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Effect of repulsion on superconductivity at low density
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We examine the effect of repulsion on superconductivity in a three-dimensional system with a Bardeen-
Pines-like interaction in the low-density limit, where the chemical potential μ is much smaller than the phonon
frequency ωL . We parametrize the strength of the repulsion by a dimensionless parameter f , and find that the
superconducting transition temperature Tc approaches a nonzero value in the μ = 0 limit as long as f is below
a certain threshold f ∗. In this limit, we find that Tc goes to zero as a power of f ∗ − f , in contrast to the high
density limit, where Tc goes to zero exponentially quickly as f approaches f ∗. For all nonzero f , the gap function
�(ωm ) changes sign along the Matsubara axis, which allows the system to partially overcome the repulsion at
high frequencies. We trace the position of the gap node with f and show that it approaches zero frequency as
f approaches f ∗. To investigate the robustness of our conclusions, we then go beyond the Bardeen-Pines model
and include full dynamical screening of the interaction, finding that Tc still saturates to a nonzero value at μ = 0
when f < f ∗.
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I. INTRODUCTION

In recent years, there has been a renewed interest in super-
conductivity at low carrier density, arising from experimental
advances in an assortment of materials such as SrTiO3 [1–3],
single-crystal Bi [4,5], Pb1−xTlxTe [6], Bi2Se3 [7], and half-
Heusler compounds [8] (for a recent review see Ref. [9]). As
of the present, the origin of superconductivity in many of these
low-density materials is not well-understood. Due to the dilute
nature of these compounds, the repulsive electron-electron
interaction is weakly screened, and one naively expects this
repulsion to dominate any attraction arising from the electron-
phonon interaction.

Non-s-wave superconductivity arising from electron-
electron repulsion (e.g., attraction in the dx2−y2 channel in the
cuprates) is well understood as the ultimate result of static
screening of the Coulomb repulsion in the particle-hole chan-
nel, which leads to Friedel oscillations at large distances and
in most cases generates an attraction in one or more non-s-
wave channels (see, e.g., Ref. [10] and references therein).
However, superconducting order parameters in SrTiO3 and
other low-density materials are likely s-wave, in which case
a static interaction remains repulsive.

A standard formalism, which describes how s-wave su-
perconductivity can exist even for a (sufficiently weak)
repulsive interaction, involves dynamical screening [9,11–
13]. The reasoning is as follows [14–17]: when μ is much
larger than the frequency of the pairing boson, ωL, the
bare Coulomb repulsion is renormalized down by dynamical
screening in the particle-particle channel (the same channel
which accounts for superconductivity in the case of attrac-
tion), and at frequencies of order ωL is reduced by a factor
ln(μ/ωL ). If this reduced Coulomb repulsion is smaller than
the electron-phonon attraction, the effective interaction is

attractive at smaller frequencies, and superconductivity devel-
ops. In a more accurate treatment [18,19] the full interaction
(Coulomb + electron-phonon) remains repulsive, but is re-
duced at small frequencies. Superconductivity then develops
with a frequency-dependent gap, which changes sign between
small and large frequencies. An effective description of a
“conventional” sign-preserving s-wave superconductor with
an attractive interaction [electron-phonon minus Coulomb;
reduced by ln(μ/ωL)] emerges once one integrates out higher-
energy fermions, for which the sign of the gap is opposite to
that at smaller frequencies.

This reasoning holds in the high-density limit, where
μ � ωL, but is not applicable to the case when the fermionic
density is small and μ � ωL. There are two reasons for this:
first, even for an attractive interaction, Cooper pairing is
thought to arise from fermions near the Fermi surface, where
the density of states can be approximated by its value on
the Fermi surface and the pairing kernel is logarithmically
singular. As μ decreases, the range where this description is
applicable, shrinks. Keeping contributions from the Cooper
logarithm, one then finds that for μ � ωL, the prefactor of
Tc scales with μ, leading to the vanishing of Tc as μ → 0.
Second, by the same smallness of μ/ωL, the actual pairing
interaction is almost independent of frequency in the range
where the density of states is approximated by its value on the
Fermi surface, and is repulsive. For such an interaction, there
is no solution of the gap equation as there is no way to obtain
a sign change in the gap function.

This first argument was reanalyzed by Gastiasoro et al.
[20], who solved the full momentum and frequency-
dependent Eliashberg equations for Tc in a model of
a three-dimensional electron gas with only the attrac-
tive, phonon-mediated component of the pairing interaction,
V (�, q) = V (q)ω2

L/(�2 + ω2
L ). They argued that at small μ,
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typical q for the pairing are much larger than kF . As a result,
the prefactor of Tc does not vanish at μ = 0. In fact, they
found that Tc actually increases in the μ = 0 limit and argued
that this increase reflects the essentially unscreened nature of
the interaction. This result is consistent with the observations
made earlier by Takada and others [5,15,21–23] that even at
moderately large density, there are features in the gap function
away from k = kF .

In this communication we analyze Tc and the gap structure
in the low-density limit within the effective Bardeen-Pines
model [14,20,24] with both electron-phonon attraction and
electron-electron repulsion. Specifically, we investigate the
pairing of electrons in three dimensions with a spherical Fermi
surface, interacting via

V (�, q) = 4πe2

q2 + κ2

(
f − ω2

L

�2 + ω2
L

)
. (1)

Here f is a measure of the strength of the repulsive inter-
action, and κ is the Thomas-Fermi wave vector. Gastiasoro
et al. considered the case f = 0, while a physically motivated
interaction corresponds to f � 1. We treat f as a parameter
and obtain results for values of f both below and above one.
Throughout this work, we ignore potential reduction of Tc by
phase fluctuations. In this sense, the temperature Tc should
understood as the onset temperature for Cooper pairing, rather
than the true superconducting transition temperature.

The model of Eq. (1) excluding the momentum-
dependence of the interaction has been studied by a number
of authors (see, e.g., Ref. [25] and references therein). The
result of these studies is that for a generic μ, superconductivity
survives up to some critical f ∗(μ). However, as μ approaches
zero, Tc vanishes for all f > 1. Our goal is to study how
these results are modified if one takes the full momentum
and frequency-dependent V (�, q) in Eq. (1). To this end,
we solve the momentum and frequency-dependent integral
equations for Tc for s-wave pairing. Our calculations show that
Tc does approach a finite value at μ = 0, even in the presence
of static repulsion. We argue that a nonzero Tc results from
including both the sign change of the gap function between
small and large frequencies and the fact that at small μ the
pairing involves fermions away from the Fermi surface. As at
high density, the pairing holds as long as f is below a certain
f ∗(μ). We show that at vanishing μ, f ∗(μ) approaches a finite
value f ∗(0) > 1. Unlike the high-density case, where Tc goes
to zero exponentially quickly as f approaches the threshold
value, we find that in the low-density limit Tc goes to zero as
a power law: Tc ∝ ( f ∗ − f )2.

The gap function �(ωm) at f < f ∗ changes sign at some
ωm = ω0. We show that ω0 exists for arbitrarily small f >

0, appearing at infinity when f = 0+. As f increases, ω0

decreases and ultimately vanishes at f = f ∗. This result is
interesting from a topological perspective, since nodal points
of �(ωm) correspond to centers of dynamical vortices [26,27].
The nodeless state at f = 0 and a state with a nodal gap
at f > 0 have different numbers of vortices and are there-
fore topologically distinct. In this respect, the vanishing of
superconductivity at f = f ∗ can be viewed as a topological
transition, when the gap function can no longer hold vortices
on the Matsubara axis.

We also obtain Tc as a function of μ for the more realistic
model which includes the full momentum and frequency de-
pendence of the polarization bubble, which accounts for the
screening of the Coulomb interaction. We find that Tc remains
finite in the limit μ → 0, as long as f < f ∗.

The paper is structured as follows: In Sec. II, we intro-
duce and motivate our model. In Sec. II A we present the
linearized Eliashberg equations, which we use to calculate
Tc and the gap function at Tc. In Sec. II B we briefly review
the effect of repulsion on superconductivity at high-density.
In Sec. III we present analytical results in the low-density
limit. In Sec. IV we discuss our numerical analysis. We review
the numerical methods we use to solve the Eliashberg equa-
tions in Sec. IV A, and present the results of our calculations
in Sec. IV B. In particular, we show (i) how Tc varies with the
chemical potential μ, (ii) how Tc is affected by the strength
of the repulsive component of the interaction f , (iii) how the
gap function depends on Matsubara frequency, (iv) how the
location of the nodal point of �(ωm) depends on the strength
of the repulsive interaction, and (v) how the gap function
depends on momenta away from k = kF . In Sec. IV C we
analyze Tc and the gap function in a model with dynamically
screened Coulomb interaction. We present our conclusions in
Sec. V.

II. MODEL

We consider an electron gas in three dimensions, with
dispersion ξ (k) = k2/2m − μ. Electrons interact via the
Coulomb potential and through exchange of lattice vibra-
tions, which effectively screen the electron charge. We follow
Ref. [20] and approximate the total (direct and phonon-
mediated) interaction between electrons by

V (�, q) = 4πe2

ε(�)q2 − 4πe2	(�, q)
, (2)

where � is a bosonic Matsubara frequency, ε(�) is the dielec-
tric function, which incorporates the screening by phonons,
and 	(�, q) is the electron polarization bubble. We take the
dressed dielectric function to be

ε(�) = ε∞
�2 + ω2

L

�2 + ω2
T

, (3)

where ωL and ωT are the frequencies of longitudinal and
transverse optical phonons, respectively, ωL > ωT , and ε∞
is the dielectric constant in the absence of phonons. In the
zero frequency limit, ε(0) = ε∞ω2

L/ω2
T ; this is known as the

Lyddane-Sachs-Teller relation [28]. Since the polarization
bubble 	(�, q) is negative for all � and q, the interac-
tion V (�, q) is positive (repulsive) at all frequencies. The
phonons, however, make this interaction frequency dependent,
even if we approximate the polarization bubble by its static,
long-wavelength limit 	(�, q) ≈ −2N (μ). In this approxi-
mation,

V (�, q) = 4πe2

ε(�)q2 + κ2
, (4)

064518-2



EFFECT OF REPULSION ON SUPERCONDUCTIVITY AT … PHYSICAL REVIEW B 105, 064518 (2022)

where κ = (8πe2N (μ))1/2 is the Thomas-Fermi wave vector.
This interaction can be rewritten as

V (�m, q) = 4πe2

ε∞(q2 + κ̄2)

(
1 − ω2

∗(q) − ω2
T

�2
m + ω2∗(q)

)
, (5)

where κ̄2 = κ2/ε∞ and

ω∗(q) =
√

q2ω2
L + κ̄2ω2

T

q2 + κ̄2
. (6)

We note that in the case of polar insulators, where κ = 0,
ω∗(q) = ωL, we have

V (�, q) = 4πe2

ε∞q2

(
1 − ω2

L − ω2
T

�2 + ω2
L

)

= 4πe2

ε̃∞q2

(
f − ω2

L

�2 + ω2
L

)
, (7)

where f = 1/(1 − ω2
T /ω2

L ) and ε̃∞ = ε∞ f . This form of the
interaction closely mirrors the interaction in Eq. (1), up to
a factor of ε̃∞, which does not affect any of the physics.
In Ref. [22] the authors obtained a similar interaction, with
f = 1, for a polar crystal with a finite density of conduction
electrons, appropriate for SrTiO3.

For a nonpolar crystal with a monoatomic basis, we can set
ε∞ = 1 and ωT = 0 as there are no transverse phonons. In this
case, at finite electron density, we have from Eq. (5)

V BP(�, q) = 4πe2

q2 + κ2

(
1 − ω2

q

�2 + ω2
q

)
, (8)

where ωq = qωL/
√

q2 + κ2 is the phonon frequency. This is
known as the Bardeen-Pines model. The frequency ωq ≈ ωL

at q � κ and becomes linear in q for q � κ due to electronic
screening. Again, this interaction is essentially that of Eq. (1),
but with f = 1. For most of the paper, we follow Ref. [20] and
use as our interaction

V (�, q) = 4πe2

q2 + κ2

(
f − ω2

L

�2 + ω2
L

)
. (9)

We set ωL to be a constant (ωL = 0.1eV) and treat f as
a parameter, which we vary. V (�, q) interpolates between

Eqs. (7) and (8) and can be thought of as an extended Bardeen-
Pines model. We keep κ finite, but will chiefly focus on the
low-density limit, where typical q are much larger then κ . In
this situation, f = 1 corresponds to the Bardeen-Pines inter-
action for a nonpolar crystal, while for f > 1 the interaction
closely mirrors the electron-electron interaction in a polar
crystal.

Keeping f as a parameter will also allow us to connect to
previous work [20], which considered Eq. (1) in the purely
attractive f = 0 limit. We later extend the model by replac-
ing κ2 with −4πe2	(�, q) and show that the key results,
obtained with Eq. (9), survive.

A. Equations for the fermionic self-energy
and the pairing vertex

The interaction V (�, q) gives rise to corrections to the
fermionic dispersion and the fermionic residue, while also
mediating pairing between fermions. We assume that the
fermionic self-energy can be evaluated in the one-loop ap-
proximation and the pairing vertex can be evaluated in the
ladder approximation, both using dressed Green’s functions
for the intermediate fermions. These approximations amount
to neglecting vertex corrections to the interaction. At large
density (μ/ωL � 1), such approximations can be justified by
invoking Migdal’s theorem [29]. However, for μ � ωL, there
is no rigorous justification for neglecting vertex corrections.
The authors of Ref. [20] argued that for f = 0, vertex correc-
tions are of order one and do not affect the results qualitatively.
We assume that this holds also for finite f .

Neglecting vertex corrections, we obtain a set of three
coupled equations for the inverse quasiparticle residue Zn(ε),
the pairing vertex φn(ε), and the correction to fermionic dis-
persion χn(ε). Here the index n refers to Matsubara frequency
ωn = (2n + 1)πT and ε is the quasiparticle dispersion εk =
k2/2m. The two variables n and ε parametrize the frequency
and momentum dependence of the residue and the correction
to the dispersion and of the pairing vertex. We consider only
s-wave pairing, where the pairing vertex has no angular de-
pendence, and focus on T = Tc, where the pairing vertex is
infinitesimally small. The three equations are

Zn(ε) − 1 = −T
1

ωn

∑
m

∫ ∞

0
dε′N (ε′)V s−wave

n−m (ε, ε′)
ωmZm(ε′)

[ωmZm(ε′)]2 + [ε′ − μ + χm(ε′)]2
, (10)

φn(ε) = −T
∑

m

∫ ∞

0
dε′N (ε′)V s−wave

n−m (ε, ε′)
φm(ε′)

[ωmZm(ε′)]2 + [ε′ − μ + χm(ε′)]2
, (11)

χn(ε) = T
∑

m

∫ ∞

0
dε′N (ε′)V s−wave

n−m (ε, ε′)
χm(ε′) + ε′ − μ

[ωmZm(ε′)]2 + [ε′ − μ + χm(ε′)]2
, (12)

and the gap function is given by �n(ε) = φn(ε)/Zn(ε).
In our modified Bardeen-Pines model, we obtain

V s−wave
n−m (εk, εq ) =

∫ 1

−1

d cos θ

2
Vn−m(

√
k2 + q2 − 2kq cos θ ) (13)

= πe2

kq
ln

(
(k + q)2 + κ2

(k − q)2 + κ2

)
un−m, (14)
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where we have defined un−m = f − ω2
L/((ωn − ωm)2 +

ω2
L ). For notational convenience, we will drop the s-wave

superscript on the interaction.

Migdal-Eliashberg approximation

In the Migdal-Eliashberg approximation, the integrals over
the dispersion (i.e., over ε′) are evaluated by linearizing the
integrand about the chemical potential μ. In this approxi-
mation, the variation of the density of states N (ε) and the
interaction Vn−m(ε, ε′) with ε, ε′ is ignored, and both quan-
tities are evaluated at ε = μ. With this approximation, the
integrals over energy can be evaluated. One then finds that
χn(ε) = 0, while Zn ≡ Zn(μ) and φn ≡ φn(μ) only depend on
Matsubara frequency:

Zn = 1 − πN (μ)
T

ωn

∑
m

Vn−msgn(ωm), (15)

φn = −πN (μ)T
∑

m

Vn−m
φm

|ωm|Zm
. (16)

These two equations are known as the Eliashberg equa-
tions. The approximation ε, ε′ ≈ μ used above to obtain these
equations, is valid if pairing only involves fermions near
the Fermi surface. This holds in the adiabatic limit where
μ � ωL, but not when μ � ωL. Since we are concerned with
the low-density limit, we instead work with the full set of
equations, Eqs. (10)–(12).

B. The high-density limit

Before we proceed, we briefly review what is known in
the high-density limit, μ � ωL. In this limit, typical q are
large and of order kF . To first approximation, the momentum
dependence of the interaction can then be approximated by
V0 ∼ e2/k2

F , and the full interaction can be approximated
as V0( f − ω2

L/(�2 + ω2
L )). At weak coupling, when λ =

N (μ)V0 ∼ rs is small, the fermionic self-energy can be ne-
glected, and the Eliashberg equation for the pairing vertex
can be solved with Zn(ε) = 1. In this case, Tc is finite for
f below a certain cutoff fc > 1 which depends on λ [25].
In other words, Cooper pairing continues to exist even if the
interaction is purely repulsive ( f > 1), as long as the repulsion
is sufficiently weak ( f < fc). However, for any f > 0, the gap
function changes sign as a function of Matsubara frequency.
For f > 1, this sign change allows the system to partially
neutralize the “average” repulsion and gain from reduction of
the repulsion at small frequencies [30].

An illustrative toy model highlighting these points was in-
troduced by Rietschel and Sham [19]. It mirrors the frequency
dependence of the modified Bardeen-Pines model:

Vmn =
{

0, |ωm| > Ec or |ωn| > Ec

U ( f − �(ωL − |ωm|)�(ωL − |ωn|)), otherwise.

(17)

In this model, electrons experience a repulsion of magni-
tude U f for all frequencies below some cutoff Ec. However,
if both electrons have frequency smaller than ωL, there is
an additional attractive term −U . Using this interaction and
assuming weak coupling, UN (μ) � 1, one can show that Tc

comes from fermions in the vicinity of the Fermi level and is
given by

Tc = 1.13ωLe−1/λ, (18)

where

λ = N (μ)U

(
1 − f

1 + f N (μ)U ln(1.13Ec/ωL )

)
. (19)

We see that an increase in either N (μ) or U enhances
Tc. In particular, by increasing N (μ) or U , we increase the
prefactor in Eq. (19) and further reduce the repulsive contribu-
tion. Conversely, if either N (μ) or U is reduced, the effective
repulsive contribution is enhanced relative to the attractive
term. Superconductivity exists as long as f < fc, where

fc = 1

1 − N (μ)U ln(1.13Ec/ωL )
> 1. (20)

Note that for f � 1, superconductivity exists for arbitrarily
small values of UN (μ) and Tc ∝ exp(−1/N (μ)U ). If f = 1,
λ ∝ (N (μ)U )2, so that Tc ∝ exp(−1/(N (μ)U )2). This behav-

ior is also seen in the model with V (�) ∝ ( f − ω2
L

�2+ω2
L

) [25].
The gap function in the Rietschel-Sham model has a low-

frequency component �1 and a high-frequency component
�2. The two are of opposite sign, and are related by

�2 = − N (μ)U f

1 + f N (μ)U ln(1.13Ec/ωL )
ln

(
1.13ωL

Tc

)
�1.

(21)
As f increases towards fc, Tc decreases. From the above

formula, this implies that the high-frequency gap becomes
more and more negative, with the ratio �2/�1 diverging as Tc

goes to zero. However, the position of the sign change of the
�(ωm) is fixed at ω0 = ωL. This is a consequence of the fact
that the boundary between low-frequency and high-frequency
regimes in the Rietschel-Sham model is fixed at ωL. In the

model with V (�) ∝ ( f − ω2
L

�2+ω2
L

), the position of the zero of
�(ωm) at ωm = ω0 is set by the solution of the gap equa-
tion and varies with f . In the high-density limit (μ � ωL), ω0

is nearly infinite at infinitesimally small f and tends to zero
as f approaches the critical fc(μ) from below [31]. We show
below that the same holds in the low-density limit.

As a brief aside, we note that similar conclusions regarding
the sign change of the gap and the logarithmic suppression
of the repulsion were obtained by Morel and Anderson, who
solved the nonlinear Eliashberg equations along the real axis
at T = 0 [18]. There is also a toy model, purportedly intro-
duced by Morel and Anderson, where the interaction varies as
a function of ε − μ rather than ωm [32]. From this toy model,
one can draw similar conclusions as in the Rietschel-Sham
model, with the only qualitative difference being that the sign
change in the gap happens as a function of ε − μ rather than
as a function of ωm. There are also more realistic situations, in
which one obtains multiple s-wave states which oscillate as a
function of either k − kF [33] or along the Fermi surface [34].

III. ANALYTICAL RESULTS IN THE LOW DENSITY LIMIT

In our analytical study we follow Refs. [20,25,31]. Taking
μ → 0, our goal is to find the critical f ∗ where Tc van-
ishes, the relation between Tc and f ∗ − f (in the limit where

064518-4



EFFECT OF REPULSION ON SUPERCONDUCTIVITY AT … PHYSICAL REVIEW B 105, 064518 (2022)

Tc � ωL and f ∗ − f � 1), the relation between the position
of the gap node ω0 and f ∗ − f , and the frequency dependence
of the gap near f ∗. Note that we use f ∗ instead of fc to
distinguish between the low and high-density limits.

For nonzero ωL, the system is in the Fermi liquid regime,
implying that the inverse quasiparticle residue Zn(ε) tends
to a constant at small frequencies and approaches 1 at large
frequencies, while the correction to the dispersion χn(ε) is
nonsingular. For an order-of-magnitude analysis, we can then
set Zn(ε) = 1 and neglect χn(ε). Equation (11) for the pairing
vertex φn(ε) is then essentially the gap equation. Introducing
p = √

2mε and rescaling all variables by ωL as T̄ = T/ωL,
p̄ = p/

√
2mωL, we re-express Eq. (11) as

φn( p̄) = −T̄
∑

m

2
√

ρ̄

π

(
f − 1

1 + (ω̄n − ω̄m)2

)

×
∫ ∞

0
d p̄′

p̄′
p̄ log

( p̄+p̄′
| p̄−p̄′|

)
p̄′4 + ω̄2

m

φm( p̄′), (22)

where we have introduced ρ̄ = Ry/ωL and Ry = me4/2 =
13.6 eV is the Rydberg energy. One can show that φm( p̄) is
independent of p̄ for p̄ � 1 and decays as 1/p̄2 for p̄ � 1.
Setting p̄ � 1 and expanding the logarithm in p̄, we find

φn = −T̄
∑

m

4
√

ρ̄

π

(
f − 1

1 + (ω̄n − ω̄m)2

)

×
∫ ∞

0
d p̄′ 1

p̄′4 + ω̄2
m

φm( p̄′), (23)

where we use as shorthand φn ≡ φn( p̄ = 0). Since the major-
ity of the weight in the p̄′ integral comes from p̄′ ∼ |ω̄m|1/2 �
1, we can replace φm( p̄′) with φm( p̄′ = 0) on the right-hand
side. Integrating then over p̄′, we obtain

φn = −gπ T̄
∑

m

(
f − 1

1 + (ω̄n − ω̄m)2

)
φm

|ω̄m|3/2
, (24)

where g = (2ρ̄)1/2/π . To analyze the structure of φn = φ(ωn)
it is convenient to replace the sum over Matsubara frequencies
by an integral and set the lower cutoff of the integral over ω̄′
at O(T̄ ). Doing so, we obtain

φ(ω̄n) = −g
∫ ∞

O(T̄ )
dω̄m

φ(ω̄m)

(ω̄m)3/2

×
(

f − 1

2

(
1

1 + (ω̄n − ω̄m)2
+ 1

1 + (ω̄n + ω̄m)2

))
.

(25)

From this equation, we have

φ(0) = −g
∫ ∞

O(T̄ )
dω̄m

(
f − 1

1 + ω̄2
m

)
φ(ω̄m)

(ω̄m)3/2
. (26)

We now obtain an approximate solution for φ(ω̄m) at small
g. Subtracting φ(0) from φ(ω̄n), we find

φ(ω̄n) − φ(0) = −g
∫ ∞

O(T̄ )
dω̄m

φ(ω̄m)

(ω̄m)3/2

(
1

1 + ω̄2
m

− 1

2

(
1

1+(ω̄n − ω̄m)2
+ 1

1 + (ω̄n+ω̄m)2

))
.

(27)

Noting that the majority of the weight in the integral comes
from the 1/ω̄3/2

m singularity at small ω̄m, we evaluate the rest
of the integrand at ω̄m = 0. Evaluating the resulting integral,
we find the solution for φ(ω̄n) in the form

φ(ω̄n) = φ(0)

(
1 − gQ

ω̄2
n

1 + ω̄2
n

)
+ · · · , (28)

where Q = ∫ ∞
O(T̄ ) dω̄′/(ω̄′)3/2 ∼ 1/T̄ 1/2 and the unwritten

terms account for O(g) corrections, which are irrelevant for
g � 1. Substituting φ(ω̄n) from Eq. (28) into Eq. (26), we
obtain the following self-consistent equation for T̄c:

1 − βg

1 − αg
− f = f ∗ − f = 1

gQ(1 − αg)
. (29)

Here, α = ∫ ∞
0 dω̄′(ω̄′)1/2/(1 + (ω̄′)2) = π/

√
2 ≈ 2.22 and

β = ∫ ∞
0 dω̄′(ω̄′)1/2/(1 + (ω̄′)2)2 = π/(4

√
2) ≈ 0.56. Note

that f ∗ > 1, since α > β. Using Q ∼ T̄ 1/2, we find the
scaling relation

T̄c ∼ ( f ∗ − f )2. (30)

Next, from Eq. (28) we see that at large Q, i.e., small T̄c, the
frequency ω̄0 at which φ(ω̄n) changes sign, is

ω̄0 ≈ 1

(gQ)1/2
= ( f ∗ − f )1/2. (31)

For smaller f , this expression extends to ω̄0 ∼ (( f ∗ −
f )/ f )1/2. Since ω̄0 tends to zero as f approaches f ∗, the gap
φ(ω̄n) changes sign at progressively smaller ω̄0. The vanishing
of ω0 as f approaches f ∗ is consistent with the behavior
near fc in the high-density limit [31]. However, the power-law
behavior of Tc and the relation ω0 ∼ (Tc)1/4 are specific to the
case of low-density.

Because φ(ω̄n) = φ(0)(1 − gQω̄2
n/(1 + ω̄2

n )) and
Q ∝ 1/( f ∗ − f ), the ratio φ(ω̄n)/φ(0) becomes more nega-
tive with increasing ω̄n, going as φ(ω̄n � 1)/φ(0) ∝ 1/T̄ 1/2

c .
This is shown in the top panel of Fig. 1.

Thus far, we have considered only the p̄ � 1 limit for
φn( p̄), since this is sufficient to obtain T̄c. We now examine the
behavior of φn( p̄) at p̄ � 1. At large p̄, one can easily verify
that φn( p̄) ∝ 1/p̄2. Accordingly, we introduce the function Bn

via φn( p̄ � 1) = Bn/p̄2. Substituting this into Eq. (22), taking
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FIG. 1. The qualitative behavior of the gap function φm( p̄) at
μ = 0 as a function of ω̄m in the top panel and as a function of p̄
in bottom panel). In addition, we highlight how the gap node ω0,
the high-frequency gap ratio φ∞( p̄ = ∞)/φ0( p̄ = 0), and the peak
in φ0( p̄)/φ0( p̄ = 0) scale near f ∗ − f .

p̄ � 1, and setting n = 0 for definiteness, we obtain

B0 ≈ −T̄
∑

m

4
√

ρ̄

π

(
f − 1

1 + ω̄2
m

)

×
(

φm

∫ 1

0
d p̄′ p̄′2

p̄′4 + ω̄2
m

+ Bm

∫ p̄

1
d p̄′ p̄′2

p̄′4 + ω̄2
m

+ Bm

∫ ∞

p̄
d p̄′

(
p̄

p̄′

)2 1

p̄′4 + ω̄2
m

)
. (32)

To obtain the first term of the second line, we use our earlier
result that for p̄ � 1, φm( p̄) is independent of momentum and
replace φm( p̄) with φm ≡ φm( p̄ = 0) for p̄ < 1. Similarly, we
replace φm( p̄) with its asymptotic limit Bn/p̄2 for p̄ > 1 to
obtain the latter two terms of the above equation. To simplify
this equation, we note that the last term on the right-hand side
is smaller than the first two terms by a factor of order O(1/p̄3)
and is therefore irrelevant. Discarding this term and taking
p̄ → ∞ in the upper limit of the second integral, we then find

B0 ≈ −T̄
∑

m

4
√

ρ̄

π

(
f − 1

1 + ω̄2
m

)

×
(

φm

∫ 1

0
d p̄′ p̄′2

p̄′4 + ω̄2
m

+ Bm

∫ ∞

1
d p̄′ p̄′2

p̄′4 + ω̄2
m

)
.

(33)

One can verify that all momentum and frequency integrals
appearing in this equation are O(1), i.e., nonsingular in the
T = 0 limit. Assuming that the primary contribution to B0 on

the right-hand side of the above equation comes from φm, not
Bm, we find that B0 is determined by φm at frequencies ω̄m =
O(1), where φm ∼ −gQφ0.

We then have B0 ∼ g2Qφ0, which, recalling that
Q ∼ 1/T 1/2

c , implies that B0/φ0 diverges as Tc → 0 [35].
In other words, the ratio φ0( p̄)/φ0( p̄ = 0) must have a large
peak as a function of p̄, with its magnitude growing as
1/( f ∗ − f ). We show this behavior in φ0( p̄)/φ0( p̄ = 0) in the
bottom panel of Fig. 1.

Note also that Tc is finite even if one does not impose an
ultraviolet cutoff on the frequency integration. This is due
to the 1/q2 momentum dependence of the interaction, which
leads to the momentum integration in the particle-particle
bubble going as 1/ω3/2. In this case, the integral

∫
dω/ω3/2

converges in the ultraviolet.

IV. NUMERICAL ANALYSIS

A. Methods

To solve the linearized Eliashberg equations for Tc, we note
that the equation for the pairing vertex φn(ε) is essentially
an eigenvalue problem. To solve this eigenvalue problem, we
create a linear operator mapping φm(ε′) to φn(ε) in Eq. (11)
for different values of temperature. To find Tc, one must then
find at what temperature this linear operator’s largest positive
eigenvalue is equal to 1.

To construct this operator at a given temperature T , we
first solve for Zn(ε) and χn(ε). This is done self-consistently
by iterating Eqs. (10) and (12) starting from Z initial

n (ε) = 1
and χ initial

n (ε) = 0 until convergence is reached. The energy
integrals are obtained using upper cutoffs from � = 100ωL to
� = 200ωL, and a grid of hundreds of sampling points. We
split the energy range into three regions, (i) ε < μ − δ, (ii)
μ − δ < ε < μ + δ, and (iii) μ + δ < ε < �, where we take
δ = μ/100. In region (ii) near the chemical potential, we use
a high density of quadrature points to account for the peak in
the integrand and apply the trapezoidal rule. In regions (i) and
(iii) where the variation in the integrand is smoother, we use
Gauss-Legendre quadrature to calculate the integrals. In the
low-density limit μ = 0, we use a composite Gauss-Legendre
grid with around 1000 points, to ensure that we accurately
obtain contributions from all values of ε. We find that trends
in Tc are well-converged with respect to variations in δ and the
number of quadrature points.

To calculate the Matsubara sums, we note that all Mat-
subara sums appearing in the Eliashberg equations are
convolutions. These convolutions can be efficiently calculated
by first transforming to imaginary time, where the convolution
becomes point-wise multiplication. After point-wise multipli-
cation, one can then transform back to Matsubara frequency.
When using the fast Fourier transform, this method scales
significantly better, O(N log(N )), than naively calculating the
sums directly in Matsubara space, O(N2). Cutoffs in fre-
quency space range from Ec = 5ωL to Ec = 30ωL, and we find
that trends in Tc are well-converged with respect to Ec.

Though this method works well for larger values of Tc, we
run into memory issues when trying to extend this method
to temperatures smaller than Tc ∼ 10−4ωL. We obtained Tc

in this temperature range by extrapolating from higher tem-
perature data using the implicit renormalization method [25],
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FIG. 2. Tc as a function of chemical potential μ for different
strengths f of the repulsive interaction.

which also allows us to infer the gap function at Tc from
less memory-intensive high-temperature calculations. To ap-
ply this method, we divide Eqs. (10)–(12) into low-energy
and high-energy components. We then use the high-energy
components to obtain an effective gap equation for the low-
energy component of the gap. A gap component is considered
high energy if its respective momentum and frequency satisfy√

(k2/2m − μ)2 + ω2
m > �c, where �c is some cutoff fre-

quency. For consistency, we take �c = ωL in all calculations.
If the largest eigenvalue obtained from this effective gap equa-
tion scales linearly with ln(ωL/T ), then we can extrapolate
Tc by extrapolating the eigenvalues of less computationally
intensive, high-temperature calculations.

We find that this method captures the overall trend of Tc

relatively well. In particular, the transition temperatures cal-
culated from both the traditional eigenvalue method and the
implicit renormalization method agree well for large temper-
atures, where the traditional eigenvalue method is practicable,
and for sufficiently large μ. In the small-μ limit, we find that
the trend in Tc found via the implicit renormalization method
is very similar to that found using the eigenvalue method.
However, due to the shortcomings of this method in the low-
density limit, we calculate Tc and other quantities using the
standard eigenvalue method at low density when possible.

Lastly, we find in our calculations that the function χn(ε)
does not vary significantly with momentum or frequency, and
can be largely absorbed into the definition of the chemical
potential. Therefore, we expect all results to be relatively
insensitive to whether χn(ε) is included or set to zero. As such,
we take χn(ε) = 0 in the following calculations and solve only
the two coupled equations for Zn(ε) and φn(ε).

B. Results

1. Tc vs μ and f

In Fig. 2, we show how Tc varies with the chemical po-
tential μ for different values of the repulsive term f . For
consistency, we use the implicit-renormalization method to
extract Tc for all values of f and μ presented here. We see
that Tc is enhanced as one approaches μ = 0, regardless of

0 1 2 3
f

0.2

0.3

0.4

(T
c/

ω
L
)1/

2

FIG. 3. The μ = 0 scaling of Tc as f approaches f ∗. Overlaid is
the line showing that Tc ∝ ( f ∗ − f )2 near f = f ∗.

the strength of the repulsive term. One can understand this
enhancement in the same way as was done in the purely
attractive case [20]. Namely, as μ decreases, N (μ)Vn−m(μ,μ)
is enhanced at low density due to the reduction in screening.
Additionally, pairing is no longer restricted to occur in a
narrow window around μ. We note that a similar trend in Tc

as a function of density has been found by Takada [21], who
solved the full Eliashberg equations in a multivalley electron
gas to study plasmon-induced superconductivity.

Another trend we find in Fig. 2 is that Tc drops more precip-
itously with increasing μ, passing through a local minimum
as a function of μ/ωL. The presence of this minimum can
understood as follows: as μ increases from 0, the effective
interaction decreases and the relevant values of ε gradually
cluster closer to ε = μ. Both factors lead to a reduction of
Tc as μ is increased. However, as μ increases, the range in
ε about which 1/(Z2ω2

m + (ε − μ)2) in the integrand is large
also increases, leading to an increase in Tc. The first two fac-
tors, which desire a decrease in Tc, dominate at small μ, while
the latter factor, which desires an increase in Tc, dominates at
larger μ. Together, these competing factors lead to the local
minimum seen in Fig. 2.

We also see from Fig. 2 that the value of Tc at the mini-
mum rapidly decreases as f is increased. This is particularly
prominent at larger values of f , as one can see from the
inset of Fig. 2, where we take f = 1.4. Here, the minimum
in Tc is significantly more pronounced. As such, we find that
our model effectively exhibits re-entrant superconductivity for
larger values of f . That is, if one starts at large density and
lowers the chemical potential, Tc drops to zero, and then grows
from zero to a constant as the chemical potential is further
decreased and approaches zero. However, as is clear from the
inset, the values of Tc are so small that it is likely experimen-
tally infeasible to observe this re-entrant superconductivity.

Finally, our results show that at μ = 0 there exists a criti-
cal f ∗, above which superconductivity does not develop. We
present our results for Tc near f ∗ in Fig. 3. We clearly see a
power-law dependence of Tc on f ∗ − f , which agrees with
our analytical result, Tc ∝ ( f ∗ − f )2. We find f ∗ ≈ 4.9 by
performing a linear extrapolation of the calculated (Tc/ωL )1/2

to 0. We emphasize that since f ∗ > 1, there is a range of
f where superconductivity survives in the μ = 0 limit even
when the pairing interaction is repulsive at all frequencies.
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FIG. 4. �(ωm, ε = 0) for different values of f . We have set μ =
10−5ωL .

For larger values of μ̄ (μ̄ � 1 or equivalently μ � ωL),
we return to the adiabatic regime, where only momenta near
the Fermi level are relevant. In this case, we can track the
behavior in Tc by following the behavior in the coupling
λ(μ̄) = N (μ̄)V (μ̄, μ̄), which for our model is

λ(μ̄) = 1

2π

√
ρ̄

μ̄
log

(
1 + π

√
μ̄

ρ̄

)
. (34)

From this, we see that λ(μ̄) decays log(μ̄)/
√

μ̄ at μ̄ � ρ̄.
Accordingly, for all f > 1, we expect Tc to go to zero as μ̄ is
increased past some threshold μ̄∗, where the coupling λ(μ̄∗)
becomes too small to stabilize superconductivity. However,
we expect this destruction of superconductivity to occur at
extremely large μ̄ (μ̄ � ρ̄, where we have set ρ̄ = Ry/ωL =
136) while the main focus of our work is on the low-density
limit.

2. Behavior of �n(ε) with Matsubara frequency

We now turn to the behavior of the gap as a function of
Matsubara frequency. The results are shown in Fig. 4, where
we have set μ = 10−5ωL. We find that for any 0 < f < f ∗,
�(ωm) undergoes a sign change at some nonzero ω0. The ratio
�(ωm � ωL )/�(ωm = 0) becomes more negative as f in-
creases. This fully agrees with the analytical result, presented
in Fig. 1.

We now examine how ω0 behaves as a function of f . In
Fig. 5 we show ω0 for small values of f . We find that the
position of the node ω0 scales as 1/ f 1/2 at small f . This
scaling is the same as at large density [31] and can be easily
understood as the frequency dependence of the gap at large
ωm and small f follows

�(ωm) ∝ ω2
L

ω2
m

− f . (35)

In Fig. 6 we set μ = 0 and show how ω0 varies as f
approaches f ∗. We find that ω0 decreases with f nonlinearly,
with the slope of ω2

0( f ) decreasing with increasing f . The
solid line in the plot is the fit to ω0 ∝ ( f ∗ − f )1/2 that we ob-
tained analytically in Eq. (31). The fit is somewhat ambiguous
as one needs more points closer to f ∗. However, the agreement
with our analytics is quite reasonable.
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FIG. 5. The position of the gap node as a function of 1/
√

f , for
μ = 10−5ωL .

3. Dependence of �n(ε) on ε

We now turn to the behavior of the gap as a function of
ε = k2/2m. We show the result in Fig. 7 for μ = 10−5ωL for
various values of f . Overlaid are dashed lines which delineate
the values of Tc/ωL for each value of f . From this plot, we see
that there are essentially three regions of interest: (i) ε � Tc,
(ii) Tc � ε � ωL, and (iii) ε � ωL. In region (i), the gap
is essentially constant. In the intermediate region (ii) where
Tc � ε � ωL, we find a smooth increase in the gap as a
function of ε, which gets more pronounced with increasing
f . Lastly, in region (iii) where ε � ωL, the gap decays as
B/ε, where the constant B grows with increasing f . We note
that the asymptotic behavior we see here agrees with our
analytics, where we argued that the gap should be constant for
small momenta and decay as B/p2 (or equivalently B/ε) for
large momenta. Additionally, the behavior in the intermediate
region also agrees with our analytical results, where we argued
that there should be a peak in the momentum dependence
of the gap, whose magnitude scales as 1/( f ∗ − f ) at μ = 0.
However, we find numerically that the magnitude of this peak
grows rather slowly as f is increased. This may be due to a
game of numbers.

We also note that �n(ε) is smooth near the chemical po-
tential. We discuss this in more details in the next section.
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FIG. 6. The μ = 0 scaling of ω0 as f approaches f ∗. Overlaid is
the line showing that ω0 ∝ ( f ∗ − f )1/2 near f = f ∗.
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different f . We have set μ = 10−5ωL .

C. The Effect of the momentum and frequency
dependence of �(�, q)

To investigate the robustness of our results, we go beyond
the extended Bardeen-Pines model and recalculate Tc as a
function of μ, by (i) replacing κ2(μ) = (−4πe2	(0, 0))1/2

with (−4πe2	(0, q))1/2 in Eq. (9), and (ii) working with the
full interaction Eq. (2). In Case (i), we take f = 1, while in
Case (ii), we set ε∞ = 1 and ωT = 0 in the dielectric function
ε(�); the latter is analogous to setting f = 1. The results for
these calculations are presented in Fig. 8. In both cases, Tc

saturates to a nonzero value with decreasing μ, in line with the
results for the extended Bardeen-Pines model. This behavior
is to be expected, since inclusion of the momentum and fre-
quency dependence of 	(�, q) only weakens the screening.

In Fig. 9(a) we show the results for �n(ε), obtained with
the full 	(�, q), as a function of energy ε [not to be confused
with the dielectric function ε(�)] for various Matsubara fre-
quencies, with μ = 10−5ωL. We see that �n(ε) is smooth at
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FIG. 8. Tc vs μ for more general interactions. In the static bubble
case, we include the momentum dependence of the polarization bub-
ble in the calculation, and set f = 1. In the full bubble case, we use
the interaction of Eq. (2), setting ωT = 0 in the dielectric function;
this is analogous to setting f = 1.
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FIG. 9. The gap �n(ε) as a function of energy ε for various val-
ues of ωm in (a) the ultra-low-density limit, and (b) the high-density
limit, as obtained from the interaction with full dynamical screening.
We have set ωT = 0 in these calculations, which is analogous to set-
ting f = 1. The chemical potentials [μ = 10−5ωL in (a), μ = 3.59ωL

in (b)], are denoted with dotted lines.

ε ∼ μ. This is consistent with the result that we obtained in
the previous section for the extended Bardeen-Pines model.

In Fig. 9(b) we present results of the same calculation,
but at much larger density μ = 3.59ωL. We see that at small
Matsubara frequencies �n(ε) is again smooth near the Fermi
level, but at larger ωn develops a strong dip at ε = μ. Such a
dip has been originally observed by Takada [21]. Richardson
and Ashcroft [15] argued that it arises from the long-range
nature of the Coulomb interaction and holds when Tc/EF � 1
and one can linearize the dispersion around the Fermi level.

To understand this dip we set Zn(ε) = 1 and analyze the
Eliashberg gap equation

φn(ε) = −Tc

∑
m

∫ ∞

0
dε′N (ε′)V s−wave

n−m (ε, ε′)
φm(ε′)

ω2
m + (ε′ − μ)2

(36)
using

V (�, q) = 4πe2

ε(�)q2 − 4πe2	(�, q)
. (37)
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We assume and then verify that in the limit of large Matsubara
frequency, ωn → ∞, relevant ωm in the right-hand side of
Eq. (36) are finite. The relevant bosonic � = ωn − ωm then
approach ∞. Since the dynamical 	(�, q) vanishes for large
�, we have

V s−wave
n−m (ε, ε′) = V s−wave

∞ (εk, εq) = 2πe2

kq
ln

k + q

|k − q| (38)

becomes purely static. Solving for the gap we then find that
|φ∞(ε)| is logarithmically enhanced at ε = μ:

φ∞(ε = μ) ∼ φ∞(ε � μ) ln2

(
4μ

Tc

)
. (39)

The logarithmic singularity comes from the range near the
Fermi surface, where k ≈ q, which in turn arises from the
long-range, unscreened behavior of the interaction at large
ωn − ωm. We emphasize that this singularity in φ∞(ε) exists
only in the high-density limit, and to obtain it one needs
to include the full frequency dependence of the polarization
bubble 	(�, q).

We also note that in this section we calculated 	(�, q)
at T = 0. This is valid when Tc � μ(Tc) but is question-
able as μ → 0. However, in light of the results presented
here, we expect that including the temperature dependence
of 	(�, q) should not qualitatively change our conclusions,
since its inclusion would only serve to more quickly weaken
the screening of the interaction.

V. CONCLUSIONS

In this work, we have studied the effect of a repulsive
Coulomb interaction, on electron-phonon superconductiv-
ity in the low-density limit, the case of pairing interaction
V (�, q) = 4πe2/(q2 + κ2) × ( f − ω2

L/(�2 + ω2
L )). Our re-

sults show that as for the f = 0 case of pure electron-phonon
attraction, studied in Ref. [20], Tc is enhanced as μ decreases,
approaching a constant in the μ = 0 limit. We find that the
gap function changes sign at some Matsubara frequency ω0,
reducing the effect of the repulsion and allowing Tc to remain
nonzero over some range of 1 < f < f ∗, when the interaction

is repulsive at all frequencies. As f approaches f ∗, we find
that both Tc and ω0 approach zero as powers of f ∗ − f . This
result, which we obtained both analytically and numerically,
is in contrast to the behavior in the high-density limit, where
Tc vanishes exponentially in f ∗ − f .

Our results suggest that experimentally tuning the chemical
potential should lead to substantial, observable variation in
�(ωn), which can be observed in, e.g., angle-resolved pho-
toemission spectroscopy experiments.

Lastly, we show that the behavior we find in Tc, namely
that it stays nonzero when we take μ = 0, continues to hold
when we include dynamical screening of the interaction. Also,
although in this work we focused on a three-dimensional (3D)
Galilean-invariant system, the behavior we find here should
be relatively general and most likely continues to hold in two
dimensions and for lattice systems.

In this work, we have not considered the possibility of other
phases. Indeed, Wigner crystallization is also favored at low
density. We leave study of the competition between supercon-
ductivity and other phases to future work, noting only that a
superconductor to Wigner-crystal phase transition has been
previously proposed in the three-dimensional electron gas,
where the electron-electron interaction is plasmon-mediated
[36], and in twisted bilayer graphene [37].

Another item for future study is the role of phase fluc-
tuations. The transition temperature we calculate from the
linearized Eliashberg equations is not the true superconduct-
ing transition temperature, but the onset temperature for pair
formation. The superconducting transition temperature Tc is
defined as the onset of phase rigidity [38] and in general
should be smaller than the onset temperature for the pairing.
For obvious reasons we expect the effect of phase fluctuations
to become progressively more relevant for quasi-2D systems.
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