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Single-crystal x-ray diffraction recently identified the space group of the weakly correlated yet exotic time
reversal symmetry (TRS) breaking superconductor LaNiGa2 to be nonsymmorphic Cmcm. This symmetry
causes band sticking on a zone face pierced by four Fermi surfaces, leading to two nodal Fermi lines and a
nodal Fermi loop on that zone face kz = π

c . These line singularities are examples of perfectly flat (in energy
and in geometry) nodal structures that lie precisely at a single energy, with that energy being the Fermi level
EF , even under variation of the carrier density. Projections onto surfaces perpendicular to that zone face produce
collapsed drumhead state regions of zero area on the edges of the surface Brillouin zone. Although small by most
measures, spin-orbit coupling splits the line and loop degeneracies on the Fermi surfaces (FSs) in the normal state
except at two symmetry-related Dirac points, which topologically are locally dispersionless in one direction
(zero velocity and infinite mass) while linear in the other two directions. The band sticking and distinctive Fermi
surface placed Dirac points are most impactful in establishing LaNiGa2 as a topological superconductor in the
bulk, with the degenerate FSs providing a natural platform for the superconducting order-parameter symmetry
necessary for describing this TRS breaking superconductor. Unlike most other crystal symmetries, spin-orbit
coupling leaves intact a nodal line piercing the FS, resulting in Dirac points situated at EF lying along nodal
lines. Additionally, the degeneracy exactly at the Fermi energy is central in placing LaNiGa2 precisely at a
Lifshitz FS instability, independent of band filling and protected by Cmcm symmetry. The eight-band low-energy
Bogoliubov–de Gennes quasiparticle spectrum is presented along one dispersive direction for varying strengths
of TRS breaking. We include a discussion of energetics of gauge symmetry and magnetic order resulting from
TRS breaking, incorporating information from experimental data. These results suggest a scenario where TRS
breaking rather than gauge-symmetry breaking (superconductivity) might be the driving order parameter.
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I. INTRODUCTION

The relationship of structure to properties of crystalline
materials is a long-running paradigm, especially in solid-state
chemistry but also in materials physics. The relation is, how-
ever, an involved one: Seemingly closely related, isostructural
compounds can show very different behaviors: conduct-
ing versus insulating, superconducting versus not, magnetic
versus no magnetism, and so on. One example is UPt3 ver-
sus isovalent and isostructural UPd3. The former is a heavy
fermion superconductor with an exotic pairing symmetry,
while the latter is simply a standard normal, nonsupercon-
ducting metal. The broad reason for these bad actors is clear:
thermodynamic and other low-energy properties are sensitive
to details of the band structure and interactions, hence in-
directly to the chemistry and interatomic coupling. In UPt3,
the U 5 f states are itinerant with complex Fermi surfaces
(FSs) [1], in UPd3 they are localized with a few simple FSs
[2]—great qualitative differences due to the sensitivity of the
5 f shell to subtle differences in atomic chemistry, size, and
electronic coupling.

Early in the 20th century, the impact of degeneracies in
Hamiltonians in general [3,4] and electronic structures in
particular [5–7] began to be illuminated. In this century, a
new aspect of electronic structure has been discovered and
pursued intensively—the topological character of the wave
functions of occupied electronic bands and the crucial role
played by degeneracy. Conventional band crossings that have
been neglected over decades of proliferating band structures
are being shown to comprise points [8] or form loops [9,10]
in the zone that possess topological indices. These in turn
guarantee unusual characteristics of certain crystalline prop-
erties. Many of these do not influence bulk properties but
provide gapless boundary states—Weyl point derived Fermi
arcs [8], nodal loop drumhead states—with given types of
polarization (symmetry breaking).

In this paper, we focus on LaNiGa2, recently estab-
lished [11] to have a nonsymmorphic space group Cmcm
(No. 63) rather than the earlier suggested [12] symmorphic
Cmmm (No. 65) space group. While this difference of similar
structures may have only a quantitative influence on most
normal-state metallic properties, the primary impact arises
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FIG. 1. (a) Oblique view of the crystal structure of LaNiGa2 in Cmcm space group. The cell shown is displaced from that in (f) by �b/2.
(b) Brillouin zone of LaNiGa2 in Cmcm space group, (c) high-symmetry points on kz = 0 plane, (d) high-symmetry points on kz = π/c plane.
The high-symmetry k points are �: (0,0,0), Y : (0,1,0), F0: (0.45,1,0), �0: (0.53,0,0), Z: (0,0,0.5), T : (0,1,0.5), G0: (0.45,1,0.5), B0: (0.53,0,0.5),
in units of conventional reciprocal lattice vectors. (e), (f) Comparison of the two crystal structures, as labeled. The difference is due to the
relative positioning of the two Ni layers (gray spheres) in the center of the figures. The large dark green spheres are La, medium-sized light
green spheres are Ga.

because LaNiGa2 is a superconductor (SC), and an exotic
one, in spite of being a simple s-p Fermi liquid metal. A
previous paper has demonstrated [11] the very substantial
effect that the nonsymmorphic band sticking has on the FS
and hence on the superconducting order parameter (OP) (gap
function). Superconducting LaNiGa2 displays in μSR experi-
ments a spontaneous magnetic field that reveals time-reversal
symmetry (TRS) breaking [13] with its accompanying mag-
netization. Current understanding [14] indicates a nonunitary,
TRS-breaking OP that needs review in light of the nonsym-
morphic space group of the LaNiGa2 crystal structure.

We address in our paper the detailed electronic structure
of LaNiGa2 and its implications, with emphasis on the effects
of nonsymmorphic symmetry. The crystal structure and the-
oretical methods are described in Sec. II. An earlier paper
[11] presented selected results. The electronic structure is
presented in Sec. III, where we point out that the Ni 3d bands
are filled, leaving s-p states of all atoms near the Fermi level
(EF ) (with some hybridization with Ni 3d orbitals). Thus,
strong correlation physics does not apply; conventional band
theory will give a reliable band structure. The nonsymmorphic
group operations lead to band degeneracies (band sticking)
across an entire face of the Brillouin zone (BZ) and FSs pierce
this wall of degeneracies. A more general description of band
degeneracies in orthorhombic crystals has been provided by
Leonhardt et al. [15]. The band energetics of TRS and gauge
symmetry breaking are confronted in Sec. IV. Low-energy
models of the electronic degeneracies and the platform for
superconducting pairing is the topic of Sec. V. This charac-
teristic, together with spin-orbit coupling (SOC) effects and
comparison with the previously suggested structure, provide
the focus of our paper. The characteristics of the nonunitary
Bogoliubov–de Gennes (BdG) quasiparticle (QP) spectrum
are presented in Sec. VI. Section VII provides a summary.

II. STRUCTURES AND METHODS

The nonsymmorphic Cmcm crystal structure and BZ of
LaNiGa2 are shown in Figs. 1(a) and 1(b). This structure was
obtained recently from single crystal x-ray diffraction [11]
and is compared to the earlier suggested Cmmm structure
in Fig. 1(e). In many respects, the structures have several
similarities. A layering picture of the structure is natural to
apply to both. Both are centered orthorhombic crystals with
three-dimensional (3D) electronic structures (see Sec. III).
Atomic coordination is similar and the point group D2h is
the same. The reported a and c lattice parameters are nearly
identical. Yet there is a fundamental difference.

The difference lies in the relative positions of the two
Ni layers separated by Ga, at the center of the diagrams. In
Cmcm, one layer is displaced from the other by ( 1

2 , 0, 1
2 ),

related by a glide plane instead of a mirror plane. The z
positions of the Ni layers in Cmcm differ from those in Cmmm
by only 0.02 Å. The differences in other atomic positions are
smaller (negligible). The crystal symmetry, as we will see, is
the crucial distinguishing characteristic. In the orthorhombic
Cmcm symmetry of LaNiGa2, all atoms lie at Wyckoff 4c sites
with m2m local symmetry, with special (symmetry dictated) x
and z coordinates. These coordinates, and the unrestricted y
coordinates, are listed in Table I.

Based on experimental data, the Cmcm structure supplants
in our single crystals the earlier Cmmm identification because
it predicts correctly several of the rather weak x-ray diffrac-
tion spots not present for the Cmmm structure. Theory can
address the difference directly by comparing total energy of
the structures. For both structures, we consider the lattice
constants fixed at the experimental values (see the caption
of Table I), relax the internal parameters, and calculate the
energies on good k-point meshes. We find that the energies
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TABLE I. Atomic positions of Cmcm LaNiGa2, determined by
single crystal x-ray diffraction [11]. The lattice constants are a =
4.278 Å, b = 17.436 Å, c = 4.271 Å.

Atom x y z

La 0.0 0.3903 0.75
La 0.0 0.6097 0.25
Ga1 0.5 0.2494 0.75
Ga1 0.5 0.7506 0.25
Ga2 0.5 0.4594 0.25
Ga2 0.5 0.5406 0.75
Ni 0.5 0.3216 0.25
Ni 0.5 0.6784 0.75

are very similar, not surprising because the cells and coordi-
nations are so similar. The Cmmm energy is 12.7 meV/atom
lower than that of the Cmcm structure. This energy difference
converts to 150K/atom, small compared to the initial heating
of constituents. We suggest that some configuration during the
slow cooling leading to single crystals favors a free energy of
the Cmcm structure, which then gets frozen in. Our calculation
is for perfect crystals at T = 0 and probably within the accu-
racy of DFT for this s-p metal. Our samples may therefore be
metastable at low T, a situation that is not uncommon amongst
polymorphs with similar energies. See, for example, the study
of Hinuma et al. [16] that addresses such issues.

The linearized augmented plane-wave code [17] WIEN2K

was used to obtain density functional based electronic struc-
tures, using the generalized gradient functional for exchange
and correlation. The atomic sphere radii (R) were, in Bohr:
La, 2.50; Ni, 2.40; Ga, 2.12. A plane-wave cutoff Kmax was
obtained from RminKmax = 7 (Rmin = 2.12 Bohr), and a 14 ×
14 × 14 k-point mesh was used for self-consistency. Finer
k-point meshes were used in the analysis.

III. RESULTS

A. Electronic structure without SOC

The band structure near the Fermi level EF of Cmcm versus
Cmmm LaNiGa2 is shown in Fig. 2, along the same symmetry
lines. The one for Cmmm is the same as reported previously
[18–20]. The two sets of bands have overall similarities but
are significantly different in detail. Differences will be due to
the difference in Ni layer positioning (see Fig. 1) and related
differences in the crystal symmetry. In both cases, the filled
Ni 3d bands lie at the same energy, centered near −2 eV with
a bandwidth of 1.5 eV.

There are several electron bands just touching EF along
lines in the basal plane (left five panels) for the Cmmm bands.
Those features are gone in Cmcm, with only two hole bands
just touching EF . There are other bands crossing EF in both
cases, which results in similar values of the Fermi level den-
sity of states (DOS) N (EF ), which is 6.5 states/eV—formula
unit—both spins for Cmcm. A flat band in the Cmmm basal
plane (left half of plot) lies around −0.4 eV. That flat band
is missing in the Cmcm bands due to band shifts as large as
several tenths of an eV and differences in hybridization.

FIG. 2. Band structure plots of nonsymmorphic Cmcm (above)
versus symmorphic Cmmm LaNiGa2 (below) on a 2 eV scale cen-
tered on EF . Note that the nonsymmorphic operation makes the
bands stick together on the kz = π plane (which are the right-hand
five subpanels in these plots), so the band structure there appears
much simpler. Fermi level band crossings are different for Cmcm,
resulting in different Fermi surfaces (shown earlier by Singh [18]
and by Hase and Yanagisawa [19]).

Despite what might be called a lower symmetry structure,
the Cmcm bands are simpler due to the nonsymmorphic glide
plane operation while the point group is the same. This sym-
metry operation leads to sticking together of bands across the
entire BZ face kz = π

c [top face in Fig. 1(b)]. The correspond-
ing energy bands are twofold orbitally degenerate as well as
spin degenerate.

The nodal line directly along the FS is profound but simple
to picture. The nodal surface (without SOC) is guaranteed
by the screw axis symmetry [11]. Depending on the number
of screw axis symmetries, many space groups possess one,
two, or even three nodal surfaces. With SOC, the nodal line
(Z-T ) is guaranteed by a combination of inversion symmetry
P, the screw axis, and a mirror plane [11]. Many space groups
possess these necessary symmetries. The FS, on the other
hand, is never guaranteed to intersect the nodal surface or the
nodal line. However, when the FS(s) cross the nodal surface,
there will be a nodal line independent of EF until the FS and
nodal surface no longer intersect.

While nodal lines in band structures have been found to
be common (found in aluminum [9,10]), having a line of de-
generacies lie precisely on the Fermi surface is rare (it seems
mathematically to have zero probability) and has real impact
on properties, and it requires some underlying symmetry. The
next most impactful nodal loops are those in semimetals that
simply cross the Fermi level [21], such as in the CaAs3 class
[22]. The first reported nodal loop pinned to the FS (i.e., flat
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FIG. 3. Density of states of Cmcm LaNiGa2. The van Hove sin-
gularity below EF might become relevant in hole-doped samples.

in energy) was located on a zone plane associated with mirror
symmetry, discovered by Pardo and Pickett in SrTiO5-SrVO3

layered nanostructures. In that system, orbital ordering and
half metallicity played roles in isolating the topological V 3d
bands [23].

The DOS of Cmcm LaNiGa2 is presented in Fig. 3. The
large peak centered at −1.75 eV and 1 eV wide is the Ni 3d
band peak, and confirms that the 3d bands are filled. EF lies
in a region of modestly declining DOS, about 0.2 eV above a
van Hove singularity peak.

B. Electronic structure with SOC

Hase and Yanagisawa [19] have shown the small effect of
SOC in Cmmm LaNiGa2. However, splittings of degeneracies
and some avoided crossings must be looked at because the
superconducting energy gap is less than 1 meV. The bands
crossing the plane of degeneracies are high velocity s-p states
at EF . While SOC splittings may range up to 40 meV, the
inter-Fermi surface separations in k space near the wall (due
to SOC) can be very small due to the high velocity. These
close encounters may cause magnetic breakdown in magneto-
oscillation experiments.

With one exception, SOC splits the fourfold symmetries
across the wall of degeneracies and along all the bordering
symmetry lines, determined by comparing plots with and
without SOC in Fig. 4. The sole symmetry line where SOC
does not split the degeneracies is along Z-T . Thus, for the
bands that cross the plane of degeneracies along Z-T , SOC
does not remove degeneracy at that point.

It becomes relevant for the superconducting state and for
topological character that two (symmetry related) fourfold
degenerate diabolical (gapless) points remain in the spinful
case. The gap opens linearly away from the Z − T line:
Dispersion is massless along both perpendicular directions,
which can be considered as four Dirac particle bands with
two (anisotropic) velocities. As mentioned, the bands remain
degenerate along Z-T . Topological aspects of nodal loops in
the presence of SOC were studied by Allen [9,10] in his re-
discovery of nodal lines in this century. We return to this issue
in Sec. IV.

To illustrate the effects of SOC on the kz = π
c plane, we

have calculated the band splittings due to SOC on a fine mesh.
There are four (eight if spin degeneracy is included) bands
that cross the Fermi level, see Fig. 4. The right five columns
of these figures illustrate the sticking together of bands on

FIG. 4. Band structure of LaNiGa2 with (above) and without
(below) spin-orbit coupling. Effects of SOC are small but impor-
tant, as discussed in the text. Note especially the lack of splitting
along T − Z .

this plane due to the nonsymmorphic space group. This fig-
ure indicates the magnitude of SOC splitting along several
symmetry lines. Figure 5 provides a view of the constant
energy surfaces on the degeneracy plane (kz = π/c plane),
including splittings due to SOC. Leonhardt et al. pointed
out the special aspects of band degeneracy in space group
Cmcm [15].

C. Fermi surfaces and nodal features

The FSs of LaNiGa2 are shown in Fig. 6; SOC effects
would not be visible in this plot. There are five FSs, with FS1
being rather small, comprised of a pair of complex shaped
columns on either side of �. The other four FSs are constituted
of two pairs of large open surfaces, each pair being locked
together by the nonsymmorphic operation on the plane of
degeneracies. FS2 and FS3 are large sheets that meet to form
a single nodal loop in the shape of a rounded rectangle lying
on the kz = π/c zone boundary. Due to degeneracy, these sur-
faces have similarity of shape near the loop. FS4 and FS5 are
fluted (quasi-2D) Russian doll cylinders at the zone corners
that meet to form a pair of symmetry related FS4/FS5 open
nodal lines that extend across the degeneracy plane in passing
from one BZ to the next. The full FS in Fig. 5 shows that
the loop and lines almost intersect, but have small anticross-
ings due to band hybridization on the degeneracy plane. See
also Fig. 7.

The FS2/FS3 nodal loop crosses the Z-T line where SOC
does not lift degeneracies. Elsewhere, SOC lifts degeneracies
and the nodal lines and nodal loop are gapped except at the
intersection of the loop with the symmetry line Z-T , where
two nodes persist. At these points, LaNiGa2 hosts fourfold
massless (Dirac) fermions pinned at EF , an unusual occur-
rence of topological interest. These Dirac points, surviving
SOC and pinned to the Fermi energy independent of carrier
concentration, play a pivotal role in the following discussion.
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FIG. 5. Energy surface plot for Cmcm LaNiGa2 on the kz = π/c plane, with the Z − T line indicated. The intersection of various bands
with the Fermi energy EF can be seen. The Dirac band touching point is identified by the small vertical arrow. The small SOC splitting is
visible between nearby bands in several places. Along the T − Z − T line, SOC splitting vanishes, leaving the Dirac points as the only true
degeneracies. Also evident from the figure is the combination of bands near the nodal point with very small, moderate, and large velocities—a
highly anisotropic electronic structure.

D. Surface projections and surface states

In the absence of SOC, such nodal loops and lines are spin
degenerate and topological: Integration of the Berry connec-
tion along a contour surrounding a loop or line gives a Berry
phase [9,10,24,25] of θ = ±π for either spin. When projected
onto a sample surface, the loops (or lines) normally give
rise to real-space surface-localized drumhead states within the
projection, which is a closed contour.

For LaNiGa2, two of these projections are anomalous be-
cause the loop and lines lie along a zone face, i.e., on a plane

(flat surface) perpendicular to two surfaces, see Fig. 7. Pro-
jection onto these sample surfaces give straight lines along an
edge of the surface BZ edge. These singularities are diabolical
in a new sense: the drumhead state area vanishes, leaving a
straight line of singular behavior with δ-function width, as
illustrated in Fig. 7 (near corner and top plane). The surface
zone parallel to the plane of degeneracies (front face in Fig. 7)
will surround drumhead states in a conventional fashion.

SOC alters θ from this quantized value by lifting the degen-
eracy and thereby removing the topological nature. θ does not

FIG. 6. Fermi surfaces of LaNiGa2 in Cmcm structure. The pairs FS2/FS3 and FS4/FS5 are degenerate along the plane of degeneracies
(the front right edge).
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FIG. 7. Projection of nodal lines at the Fermi level onto surface
Brillouin zones (pink planes) for each of the Cartesian axes. Green
(blue) denotes the loop (lines) and their projections. The magenta
dots indicate the position of the Dirac points surviving SOC. Note
that the left and upper projections contain no area.

vanish, instead (as shown by Allen [9]) it becomes dependent
on the strength of SOC and the contour of integration around
the point [9,10]. See, however, the discussion of the special
(Dirac) point, below. With SOC, the edges of the drumhead
states are no longer precisely defined, and confinement to
the surface will no longer be exponential. This SOC detail
has more importance for the superconducting OP because the
superconducting gap is small compared to effects of SOC.

IV. DIRAC POINTS SURVIVING SOC

As mentioned above, when SOC is included, degeneracies
are lifted on the kz = π

c plane except along the Z-T line. This

leaves two Dirac points �kD, symmetrically placed across Z ,
where the FS nodal loop intersects the Z-T line. The twofold
band degeneracy assures that these two kD points are diabol-
ical, and here we establish them as generalized Dirac points,
with distinctive topological character.

The two bands, pictured in Figs. 8(a)–8(c), at low energy
can be represented with respect to kD in terms of (band or
orbital) Pauli matrices τ j, j = 0, 3 as

ε̂k = g0,kτo + g1,kτ1 + g2,kτ2 + g3,kτ3, (1)

where g j,k are real expansion functions. g0,k is simply the
mean energy of the two bands, smooth and not affecting the
topological properties, so we subtract it out to study the topo-
logical nature. The eigenvalues (relative band energies) are
εn,k = ±(g2

1,k + g2
2,k + g2

3,k )1/2, n = ±, pictured in Figs. 8(d)–

8(f), and they vanish at �kD (the panel center).
Fitting this form to the calculated values and using the

coordinate system of Fig. 7 leads to linear bands along the
kx and kz directions, and dispersion along ky corresponding
to zero (Pauli) velocity (zero linear term, see below) and
infinite mass (zero quadratic term). In fact, all higher order
terms vanish as well, due to the Z-T degeneracy. The pair of
linear directions remind us of an anisotropic Dirac point, but
zero dispersion along the third axis gives a type of diabolical

FIG. 8. Dispersion in three directions through the Dirac point on
the Z-T line, when SOC is included: (a) kx direction, in the kz = π

c

plane, (b) ky direction, along Z-T , (c) kz direction. The point �kD

lies at the center or each panel. A Pauli matrix representation (in
band space) has been used to represent the dispersion near the Dirac
point. In the bottom panels, the Pauli σ0 term has been subtracted
out, revealing the Dirac point plus flat dispersion character. K0
(−0.5, 0.516, 0.5), K1 (0.5, 0.516, 0.5), K2 = Z (0,0,0.5), K3 = T
(0,0.5,0.5), K4 (0, 0.516, 0.4), K5 (0, 0.516,0.6).

point whose topological nature requires addressing. The Pauli
velocities vP, which give the splitting of the bands upon leav-
ing the line of degeneracy and are shown in Figs. 8(d)–8(f),
are vP

x = 6 meV Å, vP
y = 0, vP

z = 25 meV Å, with the zero
velocity being along the ky (Z-T ) line of degeneracies, which
is the special direction for the algebra below. The bands spread
slowly in leaving �kD in the other two directions because of the
small SOC. The physical velocities have contributions from
g0,k and are more typical band velocities.

A. The topological character

For notational simplicity, we introduce κx = vP
x (kx − kD,x,

etc., i.e., the scaled separation from the Dirac point. The
distance along κy will not appear, so it simply represents the
third coordinate. The low-energy character can be obtained for
small �κ as

Eκ = κzτ1 + κxτ2, (2)

with no dependence on κy. [The subscripts on the (band)
Pauli matrices do not refer to Cartesian directions.] In the
3D space of �κ , the constant energy E surfaces are given by
(i) along direction κy: κz = ±√

E − κ2
x , when the argument

is non-negative; these are touching cones surrounding the κy

axis; (ii) along κx, where κy = κz = 0, κx = ±√
E , a pair of

constant κx planes (locally), and (iii) along κz, an analogous
pair of planes. This is a generalization of the graphene Dirac
point in which κy enlarges the space but plays no part in the
dispersion (as would kz in graphene).

The Berry connection obtains no contribution from the
planes. The cones give rise to a graphenelike singularity
with an important difference: The singularity lies not at the
2D origin—the Dirac monopole singularity of graphene—but
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rather along the ky line κ⊥ = 0, where κ⊥ = √
κ2

x + κ2
z . The

point �kD is the special point (source) of the Berry connec-
tion calculated from the occupied eigenket 1√

2
[1,−eiφ]T . In

spherical coordinates (effectively polar coordinates here), the
nonzero component is

�Aφ = i 〈k,−| |∇k| |k,−〉

= i

{
1√
2

[1,−e−iφ]
1√
2

i

κ⊥
[0, eiφ]T

}
= 1

2κ⊥
. (3)

Here φ = tan−1 κx
κz

is the polar angle with respect to the κy

axis. Aφ is the only nonzero component: �A is circulating
vector field with amplitude 1/2κ⊥. The circuit integral of A at
radius κ⊥ is ∮

�A · d �κ →
∫ 2π

0
Aφκ⊥dφ = π, (4)

independent of the circuit radius. Thus, point �kD, and in fact
the entire line Z-T of degeneracies carries a Berry phase of
π , even for radius κ⊥ → 0. This is expected for a nodal line
of degeneracies, but in this case the line is stuck onto the BZ
face by nonsymmorphic Cmcm symmetry. Allen showed that,
barring exceptional occurrences, SOC causes deviation of the
Berry phase of π to a value that is dependent on contour and
SOC strength [9,10]. The exercise above demonstrates that
nonsymmorphic symmetry operations can provide an excep-
tion to this rule, retaining the nodal line and Berry phase of π

even upon inclusion of SOC.

B. A different topological peculiarity

Returning to the physical bands in Figs. 8(a)–8(c), a differ-
ent aspect of topology becomes evident. The bands pictured in
Fig. 8(a) reveals that the Dirac point is a minimum in the band
energies along the kx axis, that is, perpendicular to the nodal
loop along the plane of degeneracies kz = π/c where band
separation is due solely to SOC. A decrease in the energy E
below EF gives no surface at E along this direction through
�kD, while an increase above EF gives four E surface crossings
(pairs symmetrically placed) for the two bands. The position
of EF therefore places LaNiGa2 at a Lifshitz instability, in
which the constant energy surface changes topology in going
from above EF to below. Varying the carrier concentrations
(i.e., EF , only changes the energy, but retains EF as the point
of instability. An actual instability can only be accommodated
by breaking of the nonsymmorphic symmetry.

LaNiGa2 therefore resides at a position of instability.
Lifshitz transitions are typically important when carrier den-
sity shifts EF across the band edge or when a parameter
(pressure, strain, temperature) shifts the band edge across EF .
The situation here is different: This Lifshitz band edge follows
(in energy) changes in EF , with related shifts of �kD along the
Z-T line. This situation of EF exactly at a band edge may
impact transport and other low-energy properties exaggerated
by proximity to an electronic instability, but pins the chemical
potential as an instability point.

A Lifshitz transition may involve structural responses that
would disrupt the nonsymmorphic symmetry of LaNiGa2.
The impact of this incipient instability lies beyond the scope

of this paper. Among other considerations, in LaNiGa2 it
affects a limited region of the (large) FSs in LaNiGa2, mak-
ing its impact challenging to quantify. For a nonsymmorphic
semimetal where the entire FS may be affected by the loss of
a symmetry operation, the impact is worthy of further study.

V. ENERGETICS OF BROKEN SYMMETRIES

The pairing interaction(s) leading to exotic superconduct-
ing states are an open topic, so there has been very limited
discussion of relative energetics in real materials. A common
view, based on surveys of the classes of exotic supercon-
ductors, is that low energy spin or charge fluctuations guide
symmetry breaking, with pair fluctuations leading to super-
conducting order competing with spin or charge density waves
[26,27]. Since there is no indication from the electronic struc-
ture of such fluctuations with significant strength, LaNiGa2

provides a promising platform for the importance of orbital
fluctuations. See Sec. VI for more discussion of the proposed
pairing symmetry of LaNiGa2.

In model Hamiltonian studies or gap equation solutions,
the energetics of competing phases is the central property
in determining a phase diagram. Results can be sensitive to
the interactions that are included, the values of parameters,
cutoffs to eliminate the higher energy states, and to what
extent fluctuations are accounted for. Here a few observations
on relative energetics of LaNiGa2 are provided, incorporating
experimental and electronic structure data.

For Tc = 2K, kBTc = 0.17 meV. The calculation gives
N(EF ) = 6.5 states/eV-f.u. From Ghosh et al. [14], �o =
�(T = 0) ≈ 1.5 kBTc = 0.25 meV. which is close to the
BCS weak-coupling relation for the gap 2�o = 3.5 kBTc =
0.60 meV. In BCS theory [28,29], the net energy gain in
the ground state (superconducting condensation energy) is
�Esc = 1

2 N (EF )�2
O ∼ 0.2 μeV.

From the μSR data of Ghosh et al. [14], the observed
internal field Bint = 0.3 G, corresponding to a TRS-breaking
magnetic moment of m = 0.012μB/f.u. The associated en-
ergy (exchange-kinetic) gain from standard magnetic band
theory [30] is �Emag = 1

4 [ 1
2 ]IStm2 ∼ 6 μeV. Here ISt is the

Stoner exchange interaction between parallel spins that arises
from the exchange-correlation functional. Being primarily an
s-p metal at EF , ISt will be of the order of 0.5 eV [31]. This
energy gain is a factor of 30 larger than the superconducting
condensation energy. So why don’t more superconductors
show TRS breaking?

This expression is based on a Stoner-like mechanism of
ferromagnetism, and LaNiGa2 is well away from a Stoner
instability. Thus, this energy is not a gain but rather the cost
in energy in enforcing the moment m onto the system. Being
disfavorable and roughly 30 times larger than the attractive
condensation energy provides a conundrum: How is this large
cost in magnetic energy accommodated?

Another relevant comparison is the SC gap versus the spin-
exchange splitting that splits up and down spin bands, which
is given by

�ex = m

N (EF )
= 0.012

6.5/eV
= 1.85 meV. (5)
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The SC gap of 0.60 meV is three times smaller, so spin-singlet
pairing would be strongly opposed by an exchange splitting
larger than the gap. This observation, together with the ener-
getics above, suggest spin magnetism may not be the origin
of the magnetic field experienced by muons or that triplet-
spin pairing emerges in LaNiGa2 with energetics different
from BCS.

One scenario is that the SC mechanism is different from
BCS singlet spin-pairing, although the phenomenology may
be similar. However, since spin polarization as the origin of
TRS breaking seems to be energetically unlikely, natural alter-
natives are (i) band (orbital) polarization, which would involve
different energetics on the magnetic side of the comparison,
or (ii) spin-triplet (or equal spin) pairing. A confrontation
to these alternative pictures is that the gap derived from
experimental data is consistent with the BCS spin-singlet
value. The next section describes how the nonsymmorphic
structure of LaNiGa2 impacts a proposed nonunitary spin-
triplet pairing model. A different means of studying coupled
superconducting-magnetic systems is via Ginzburg-Landau
free-energy theory. Generalization of the study of Krey [32]
to small magnetizations might, however, even in the uni-
form bulk case, involve several parameter whose values are
unknown.

VI. NONUNITARY PAIRING MODEL

Nodal line LaNiGa2 is unusual in having degenerate pairs
of bands pinned at constant energy, lying precisely at the Fermi
level even if the Fermi level is shifted as, for example, by
nonstoichiometry. This is possible in certain nonsymmorphic
metals with FSs crossing the BZ face where pairs of bands
stick together. Another feature of more interest for the SC
phase is that, unlike the case for conventional FSs, direct inter-
band transitions (momentum transfer �q = 0) coupling bands
persist all the way to zero energy when Dirac, semi-Dirac
points or nodal lines are stuck at the Fermi energy. Such de-
generacies thereby promote, intrinsically, two-band materials
or two-band superconductors.

We review first on the lines and loop of Dirac points at the
chemical potential μ (equal to EF at T = 0), neglecting SOC.
Specifically, Cmcm LaNiGa2 has two nodal (Dirac) lines on
the FS2/FS3 pair, lines that are open in common parlance but
closed on the 3D torus due to the periodicity in k space. In
addition there is one large closed FS4/FS5 loop. Pairing on
the rest of the FS may be treated in the usual manner: the full
gap extends across the FS while the low-energy behavior in
the SC state is determined by the lines of degeneracy at low
energy.

The two-band extension of the internally antisymmetric
nonunitary triplet (INT) model pursued by Ghosh et al. [14]
was based on two Ni orbitals. However, the Ni 3d bands are
filled and Ni 4s-4p character at EF is minor. A more natural
picture than Ni orbitals is that the two components besides
spin are the two bands that become degenerate on the nodal
lines, an interpretation that is only physically relevant due
to the nonsymmorphic structure. Due to the identical point
groups of Cmmm and Cmcm space groups, the formalism
of the INT model can be adapted directly from that used by
Weng et al. [33] and Ghosh et al. [14] for Cmcm.

A. The normal state spectrum around a Dirac point

The BdG Hamiltonian has the form

H̃ =
(
Hb(k) �̃

�̃† −Hb(k)

)
. (6)

with the normal state band Hamiltonian around a point node
at �kD, with chemical potential μ, given by

Hb(k) = 12 ⊗
(

δεk − μ �γk · δ�k
�γk · δ�ke −δεk + μ

)
, (7)

where δ�k = �k − �kD and δεk = �vk · δ�k. This expression cap-
tures the normal state band dispersion near the Dirac point
when SOC is included (or near the Dirac lines and loop when
SOC is not included). This expression does not include a σ0

term, which is the average of the two bands, because it is
irrelevant for the questions of TRS breaking or OP symmetry.
Superconductivity, viz. the value of Tc, will depend on the sep-
arate velocities (and resulting DOS), and on matrix elements
of the pairing potential between bands, but those effects are
not part of the current discussion.

The bands near the node are coupled by linear hybridiza-
tion (the �γ term) since it vanishes at the crossing without
other restrictions. H̃b has eigenvalues (we need only consider
μ = 0)

λk = ±
√

δε2
k + (�γ · �k)2 = ±

√
|v∗

k k|. (8)

For μ = 0, the first effect is to renormalize the anisotropic ve-

locity to v∗
k =

√
(�vk · k̂)2 + (�γk · k̂)2. The hybridization does,

however, provide a second effect: the necessary coupling of
the bands.

Over the FS at general points, the small SOC has little
effect except to rotate spin-degeneracy to quasispin degener-
acy, retaining Kramers degeneracy, and to convert the bands
to mixed quasibands.

The behavior near the Dirac points �kD determines the low-
energy behavior; elsewhere the SOC splitting dominates the
small SC gap. Breaking of the fourfold degeneracy by the
SC gap is nonperturbative, converting the gapless metal to
the gapped superconductor. Pairing is the primary effect, and
in LaNiGa2 accounting for TRS breaking (a coupled OP) is
also a discontinuous, nonperturbative change accompanying
breaking of gauge symmetry.

B. Exotic pairing and the BdG spectrum

While the gap function may have �k variation over the FS,
what is relevant at the lowest temperatures is the gap operator
near the �kD points and the gap value(s); slow �k dependence
around the FS can be averaged over and for discussing pur-
poses neglected. The OP structure that has been proposed for
TRS-breaking LaNiGa2 has the form

�̃ = (ds · σ )iσy ⊗ iτy. (9)

The tensor product involves the band index for iτy with eigen-
values m = ±i, and the spin (σ matrices) channel σ =↑,↓,
all being degenerate at the Dirac point, taken below to be
�kD = 0, the local origin. The spontaneous vector field ds in
this form couples to spin like a magnetic moment, enabling
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FIG. 9. Schematic Bogoliubov band structure along one dis-
persive band direction of the triplet, topological superconductivity
model for LaNiGa2. Three values of the triplet strength ω are shown.
Note that the nonsymmorphic band-sticking at the zone boundary
persists into the superconducting state. Reaching the unitary limit
|ω| = 1 results in gapless Dirac quasiparticles at the lowest energies.

TRS breaking due to a spontaneous magnetic polarization.
The mechanism of spin-triplet coupling in Fe-based super-
conductors was suggested by Dai et al. [34] to arise from
Hund’s rule spin alignment, although they explored only TRS
preserving forms for �d . Hund’s rule physics is however not
expected in an s-p metal like LaNiGa2.

Writing the triplet �ds vector as (real positive) pairing am-
plitude � times complex unit vector η leads to d = �η.
Nonunitarity of the triplet state is characterized by a nonva-
nishing real vector �ω = i(η × η∗) which satisfies ω ≡ |�ω| �
|η|2 = 1. The normal state dispersion is linear along two axes
and quadratic along the third, as shown in Figs. 8(a)–8(c). This
fourfold degenerate (counting spin) semi-Dirac point has aa
unusual aspect: the pair of massive bands, along kx, have the
same sign but different values. There is no particle-hole sym-
metry, rather EF pins the system at a Lifshitz FS instability,
protected by Cmcm symmetry.

The dispersion ξk of the BdG QPs of Eq. (2) is given, in
either of the two directions of linear dispersion, by the eight
branches

ξk = ±[√
λ2

k + |�|2(1 ± |�ω|) ± �γk · �k, (10)

with two gaps �
√

1 ± ω|. The QP spectrum is shown
along an arbitrary direction in Fig. 9 for μ = 0, v∗ = 500,
� = 0.7, ω = 0.4, 0.875, 1.0, γ = 100 for k in the range
[−0.004, 0.004]. Pairs of BdG QP bands persist in sticking
together on both sides of the gap at k = 0 (the Dirac point).
The QP dispersion will be highly anisotropic, so the gap edge
structure may be nearly 2D-like.

The quasiparticle DOS (QPDOS) (for one-dimensional
dispersion) in the superconducting state corresponding to the
eight bands of Eq. (9) is shown in Fig. 10 for the three
same values of triplet strength and two values of broaden-
ing (included partially to regularize the peaks). The QPDOS
becomes gapped as ω is reduced from unity, developing a
two gap (two-band) form that finally merges into conventional
single gap form as ω vanishes.

FIG. 10. Quasiparticle density of states for the Bogoliubov–de
Gennes bands (see Fig. 9) of the triplet, topological superconduc-
tivity model for LaNiGa2. Three values of the triplet strength ω are
shown. Reaching the unitary limit | �ω| = 1 results in a gapless state.

C. On the driving order parameter

The weakness of the magnetic field reflecting TRS break-
ing (internal field of 0.3 G, comparable to the earth’s field
at its surface) and the standard interpretation as spin fer-
romagnetism raises the question of how spin symmetry
could be broken by such a small amount of magnetization
(0.012μB/f.u., about 1/2,500 the magnetization of bcc Fe).
Considering the isomorphic spaces of spins and bands (or,
equivalently, Wannier orbitals), the pairing operator in Eq. (9)
can equally well serve with �ds · �σ replaced by �do · �τ . In this
form the symmetry-breaking orbital field �do (orbital angular
momentum polarization) is directly coupled to the two-orbital
space, giving orbital (rather than spin) angular momentum
polarization and associated orbital magnetism. This OP would
imply orbital currents. In analogy with Dai et al.’s suggestion
of Hund’s spin pairing [34], a type of small-q electron-phonon
coupling (see below) that strongly favors intraband over in-
terband coupling would promote this type of orbital triplet
pairing.

From a Ginzburg-Landau free energy viewpoint, one treats
two individual OPs α = 1, 2, being coupled, each having its
own (uncoupled) T 0

c,α . The one with higher T 0
c can be con-

sidered the driving OP, in the sense that it is encountered
first upon lowering the temperature, with the other (para-
sitic) OP tuning Tc and renormalizing other properties. In
LaNiGa2, without appreciable spin fluctuations but clear mul-
tiorbital character at low energy, orbital-(a)symmetry could
be the strong candidate as the driving OP, with an associ-
ated polarization (i.e., asymmetry) as its observable signature.
Connections between isolated Dirac points, TRS breaking,
nonunitary OPs, and multiorbital physics has been discussed
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by Lado and Sigrist [35], considering remote Dirac points
(i.e., away from the Fermi level) in two dimensions.

Somewhat analogous orbital currents have been suggested
in cuprates [36] and indications of observations in related
magnetic materials have appeared [37]. This scenario of or-
bital polarization helps to alleviate the small magnetization
conundrum but leaves the mechanism, in physical terms, of
TRS breaking (orbital polarization) as a challenging question,
as is the case with most TRS breaking superconductors. Non-
magnetic s-p LaNiGa2, however, is fundamentally different
from magnetic materials that have served as platforms for
formation of orbital currents.

The microscopic mechanism behind exotic supercon-
ducting pairing is one of importance, both for a better
understanding and for guiding searches for other, per-
haps exotic, examples. LaNiGa2 is seemingly a common
s-p Fermi liquid, not a candidate for peculiar broken symme-
tries. Tütüncü and Srivastava calculated the phonon spectrum,
electron-phonon coupling for the Eliashberg spectral func-
tion, and Tc (for the Cmmm structure) [20]. They obtained
the electron-phonon coupling strength λ = 0.70, and with
a Coulomb pseudopotential μ∗ = 0.17 obtained Tc = 1.9 K.
This value of Tc is in excellent agreement with experimental
reports, thus all indications—except TRS breaking—point to-
ward electron-phonon coupling as the underlying mechanism.

This leaves the issue of TRS breaking. In Fe-based super-
conductors as an example, where Coulomb repulsion (through
spin fluctuations) is indicated as the interaction that needs
scrutiny, there has been focus on FS scattering between var-
ious small pockets. For example, Platt et al. argued that
three-FS scattering processes can, in certain regimes of pa-
rameters, tip the balance from s + is pairing to TRS breaking
s + id pairing, thus proposing this as the mechanism promot-
ing TRS breaking in iron pnictides [38]. The five large FSs
permeating the BZ in LaNiGa2 are at the opposite extreme
from the small iron pnictide FSs. The distinction in LaNiGa2

is that nonsymmorphic symmetry-required, nearby in k, FSs
around the nodal line must play a role, and they actually
touch at the nodal point even in the presence of SOC. These
aspects could form the basis of a study of the FS impact on
the mechanism and on the form of the gap function.

One point relevant to the driving versus parasitic OP
question should be made clear. The form of the OP in Eq. (9)
includes the implicit feature that TRS and gauge symmetry
are broken together (as in the Ginzburg-Landau treatment).
LaNiGa2 is thus not unstable to simple s-wave pairing alone,
although it might be at a somewhat lower temperature (as
implied by the Eliashberg calculations mentioned just above,
which assumes s-wave pairing). It may be most unstable to–
- driven by—this, or some, form of TRS breaking OP. These
questions remain for further study.

VII. SUMMARY

The electronic structure of LaNiGa2 has been analyzed in
light of the discovery of its Cmcm space group and crystal

structure, different than originally reported. The effect of the
nonsymmorphic Cmcm symmetry on the electronic structure
of LaNiGa2 enforces a degeneracy (sticking together) of band
pairs on the kz = π

c zone face. The very unusual result—
nearly all nodal lines and loops have dispersion—is a pair
of dispersionless open nodal lines and large nodal loop on
this plane, lying on the line of intersection of the zone face
with the FS. The band sticking protects the degeneracies from
changes in the chemical potential, and the diabolical features
are pinned to the Fermi level.

These factors become more surprising because LaNiGa2 is
at the basic level a simple s-p Fermi liquid (the Ni 3d bands
are filled) that becomes an exotic topological superconductor
below 2 K. The crystal symmetry, finite superconducting gap,
and TRS breaking, according to current theory, indicate a
triplet, nonunitary OP in the broken symmetry state. It be-
comes reasonable to consider whether LaNiGa2 provides an
example in which gauge-symmetry breaking (superconduc-
tivity) is a parasitic OP, being driven superconducting by a
TRS-breaking mechanism.

Whereas SOC lifts degeneracies almost everywhere, there
is one zone-face T -Z-T symmetry line where SOC vanishes.
Most of the line and loop degeneracy is lifted by SOC, leaving
very closely separated FS edges because SOC is small while
the band velocity is relatively large. Because the nodal loop
crosses this line, LaNiGa2 is finally left with two semi-Dirac
points on the kz = π

c zone face. Their projections on sur-
faces perpendicular to this zone face contain “collapsed Fermi
arcs:” singular lines along the surfaceBZ edges. The effect
of such singularities on physical properties requires further
study. The quadratic dispersion from the semi-Dirac point
leaves LaNiGa2 positioned at a Lifshitz instability, protected
by Cmcm symmetry.

Some aspects of the energetics of gauge symmetry and
TRS breaking have been explored using experimental data.
The cost in magnetic (spin) polarization energy is an order of
magnitude larger than the gain in condensation energy, seem-
ing to make BCS spin-singlet pairing untenable. The BdG
eight-QP-band structure for a two spin, two band, nonunitary
triplet spin pairing operator has been presented for varying
strengths of nonunitarity. The possibility has been raised that
the driving OP for TRS breaking is band polarization with
indirect spin polarization, versus direct spin polarization, and
that gauge symmetry breaking may be a parasitic OP. We
expect that our results will provide an important step for-
ward in the understanding of this exotic, perhaps unique,
superconductor.
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