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Time-dependent exchange-correlation potential in lieu of self-energy
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It is shown that the equation of motion of the one-particle Green function of an interacting many-electron
system is governed by a multiplicative time-dependent exchange-correlation potential, which is the Coulomb
potential of a time-dependent exchange-correlation hole. This exchange-correlation hole fulfills a sum rule,
a generalization of the well-known sum rule of the static exchange-correlation hole. It is envisaged that the
proposed formalism may provide an alternative route for calculating the Green function by finding a suitable
approximation for the exchange-correlation hole or potential based on, e.g., a local-density approximation.
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I. INTRODUCTION

The one-particle Green function of an interacting many-
particle system is of utmost importance in condensed-matter
physics and other branches of physics such as molecular
physics and nuclear physics. Essential physical properties,
notably the ground-state expectation value of a single-particle
operator, the total energy, and the particle addition and re-
moval spectra can be extracted from the one-particle Green
function, hereafter referred to simply as the Green function.
Experimental photoemission and inverse photoemission spec-
tra, which provide invaluable information about the electronic
structure of the system, can be directly compared with the
spectra extracted from the Green function, under the so-called
sudden approximation and neglecting the matrix-element ef-
fects. Experimental data from transport measurements and
many other experimental observations can also be related to
the Green function. Much effort has therefore been expended
on developing methods and techniques for calculating the
Green function, from many-body perturbation theory [1] to
methods employing path-integral techniques [2].

The zero-temperature time-ordered Green function is de-
fined according to [1]

iG(rt, r′t ′) = 〈T [ψ̂ (rt )ψ̂†(r′t ′)]〉, (1)

where r = (r,σ ) is a combined label of space and spin vari-
ables, ψ̂ (rt ) is the field operator in the Heisenberg picture,
T is the time-ordering symbol, and the expectation value is
taken with respect to the ground state. The many-electron
Hamiltonian defining the Heisenberg operator is given by

Ĥ =
∫

dr ψ̂†(r)h0(r)ψ̂ (r)

+ 1

2

∫
drdr′ ψ̂†(r)ψ̂†(r′)v(r − r′)ψ̂ (r′)ψ̂ (r), (2)
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where h0 = − 1
2∇2 + Vext(r) and v(r − r′) = 1/|r − r′|. In

our notation,
∫

dr = ∑
σ

∫
d3r and atomic units are used

throughout, in which the Bohr radius a0, the electron mass
me, the electronic charge e, and h̄ are set to unity.

Since the Hamiltonian is time independent it is convenient
to set t ′ = 0. The Green function fulfills the following equa-
tion of motion,(

i
∂

∂t
− h0(r)

)
G(r, r′; t )

+ i
∫

dr′′v(r − r′′)〈T [ρ̂(r′′t )ψ̂ (rt )ψ̂†(r′)]〉

= δ(r − r′)δ(t ), (3)

where ρ̂ is the density operator. The interaction term contains
a special case of the two-particle Green function:

G(2)(r, r′, r′′; t ) = 〈T [ρ̂(r′′t )ψ̂ (rt )ψ̂†(r′)]〉. (4)

The traditional approach is to introduce a self-energy � as
follows,

− i
∫

dr′′v(r − r′′)G(2)(r, r′, r′′; t ) − VH (r)G(r, r′; t )

=
∫

dr′′dt ′′�(r, r′′; t − t ′′)G(r′′, r′; t ′′), (5)

where VH is the Hartree potential subtracted from G(2). Thus,
the self-energy embodies the effects of exchange and corre-
lations and a central quantity in Green function theory. The
self-energy is a well-established framework for calculating
the Green function but it acts on the Green function as a
convolution in space and time and as such it is difficult to
visualize its meaning in a clear physical picture. Moreover,
from the Dyson equation, G = G0 + G0�G, it can be seen
that � is an auxiliary quantity since it depends on the choice
of the starting reference Green function G0.

In this paper, a completely different route is proposed
to calculate the Green function. It is shown that the equa-
tion of motion of the Green function can be reformulated so
that it is governed by a time-dependent exchange-correlation
potential that acts multiplicatively on the Green function.
This exchange-correlation potential arises naturally from
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the Coulomb potential of the time-dependent exchange-
correlation hole, which fulfills a sum rule. The static and
equal-space limit r′ → r of this exchange-correlation hole
reduces to the well-known static exchange-correlation hole
in the formal expression for the exchange-correlation energy.
The focus is then shifted to finding an accurate approximation
for the exchange-correlation hole or potential, in the spirit of
density functional theory [3–6].

II. THEORY

A. Time-dependent exchange-correlation hole

Writing out the time ordering of the two-particle Green
function in Eq. (4) and using the commutation

[ψ̂ (rt ), ρ̂(r′′t )] = δ(r − r′′)ψ̂ (rt ) (6)

yields

G(2)(r, r′, r′′; t ) = 〈ρ̂(r′′t )ψ̂ (rt )ψ̂†(r′)〉θ (t )

− 〈ψ̂†(r′)ψ̂ (rt )ρ̂(r′′t )〉θ (−t )

+ δ(r − r′′)〈ψ̂†(r′)ψ̂ (rt )〉θ (−t ). (7)

Consider now integrating G(2) over the variable r′′. It
should first be noted that for any state 	 containing N elec-
trons, ∫

dr′′ρ̂(r′′)|	〉 = N̂ |	〉 = N |	〉, (8)

where N̂ counts the number of electrons in the system. Using
G(2) in Eq. (7) one finds for t < 0,∫

dr′′G(2)(r, r′, r′′; t ) = iG(r, r′; t )(N − 1). (9)

G(2) can be naturally factorized as follows,

G(2)(r, r′, r′′; t ) = iG(r, r′; t )g(r, r′, r′′; t )ρ(r′′), (10)

which defines the correlation function g(r, r′, r′′; t ), and after
substitution into Eq. (9) one arrives at the sum rule∫

dr′′[g(r, r′, r′′; t ) − 1]ρ(r′′) = −1. (11)

This sum rule is valid for any r, r′, and t < 0 and the
integrand may be interpreted as the time-dependent exchange-
correlation hole,

ρxc(r, r′, r′′; t ) = [g(r, r′, r′′; t ) − 1]ρ(r′′), (12)

a generalization of the static exchange-correlation hole,
first introduced by Slater for the exchange part [7]. Since
ρxc(r, r′, r′′; t ) is in general complex, the sum rule implies that
the imaginary part integrates to zero.

It is interesting to observe that for t > 0 (the addition of an
electron), the exchange-correlation hole integrates to zero, as
can be seen from Eq. (7). This result may be understood by
recognizing that the added electron is not part of the electron
density that generates the Hartree potential so that there is
no self-interaction corresponding to the last term of G(2) in
Eq. (7). For σ ′′ �= σ , the exchange-correlation hole integrates
to zero, as may be seen from the presence of δ(r − r′′) =
δ(r − r′)δσσ ′′ in Eq. (7). If one were to decompose ρxc into

the exchange and the correlation holes, it is the exchange hole
that would integrate to −1 whereas the correlation hole would
integrate to zero. The sum rule can then be summarized as
follows: ∫

d3r′′ρxc(r, r′, r′′; t < 0) = −δσσ ′′ , (13)
∫

dr′′ρxc(r, r′, r′′; t < 0) = −1, (14)
∫

dr′′ρxc(r, r′, r′′; t > 0) = 0. (15)

This sum rule may be viewed as the generalization of the
well-known sum rule for the static exchange-correlation hole
appearing in the formally exact expression for the exchange-
correlation energy [5,6], originating from Slater’s sum rule for
the exchange hole only [7]. The static exchange-correlation
hole corresponds to the limit t → 0− and r′ → r.

B. Time-dependent exchange-correlation potential

Rearranging Eq. (10) yields

G(2)(r, r′, r′′; t ) = iG(r, r′; t )ρ(r′′)+iG(r, r′; t )ρxc(r, r′, r′′; t ),
(16)

in which the first term on the right-hand side generates the
Hartree term. When the above G(2) is substituted into the equa-
tion of motion of G in Eq. (3), it generates the time-dependent
exchange-correlation potential as a function of r, r′, and t ,

Vxc(r, r′; t ) =
∫

dr′′v(r − r′′)ρxc(r, r′, r′′; t ), (17)

acting on G in a multiplicative fashion, in contrast to the self-
energy which acts on G as a convolution in space-time as in
Eq. (5). The equation of motion for G becomes(

i
∂

∂t
− h(r) − Vxc(r, r′; t )

)
G(r, r′; t ) = δ(r − r′)δ(t ), (18)

where h = h0 + VH . This equation has a local character in the
sense that the potential is multiplicative in both space and
time. Apart from the source term on the right-hand side, for a
given r′ it is just as a one-particle time-dependent Schrödinger
equation in the presence of a time-dependent field Vxc. The
effects of exchange and correlations are now embodied in the
time-dependent exchange-correlation potential Vxc, which is
in general non-Hermitian. Equation (18) furnishes us with
a different picture from that of the conventional self-energy
formulation and offers a simple physical interpretation for
the propagation of an added electron or hole, which is gov-
erned by, in addition to the external field and the Hartree
potential, the time-dependent exchange-correlation potential.
This exchange-correlation potential is simply the Coulomb
potential of the time-dependent exchange-correlation hole.

The corresponding Dyson-like equation for G can be read-
ily written down,

G(r, r′; t ) = GH (r, r′; t ) +
∫

dr′′dt ′GH (r, r′′; t − t ′)

× Vxc(r′′, r′; t ′)G(r′′, r′; t ′), (19)
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where GH is the Hartree Green function, and the relationship
between Vxc and � in space-time is given by

Vxc(r, r′; t )G(r, r′; t ) =
∫

dr′′dt ′�(r, r′′; t − t ′)G(r′′, r′; t ′).

(20)
Expressed in a set of base orbitals {ϕi}, the equation of

motion in Eq. (18) takes the form

i
∂

∂t
Gi j (t ) −

∑
k

hikGk j (t ) −
∑

kl

V xc
ik,l j (t )Gkl (t ) = δi jδ(t ),

(21)
where Gi j and hik are the matrix elements of G and h in the
orbitals and

V xc
ik,l j (t ) =

∫
d3rd3r′ ϕ∗

i (r)ϕk (r)Vxc(r, r′; t )ϕ∗
l (r′)ϕ j (r

′),

(22)
exhibiting the two-particle character of Vxc, a bosonic quantity,
in contrast to the self-energy which is fermionic.

Much is known about the static exchange-correlation
hole [6], which may provide a starting point for finding a
good approximation for the time-dependent one. Approxi-
mating Vxc via the exchange-correlation hole ρxc, which is a
physically motivated entity, may be more advantageous than
following the arduous route of finding a good approxima-
tion for the self-energy by means of many-body perturbation
theory or a path-integral approach. The proposed formalism
has a certain proximity to time-dependent density functional
theory [8,9]. It should be noted, however, that the time
dependence of Vxc does not arise from the presence of a time-
dependent external field, but rather due to the dynamics of the
Green function. The addition or removal of an electron causes
the system to evolve in a nontrivial way due to the Coulomb
interaction among the electrons.

C. Local-density approximation

It can be anticipated that Vxc is a relatively smooth
function since it is the Coulomb potential of a charge dis-
tribution that integrates to −1 or 0. Following Gunnarsson
and Lundqvist [5,10], it is readily seen by making a change
of variable R = r − r′′ that, due to the form of the Coulomb
interaction, only the spherical average of the exchange-
correlation hole in the variable R is needed to determine Vxc,

Vxc(r, r′; t ) =
∑
σR

∫
dRR ρxc(r, r′, R; t ), (23)

where ρxc(r, r′, R; t ) depends only on the radial distance R
with respect to r,

ρxc(r, r′, R; t ) =
∫

d�Rρxc(r, r′, r − R; t ), (24)

implying that the fine spatial details of the exchange-
correlation hole may not be important, as illustrated vividly
for the case of the static exchange-correlation hole in some
light atoms [5,11]. According to Eq. (23), Vxc is the first radial
moment of the spherically averaged ρxc.

It can also be seen that r may be thought of as the center
of the exchange-correlation hole whereas r′ may be treated
as a parameter representing the spatial origin of the created

electron. One could imagine that the exchange-correlation
hole moves with the added hole or electron as a function
of time. From Eq. (7) it is quite evident that when r′′ = r,
G(2) = g = 0 and hence ρxc(r, r′, r; t ) = −ρ(r) for any r, r′,
and t . Following Slater’s argument [12], it can be concluded
that the exchange-correlation potential behaves approximately
as ρ1/3. It may be envisaged that a local-density approxima-
tion for Vxc as in density functional theory can be developed
and its time dependence can be constructed from knowledge
of the time-dependent exchange-correlation hole of the elec-
tron gas and some generic model systems, depending on the
correlation strength.

The correlation function of the homogeneous electron gas
with density ρ̄ can be written as follows,

gHEG
σσ ′′ (ρ̄, R′, R′′, θ ; t ), (25)

where R′ = |r − r′|, R′′ = |r − r′′|, θ is the angle between R′
and R′′, and the spin dependence has been written explicitly.
A simple local-density approximation for the exchange-
correlation hole could be

ρLDA
xc (r, r′, r′′; t ) = [

gHEG
σσ ′′ (ρ(r), R′, R′′, θ ; t ) − 1

]
ρ(r′′).

(26)

A more sophisticated approximation would be to employ
the weighted-density approximation [11,13], in which the
density dependence associated with the variable r′ is taken
into account. On the other hand, applying the local-density
approximation directly on Vxc,

V LDA
xc (r, r′; t ) = V HEG

xc (ρ(r), R; t ), (27)

where R = |r − r′|, may be too crude since information en-
coded in ρ(r′′) is lost. It would be interesting to compare this
approximation with the local-density approximation for the
self-energy based on the homogeneous electron gas proposed
by Sham and Kohn many years ago [14]. One may speculate
that a local-density approximation on Vxc is more favorable
than on � since Vxc acts locally on G. Also, in contrast to �,
which is fermionic, Vxc is a bosonic object and as such it may
be easier to approximate in terms of the density, which is a
bosonic quantity.

D. Connection with Kohn-Sham Vxc

If Vxc(r, r′; t ) is approximated by the static Kohn-Sham
exchange-correlation potential V KS

xc (r), then the Green func-
tion reduces to the Kohn-Sham noninteracting Green function,
whose diagonal component will by construction yield the
exact density. However, V KS

xc (r) is not necessarily the same
as Vxc(r, r; 0−). From the equations of motion of G and GKS

one finds
(

i
∂

∂t
− h(r) − Vxc(r, r′; t )

)
[G(r, r′; t ) − GKS(r, r′; t )]

= [
Vxc(r, r′; t ) − V KS

xc (r)
]
GKS(r, r′; t ). (28)

Evaluating the equation at r′ → r and t → 0− and making use
of the fact that both G and GKS give the same density yields
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the relationship between Vxc(r, r; 0−) and V KS
xc (r):

lim
r′→r,t→0−

(
∂

∂t
− i

2
∇2

)
[G(r, r′; t ) − GKS(r, r′; t )]

= [
Vxc(r, r; 0−) − V KS

xc (r)
]
ρ(r). (29)

There is no obvious reason why the left-hand side vanishes
so that in general Vxc(r, r; 0−) �= V KS

xc (r). When integrated
over r, the first term on the left-hand side involving the time
derivative is the difference in the first moment of the occupied
densities of states, whereas the second term is the difference
in the kinetic energies, which is contained in the Kohn-Sham
Exc.

One also notes that

g(r, r, r′′; t = 0−) �= gKS(r, r′′), (30)

since gKS is defined as a coupling-constant integration of gλ,
which is the static correlation function corresponding to a
scaled Coulomb interaction λv, yielding the exact ground-
state density independent of λ [10,15].

E. Kohn-Sham scheme for unoccupied states

Since Vxc(0−) �= Vxc(0+), there will in general be a discon-
tinuity at t = 0. This suggests that in the Kohn-Sham scheme,
two exchange-correlation potentials are needed, one for the
occupied states and another for the unoccupied ones. For the
occupied states, the standard Kohn-Sham equation applies,
while for the unoccupied states one has( − 1

2∇2 + Vext + VH + V +
xc

)
φkn = εkφkn, (31)

where V +
xc is the exchange-correlation potential corresponding

to an exchange-correlation hole that integrates to zero rather
than to one. After solving the standard Kohn-Sham equation,
the unoccupied states are used to diagonalize Eq. (31), which
ensures that all states will be orthogonal. A local-density ap-
proximation for the exchange-correlation hole corresponding
to V +

xc can be taken to be the one in Eq. (26) with r′ = r and
t = 0+.

Since the exchange-correlation hole corresponding to V +
xc

integrates to zero, it should be weaker than the one for the
occupied states for weakly or moderately correlated systems.
This implies that the unoccupied states would be pushed up,
correcting the well-known underestimation of band gaps in
semiconductors and insulators. For metals, however, one may
reason that since the band dispersion is smooth across the
Fermi surface, the discontinuity should tend to vanish.

As an approximate V +
xc it may be reasonable to use only the

correlation part of the standard Vxc. A simple correction would
be to use first-order perturbation theory:

ε+
kn = εkn + 〈φkn|V +

xc − Vxc|φkn〉. (32)

An even simpler correction would be to ignore entirely V +
xc ,

which may lead, however, to an overestimation of the gap
since V +

xc is likely to be negative.

F. Extension to temperature-dependent Green function

The temperature-dependent Green function is defined in a
similar way as for the zero-temperature one with the ground-

state expectation value replaced by the thermal average,

iGβ (rt, r′t ′) = 1

Z
Tr{e−βK̂ T [ψ̂ (rt )ψ̂†(r′t ′)]}, (33)

where K̂ = Ĥ − μN̂ , μ is the chemical potential, Z =
Tr e−βK̂ is the partition function, and β = 1/(kBT ) with kB

being the Boltzmann constant and T the temperature. The
Heisenberg operators is defined as

ψ̂ (rt ) = eiK̂t ψ̂ (r)e−iK̂t . (34)

At this stage, one traditionally goes over to imaginary time
yielding the Matsubara Green function. The reason is that
Wick’s theorem is no longer convenient to use if one stays
along the real-time axis due to the presence of the thermal
factor e−βK̂ . The proposed formalism, however, makes no use
of Wick’s theorem so that it is not necessary to work along
the imaginary-time axis. The ill-defined problem of analytic
continuation to the real-time axis when calculating spectral
functions associated with the Matsubara Green function is
circumvented.

The field operators are independent of temperature so that
the equation of motion of Gβ is the same as the one in Eq. (3)
with the understanding that the ground-state expectation value
is now to be understood as thermal average and h0 is replaced
with h0 − μ. It is quite evident that the sum rule and the
equation of motion in Eq. (18) still hold with h replaced by
h − μ and all quantities carry the temperature label β. As
in the zero-temperature case, the main task is to find a good
approximation for the temperature-dependent ρxc or Vxc.

III. EXAMPLE: THE HUBBARD DIMER

To illustrate how the time-dependent exchange-correlation
potential looks like and as a proof of concept, the half-filled
Hubbard dimer with total spin zero is considered. Although
it is very simple, it contains some of the essential physics of
correlated electrons and it has the great advantage of being
analytically solvable. The Hamiltonian of the Hubbard dimer
in standard notation is given by

Ĥ = −�
∑
i �= j

ĉ†
iσ ĉ jσ + U

∑
i

n̂i↑n̂i↓. (35)

By calculating G(2) and using the relation in Eq. (16), Vxc can
be deduced. The results, shown in Fig. 1, are given by

V xc
11,11(t > 0) = U

2

(1 − x2){1 + exp(−i2�t )}
(1 + x)2 + (1 − x)2 exp(−i2�t )

, (36)

V xc
11,22(t > 0) = U

2

(1 − x2){1 − exp(−i2�t )}
(1 + x)2 − (1 − x)2 exp(−i2�t )

, (37)

where

x = 1

4�
(
√

U 2 + 16�2 − U ) (38)

is the relative weight of double-occupancy configurations in
the ground state and

2� = E−
1 − E−

0 = E+
1 − E+

0 > 0 (39)

are the excitation energies of the (N ± 1) systems. From sym-
metry, V xc

22,22 = V xc
11,11 and V xc

22,11 = V xc
11,22, i.e., Vxc is symmetric
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FIG. 1. The real (red) and imaginary (blue) parts of the
exchange-correlation potentials V xc

11,11 and V xc
11,22 of the Hubbard

dimer as a function of time for U = 1, 3, 5 with � = 1. Due to the
particle-hole symmetry, Vxc(−t ) = −Vxc(t ).

but it is not Hermitian since it is complex. Due to the particle-
hole symmetry, Vxc(−t ) = −Vxc(t ).

A number of generic conclusions can be drawn from this
simple model. Since x depends on U , Vxc is not simply pro-
portional to the interaction U . In the weakly correlated limit
corresponding to small (1 − x), it can be seen that the depen-
dence of Vxc on time becomes weak whereas in the strongly
correlated limit corresponding to small x, it becomes more
pronounced. This result may well be quite general and it is
in accordance with expectation since in the weakly correlated
regime, a static mean-field potential is expected to be a good
approximation.

One also notices that the time dependence is dictated by
the excitation energies of the (N ± 1) systems and in gen-
eral, these excitations include collective ones. For example,
for solids one expects a time-dependent term of the form
exp(−iωpt ) where ωp is the plasmon energy. Vxc acts then as
an effective external field, exchanging an energy ωp with the
system. It is also interesting to observe that the same energy
dependence appears in the denominator. When expanded in
a power series it would generate multiple excitations such
as multiple plasmons observed experimentally in the alkalis.
This is precisely what the cumulant expansion [16,17] within
the self-energy formulation accomplishes but in an ad hoc
manner. In the strong-coupling limit, x → 0, expanding the
denominator in a power series of the time exponential is
no longer viable, indicating a fundamental difference in Vxc

between weakly and strongly correlated systems.
Another interesting feature is the discontinuity in the di-

agonal element of V xc
11,11 at t = 0, which is the difference

between the particle (t = 0+) and the hole (t = 0−) values,
reminiscent of the discontinuity in the exchange-correlation
potential in density functional theory [18].

IV. CONCLUSION

The problem of calculating the self-energy is recast into
the problem of constructing the exchange-correlation poten-
tial arising from the exchange-correlation hole, which is a
physically motivated entity fulfilling an exact sum rule and
some limiting properties. The proposed formalism is in the
spirit of density functional theory, in which the main task is to
find an accurate approximation for the exchange-correlation
functional.

There are many aspects to explore and consider. For ex-
ample, it would be interesting to investigate the degree of
locality of Vxc, i.e., how Vxc behaves as a function of |r′ − r|
and to study the time dependence of Vxc for a number of model
systems such as the electron gas and one-dimensional systems
solvable by means of the Bethe ansatz in order to accumulate
clues and guidelines for constructing an accurate and reliable
Vxc or ρxc.
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