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We show theoretically that double photoemission (2e-ARPES) may be used to identify the pairing state in
superconductors in which the Cooper pairs have a nonzero center-of-mass momentum, qcm. We theoretically
evaluate the 2e-ARPES counting rate P(2) for the cases of a dx2−y2 -wave superconductor, a pair-density-wave
(PDW) phase, and a Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) phase. We show that P(2) provides direct insight
into the center-of-mass momentum and spin state of the superconducting condensate, and thus can distinguish
between these three different superconducting pairing states. In addition, P(2) can be used to map out the
momentum dependence of the superconducting order parameter. Our results identify 2e-ARPES as an ideal
tool for identifying and probing qcm �= 0 superconducting pairing states in superconductors.
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I. INTRODUCTION

Identifying the pairing symmetries of unconventional su-
perconductors has remained one of the most important and
fundamental challenges in quantum materials research. Its dif-
ficulty arises from the absence of two-particle spectroscopies
that directly probe the properties of the Cooper pair wave
function, which determine the spin structure and momentum
dependence of the superconducting order parameter. Single-
particle spectroscopies such as tunneling [1] or angle-resolved
photoemission spectroscopy (ARPES) [2] can only measure
the magnitude of the superconducting order parameter (or the
gap) but not its phase, while macroscopic Josephson inter-
ference measurements can probe its phase, but only if the
order parameter is spatially uniform and suitable junctions
can be prepared [3,4]. The difficulties are even more acute for
superconductors in which the Cooper pairs possess a nonzero
center-of-mass momentum qcm, such as the Fulde-Ferrel-
Larkin-Ovchinnikov (FFLO) phase [5,6] or the predicted pair
density wave (PDW) [7], in which the superconducting order
parameter is modulated in real space.

In this paper, we demonstrate that two electron coincidence
spectroscopy (2e-ARPES), in which the absorption of a single
photon leads to the emission of two coincident photoelec-
trons [8], can directly reveal the microscopic character of
finite-momentum pairing states in superconductors. The ex-
perimental 2e-ARPES signal, the photoelectron counting rate
P(2), which is related to a two-particle spectral function [9], is
the probability per unit time that a single photon leads to the
emission of a correlated pair of photoelectrons with defined
energy and momentum, as measured by two separate detec-
tors. Moreover, as spin filters in the form of 3D spin VLEED

or Mott detectors can be employed to identify the spin state
of each electron independently, 2e-ARPES experiments can
measure a spin-dependent P(2). We show theoretically that the
dx2−y2 -wave superconducting, FFLO and PDW phases have
distinct spectroscopic signatures in P(2) that are directly sen-
sitive to the center-of-mass momentum and spin state of the
Cooper pair wave function. 2e-ARPES is therefore a promis-
ing technique for identifying and studying spatially modulated
superconductors generally.

There are two distinct processes that can cause a single
photon to lead to the ejection of a correlated pair of electrons
[Figs. 1(a) and 1(b)] [8,10–16]. In the first, the photon is
absorbed and excites a valence band electron into a free pho-
toelectron state, which subsequently ejects a second valence
electron via an electron energy-loss (EELS)-like scattering
event [Fig. 1(a)]. In the second process, the first photoelectron
is excited from a core-level, which is subsequently filled by a
valence electron, leading to the emission of a second valence
electron through an Auger process [Fig. 1(b)]. While both
processes lead to a very similar energy, momentum and spin
dependence of P(2) (see Appendices A and B), the use of
lower photon energy, laser based XUV sources will not allow
2e-ARPES experiments to directly probe core states, rather
rendering them more sensitive to valence band effects. We
thus restrict our theoretical analysis to first type of process,
shown in Fig. 1(a).

II. THEORETICAL FORMALISM

We compute the 2e-ARPES photoelectron counting rate
P(2) in the sudden approximation whereby we neglect relax-
ation pathways during the photoelectron emission process and
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FIG. 1. Schematic representation of the two distinct 2e-ARPES
processes involving the absorption of a single photon, and the ejec-
tion of two photoelectrons. (a) The incident photon excites a valence
electron into a free photoelectron state with E > Evac, which in turn
ejects a second valence electron through an EELS-like scattering
event. Here, Evac = EF + �, where EF is the Fermi energy and � is
the work function. (b) The incident photon excites an electron from
a core level which is then filled by a valence electron, emitting a
second valence electron though an Auger process.

work with plane wave electrons at the detector and valence
electron states in a sample [17]. As mentioned above, we focus
on the two-step process shown in Fig. 1(a) involving the emis-
sion of a first photoelectron upon absorption of a photon, and
the subsequent scattering (EELS-like) process between the
emitted photoelectron and a conduction electron, which leads
to the emission of a second photoelectron. We assume that the
scattering process between the photoelectron and conduction
electron is mediated by a (screened) Coulomb interaction.
This entire process is then described by the Hamiltonian

Hsc =
∑

k,q,σ,ν

γν (q)d†
k+q,σ ck,σ (aq,ν + a†

−q,ν )

+
∑

k,p,q,α,β

V (q)d†
k+q,αd†

p−q,βdp,βck,α + H.c. (1)

Here, γν (q) is the effective electron-photon dipole interaction,
d†

k,σ (ck,σ ) creates (destroys) a photoelectron (conduction elec-
tron) with momentum k and spin σ , and V (q) = V0/(q2 + κ2)
is the Fourier transform of the (screened) Coulomb inter-
action, with κ−1 being the screening length. For all results
shown below, we consider for concreteness κ−1 = 10a0 (see
also Appendix C). Moreover, since the photon momentum is
much smaller than typical fermionic momenta, we set it equal
to zero, and as the out-of-plane momentum is not conserved
upon absorption of the photon, we take γν (q) = γ0 to be
independent of the in-plane momentum. We note that due to
the coupling of photoelectrons and conduction electrons via
the Coulomb interaction, the actual electron operators are a
superposition of photoelectron operators and conduction elec-
tron operators. The Coulomb interaction is given in terms of
the actual electron operators, which then yields the form of the
Coulomb interaction presented in Eq. (1) above. There are of
course other terms that arise from writing the actual electron
operators in terms of the photoelectron and conduction elec-
tron operators (such as terms containing 2c and 2d operators

or 1d and 3c operators), but these terms are irrelevant for the
2e-ARPES scattering process.

The initial and final states of the entire system, |	a〉 and
|	b〉, respectively, are described by

|	a〉 = |�a〉|1q,λ〉p|0〉pe,

|	b〉 = |�b〉|0〉p|1k′
1,σ

′
1
1k′

2,σ
′
2
〉pe. (2)

Here, |1qλ〉p describes the initial photon state containing
one photon with momentum q and polarization λ, and
|1k′

1,σ
′
1
1k′

2,σ
′
2
〉pe represents the final photoelectron state contain-

ing two photoelectrons with momenta k′
1,2 and spin σ ′

1,2. The
initial and final states of the superconductor are described by
|�a,b〉, respectively. The 2e-ARPES signal, which depends on
the two photoelectron momenta and spin projections, is then
computed via

P(2)(k′
1, σ

′
1, k′

2, σ
′
2) = 1

Z

∑
a,b

e−βEa

�t
|〈	b|Ŝ(2)(∞,−∞)|	a〉|2

(3)

where Z is the partition function, the sum runs over all states
|�a,b〉 of the superconductor, �t is the time over which the
photon beam is incident in the superconductor, and Ŝ(2) is
the second-order contribution to the S matrix arising from
Hsc. The detailed derivation of P(2) for a uniform dx2−y2 -wave
superconductor, the PDW and the FFLO phases is carried
out in Appendix A. While we consider for concreteness a
cupratelike Fermi surface, as shown in Fig. 2(a), our results
shown below are quite general and applicable to a wide variety
of superconductors with varying Fermi surface structure.

III. RESULTS

We begin by discussing the case of a uniform, spin-singlet
dx2−y2 -wave superconductor (band parameters are given in
Appendix A) in which the Cooper pairs possess a zero
center of mass momentum. For P(2) to directly probe the
superconducting condensate, we need to require that the two
photoelectrons have a zero center-of-mass momentum, i.e.,
k′

2 = −k′
1, and opposite spins, i.e., σ ′

2 �= σ ′
1. In this case, we

obtain P(2) = P(2)
SC + P(2)

2cp where (at T = 0)

P(2)
SC = 2πδ(ωq − 2εk′

1
)

∣∣∣∣∣
∑

k

γ0V (k − k′
1)

ωq − Ek − εk + iδ

�k

2Ek

∣∣∣∣∣
2

,

P(2)
2cp = 2π

∑
k

∣∣∣∣ γ0V (k − k′
1)v2

k

ωq + Ek − εk + iδ

∣∣∣∣
2

δ(ωq − 2εk′
1
− 2Ek ),

(4)

where Ek =
√

ξ 2
k + �2

k (ξk) is the conduction electron dis-
persion in the superconducting (normal) state, v2

k = [1 −
ξk/Ek]/2, ωq is the incident photon energy, and εk′

1
is the sum

of the kinetic energy and work function of a photoelectron.
�ω = ωq − 2εk′

1
represents the excess energy of the photon

over the energies of the two photoelectrons. The first term,
P(2)

SC , directly reflects the existence of a superconducting con-
densate, as described by �k, and arises from the breaking and
subsequent creation of a Cooper pair. This term vanishes in the
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FIG. 2. (a) Fermi surface of the cuprate superconductors. [(b)–
(d)] P(2) in a dx2−y2 -wave superconductors for two photoelectrons
with opposite momenta k′

2 = −k′
1 along the Fermi surface, as in-

dicated by the set of filled circles in (a), and opposite spins, σ ′
1 �= σ ′

2.
P(2) for photoelectrons (e) with momenta indicated by green circles
and opposite spins, and (f) with momenta indicated by blue circles
and equal spins.

normal state, and is absent when the two detected photoelec-
trons do not possess the same center of mass momentum, or
spin structure as the superconducting condensate. As such, the
photoelectron pairs that contribute to P(2)

SC reside in an entan-
gled state and are therefore Einstein-Podolsky-Rosen (EPR)
pairs. Note that the momentum dependence of the Coulomb
interaction plays a crucial role in observing a nonzero P(2)

SC in
a dx2−y2 -wave superconductor since for a momentum indepen-
dent V (q), P(2)

SC vanishes identically due to the symmetry of
the dx2−y2 -wave order parameter. In contrast, the photoelectron
pairs that contribute to the second term, P(2)

2cp, arise from the

breaking of two Cooper pairs. As P(2)
2cp is weighted by the

particlelike coherence factors of the broken Cooper pairs, i.e.,
(v2

k )2, it does not vanish in the normal state. Note that P(2)
SC in

Eq. (4) scales as N2 (where N is the number of sites in the
system), while P(2)

2cp scales as N . This difference arises since

P(2)
SC describes the breaking of a single Cooper pair, while P(2)

2cp
describes that of two Cooper pairs, with the probability of
finding a second Cooper pair scaling as ∼1/N . To plot P(2)

SC and
P(2)

2cp in the same graph, as shown below, we have scaled them
with overall factors of (4π2/N )2 and 4π2/N , respectively.

In Fig. 2(b), we present P(2) in the normal and supercon-
ducting state for opposite photoelectron momenta k′

2 = −k′
1

near the antinodal points [indicated by the filled blue circles in
Fig. 2(a)]. In the normal state, P(2) shows an onset at �ω = 0,
as conduction electrons can be excited from the filled Fermi
sea for �ω � 0. In contrast, in the superconducting state,
P(2) exhibits two distinct features. The first one is a peak
at �ω = 0, previously identified in Ref. [18], arising from
P(2)

SC in Eq. (4) that is a direct signature of the superconduct-
ing condensate, as discussed above. The second feature is a
continuum, described by P(2)

2cp, with onset energy �ωc ≈ 2�k′
1

(we will refer to this contribution as the 2CP continuum). The
latter immediately reveals that P(2)

2cp reflects the measurement
of two photoelectrons arising from the breaking of 2 Cooper
pairs, requiring an energy of 2�k′

1
. That the gap between the

condensate peak at �ω = 0 and the continuum is indeed 2�k′
1

is a direct consequence of the momentum dependence of the
Coulomb interaction, V (q), which suppresses large momen-
tum transfers during the scattering process. As a result, the
main contribution to P(2)

2cp arises from those momentum states
k along the Fermi surface with k ≈ ±k′

1.
This result allows one to map out the momentum depen-

dence of the superconducting gap (similar to conventional
ARPES experiments [2]) by measuring the energy distance
between the �ω = 0 peak arising from P(2)

SC , and the peak
at �ω ≈ 2�k′

1
arising from P(2)

2cp as a function of k′
1,2, as

shown in Figs. 2(b)–2(d). As k′
1,2 are moved along the Fermi

surface from the antinodal points towards the nodal points,
the peak in P(2)

2cp located at �ω ≈ 2�k′
1

moves down in energy
as the superconducting dx2−y2 -wave gap decreases. For k′

1,2 at
the nodal points, P(2) in the superconducting state is nearly
identical to that in the normal state, due to the vanishing
superconducting gap. The small differences arise from the
fact that the momentum sums in the calculation of P(2) [see
Eq. (4)] probe a small momentum region in the vicinity of the
nodal points where the superconducting gap is nonzero but
small.

A qualitatively new feature of 2e-ARPES is that it can be
used to identify the center-of-mass momentum of the Cooper
pairs, qcm. To demonstrate this, we plot in Fig. 2(e) P(2) for
photoelectron momenta indicated by filled green circles in
Fig. 2(a). While each of these momenta by itself is symmetry-
related to the momentum indicated by blue circles in Fig. 2(a),
their sum (i.e., their center-of-mass momentum) is nonvanish-
ing, qcm �= 0. As such, P(2) for these two momenta does not
exhibit a zero-energy peak [see Fig. 2(e)] as the condensate
possesses qcm = 0. In contrast, the onset energy for the con-
tinuum, �ωc is still located at the same energy 2�k′

1
as in

Fig. 2(b), as it arises from the breaking of two Cooper pairs.
Further, P(2) even reveals the spin-state of the Cooper pairs.

In Fig. 2(f), we present P(2) for two photoelectrons with
the same momenta as in Fig. 2(b) (filled blue circles), but
possessing equal spins. In this case, P(2) does not exhibit a
zero-energy peak (i.e., P(2)

sc ≡ 0), as the electrons in a Cooper
pair form a spin-singlet state. Thus only a measurement of
photoelectrons that are in opposite spin states will exhibit
a zero-energy peak in P(2). In contrast, the continuum in
P(2)

2cp is the same for equal and opposite spin states of the
photoelectrons, as it arises from the breaking of two Cooper
pairs. These results demonstrate that 2e-ARPES experi-
ments provide unprecedented insight into the center-of-mass

064515-3



MAHMOOD, DEVEREAUX, ABBAMONTE, AND MORR PHYSICAL REVIEW B 105, 064515 (2022)

FIG. 3. (a) Schematic representation of superconducting pair-
ing in the PDW phase, with qcm = ±Q. For the chosen electronic
structure, we have Q = (2π/3, 0). (b) P(2) for photoelectrons with
opposite spins and qcm = ±Q, as indicated by the sets of filled
red and green circles in (a). The inset shows a zoom-in around
�ω = 0. (c) P(2) for photoelectrons with opposite spins and opposite
momenta, and hence qcm = 0, as indicated by the open blue circles
in (a). (d) Electronic dispersion in the PDW phase as a function of kx

for ky = π .

momentum and spin state of the superconducting condensate,
as well as the momentum dependence of the superconducting
order parameter.

To demonstrate the sensitivity of 2e-ARPES experiments
to detecting the center-of-mass momentum of Cooper pairs,
we next consider two distinct superconducting phases with
nonzero qcm. The first is the PDW phase, which has
been proposed as a possible explanation for the puzzling
phenomenology of the pseudogap region of the cuprate su-
perconductors [7,19]. In this phase, electronic states with
nonzero center-of-mass momentum +Q and −Q are simulta-
neously paired, with Q connecting the antinodal points near
(0,±π ), as shown in Fig. 3(a). This leads to a pairing of
states near (±Q/2,±π ), such as the ones indicated by red
(green) circles in Fig. 3(a) with center of mass momentum
qcm = ±Q. For P(2) to directly probe the PDW condensate
arising from this pairing, we need to select two photoelectrons
with center-of-mass momentum qcm = ±Q [red and green
circles in Fig. 3(a)] as shown in Fig. 3(b). P(2) is identical for
both sets of photoelectrons, exhibiting a peak at �ω = 0 that
is separated by from the continuum by 2�PDW(k′

1,2). Similar
to the case of a uniform dx2−y2 -wave superconductor discussed
above, the peak at �ω = 0 directly reflects the existence of a
PDW condensate with center of mass momentum qcm = ±Q.
Thus, for photoelectrons with opposite momenta and zero
center of mass momentum, as indicated by dashed blue circles
in Fig. 3(a), P(2) does not exhibit a zero-energy peak, as
shown in Fig. 3(c). We note that the continuum’s peak in
Fig. 3(b) is considerably higher than was the case for the
uniform dx2−y2 -wave case discussed in Fig. 2. The reason for

FIG. 4. (a) Schematic representation of superconducting pairing
in the FFLO phase, with qcm = +Q. P(2) for photoelectrons with
opposite spins and (b) qcm = +Q [filled green circles in (a), the inset
shows a zoom-in around �ω = 0], (c) qcm = −Q [filled red circles
in (a)], and (d) qcm = 0 [open blue circles in (a)].

this large intensity is the electronic structure in the PDW phase
near k′

1,2 = (Q/2,±π ), shown in Fig. 3(d) where we plot the
energy dispersion along kx for ky = π , i.e., perpendicular to
the Fermi surface. As before, due to the momentum structure
of the Coulomb interaction, the main contribution to P(2)

arises from conduction electrons near k′
1,2. The continuum

peak arises from the breaking of two Cooper pairs, one of
which is located on the red branch of the dispersion, and the
other one on the green branch. Due to the linear dispersion
near k′

1,2, the energy required to break these two Cooper pairs
is essentially constant and equal to 2�PDW over an extended
range of kx. This implies that, in contrast to the uniform dx2−y2 -
wave case, for a fixed �ω there is an extended momentum
range of conduction electron states perpendicular to the Fermi
surface that contribute to P(2), yielding the large continuum
peak.

Finally, we consider the FFLO phase where the pairing
occurs between states with a single nonzero center-of-mass
momentum (strictly speaking, this corresponds to the Fulde-
Ferrell phase [5]). While there currently is no evidence for an
FFLO phase in the cuprate superconductors, the FFLO phase
was reported [20] to occur in the heavy fermion dx2−y2 -wave
superconductor CeCoIn5 [21]. To allow explicit comparison
with the results for a uniform dx2−y2 -wave superconductor
(Fig. 2) and the PDW phase with qcm = ±Q (Fig. 3), we
choose for the FFLO phase qcm = +Q. By assumption, then,
pairing occurs between momentum states with k1 + k2 = Q,
represented by filled green circles in Fig. 4(a), but not between
states with k1 + k2 = −Q, as represented by filled red circles
in Fig. 4(a). As expected, we find for the FFLO phase that
P(2) exhibits a zero-energy peak for k′

1 + k′
2 = Q [green dots

in Fig. 4(a)] that is separated from the continuum contribution
by 2�FFLO [Fig. 4(b)]. In contrast, momentum states with
k′

1 + k′
2 = −Q, are unpaired and hence ungapped, such that
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P(2) in the FFLO phase is simply suppressed in comparison to
that in the normal state for these momenta. Furthermore, P(2)

for these two momenta does not exhibit a zero-energy peak
or a gap towards 2CP continuum excitations [Fig. 4(c)], in
stark contrast to the PDW phase [Fig. 3(b)]. Interestingly, for
photoelectrons with opposite momenta [dashed blue circles in
Fig. 4(a)], P(2) again exhibits a gap towards 2CP continuum
excitations, but its onset energy is shifted from that of the
normal state only by �FFLO, as only one of the momentum
states is paired.

IV. CONCLUSIONS

We have developed a theory for the photoelectron counting
rate P(2) measured in 2e-ARPES experiments in a uniform
dx2−y2 -wave superconducting, PDW and FFLO phases. A
comparison of P(2) shown in Figs. 2–4 demonstrates that
2e-ARPES measurements can identify the center-of-mass mo-
mentum (or even multiple center-of-mass momenta, as in the
PDW phase), as well as the spin state of Cooper pairs, and thus
distinguish between different superconducting pairing states.
In addition, it is possible to map out the momentum depen-
dence of the superconducting gap. 2e-ARPES experiments
thus provide a valuable new tool for the study of unconven-
tional superconducting pairing states.
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APPENDIX A: THEORETICAL FORMALISM

In the following, we provide more details regarding the
derivation of the 2e-ARPES photoelectron counting rate, P(2),
arising from the process shown in Fig. 1(a). This process is
described by the Hamiltonian of Eq.(1). The starting point
for the calculation of P(2) is Eq. (3) with the initial and final
states of the system defined in Eq. (2). For the calculation
of Ŝ(2)(∞,−∞), we note that there exists only single com-
bination of scattering processes that connects |	a〉 and |	b〉
yielding

Ŝ(2)(∞,−∞) =
∫ ∞

−∞
dt1dt2T

[∑
k2,p,l

∑
σ, σ̄

V (l)d†
k2+l, σ̄

(t1)d†
p−l,σ (t1)dp,σ (t1)ck2,σ̄ (t1)

∑
k1,σ1

γυ (q)d†
k1+q,σ1

(t2)ck1,σ1 (t2)aq,υ (t2)

]
.

(A1)
Assuming that the photon beam is incident between times −�t/2 � t � �t/2, we obtain

〈	b|Ŝ(2)(∞,−∞)|	a〉
= 〈	b|

∫ ∞

−∞
dt1dt2T [

∑
k2,p,l

∑
σ, σ̄

V (l)d†
k2+l, σ̄ (t1)d†

p−l,σ (t1)dp,σ (t1)ck2,σ̄ (t1)
∑
k1,σ1

γυ (q)d†
k1+q,σ1

(t2)ck1,σ1 (t2)aq,υ (t2)]|	a〉

= 〈	b|
∫ �t/2

−�t/2
dt2

∫ ∞

t2

dt1
∑
k2,p,l

∑
σ, σ̄

V (l)d†
k2+l, σ̄ (t1)d†

p−l,σ (t1)dp,σ (t1)ck2,σ̄ (t1)
∑
k1,σ1

γυ (q)d†
k1+q,σ1

(t2)ck1,σ1 (t2)aq,υ (t2)|	a〉

=
∫ �t/2

−�t/2
dt2

∫ ∞

t2

dt1
∑
k2,p,l

∑
σ, σ̄

V (l)
∑
k1,σ1

γυ (q)〈	b|d†
k2+l, σ̄ (t1)d†

p−l,σ (t1)dp,σ (t1)ck2,σ̄ (t1)d†
k1+q,σ1

(t2)ck1,σ1 (t2)aq,υ (t2)|	a〉.

(A2)

Setting the photon momentum equal to zero with γυ (q) → γ0 yields

〈	b|d†
k2+l, σ̄

(t1)d†
p−l,σ (t1)dp,σ (t1)ck2,σ̄ (t1)d†

k1,σ1
(t2)ck1,σ1 (t2)aq,υ (t2)|	a〉

= pe
〈
1k′

2,σ
′
2
1k′

1,σ
′
1

∣∣
p〈0|〈�b|d†

k2+l, σ̄
(t1)d†

p−l,σ (t1)dp,σ (t1)ck2,σ̄ (t1)d†
k1,σ1

(t2)ck1,σ1 (t2)aq,υ (t2)|�a〉|1q,λ〉p|0〉pe

= e−iωqt2 eiεk1 t2 ei(−εp+εp−l+εk2+l)t1
pe

〈
1k′

2,σ
′
2
1k′

1,σ
′
1

∣∣
p〈0|〈�b|d†

k2+l, σ̄
d†

p−l,σ dp,σ ck2,σ̄ (t1)d†
k1,σ1

ck1,σ1 (t2)aq,υ |�a〉|1q,λ〉p|0〉pe

= −e−iωqt2 eiεk1 t2 ei(−εp+εp−l+εk2+l)t1
pe

〈
1k′

2,σ
′
2
1k′

1,σ
′
1

∣∣d†
k2+l, σ̄ d†

p−l,σ dp,σ d†
k1,σ1

|0〉pe p〈0|aq,υ |1q,λ〉p〈�b|ck2,σ̄ (t1)ck1,σ1 (t2)|�a〉
(A3)

with ωq being the incident photon energy. We finally obtain

〈	b|Ŝ(∞,−∞)|	a〉

= −γ0

∫ �t/2

−�t/2
dt2

∫ ∞

t2

dt1
∑
k 1,k2

δk1+k2−k′
1−k′

2,0{V (k1 − k′
2) e−iωqt2 eiεk1 t2 e

i(−εk1 +εk′
2
+εk′

1
)t1〈�b|ck2,σ

′
2
(t1)ck1,σ

′
1
(t2)|�a〉

− V (k1 − k′
1) e−iωqt2 eiεk1 t2 e

i(−εk1 +εk′
1
+εk′

2
)t1〈�b|ck2,σ

′
1
(t1)ck1,σ

′
2
(t2)|�a〉}, (A4)
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where we used

p〈0|aq,υ |1q,λ〉p = 1,

pe
〈
1k′

2,σ
′
2
1k′

1,σ
′
1

∣∣d†
k2+l, σ̄

d†
p−l,σ dp,σ d†

k1,σ1
|0〉pe

= [
δk′

1,k2+lδσ̄ ,σ ′
1
δk′

2,p−lδσ,σ ′
2
− δk′

1,p−lδσ,σ ′
1
δk′

2,k2+lδσ̄ ,σ ′
2

]
× δp,k1δσ1,σ . (A5)

To further evaluate the above term, we need to rewrite the
term involving the fermionic annihilation operators using the
respective Bogoliubov transformations for a uniform dx2−y2 -
wave superconductor, the PDW and the FFLO phases, which
we will consider in the following.

1. 2e-ARPES in a uniform dx2−y2 -wave superconductor with
zero center-of mass momentum

a. k′
2 = −k′

1 and σ ′
2 �= σ ′

1

For a uniform dx2−y2 -wave superconductor with zero
center-of-mass momentum, the Bogoliubov transformation is
given by

c−k2,↓ = −vk2α
†
k2

+ u−k2β−k2 ,

ck1,↑ = uk1αk1 + v−k1β
†
−k1

. (A6)

At T = 0, the contribution to P(2) that directly reflects the
presence of a superconducting condensate, P(2)

SC [see Eq. (4)
in the main text], arises from terms of the form

〈�b|αk(t1)α†
k(t2)|�a〉,

〈�b|βk(t1)β†
k (t2)|�a〉. (A7)

Terms of these forms, however, can only emerge from
Eq. (A4) if k2 = −k1 and σ ′

1 �= σ ′
2. Since momentum conser-

vation in Eq. (A4) requires that

k1 + k2 − k′
1 − k′

2 = 0

this immediately implies k′
2 = −k′

1, i.e., the center-of-mass
momentum of the two photoelectrons is zero. Moreover, σ ′

1 �=
σ ′

2 implies that the two photoelectrons are in a spin-singlet
state. Thus, we obtain a nonzero P(2)

SC contribution only if
the center-of-mass momentum and the spin state of the two
photoelectrons is the same as that of the condensate. We then
obtain P(2) = P(2)

SC + P(2)
2cp, where

P(2)
SC = 2πδ

(
ωq − 2εk′

1

) 1

Z

∑
α

e−βEα 〈�a||I (k′
1)|2|�a〉 (A8)

and

I (k′
1) = γ0

∑
p

V (k′
1 − p)

�p

2Ep

×
[

n̂α
p + n̂β

p

ωq + Ep − εp + iδ
− 1 − n̂α

p + 1 − n̂β
p

ωq − Ep − εp + iδ

]

(A9)

with n̂α
p = α†

pαp and n̂β
p = β†

pβp. Moreover, Ep =
√

ξ 2
p + �2

p
(ξp) is the electronic dispersion in the superconducting (nor-
mal) state. The normal state dispersion is given by

ξp = −2t (cos px + cos py) − 4t ′ cos px cos py − μ (A10)

with t ′/t = −0.4, μ/t = −0.5, and t = 300 meV, giving rise
to the characteristic cuprate Fermi surface shown in Fig. 2(a).
Moreover, the superconducting dx2−y2 -wave gap is given by

�p = �0

2
(cos px − cos py) (A11)

with �0 = 25 meV. At T = 0, P(2)
SC simplifies to the

expression which is given in Eq. (4). Similarly, we
obtain

P(2)
2cp = 2πγ 2

0

∑
p

[
δ
(
ωq − 2εk′

1
− 2Ep

)∣∣∣∣ V (k′
1 − p)

ωq + Ep − εp + iδ

∣∣∣∣
2

v4
p

〈(
1 − n̂α

p

)(
1 − n̂β

p

)〉

+δ(ωq − 2εk′
1
+ 2Ep)

∣∣∣∣ V (k′
1 − p)

ωq − Ep − εp + iδ

∣∣∣∣
2

u4
p

〈
n̂α

p n̂β
p

〉]
, (A12)

where v2
p = [1 − ξp/Ep]/, and u2

p = [1 + ξp/Ep]/2 are the superconducting coherence factors. At T = 0, this result simplifies
to the expression given in Eq. (4).

b. k′
2 �= k′

1 and σ ′
2 �= σ ′

1

We next consider the case where the two photoelectrons possess a nonzero center-of-mass momentum, i.e., k′
1 + k′

2 = l �= 0,
and opposite spins. In this case, P(2)

SC ≡ 0, and P(2)
2cp = P(2)

αα + P(2)
αβ + P(2)

βα + P(2)
ββ , where

P(2)
αα = 2πγ 2

0

∑
k 1,k2

δk1+k2,lV
2(k1 − k′

2)

∣∣∣∣ 1

εk′
1
+ εk′

2
− εk1 + Ek2 + iδ

+ 1

εk′
1
+ εk′

2
− εk2 − Ek1 + iδ

∣∣∣∣
2

v2
k2

u2
k1

〈
nα

k1

(
1 − nα

k2

)〉
× δ

(
εk′

1
+ εk′

2
− ωq − Ek1 + Ek2

)
,

P(2)
αβ = 2πγ 2

0

∑
k 1,k2

δk1+k2,lV
2(k1 − k′

2)

∣∣∣∣ 1

εk′
1
+ εk′

2
− εk1 − Ek2 + iδ

+ 1

εk′
1
+ εk′

2
− εk2 − Ek1 + iδ

∣∣∣∣
2

u2
k2

u2
k1

〈
nα

k1
nβ

k2

〉
× δ

(
εk′

1
+ εk′

2
− ωq − Ek1 − Ek2

)
,
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P(2)
βα = 2πγ 2

0

∑
k 1,k2

δk1+k2,lV
2(k1 − k′

2)

∣∣∣∣ 1

εk′
1
+ εk′

2
− εk1 + Ek2 + iδ

+ 1

εk′
1
+ εk′

2
− εk2 + Ek1 + iδ

∣∣∣∣
2

v2
k2

v2
k1

× 〈(
1 − nβ

k1

)(
1 − nα

k2

)〉
δ
(
εk′

1
+ εk′

2
− ωq + Ek1 + Ek2

)
,

P(2)
ββ = 2πγ 2

0

∑
k 1,k2

δk1+k2,lV
2(k1 − k′

2)

∣∣∣∣ 1

εk′
1
+ εk′

2
− εk1 − Ek2 + iδ

+ 1

εk′
1
+ εk′

2
− εk2 + Ek1 + iδ

∣∣∣∣
2

v2
k1

u2
k2

× 〈
nβ

k2

(
1 − nβ

k1

)〉
δ
(
εk′

1
+ εk′

2
− ωq + Ek1 − Ek2

)
. (A13)

c. Equal spin polarization of the photoelectrons, and k′
2 = −k′

1

We next consider the case where the two photoelectrons possess equal spin polarization, and a zero center-of-mass momen-
tum, i.e., k′

2 = −k′
1. In this case, P(2) = P(2)

αα + P(2)
αβ + P(2)

ββ , where

P(2)
αα = 4πγ 2

0

∑
k

[V (−k′
1 − k) − V (k′

1 − k)]2
∣∣∣∣ 1

ωq − εk − Ek + iδ

∣∣∣∣
2

u4
k

〈
nα

knα
−k

〉
δ(ωq − 2εk′

1
+ 2Ek ),

P(2)
ββ = 4πγ 2

0

∑
k

[V (−k′
1 − k) − V (k′

1 − k)]2
∣∣∣∣ 1

ωq − εk + Ek + δ

∣∣∣∣
2

v4
k

〈(
1 − nβ

k

)(
1 − nβ

−k

)〉
δ(ωq − 2εk′

1
− 2Ek ),

P(2)
αβ = 2πγ 2

0 δ
(
ωq − 2εk′

1

) ∑
k

[V (−k′
1 − k) − V (k′

1 − k)]2
∣∣∣∣ 1

ωq − εk − Ek + iδ
+ 1

ωq − εk + Ek + iδ

∣∣∣∣
2

×
(

�k

2Ek

)2〈(
1 − nβ

k

)
nα

k

〉
. (A14)

Note that at T = 0, P(2) does not possess a contribution sim-
ilar to P(2)

SC in Eq. (4), as two photoelectrons with the same
spin-projection cannot emerge from the same Cooper pair. For
T �= 0, P(2)

αβ exhibits a peak at �ω = ωq − 2εk′
1
= 0, similar

to P(2)
SC in Eq. (4) as the breaking of Cooper pairs by thermal

excitations allows for the ejection of two electrons with equal
spin at �ω = 0. However, for photoelectron momenta near
the antinodal points, as considered in Fig. 2 of the main text,
P(2)

αβ is exponentially suppressed ∼ exp[−�k/(kBT )], and thus
negligible at typical experimental temperatures due to the
large superconducting gap in the cuprate superconductors.

2. 2e-ARPES in the FFLO phase

We next consider the photoelectron counting rate in the
FFLO phase [5,6], where superconducting pairing occurs
between two electrons with center-of-mass momentum Q
(strictly speaking, this corresponds to the Fulde-Ferrell phase
[5]), as described by the mean-field Hamiltonian

H =
∑
k,σ

ξkc†
k,σ ck,σ −

∑
k

(�FF(k)c†
k+Q/2,↑c†

−k+Q/2,↓

+�FF(k)c−k+Q/2,↓ck+Q/2,↑). (A15)

Note that �FF(k) also depends on Q, and in general needs to
be self-consistently computed [22]. However, since we con-
sider only photoelectron momenta near the antinodal points
(see Fig. 4), and due the suppression of large momentum
transfer due to the Coulomb interaction, we can neglect the
detailed momentum dependence of the superconducting gap
in the FF phase and simply set �FF equal to a constant value,
with �FF = 50 meV.

To diagonalize the Hamiltonian, we next use the Bogoli-
ubov transformation

c†
k+Q/2,↑ = ukα

†
k+Q/2 + vkβ−k+Q/2,

c−k+Q/2,↓ = −vkα
†
k+Q/2 + vkβ−k+Q/2, (A16)

which yields

H =
∑

k

Eα
k+Q/2α

†
k+Q/2αk+Q/2 + Eβ

−k+Q/2β
†
−k+Q/2β−k+Q/2,

(A17)

where

Eα
k+Q/2 =

√
(ε+

k )2 + �2
FF(k) + ε−

k ,

Eβ

−k+Q/2 =
√

(ε+
k )2 + �2

FF(k) − ε−
k ,

ε±
k = εk+Q/2 ± ε−k+Q/2

2
, (A18)

and the coherence factor are given by

ukvk = �FF(k)

2
√

(ε+
k )2 + �2

FF(k)
,

u2
k = 1

2

⎡
⎣1 + ε+

k√
(ε+

k )2 + �2
FF(k)

⎤
⎦,

v2
k = 1

2

⎡
⎣1 − ε+

k√
(ε+

k )2 + �2
FF(k)

⎤
⎦. (A19)
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a. k′
1 + k′

2 = Q

In order to obtain a nonzero P(2)
SC in the FF phase, Eq. (A4)

needs to contain terms of the form
〈�b|αk+Q/2(t1)α†

k+Q/2(t2)|�a〉,
〈�b|β−k+Q/2(t1)β†

−k+Q/2(t2)|�a〉, (A20)

which together with momentum conservation

k + Q/2 + (−k + Q/2) − k′
1 − k′

2 = 0

implies k′
1 + k′

2 = Q, requiring that the center-of-mass mo-
mentum of the two photoelectrons be Q. In this case, we then
obtain P(2) = P(2)

SC + P(2)
2cp, where

P(2)
SC = 2πδ

(
ωq − εk′

1
− εk′

2

) 1

Z

∑
α

e−βEα
〈
	α

s

∣∣∣∣I (k′
1)

∣∣2∣∣	α
s

〉
(A21)

and

I (k′
1) = γ0

∑
p

upvpV (k′
1 − (−p + Q/2))

[
1 − nβ

−p+Q/2

ωq − εp+Q/2 − Eβ

−p+Q/2 − iδ
+ 1 − nα

p+Q/2

ωq − ε−p+Q/2 − Eα
p+Q/2 − iδ

− nα
p+Q/2

ωq − εp+Q/2 + Eα
p+Q/2 − iδ

− nβ

−p+Q/2

ωq − ε−p+Q/2 + Eβ

−p+Q/2 − iδ

]
. (A22)

Similarly, we obtain

P(2)
2cp = 2πγ 2

0

∑
p

V 2(k′
1 − (−p + Q/2))

{∣∣∣∣∣ 1

−εp+Q/2 + εk′
2
+ εk′

1
+ Eα

p+Q/2 + iδ
+ 1

−ε−p+Q/2 + εk′
1
+ εk′

2
+ Eβ

−p+Q/2 + iδ

∣∣∣∣∣
2

× v4
p

〈(
1 − nβ

−p+Q/2

)(
1 − nα

p+Q/2

)〉
δ
(
εk′

2
+ εk′

1
− ωq + Eβ

−p+Q/2 + Eα
p+Q/2

)

+
∣∣∣∣∣ 1

−εp+Q/2 + εk′
2
+ εk′

1
− Eβ

−p+Q/2 + iδ
+ 1

−ε−p+Q/2 + εk′
1
+ εk′

2
− Eα

p+Q/2 + iδ

∣∣∣∣∣
2

× u4
p

〈
nβ

−p+Q/2nα
p+Q/2

〉
δ
(
εk′

2
+ εk′

1
− ωq − Eα

p+Q/2 − Eβ

−p+Q/2

)}
. (A23)

b. k′
1 + k′

2 �= Q

We next consider the case when k′
1 + k′

2 = l �= Q. In this case, we obtain P(2) = P(2)
αα + P(2)

αβ + P(2)
βα + P(2)

ββ , where

P(2)
αα = 2πγ 2

0

∑
k 1,k2

δk2,k1−l+Q

∣∣∣∣∣ 1

−εk1+Q/2 + εk′
2
+ εk′

1
+ Eα

k2+Q/2 + iδ
+ 1

−εk2+Q/2 + εk′
2
+ εk′

1
− Eα

k1+Q/2 + iδ

∣∣∣∣∣
2

×V 2(k′
2 − k1 − Q/2)

(
vk2 uk1

)2〈
nα

k1+Q/2(1 − nα
k2+Q/2

)〉
δ
(
εk′

2
+ εk′

1
− ωq + Eα

k2+Q/2 − Eα
k1+Q/2

)
,

P(2)
αβ = 2πγ 2

0

∑
k 1,k2

δk2,k1−l+Q

∣∣∣∣∣ 1

−εk1+Q/2 + εk′
2
+ εk′

1
+ Eα

k2+Q/2 + iδ
+ 1

−εk2+Q/2 + εk′
2
+ εk′

1
+ Eβ

−k1+Q/2 + iδ

∣∣∣∣∣
2

×V 2(k′
2 − k1 − Q/2)

(
vk2vk1

)2〈(
1 − nβ

−k1+Q/2

)(
1 − nα

k2+Q/2

)〉
δ
(
εk′

2
+ εk′

1
− ωq + Eα

k2+Q/2 + Eβ

−k1+Q/2

)
,

P(2)
βα = 2πγ 2

0

∑
k 1,k2

δk2,k1−l+Q

∣∣∣∣∣ 1

−εk1+Q/2 + εk′
2
+ εk′

1
− Eβ

−k2+Q/2 + iδ
+ 1

−εk2+Q/2 + εk′
2
+ εk′

1
− Eα

k1+Q/2 + iδ

∣∣∣∣∣
2

×V 2(k′
2 − k1 − Q/2)

(
uk2 uk1

)2〈nα
k1+Q/2nβ

−k2+Q/2

〉
δ
(
εk′

2
+ εk′

1
− ωq − Eα

k1+Q/2 − Eβ

−k2+Q/2

)
,

P(2)
ββ = 2πγ 2

0

∑
k 1,k2

δk2,k1−l+Q

∣∣∣∣∣ 1

−εk1+Q/2 + εk′
2
+ εk′

1
− Eβ

−k2+Q/2 + iδ
+ 1

−εk2+Q/2 + εk′
2
+ εk′

1
+ Eβ

−k1+Q/2 + iδ

∣∣∣∣∣
2

×V 2(k′
2 − k1 − Q/2)

(
uk2vk1

)2〈(
1 − nβ

−k1+Q/2

)
nβ

−k2+Q/2

〉
δ
(
εk′

2
+ εk′

1
− ωq + Eβ

−k1+Q/2 − Eβ

−k2+Q/2

)
. (A24)
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3. 2e-ARPES in the PDW phase

We next consider the 2e-ARPES photoelectron counting
rate P(2) in the PDW phase, whose mean-field Hamiltonian is
given by

H =
∑

k

′(
c†

k,↑, c†
k+Q,↑, c†

k−Q,↑, c−k,↓, c−k+Q,↓, c−k−Q,↓
)

×

⎛
⎜⎜⎜⎜⎜⎝

ξk 0 0 0 � �

0 ξk+Q 0 � � 0
0 0 ξk−Q � 0 �

0 � � −ξk 0 0
� � 0 0 −ξk−Q 0
� 0 � 0 0 −ξk+Q

⎞
⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎝

ck,↑
ck+Q,↑
ck−Q,↑
c†
−k,↓

c†
−k+Q,↓

c†
−k−Q,↓

⎞
⎟⎟⎟⎟⎟⎟⎠

=
∑

k

′
	

†
kĤk	k, (A25)

where the primed sum runs over the Brillouin zone of the
PDW phase. Here, � = �PDW is the superconducting gap in
the PDW phase which depends on k and Q, and in general
needs to be self-consistently computed. However, since in the
main text, we consider only photoelectron momenta near the
antinodal points (see Fig. 3), and due the suppression of large
momentum transfer arising from the Coulomb interaction,
we can neglect the detailed momentum dependence of the
superconducting gap in the PDW phase and simply set �PDW

equal to a constant value, with �PDW = 50 meV.
We next diagonalize the Hamiltonian using the unitary

transformation

(c†
k,↑, c†

k+Q,↑, c†
k−Q,↑, c−k,↓, c−k+Q,↓, c−k−Q,↓)

= (γ †
1,k, γ

†
2,k, γ

†
3k, γ

†
4,k,, γ

†
5,k, γ

†
6,k )Û †

k = �
†
kÛ †

k

⎛
⎜⎜⎜⎜⎜⎜⎝

ck,↑
ck+Q,↑
ck−Q,↑
c†
−k,↓

c†
−k+Q,↓

c†
−k−Q,↓

⎞
⎟⎟⎟⎟⎟⎟⎠

= Û

⎛
⎜⎜⎜⎜⎜⎝

γ1,k
γ2,k
γ3k
γ4,k,

γ5,k
γ6,k

⎞
⎟⎟⎟⎟⎟⎠ = Ûk�k (A26)

with Û being a unitary matrix consisting of the eigenvectors
of Ĥk. Thus we obtain

H =
∑

k

′
	

†
kĤk	k =

∑
k

′
�

†
kÛ †

k ĤkÛk�k =
∑

k

′
�

†
kÊk�k

(A27)

with

Êk =

⎛
⎜⎜⎜⎜⎜⎝

E1,k 0 0 0 0 0
0 E2,k 0 0 0 0
0 0 E3,k 0 0 0
0 0 0 E4,k 0 0
0 0 0 0 E5,k 0
0 0 0 0 0 E6,k

⎞
⎟⎟⎟⎟⎟⎠ (A28)

and Ei,k(i = 1, . . . , 6) are the eigenenergies of Ĥk.

a. k′
1 + k′

2 = ±Q

In this case, we obtain P(2) = P(2)
SC + P(2)

2cp, where

P(2)
SC =2πδ(ωq − εk′

2
− εk′

1
)

1

Z

∑
α β

e−βEα
〈
	α

s

∣∣∣∣I (k′
1)

∣∣2∣∣	α
s

〉
(A29)

with

I (k′
1) = γ0

∑
p

V (k′
1 − (p + Q))

∑
i=1,6

[Ûp]5i[Ûp]1i

×
[

n(i)
F (p)

ωq − εp + Ei,p + iδ
− 1 − n(i)

F (p)

ωq − εp − Ei,p + iδ

]
(A30)

with [Ûp]i j being the (i j) element of the matrix Ûp, and

P(2)
2cp = 2πγ 2

0

∑
p

V 2(k′
1 − (−p + Q))

∑
i �= j

([Ûp]5i[Ûp]1 j )
2

×
∣∣∣∣ 1

−εp + εk′
2
+ εk′

1
+ Ei,p + iδ

+ 1

−εp + εk′
2
+ εk′

1
− Ej,p + iδ

∣∣∣∣
2

× δ(εk′
2
+ εk′

1
− ωq + Ei,p − Ej,p)

× 〈(
1 − n(i)

F (p)
)
n( j)

F (p)
〉
. (A31)

b. k′
1 + k′

2 = 0

In this case, we obtain

P(2) = 2πγ 2
0

∑
p

V 2(k′
1 − p)

∑
i �= j

([Ûp]4i[Ûp]1 j )
2

×
∣∣∣∣ 1

εk′
1
+ εk′

2
− εp + Ei,p + iδ

+ 1

εk′
1
+ εk′

2
− εp − Ej,p1 + iδ

∣∣∣∣
2〈

n( j)
F (p)

(
1 − n(i)

F (p)
)〉

× δ(εk′
1
+ εk′

2
− ωq + Ei,p − Ej,p). (A32)

APPENDIX B: AUGER PROCESS CONTRIBUTION TO
THE 2e-ARPES PHOTOELECTRON COUNTING RATE FOR

A UNIFORM dx2−y2 -WAVE SUPERCONDUCTOR

We next consider the contribution to the 2e-ARPES pho-
toelectron counting rate involving the Auger process, P(2)

Aug,
shown in Fig. 1(b) of the main text. In a uniform dx2−y2 -
wave superconductor, for two photoelectrons with momenta

064515-9
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FIG. 5. P(2) in a uniform dx2−y2 -wave superconductor for two
photoelectrons with k′

2 = −k′
1, σ ′

2 �= σ ′
1, and momenta at the antin-

odal points [see filled blue circles in Fig. 2(a)] and two different
screening lengths: (a) κ−1 = 10a0 and (b) 20a0.

k′
2 = −k′

1 and opposite spin, σ ′
2 �= σ ′

1, we obtain at T = 0

P(2)
Aug = 8πδ(2εk′

1
− ωq)

〈
n f

k′
1

〉
γ 2

0

∣∣∣∣ 1

εk′
1
+ ζk′

1
+ iδ

∣∣∣∣
2

×
∣∣∣∣∣
∑

p

U (p − k′
1)

�p

2Ep

∣∣∣∣∣
2

+ 8πγ 2
0

〈
n f

k′
1

〉

×
∑

p

δ
(
2εk′

1
− ωq+2Ep

)
v4

p

∣∣∣∣ U (p − k′
1)

εk′
1
+ ζk′

1
+ 2Ep + iδ

∣∣∣∣
2

,

(B1)

where ζk′
1

is the energy of the core state electron, 〈n f
k′

1
〉 is

the occupation of the core electron state, and U (p − k′
1) is

the interaction describing the Auger process. P(2)
Aug possesses

the same structure as the result shown in Eq. (4), albeit with
different weighting factors. Note that the calculation of P(2)

Aug
thus requires knowledge of the detailed momentum and en-
ergy structure of the core levels, and that P(2)

Aug is only nonzero
if there exist occupied core electron states with the same
momenta as those of the two photoelectrons probed in the
detectors.

APPENDIX C: EFFECT OF A SCREENED COULOMB
INTERACTION ON THE PHOTOELECTRON COUNTING
RATE IN A UNIFORM dx2−y2 -WAVE SUPERCONDUCTOR

As discussed above, the momentum dependence of the
Coulomb interaction is crucial for the observation of a
nonzero P(2)

SC due to the momentum structure of the super-
conducting order parameter. One might therefore wonder how
a change in the screening length κ−1 of the Coulomb inter-
action, V (q) = V0/(q2 + κ2) affects the energy dependence
of P(2). To investigate this question, we computed P(2) for
two photoelectrons with zero center-of-mass momentum, i.e.,
k′

2 = −k′
1, and opposite spin polarization, i.e., σ ′

2 �= σ ′
1, in a

uniform dx2−y2 -wave superconductor, for two different screen-
ing length, as shown in Fig. 5. While the qualitative structure
of P(2) does not change with increasing κ−1, albeit with an
overall intensity increase, we find that the relative height
between the peaks arising from P(2)

SC and P(2)
2cp decreases with

increasing κ−1. We remind, however, that P(2)
SC and P(2)

2cp are
scaled with overall factors of (4π2/N )2 and 4π2/N , respec-
tively, such that even an increase in κ−1 will not significantly
affect the much larger intensity of the peak in P(2)

SC .
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