not agree well with the correct state, especially for the
liquid states. The results of LPP are much better than those
of PCA for liquid states, but the results for the amorphous
states by these two methods are different, and they are both
not reliable. In contrast, the TS-LPP results are perfect for
all cases, both for the data from the MD trajectories used
for creating the low-dimensional space and for those from
other trajectories (i.e., liquid at 5000 K, amorphous 2a and
2b at 300 K). This result suggests that the reduced dimensions
prepared by TS-LPP are transferable and useful, even for the
analysis of new data.
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FIG. 5. (a) Distributions after dimension reduction to dr = 2 by the TS-LPP method depending on Ra and Rc. Blue, red, and green indicate
crystalline, liquid, and amorphous states, respectively. The values of the hyperparameters σ and dm are determined by the Calinski-Harabasz
score when the cluster value is fixed at three. When Ra = 4 Å and Rc = 5 Å, perfect clustering is obtained, and the result is surrounded by a
red dotted line. (b) Cluster number dependence on the distributions and hyperparameters when Ra = 4 Å and Rc = 5 Å by the TS-LPP method.
The results are almost the same with as in the three-cluster case.
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FIG. 6. Distributions after dimension reduction to dr = 2 by the PCA and LPP methods when Ra = 4 Å and Rc = 5 Å. Blue, red, and
green indicate the crystalline, liquid, and amorphous states, respectively. The optimal value of σ is denoted in the LPP case when the clustering
number is fixed at three.

3. Advantage of TS-LPP method

In this section, we discuss why TS-LPP can find a better
low-dimensional space for our structural analysis than PCA
and LPP. To visualize the transformation of data distribution
performed by dimensionality reduction methods, we perform
a 3D to 2D dimensionality reduction. By a preliminary ex-
periment, we identify and select three dominant descriptors
from the 100-dimensional LAAF descriptor that provide a
3D space well-representing the characteristic of the original
100-dimensional space. A 3D plot for the three descriptors

FIG. 7. Ratio of the agreement between the predicted and correct
states for new data points by PCA, LPP, and TS-LPP for Ra = 4 Å
and Rc = 5 Å by the k-nearest-neighbor method. The 2D spaces
shown in Figs. 5(a) and 6 are used. Datapoints of the liquid state at
5000 K and the amorphous states 2a and 2b at 300 K are not included
in the training data set.

is shown in Fig. 8(a). For each state (crystalline, liquid, and
amorphous), the data points are distributed on a plane. The
orientations of the planes look similar and the difference of
the positions of the planes is subtle. For this 3D data set, PCA,
LPP, and TS-LPP are performed to obtain the 2D spaces, and
the results are shown in Figs. 8(b)–8(d). Only TS-LPP can
separate the crystalline state from the liquid and amorphous
states.

As we have seen in the analyses of synthetic data shown in
Sec. II C, TS-LPP performs well when the data structure con-
sists of multiple widely distributed data in a low-dimensional
space. The data given by the present MD simulations have a
similar data structure [Fig. 8(a)]. Such a data structure will ap-
pear, for example, when each feature in the high dimension is
not independent but is correlated with each other. That is, there
is a lower-dimensional space that represents the correlations
in the features, and the data points will be widely distributed
within this space. In this case, the differences between the
classes appear as differences in this lower-dimensional space,
and the data structure will be a pile of widely distributed data.
In fact, since the LAAF descriptors used in this study are
highly related to each other, TS-LPP would be effective for
our target data sets. Because the descriptors used in materials
science and condensed matter physics are often related to
each other, TS-LPP is an effective method for dimensionality
reduction in these fields.

B. Structural analysis of melt-quench process in Si system

We analyze the trajectories of the melt-quench process in
the Si system are analyzed. From Sec. III A, we have two
trajectories, that is, melt-quench processes 1 and 2, by FPMD
simulations for melt-quench processes (see Fig. 4), and we
show the structural analysis results using these trajectories.

1. Classification of atoms in melt-quench process

We apply the method, TS-LPP with the LAAF descriptor,
to the analysis of the FPMD simulation of the melt-quench
process for amorphous formation. Here, we classify all atoms
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FIG. 8. (a) Distributions of the selected three features of 52nd, 76th, and 100th LAAF descriptors when Ra = 4 Å and Rc = 5 Å. Blue,
red, and green indicate the crystalline, liquid, and amorphous states, respectively. The data points of each state are distributed on a plane. The
orientations of the normal vectors of the planes look similar and the difference of the positions of the planes are small. Distributions in 2D
space by (b) TS-LPP, (c) LPP, and (d) PCA are plotted. The optimal values of σ and dm are denoted when the clustering number is fixed at
three. For this data set, TS-LPP is better for distinguishing crystalline states from liquid and amorphous states.

at all snapshots in melt-quench process 1 (see Fig. 4) by using
the k-nearest-neighbor method with k = 10 in the 2D space
obtained by TS-LPP for Ra = 4 Å and Rc = 5 Å, as shown in
Fig. 5(a).

Figure 9(a) summarizes the characteristic snapshot struc-
tures during the melt-quench process (lower figure) and the
data points colored in orange for ten randomly selected atoms
from each snapshot in the 2D space by TS-LPP, together
with the points of the data set used to create low-dimensional
space (upper figure). The blue, red, and green points denote
the crystalline, liquid, and amorphous states, respectively.
Figures 9(b) and 9(c) show the time profile of the temperature
and the percentage of atoms belonging to each state, which is
predicted by the k-nearest-neighbor method, respectively. The
supplementary movie 1 [55] shows the time dependence of
these results for the entire melt-quench process.

During the melt-quench process, the target temperature is
sometimes set as constant for a few picoseconds. The system
shows an almost equilibrated state during this period, for

example, cases III and VI in Fig. 9. In such cases, almost all
atoms are classified as the corresponding state, indicating that
the data points of all atoms are located near or in the region of
the corresponding cluster in the 2D space obtained by TS-LPP.
In contrast, when the system is cooled or heated, the classified
states are mixed. For instance, when the temperature rapidly
increases from the crystalline state (initial state, case I in
Fig. 9), the three states are mixed (see case II in Fig. 9). In the
snapshot of case IV, where the percentages of atoms classified
as the liquid state and amorphous state are approximately the
same (i.e., around 1280 K), atoms classified as the amorphous
state are centered at the upper right part (dotted circle). The
vacancy seems to act as a nucleus for the phase transition
between the liquid and amorphous states.

More interestingly, in the cooling process from 5000 to
300 K, the selected ten atoms are observed to move along the
line (mainly along the second axis, i.e., vertical axis) from
the liquid to amorphous regions. This suggests that the line
connecting the two states can be considered as a reaction
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FIG. 9. (a) Data points for the ten randomly selected atoms in the 2D space by TS-LPP with Ra = 4 Å and Rc = 5 Å, which are colored
in orange (upper figures), and characteristic snapshots (lower figures) in the melt-quench process. In the upper figures, the blue, red, and green
points are regarded as crystalline, liquid, and amorphous states in the target data set, respectively. In the lower figures, to classify each atom,
the k-nearest-neighbor method in the 2D space by TS-LPP is used. (b) Kinetic energy corresponding to the temperature of the system as a
function of time. (c) Percentage of atoms belonging to each state.

coordinate for the “local” liquid-amorphous transition. In
case V at 900 K, most atoms are classified as being in the
amorphous state, but some atoms appear in the liquid state.
Such detailed information can be found in the process of
finding a more stable amorphous state (i.e., amorphous state
1b at 300 K) during the annealing process. These results
demonstrate that by using our unsupervised method, we can
visually understand the FPMD simulation results in detail.
Note that such analysis would not be possible with PCA, be-
cause new data are often misclassified as shown in Fig. 7. For
melt-quench process 2, the structural analysis of amorphous
formation is also performed using the proposed method. The
results are summarized in the supplementary movie 2 [55].

2. Detailed analysis of different amorphous structures

So far, we have investigated the clustering of the data points
from three clearly different groups, crystalline, liquid, and
amorphous states. Here, we focus on the amorphous phase and
perform the detailed analysis of the local atomic structures in
various amorphous states. For this purpose, we analyze the

five amorphous states: 1a, 1b, 2a, and 2b, which are made
from the melt-quench process shown in Fig. 4, and the one
made from the continuous random network model (CRN),
which is an idealized model for perfectly coordinated amor-
phous semiconductors [65,66]. The quality of the amorphous
structure generated by melt-quench methods strongly depends
on process, especially on the quenching speed [21]. It is found
that some detailed feature of the experimental structure factor
cannot be reproduced by the amorphous structures made by
the present melt-quench processes. On the other hand, the fifth
structure is generated from a snapshot of the NPT simulation
starting from the high-quality CRN structure previously re-
ported, which agrees well with experimental results [67].

The data points sampled from these five amorphous states
are mapped to the low-dimensional spaces obtained by the
TS-LPP method [Fig. 5(a)] and the PCA method (Fig. 6) when
Ra = 4 Å and Rc = 5 Å. The distributions of 200 data points
for each amorphous state are shown in Figs. 10(a) and 10(b),
and an enlarged view of TS-LPP results is shown in Fig. 10(c).
Note that, different from Figs. 5 and 6, the same phase with
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FIG. 10. Distributions of data points for amorphous states 2a and 2b at 300 K, and the CRN results mapped to the 2D space constructed by
(a) TS-LPP method and (b) PCA, when Ra = 4 Å and Rc = 5 Å. (c) Enlarged view of the amorphous states of TS-LPP. The region is denoted
by the dotted line in (a). (d) Distributions of data points for 1000 atoms in amorphous 1a depending on the coordination number (C.N.). The
region is denoted by the dotted line in (a).

different temperatures are distinguished by different colors. In
the low-dimensional space created by PCA [Fig. 10(b)], the
distribution of the data points sampled from the crystalline,
liquid and the five amorphous states are all overlapped. Al-
though the distribution of the CRN model is localized in the
space by PCA, it is difficult to extract its unique structural
properties from those of other states.

On the other hand, in the space created by TS-LPP, the dis-
tribution of the three phases are well separated even with the
newly added amorphous data points. From Fig. 10(a), it can
be seen that the new data points sampled from the amorphous
2a and 2b states are distributed close to the results of 1a and
1b in both cases, which is consistent with the prediction of
states using the k-nearest-neighbor method (see Fig. 7). The
data points from the CRN model are also distributed close to
the region of 1a and 1b, but it is found that the center of its
distribution is slightly shifted to upper left from those of 1a,
1b, 2a, and 2b. Furthermore, as can be seen in Fig. 10(c), the
distribution of 1b is closer to the region of CRN model than
1a. This tendency is observed also in the data points from the

melt-quench process 2; the distribution of 2b is closer to the
one for the CRN model than 2a. It supports that the annealing
process to 900 K (see Fig. 4) is effective for the modeling
of the amorphous structure. Furthermore, we also analyze the
coordination number of the data points of amorphous state 1a,
whose distribution is most deviated from that of CRN. The
mapping of all 1000 atoms in one snapshot of amorphous
state 1a is shown in Fig. 10(d), where the color differences
represent the coordination number of each atom. Note that all
of the atoms are four coordinated in the CRN model. While
most of the atoms in the 1a state are also four coordinated,
there are some atoms whose coordination number is larger
than 4. It is found that such atoms tend to distribute in the
lower right region, deviated from the center of the distribution
of the CRN model. Considering that the number of atoms in
this region decrease by the annealing process, one of the ef-
fects by annealing process is to reduce the highly coordinated
atoms. However, it should be noted that there are also many
atoms whose coordination number is 4 in the same lower
right region. Thus the low-dimensional space constructed by
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FIG. 11. Distributions of datapoints for liquid states at 5000 and 9000 K, amorphous states 1a and 1b at 300 K in the low-dimensional
space constructed by (a) TS-LPP and (b) PCA, when Ra = 4 Å and Rc = 5 Å. Distributions of datapoints for quench states and amorphous
states at 900 K in addition to the cases in (a) and (b) by (c) TS-LPP and (d) PCA.

the TS-LPP method is not simply related to the coordination
number and we expect the present analysis would be useful
to extract more detailed information in the structural change
during the annealing process. Such attempts are now under
way, and further reports will be presented in the future.

3. Analysis of the process from liquid to amorphous formation

So far, we have searched for low-dimensional spaces where
crystalline, liquid, and amorphous states are well distin-
guished. Here, we address the structural analysis when there
are only liquid and amorphous states. Figures 11(a) and 11(b)
show the 2D space obtained by TS-LPP method and PCA,
respectively, when liquid states at 5000 and 9000 K and amor-
phous states 1a and 1b at 300 K are adopted. In TS-LPP, it can
be seen that the liquid and amorphous states can be separated
on the 1st axis. Furthermore, the amorphous state 1a at 300 K
is closer to the liquid states than to 1b. Although the number
of clusters for determining hyperparameters is set to three, it
is confirmed that even if the cluster number is increased, the
obtained results are almost the same. In contrast, when using

PCA, all the results overlap, and it is difficult to extract the
relations of atoms with each other.

Next, we generate a data set from the entire melt-quench
process and consider the low-dimensional space created by
the entire data set of the melt-quench process (see Fig. 4).
The data set includes 200 points each from liquid states at
5000 and 9000 K, amorphous states 1a and 1b at 300 K,
and amorphous state at 900 K. In addition, 400 points during
the quench process from liquid state at 5000 K to amor-
phous state 1a at 300 K are also included. The results of
the low-dimensional space obtained by the TS-LPP method
and PCA are shown in Figs. 11(c) and 11(d). In this way,
by the TS-LPP method, the liquid and amorphous states are
separated even when the quench state is added, and the quench
state is distributed to connect the liquid and amorphous states.
Thus we can consider that the 1st axis is apparently related
to the temperature. In contrast, in the PCA results, all the
data are overlapped. Therefore it is shown that by using
TS-LPP, we can find an appropriate low-dimensional space
even if the entire melt-quench process is included in the data
set.
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FIG. 12. Distributions after dimension reduction to dr = 2 by the TS-LPP method for (a) silicon and (b) germanium. Distributions obtained
by PCA for (c) silicon and (d) germanium. LAAF descriptors for binary systems with Ra = 4 Å and Rc = 5 Å are used.

C. Structural analysis of crystalline, liquid, and amorphous
states in Si-Ge system

To confirm that our method is widely usable, we perform
structural analysis for a silicon-germanium binary system
in the crystalline, liquid, and amorphous phases, which are
prepared by FPMD simulations using CONQUEST. To prepare
crystalline and liquid phases, a system containing 500 silicon
and 500 germanium atoms at a constant temperature of 300 K
for crystalline and 5000 K for liquid and constant volume is
simulated. The alloy where silicon and germanium atoms are
arranged alternately in the lattice structure is considered as a
crystalline state. On the other hand, the amorphous structures
are simulated by a system with 550 silicon and 450 germa-
nium atoms at 300 K prepared by the melt-quench process 2,
as shown in Fig. 4.

Figure 12 shows the distributions of data points for silicon
and germanium atoms in the 2D space (dr = 2) by TS-LPP
and PCA when Ra = 4 Å and Rc = 5 Å. For TS-LPP, the
number of clusters for determining hyperparameters is set to
three, but the cluster number is not an important factor. In the
case of TS-LPP, the three states are well separated in both

silicon and germanium. The 1st axis divides the crystalline
states from the liquid and amorphous states, while the liquid
and amorphous states are separated by the second axis. This is
the same result obtained in silicon single-component system
(see Fig. 5). On the other hand, in the case of PCA, the liquid
and amorphous states completely overlap, and the crystalline
states are located near other states. Thus we conclude that
even if a binary system is considered in a straightforward
manner, the TS-LPP method can find a well-defined low-
dimensional space, where the distributions of data points for
each atom or group of atoms can be properly captured. This
result indicates that the method has the potential to be applied
to more complex systems.

D. Structure analysis for Cu system

So far, only covalent bond systems are considered. We next
analyze the structures of metallic systems, fcc, hcp, and liquid
states of the single component copper system. Note that fcc
and hcp are both close-packed structures and it is difficult to
distinguish them from the present LAAF descriptor, which
includes only the radial term without the angle information
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FIG. 13. Distributions in 2D space obtained by (a) TS-LPP and (b) PCA for Ra = 3 Å and Rc = 3 Å for Cu system. The fcc and hcp
structures are prepared as a crystalline states.

of three atoms. We investigate the ability of TS-LPP method
for this analysis. To generate the local structures of the copper
system, classical MD simulations with the EMT potential are
performed using the atomic simulation environment (ASE)
package [54]. The number of atoms is 500. MD calculations
are performed at a constant temperature of 300 K (fcc and hcp
crystalline phases) and 5000 K (liquid) and constant volume.
Data is generated by extracting 200 points from each state, and
structural analysis is performed using 600 data points in total.

The obtained 2D spaces for Ra = 3 Å and Rc = 3 Å are
shown in Figs. 13(a) and 13(b) when TS-LPP and PCA are
used. For TS-LPP, the number of clusters for determining
hyperparameters is set to three, although we confirm that the
distributions are almost the same even when the cluster num-
ber is changed. In both TS-LPP and PCA, it can be seen that
the crystalline 300 K and liquid 5000 K states are separated.
The fcc and hcp data can be distinguished by TS-LPP, while
these data are overlapped in PCA result.

IV. DISCUSSION AND SUMMARY

In summary, we have proposed a novel structural analysis
method based on an unsupervised ML technique and applied
it to structural analysis problems. Our method can find a low-
dimensional space where the distributions of data points for
each atom or group of atoms can be properly captured using
the proposed LAAF descriptor showing the local structure
without labels. The key to our method is to perform dimen-
sionality reduction from a high-dimensional descriptor space
to a lower dimension using TS-LPP, where conventional LPP
is performed twice. Our method is much more reliable than
PCA or other conventional dimensionality reduction methods.
Furthermore, our method is a parameter-free unsupervised
technique, since the hyperparameters in the method can be
determined automatically. Our implementation of the TS-
LPP method is available on GitHub [68]. We have used the
method to analyze the FPMD simulations of a silicon single-
component system, silicon and germanium binary system,
and classical MD simulations for copper single-component
system. Through these applications, we have demonstrated

that the method is effective for understanding the phenomena
in detail and for elucidating the local phenomena during the
simulations.

We believe that the new method is useful in many kinds of
applications. As the method is unsupervised, it can be used
to analyze the structures of unknown phases or materials.
In addition, we can control the resolution of the structural
analysis depending on the degree of dimension. Here, we
discuss two possible applications. The first application is the
development of highly accurate and transferable ML force
fields. In many cases, the problem of the ML forces is the
transferability [18,69]. If we can construct the force fields
from multiple ML forces based on different sets of training
data, depending on the local environment, the accuracy of
ML forces can be improved easily. The classification method
proposed in this study should be effective for this purpose
as well as the Gaussian mixture model [13]. For example, in
many systems that include irregular regions, such as surface
or interface structures, there are structural variations, and it
is difficult to determine how the atoms in different regions
should be classified. Even in such cases, since our method
is unsupervised, we can simply collect the data from a short
FPMD simulation and classify the atoms into several groups
depending on the data structure. Note that to obtain the low-
dimensional space by our method, an eigenvalue problem
depending on the dimension of the descriptors should be
solved. Since the dimension of the descriptor is usually not
large, the computational cost of this eigenvalue problem is
not expensive. Furthermore, the cost can be further reduced as
the TS-LPP does not require all eigenvalues or eigenvectors.
If we construct the ML forces based on this classification,
the accuracy of the ML forces should be high. The proposed
method can also detect a new structures during a long MD
simulation using the constructed ML forces. Therefore on-
the-fly development of ML forces [70–73] of large, irregular,
and complex systems should be possible with a large-scale
DFT code, such as the CONQUEST code that we used in this
work. It should be noted that large systems can be treated
using the recent active-learning algorithms [70,73,74], even
without large-scale DFT codes [74].
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The second application is to find a useful coordinate to
characterize the local phenomena in complex dynamical pro-
cesses, chemical reactions, or phase transformations. As we
have pointed out in the analysis of the melt-quench process,
the component in the low-dimensional space can be consid-
ered as a good reaction coordinate to express the “local”
transformation from a liquid to an amorphous state. Note
that although the present descriptor is “local” and specific
to each atom, the descriptor also includes the information
of its neighbors. With the LAAF descriptor, we can follow
the phenomenon of a group of atoms. If TS-LPP with the
LAAF descriptor can find useful coordinates for many kinds
of phenomena, we expect that it can be helpful in calculating
the energy barrier for the local reactions or for the efficient
structural search of new phases. We intend to explore these
two applications in future work.
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APPENDIX: LOW-RANK APPROXIMATION FOR LPP

For our target data, the input data matrix X has a number
of small nonzero singular values. Thus, to improve the nu-
merical stability for calculations in LPP, we use the low-rank
approximation of X using the singular value decomposition
U�V � = X . Here, U is N × M, the columns of which are
the left singular vectors of X . � = diag(s1, s2, . . . , sM ) is an
M × M diagonal matrix with the descending ordered singular
values {si}i=1,...,M of X . V is N × M matrix, the columns of
which are the right singular vectors of X . By introducing a
parameter 0 < δ < 1, the numerical rank of ρ is determined
by:

sρ+1

s1
< δ <

sρ

s1
. (A1)

Let U0 and V0 be matrices with the ρ leftmost columns of U
and V , respectively, and �0 be the leading principal submatrix
of order ρ of �. Using these matrices, instead of solving
Eq. (13), we solve the generalized eigenvalue problem as:

U �
0 LU0z = λU �

0 DU0z, (A2)

where {λi, zi} is the ith eigenvalue and eigenvector. The alter-
native mapping matrix Y = (y1, y2, . . . , ydr ) is obtained by

yi = V0�
−1
0 zi, (i = 1, . . . , dr ). (A3)
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