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Cavitation on single electron bubbles in liquid helium at small negative pressures
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Liquid helium under negative pressure represents a unique possibility for studying the macroscopic quantum
nucleation phenomena in condensed media. We analyze the quantum cavitation rate of single electron bubbles
at low temperatures down to absolute zero. The energy dissipation and sound emission processes result in the
different temperature behavior of quantum cavitation rate in normal fluid 3He and superfluid 4He below the
thermal-quantum crossover temperature. The position of the rapid nucleation line in the temperature-pressure
phase diagram is discussed as well.
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I. INTRODUCTION

During more than two decades a great deal of experimental
and theoretical interest has been spent to the macroscopic
quantum phenomena accompanying the decay of a metastable
condensed medium. A noticeable portion of study has been
paid to the low temperature nucleation phenomena in various
helium systems. These are nucleation of a solid in overpres-
surized liquid helium [1,2], cavitation in liquid 3He and 4He
at negative pressure [3,4], nucleation of quantized vortices
in superfluid 4He [5], phase separation in supersaturated liq-
uid [6] and solid [7] 3He - 4He mixtures, and heterogeneous
separation at quantized vortices in supersaturated superfluid
3He - 4He liquid mixture [8]. These studies have set down the
foundations for new field of physics, namely, macroscopic
quantum nucleation or kinetics of first-type phase transitions
in a condensed medium at the temperatures so close to abso-
lute zero that the classical thermal-activation phase-transition
mechanism becomes completely ineffective [9].

Recently, the systematic studies get started on the cavita-
tion and growth of single electron bubbles in liquid helium
[10–12]. In this case, due to repulsive potential of about
1 eV, it is energetically favorable for an electron to emerge
a cavity free from helium atoms within the radius of about
19 Å [13,14]. First of all, the injection of such single electron
bubbles into the liquid bulk allows one to reduce significantly
the cavitation pressure threshold [15]. The point is that the
electron bubbles play a role of prepared nucleation centers
for inception of cavitation gas bubbles and thus the cavitation
acquires the specific features inherent in the heterogeneous
nucleation.

The electrons are usually injected into the liquid helium
by electric field emission from a sharp tungsten tip or using
a radioactive β source. To study cavitation, a sound pulse is
generated with the aid of hemispherical piezoelectric trans-
ducer giving rise to large-amplitude pressure oscillation at
the acoustic focus. When an electron bubble travels to the
zone of sound focus and the negative pressure swing has a
sufficient magnitude, a cavitation event is produced and can
be registered by observing the light scattering [16].

In this paper, we examine a theoretical description of cav-
itation on a single electron bubble in liquid helium, using
the well-known capillary or thin-wall model proposed, e.g.,
in [13,14]. The previous studies of quantum cavitation on
electron bubbles are wholly based on neglecting the possible
energy dissipation effects accompanying the bubble growth
in liquid, e.g., Ref. [17]. This approximation may reduce the
validity of such considerations.

On the other hand, the bubble growth is inevitably accom-
panied by the energy dissipation and relaxation effects. First,
we point out the viscous effect resulting from the spatially
nonuniform liquid flow induced by the expanding bubble in
the radial directions. The second is the sound emission due
to changing the bubble volume in the growth process. To
fill the gap, we consider the effect of viscosity and sound
emission on the quantum cavitation rate. To examine the
dissipative effects on the quantum rate and thermal-quantum
crossover temperature, we employ the formalism of the effec-
tive Euclidean action defined in the imaginary time [18,19].
The time-nonlocal terms in the effective action are associ-
ated with the dissipative and sound emission effects. In order
to describe the quantum-mechanical tunneling between the
metastable and stable states of electron bubble and to calculate
the cavitation rate, we must seek for the finite-action solutions
(instantons) with the period equal to a ratio of the Planck
constant h̄ over the temperature T .

The paper is organized as follows. Sections II and III recall
the potential energy of electron bubble and the cavitation
rate as a result of thermal activation. Section IV is devoted
to the quantum cavitation regime in the dissipationless ap-
proximation. The thermal-quantum crossover temperature is
introduced in Sec. V. In Sec. VI, we present the effective ac-
tion with the viscous and sound emission terms. These terms
give the contributions of the opposite signs to the effective
action. Viscosity reduces the quantum cavitation rate and, on
the contrary, sound emission enhances it. In Sec. VII, we
discuss the location of the rapid cavitation line with respect to
the absolutely unstable line. Its location depends on both the
sweep rate of varying the pressure and the time of observation.
In Appendix the stochastic elements of nucleation are given.
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FIG. 1. The behavior of potential energy U (R) as a function of bubble radius R in the various pressure ranges. Here p = P/Pc is the
normalized pressure.

II. ENERGY OF SINGLE ELECTRON BUBBLE IN THE
LIQUID HELIUM

First of all, it is necessary to determine the potential energy
of a single electron bubble as a function of its size. According
to Refs. [10,13], the potential energy of spherical bubble with
radius R in the ground state can be represented as a sum of
the quantum zero-point energy, surface tension energy, and
the work against the pressure P in the liquid surrounding the
bubble

U (R) = π2h̄2

2mR2
+ 4πσR2 + 4π

3
PR3.

Here m is the mass of an electron and σ is the surface ten-
sion energy. The corrections due to finiteness of potential
barrier penetration and polarizability [17,20] are very small
and, therefore, can completely be neglected in the energy of a
bubble. In addition, we neglect the saturation vapor pressure,
assuming it small at low temperatures.

As is seen from Fig. 1, the bubble energy U (R) as a
function of radius has various behavior and the different
number of pressure-dependent extrema. For zero and positive
magnitudes of pressure there is a single minimum and the
corresponding electron bubble is absolutely stable [Fig. 1(a)].
The equilibrium bubble radius R0 at zero pressure is given by

R0 =
(

π h̄2

8mσ

)1/4

.

At zero temperature, the numerical value [10,17] equals R0 =
19 Å in liquid 4He and R0 = 23 Å in 3He. As the temperature
grows, the zero pressure equilibrium radius increases due to
reducing the surface tension. Obviously, for the positive pres-
sure values the equilibrium radius R0 diminishes.

Within the intermediate range of pressures Pc < P < 0,
there are two extrema in the potential energy U (R). For the
negative pressures smaller than the critical one

Pc = −
(

8

5

)5/4(mσ 5

π h̄2

)1/4

,

there is no extrema [Fig. 1(d)]. This entails an appearance
of absolute instability of a bubble against its expansion and
the cavitation process becomes unavoidable. Hence, only for
the pressure range Pc < P < 0, we have the metastable state
of a bubble which can be destabilized as a result of thermal
or quantum fluctuations depending on the temperature in a

liquid. These specific features can also be seen in Fig. 2 where
the behavior is shown of the bubble radius corresponding to
the potential energy extrema. We see that the electron bubbles
which size exceeds the critical radius

Rc = 51/4R0 = 1.495R0

are absolutely unstable against its unlimited expansion.
Accordingly, Rc = 28 Å in 4He and Rc = 35 Å in 3He.
Emphasize that the scale of varying the bubble radius corre-
sponding to the metastable R0 < R < Rc states is not large.

Such behavior of potential energy as a function of radius
and pressure differs in kind from the case of homogeneous
cavitation. The point is that there is a competition of two
opposite factors in the presence of an electron playing a role
of a defect in the liquid. If, for instance, the bubble grows,
the surface tension contribution increases and the other due
to zero-point energy of an electron decreases. For the small
magnitudes of negative pressure, these two competing con-
tributions result in some minimum of potential energy U (R)

FIG. 2. The diagram for equilibrium between single electron
bubble and liquid helium. The dimensionless radius r = R/Rc in
units of critical radius Rc is shown as a function of normalized
pressure p = P/Pc in units of critical pressure Pc.
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FIG. 3. The dimensionless barrier height �u(p) =
�U/(4πσR2

c ) is shown as a function of normalized pressure
p = P/Pc in units of critical pressure Pc.

[Fig. 1(b)]. On the contrary, if the magnitude of negative pres-
sure is large, the role of surface tension becomes small. Then,
for P < Pc, the potential energy U (R) is mostly determined
with the terms decreasing gradually and, therefore, has neither
maximum nor minimum. This results in the unstable state
of a bubble. All these features, involving the similar (R, P)
phase diagram, hold for other defects, e.g., charged ion which
influence decays with a distance together with the electric
field [21] or quantized vortices in superfluid 3He - 4He liquid
mixture [8].

At the first sight, due to an existence of critical pressure
or spinodal one may expect that the cavitation of bubbles will
occur at the same pressure. However, cavitation process can
take place in the metastable Pc < P < 0 region before the
critical pressure is achieved. Since the decay of metastable
state is a random process described with some pressure-
dependent probability function, the experimental magnitudes
of cavitation pressure acquire some dispersion around certain
magnitude P > Pc. The magnitudes of cavitation pressure and
dispersion of cavitation events depend both on the cavitation
probability and on the rate varying the pressure in experiment.
As we will see below, the thermal-quantum crossover tem-
perature, which can experimentally be attained, depends on
the rate of the pressure variation as well. The enhancement
of pressure sweep rate Ṗ(t ) allows one to approach closer
the critical pressure Pc meaning the absolute instability of an
electron bubble.

III. THERMAL CAVITATION RATE

For the high temperatures, the cavitation rate, determined
as a nucleation probability per unit time at one nucleation site,
is governed with the conventional Arrhenius law for thermal
fluctuations

�cl = ν exp(−�U/T ),

where ν is the frequency of attempts. The activation energy or
potential barrier height �U = U (R+) − U (R−) is determined

as a difference between the maximum value of potential en-
ergy U (R) at radius R = R+ and the minimum value of energy
U (R) at radius R−.

For the further speculations, it is convenient to introduce
the dimensionless units according to r = R/Rc and p = P/Pc.
Then we have for the potential energy

U (R) = 4πσR2
cu(r), u(r) = r2 + 1

5r2
− 8

15
pr3.

The numerical estimate for the dimension factor yields the
very large magnitude 4πσR2

c = 2350 K as compared with one
kelvin. For 3He, this factor is somewhat smaller, being about
1700 K.

The plot �u(p) = u(r+) − u(r−) is given in Fig. 3. The
limiting expressions for �u, r−, and r+ are the following:

r− ≈ 1

51/4

(
1 + p

55/4

)
, r+ ≈ 5

4p
, �u(p) ≈ 25

48p2
, p � 1;

and for p → 1,

r− ≈ 1 −
√

2
5 (1 − p), r+ ≈ 1 +

√
2
5 (1 − p),

�u(p) ≈ 16
3

[
2
5 (1 − p)

]3/2
, 1 − p � 1.

It is obviously expected that the cavitation rate should enhance
drastically as p → 1 as a result of vanishing the potential
barrier.

In order to estimate the frequency ν of attempts, we employ
the Rayleigh-Plesset Lagrangian [22]

L(R, Ṙ) = 1
2 M(R)Ṙ2 − U (R), M(R) = 4πρR3, (1)

where ρ is the density of liquid. This Lagrangian describes the
bubble dynamics as a mechanical motion of a particle with the
variable mass M(R) according to equation

M(R)R̈ + 1
2 M ′(R)Ṙ2 + U ′(R) = 0.

Here it is convenient to introduce the dimensionless time

t → t/τc where τc =
√

ρR3
c

σ

with the numerical magnitude τc ≈ 1.0 × 10−10 s for 4He and
1.4 × 10−10 s for 3He. Next, the Lagrangian takes the simple
dimensionless form

L(R, Ṙ) = 4πσR2
c l (r, ṙ), l (r, ṙ) = 1

2 r3ṙ2 − u(r).

Let us estimate the frequency of attempts from relation
2πν = ω(r−) where ω(r−) is the frequency of small ampli-
tude oscillations in the vicinity of potential energy minimum
at r = r−. Correspondingly, taking u′′(r−) = 8(1 − pr−) into
account, we have

ω(r−) =
√

u′′(r−)

r3−
=

⎧⎨
⎩

803/8 ≈ 26.7, p � 1,(
128

5
(1 − p)

)1/4

, 1 − p � 1.

In the dimensional units, we have ν = ω(r−)/(2πτc). In order
to provide the given classical cavitation rate �cl, we should ap-
proximately satisfy the following condition which, in essence,
determines the rapid cavitation line as a relation between the
temperature and the pressure magnitude

ω(r−) exp(−4πσR2
c�u(p)/T ) ∼ 2πτc�cl = const.
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As a result of very strong inequality 4πσR2
c � T , in the

thermal activation regime the experimentally reasonable cav-
itation rate of about 1 event/min at T ∼ 1 K can only be
provided for the close vicinity to the critical pressure. In fact,
the numerical estimate yields the small magnitude 1 − pcl ∼
0.04. The pressure-temperature dependence of the rapid cav-
itation line can readily be estimated from the approximate
condition for constancy of exponent �U (p)/T ≈ const, re-
sulting in

1 − pcl ∼ 0.04T 2/3, if 1 − pcl � 1 (T in K) (2)

and pcl ∼ T −1/2 in the pressure p � 1 region where the cavi-
tation rate is negligibly small for the experimental observation
time.

IV. QUANTUM CAVITATION RATE

As the temperature approaches absolute zero, the quantum
fluctuations become predominant over the thermal ones. To
estimate the quantum cavitation rate, we first employ the
theory of quantum nucleation in the dissipationless approxi-
mation [9] and start from the case of zero temperature. Within
the exponential accuracy the quantum cavitation rate in the
semiclassical approximation reads as

�q = ν exp(−A/h̄). (3)

Here ν is the attempt frequency and A is the doubled un-
derbarrier action in the potential U (R). According to the
Rayleigh-Plesset Lagrangian (1), the bubble growth can be
treated as a motion of particle of mass M(R) in the potential
U (R). Then, we calculate the so-called effective action A
corresponding to the classical turning points R− and Rq in the
potential U (R) as

A(p) = 2
∫ Rq

R−

√
2M(R)[U (R) − U (R−)] dR (4)

where Rq is the quantum critical radius or the exit point
from the potential barrier determined from equation U (Rq) =
U (R−). Going over to the dimensionless units and dimension-
less effective action a(p), we arrive at

A(p) = 4πσR2
cτc

∫ rq

r−
2
√

2r3[u(r) − u(r−)] dr

= 4πσR2
cτca(p). (5)

The estimate gives the large numerical factor 4πσR2
cτc/h̄ ≈

3 × 104 approximately same for 4He and for 3He. Note also
that the time duration of underbarrier tunneling evolution is
about τc.

The analytical expressions for the effective action are suc-
ceeded to find in the two limiting cases. For the small pressure
magnitudes p � 1, we have approximately the quantum criti-
cal radius rq = 15/8p and

a(p) = 5π
√

2

64
r7/2

q = 5π
√

2

64

(
15

8p

)7/2

(p � 1).

As we can see, the quantum cavitation rate is extremely low
on the reasonable experimental timescale due to enormously
large exponent A/h̄. The smallness exp(−A/h̄) cannot be

FIG. 4. The dimensionless effective action a(p) =
A(p)/(4πσR2

cτc ) at T = 0 vs the normalized pressure p = P/Pc in
units of critical pressure Pc.

compensated by the preexponential attempt frequency factor
ν until the pressure is close to the critical one.

Let us turn to the other limit when the pressure is close
to the critical one, i.e. 1 − p � 1. In this case the potential
barrier, separating two states, vanishes. The potential u(r) can
be approximated with a cubic parabola

u(r) = u(r−) + 4
(

2
5 (1 − p)

)1/2
(r − r−)2 − 4

3 (r − r−)3.

As p → 1, the distance between the entrance r− and exit rq

points reduces to

rq − r− = 3
√

2(1 − p)/5.

With the aid of Eq. (5) the effective dimensionless action a(p)
can be estimated as

a(p) = 2
∫ rq

r−

√
2r3[u(r) − u(r−)] dr

≈ 2
√

2

rq−r−∫
0

[√
32(1 − p)

5
ξ 2 − 4

3
ξ 3

]1/2

dξ

= 48
√

2

5

[
2

5
(1 − p)

]5/4

.

Within our approximation we have neglected the coordinate
dependence of the bubble mass and put approximately r− = 1.
Recalling the dimensional units, we arrive finally at

A(p) = 4πσR2
cτc

48
√

2

5

[
2

5
(1 − p)

]5/4

, 1 − p � 1.

The plot of dimensionless effective action a(p) is sketched in
Fig. 4.

We see that the effective action vanishes with approach-
ing the critical pressure Pc. Accordingly, the probability of
quantum cavitation increases noticeably. However, in order to
provide the cavitation rate of about one event per minute, we
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should approach the critical pressure magnitude as very close
as 1 − pq ≈ 0.0012.

Treating the finite temperature effect on the quantum cavi-
tation rate, we must involve the possible competition between
the probabilities of quantum tunneling and thermal activation.
Thus we must consider the minimum of the following effec-
tive action:

A(E ) = 2
∫ R2(E )

R1(E )

√
2M(R)[U (R) − E ] dR + h̄E/T,

where the radii R1(E ) and R2(E ) are the entrance and exit
points of underbarrier motion corresponding to energy E . The
minimum of action A(E ) is attained at energy E∗ = E∗(T )
related to the underbarrier path which period

2
∫ R2(E∗ )

R1(E∗ )

√
M(R)

2[U (R) − E∗]
dR = h̄

T

equals the inverse temperature multiplied by the Planck con-
stant. Then we find �q(T ) = ν exp(−A(E∗)/h̄). The finite
temperature leads to reducing the magnitude of effective ac-
tion and, accordingly, enhancing the cavitation rate. However,
the relative magnitude of such temperature correction, is not
large and proves to be a few percents as a maximum at the
quantum-thermal crossover temperature.

Here we have performed the estimate of the quantum
cavitation rate within the framework of the energy dissipa-
tionless model [9]. The dissipationless approximation does
not take the possible dissipative processes such as viscosity,
heat conduction, and sound emission into account. The energy
dissipative processes accompanying the inception and growth
of bubbles may result in appearing additional temperature-
dependent effects in the quantum cavitation regime.

V. THERMAL-QUANTUM CROSSOVER TEMPERATURE

The next important point in the low temperature cavitation
is a crossover temperature Tq between the quantum and clas-
sical regimes. The thermal-quantum crossover temperature Tq

must be determined from equating the classical �U/T and
quantum A(E∗) exponents

Tq = h̄�U

A
(
E∗(Tq)

) . (6)

The total behavior of crossover temperature is shown as a
function of pressure in Fig. 5.

For the sake of clarity and in order to have some analytical
expression, we may estimate the quantum-thermal crossover
temperature using the simple approximation A(T ) ≈ A(0).
Then we have

Tq(p) ≈ h̄�U

A(T = 0)
= h̄

τc

�u(p)

a(p)
= 76

�u(p)

a(p)
(in mK). (7)

Obviously, this estimate yields the smaller magnitude of
crossover temperature. The behavior Tq(p) thus estimated
repeats that in Fig. 5. The most discrepancy accumulates at
p ∼ 0.9 and reaches about 8%.

FIG. 5. The various regimes of cavitation on a single electron
bubble in liquid helium. The solid line shows the thermal-quantum
crossover temperature Tq in units h̄/τc as a function of normalized
pressure p = P/Pc. The dashed line indicates the critical pressure
separating the metastable states from absolutely unstable ones. The
crossover temperature maximum is about 0.12h̄/τc at about at p =
0.92.

Let us give the analytical expressions in two limiting cases.
For the small magnitudes of pressure p � 1, we have

Tq = h̄

τc

128
√

2

135π

(
8p

15

)3/2

≈ 0.17
h̄

τc
p3/2 ∼ 13p3/2 (in mK).

In the close vicinity to the critical pressure 1 − p � 1, we
obtain the following behavior:

Tq = h̄

τc

5

9
√

2

[
2

5
(1 − p)

]1/4

≈ 0.31
h̄

τc
(1 − p)1/4 ∼ 24(1 − p)1/4 (in mK).

The numerical estimate of crossover temperature max-
imum gives about 11 mK for 4He, being approximately
by factor 1.4 as higher as for 3He. Here we remind that
the crossover temperature Tq is proportional to the factor
σ 7/8ρ−1/2. On the whole, such estimate of crossover tem-
perature agrees fully with the calculations [17] using the
same model for the structure of a single electron bubble but
the criterion of classical path instability. The latter criterion
[18,19] gives the same crossover temperature or somewhat
lower, depending on whether continuous or discontinuous
transition from the classical path to the quantum-mechanical
one. Note here that the crossover temperature maximum Tq,max

is noticeably shifted in the direction to the critical pressure
(Fig. 5).

Another specific feature, inherent in first-order phase tran-
sitions near the absolutely unstable or critical line, is that the
nucleation mechanism becomes again the thermal one instead
of quantum as a function of phase imbalance in the immediate
vicinity to the absolute instability of metastable phase, i.e.,
spinodal. This situation occurs even though the temperature T
is lower than the maximum crossover temperature Tq,max and
results from vanishing the potential barrier height.

To conclude the above sections, we would like to empha-
size that all the quantities, characterizing the bubble cavitation
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process in the dissipationless capillary model, are the univer-
sal functions of a single reduced pressure parameter p = P/Pc.

VI. ENERGY DISSIPATION AND SOUND
EMISSION EFFECTS

Below we consider the effect of dissipative phenomena
on the cavitation rate of electron bubbles which can be as-
sociated with viscosity and sound emission. In principle, one
can distinguish the hydrodynamical and ballistic regimes of
bubble growth. However, for the pressure magnitudes close to
the critical one, a possibility of hydrodynamical Rq � l (T )
regime, where l (T ) is the mean free path of elementary exci-
tations in a liquid, is unlikely since the quantum critical radius
Rq should not exceed several critical radii Rc. For the ballistic
Rq � l (T ) regime, one can suppose that the friction coeffi-
cient is directly proportional to the area of electron bubble
surface.

Let us write down the effective action Sef[Rτ , Ṙτ ] which ex-
tremum minimum value A = A(p, T ), satisfying the periodic
condition R(−h̄/2T ) = R(h̄/2T ), determines the cavitation
rate, cf. Ref. [23],

Sef[Rτ , Ṙτ ] =
∫ h̄/2T

−h̄/2T
dτ

[
1

2
M(Rτ )Ṙ2

τ + U (Rτ )

]

+ 1

4π

∫∫ h̄/2T

−h̄/2T
dτdτ ′

{
ρ

4π
u[A(Rτ ) − A(Rτ ′ )]2

− ρ

4πc
[V̇τ − V̇τ ′]2

}
(πT/h̄)2

sin2 πT (τ − τ ′)/h̄
. (8)

Here A(R) = 4πR2 is the area of the bubble surface, V =
4πR3/3 is the bubble volume, c is the sound velocity, and
u ∼ αvexρex/ρ is about the product of the typical velocity
vex of elementary excitations by their relative density ρex/ρ.
The numerical factor α ∼ 1 depends on the scattering and
interaction details of elementary excitations with the bubble
surface.

In general, the friction coefficient μ(R) can be represented
as

μ(R) = 16πηR f (R/l ),

where η ∼ ρexvexl (T ) is the viscous coefficient. Function f (x)
is dimensionless and

f (x) =
{

1, x � 1,

αx, x � 1.

Here α ∼ 1 is of order of unity and depends on the nature of
elementary excitations in the liquid and their interaction with
the surface of the bubble.

In the hydrodynamical R � l (T ) growth regime, the fric-
tion coefficient μ(R) = 16πηR corresponds to the drag force
F = −16πηRṘ which opposes the growth of the bubble. In
this case the drag force F is analogous to the Stokes formula
for a sphere.

To describe the dissipative viscous effect on the quantum
tunneling in the hydrodynamical R � l regime, we should
substitute the middle term in (8) for

1

4π

∫∫ h̄/2T

−h̄/2T
dτdτ ′ 64π

9
η
[
R3/2

τ − R3/2
τ ′

]2 (πT/h̄)2

sin2 πT (τ − τ ′)/h̄
.

The viscous dissipative contribution in the hydrodynamical
and ballistic regimes corresponds fully to the Caldeira-Leggett
theory of the dissipative effect on the macroscopic quantum
tunneling with the coordinate-dependent friction coefficient
μ(R) ∼ R or R2.

In superfluid 4He, where the energy dissipation is associ-
ated with the normal component density alone, the magnitude
of velocity u equals approximately u = cρn(T )/ρ. Here
ρn(T ) is the normal component density governed mainly
by phonons at low T < 0.5 K temperatures and ρn(T ) =
2π2T 4/(45h̄3c5), c being the sound velocity.

In normal fluid 3He the order of magnitude for velocity u
is about the Fermi velocity, i.e., u ∼ vF . The possible tem-
perature correction to zero temperature case is of the order
of (T/TF )2 where TF is the degenerate temperature. Under
condition Tq � TF we neglect this correction.

For convenience, we introduce the dimensionless temper-
ature T = T τc/h̄ and rewrite the effective action (8) in the
dimensionless representation Sef = 4πσR2

cτcaef[rτ , ṙτ ]. Then
we have

aef[rτ , ṙτ ] =
∫ 1/2T

−1/2T
dτ

[
1

2
r3
τ ṙ2

τ + u(rτ )

]

+ 1

4π

∫∫ 1/2T

−1/2T
dτdτ ′

{
uτc

Rc

[
r2
τ − r2

τ ′
]2

− Rc

cτc

[
r2
τ ṙτ − r2

τ ′ ṙτ ′
]2

}
(πT )2

sin2 πT (τ − τ ′)
. (9)

As one can see, the dissipative viscous effect reduces the
quantum cavitation rate and, correspondingly, the thermal-
quantum crossover temperature. On the contrary, the sound
emission facilitates the quantum mechanism of cavitation and
increases the crossover temperature. The scale of these effects
is governed by the magnitudes uτc/Rc and Rc/cτc, respec-
tively. It is necessary to note here that the sound emission term
is derived and valid in the Rc � cτc approximation.

Let us estimate the numerical values uτc/Rc and Rc/cτc. In
liquid 4He we have uτc/Rc ∼ 8.6ρn(T )/ρ which is negligibly
small and only the temperature behavior T 4 may be of interest.
As for Rc/cτc, it reaches about 0.12 as large. For liquid 3He
as compared with superfluid 4He, we evaluate uτc/Rc much
larger as about 2.6 and Rc/cτc as about 0.1 comparable with
that in 4He. Here we have approximated the sound velocity c
with its magnitude at zero pressure.

To understand these two physical effects on the thermal-
quantum crossover temperature Tq, we start first from
analyzing the stability of classical path r(τ ) = r+. We rep-
resent an arbitrary path

r(τ ) = r+ + x(τ )

in the vicinity of radius r+ corresponding to the maximum of
the potential energy u(r) and expand x(τ ) into a Fourier series
over the Matsubara frequencies ωn

x(τ ) = T
∑

n

xne−iωnτ , T = T τc

h̄
,

x−n = x∗
n, ωn = 2πnT , n = 0, ±1, ±2, . . .
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So, we have an expansion of effective action for small xn

aef[xn] = u(r+)

T + T
2

∑
n

αn|xn|2 + . . . (10)

Taking u′′(r+) = 8(1 − pr+) into account, we find the coeffi-
cients αn

αn = −8(pr+ − 1) + 4uτc

Rc
r2
+|ωn| + r3

+ω2
n − 9r4

+
Rc

cτc
|ωn|3.

As the temperature lowers, the coefficients α±1 vanish at some
temperature T1 determined by the equation

ω2
1 = 8

pr+ − 1

r3+
− 4uτc

Rc

ω1

r+
+ 9

Rc

cτc
r+ω3

1; T1 = ω1

2π
.

Below the temperature T1 the classical path r(τ ) = r+ is
absolutely unstable against the growth of mode x±1 since
it becomes α±1 < 0. The magnitude of effective action (10)
turns out to be smaller as compared with the classical one for
temperatures T < T1.

Provided c = ∞, the root ω1 = 2πT1 of the above equa-
tion can readily be found, resulting in the known relation, e.g.,
Refs. [5,24],

ω1 = �u =
√

ω2
0 + γ 2/4 − γ /2,

ω0 =
√

8
pr+ − 1

r3+
, γ = 4uτc

Rc

1

r+
. (11)

It is useful here to note the following point. The effect of
viscous dissipation on reducing the crossover temperature
may be essential in the vicinity zero P = 0 and critical Pc

pressures. In fact, in the limits p → 0 and p → 1, we may
expect inequalities ω0(p) � γ (p) and, correspondingly, T1 �
ω0/2π . For most interesting region of experiment in the vicin-
ity of critical pressure Pc, we must compare ω0 ∼ (1 − p)1/4

and uτc/Rc. Thus, in the region of pressures

1 − p �
(

uτc

Rc

)4

we can expect a noticeable reduction of the thermal-quantum
crossover temperature as compared with that in the dis-
sipationless approximation. Obviously, this effect can be
significant in normal fluid 3He unlike superfluid 4He.

The finiteness of sound velocity results in the positive
correction to frequency ω1 (11)

ω1 ≈ �u

(
1 + 9Rcr+

cτc

�3
u

�2
u + ω2

0

)

and, on the whole, increases the crossover temperature. How-
ever, both for 3He and 4He, we do not expect a strong effect
near the critical pressure Pc because both frequencies ω0 and
�u vanish as p → 1, entailing a minor magnitude of the sound
emission effect.

The thermal-quantum crossover temperature Tq equals T1

if the magnitude of the effective action goes over smoothly
to the Arrhenius exponent or becomes somewhat higher than
T1 if the transition from the classical to quantum path has a
discontinuous and jump-like character, i.e., Tq � T1. To deter-
mine the type of the classical-to-quantum path transition, it is

necessary to involve the terms xn of third and fourth order in
expansion (10) into consideration.

The temperature T1 at which the classical path becomes
unstable depends on the cavitation pressure since r+ = r+(p).
For the qualitative and satisfactory estimate of the crossover
temperature, we can put Tq ≈ T1. As we see, the dissipative
viscous effect decreases the crossover temperature and, on
the contrary, the sound emission with the growing bubble
increases the crossover temperature.

Expanding the kernel

(πT )2

sin2 πT (τ − τ ′)
= 1

(τ − τ ′)2
+ (πT )2

3

+ (πT )4

15
(τ − τ ′)2 + . . .

in the effective action (9) as T → 0, we can estimate the
energy dissipation and sound emission corrections at low
temperature limit T � Tq. Accordingly, we have for the zero
temperature contributions to the effective action in the dissi-
pationless model

�a0 = uτc

4πRc

∫∫
dτdτ ′

[
r2
τ − r2

τ ′
]2

(τ − τ ′)2

− Rc

4πcτc

∫∫
dτdτ ′

[
r2
τ ṙτ − r2

τ ′ ṙτ ′
]2

(τ − τ ′)2
. (12)

At zero temperature the energy dissipation term increases the
effective action aef by about uτc/Rc and, correspondingly,
reduces the quantum cavitation rate. This is a signature of
increasing the tunneling distance under potential barrier as a
result of energy dissipation [19,24]. The effect can be notice-
able in normal fluid 3He and is absent in superfluid 4He. On
the contrary, the sound emission effect takes place in both 3He
and 4He, reducing the effective action by about Rc/cτc and
enhancing the quantum cavitation rate.

Compared with the dissipationless consideration, most im-
portant effect of the dissipation and sound emission terms is
that they contribute the explicit temperature dependence to
the effective action, different in 3He and 4He and, thus, are
interesting from the experimental point of view. We involve
here the first nonvanishing terms alone in the temperature
expansion. Then we have

�aT = (πT )2

3

uτc

4πRc

∫∫
dτdτ ′[r2

τ − r2
τ ′
]2

− (πT )4

15

Rc

4πcτc

∫∫
dτdτ ′[r2

τ ṙτ − r2
τ ′ ṙτ ′

]2
(τ − τ ′)2

(13)

Let us discuss first the qualitative aspects of the above for-
mulas (12) and (13). From the experimental point of view the
most interesting aspect here is the possible low temperature
behavior of the effective action determining the exponent in
the formula (3) for the quantum cavitation rate.

In superfluid 4He we have u(T ) ∼ T 4. As a result, we
find two terms proportional to T 4, one is the first in (12)
and the other is the second in (13). These two terms give
the contributions of the opposite signs. Comparing these two
contributions and estimating numerically, we find that for the
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critical radius

Rc �
(

2σ h̄

3π2ρ2c3

)1/5

∼ 1 Å,

the sound emission contribution predominates over the dis-
sipative one associated with the phonon normal component.
Since the critical radius Rc of electron bubble is about 28
Å, the total contribution to the effective action proves to be
negative. Thus we can assert that the cavitation rate �q(T ) in
the quantum T < Tq regime enhances as compared with that
�q(0) at zero temperature in accordance with

ln
�q(T )

�q(0)
∼ ks(p)

(
T

Tq

)4 Rc

cτc
.

This means that the cavitation rate �q(T ) in superfluid 4He
should display the small temperature dependence in the quan-
tum T < Tq regime along with its small enhancement at the
crossover to the thermal activation regime.

Let us turn now to the case of normal fluid 3He. Again,
most interesting point here is the low temperature behavior
of the cavitation rate �q(T ) in the quantum regime. Here,
the main dependence at low temperatures arises from the first
term in (13). In contrast to the 4He case, this term entails the
positive-sign contribution to the effective action, meaning that
the cavitation rate �q(T ) in the quantum regime diminishes as
compared with that �q(0) at T = 0. Accordingly, involving
u ∼ vF , we arrive at the following behavior

ln
�q(T )

�q(0)
∼ ku(p)

(
T

Tq

)2
vF τc

Rc

in the low T < Tq temperature region. As is well known from
the general theory of macroscopic quantum tunneling [19,24],
the presence of Ohmic dissipation always tends to suppress
quantum tunneling and the suppression factor is uniquely
related to the dissipation constant.

The manifestation of sound emission term in (13) in the
temperature behavior of the quantum cavitation rate may re-
quire relatively high temperatures as T � h̄

√
vF c/Rc ∼ 1 K.

The latter temperature in 3He exceeds noticeably the thermal-
quantum crossover temperature Tq and, correspondingly, the
temperature effect of sound emission in the quantum regime
can hardly be detectable. As a consequence, the cavitation
rate �(T ) in normal 3He should exhibit small minimum at the
thermal-quantum crossover temperature.

VII. RAPID CAVITATION LINE

Below we discuss some consequences from the specula-
tions above. First, we analyze in kind the possible positions
of the rapid cavitation line or cavitation threshold in the T -P
diagram of cavitation regimes. The rapid cavitation line exists
as a result of very drastic dependence of cavitation rate on
the pressure and temperature. The rapid cavitation line sep-
arates the region where the cavitation rate is practically zero
and cavitation does not occur infinitely long on the timescale
of experimental period from the region where the cavitation
takes place almost instantaneously.

Let inception of a bubble occur in average for the expecta-
tion time tobs after preparing the metastable state Pc < P < 0

(a) (b)

FIG. 6. The schematic for the rapid cavitation lines (solid lines):
(a) low cavitation rate and large expectation time tobs and (b) high
cavitation rate and small expectation time tobs. The vertical dashed
line denotes the line of absolute instability or spinodal.

at temperature T . Then the cavitation probability for a single
electron bubble should approximately be equal to unity

W (P, T, tobs) ∼ tobs�(P, T ) ∼ 1.

Here rate � stands for either �cl or �q in the correspondence
with the temperature range. This equation determines the
rapid cavitation line T (P) in the T -P diagram (Fig. 6) and
corresponds to the experimentally achievable magnitude of
pressure.

For the cavitation probability, we have

W =
{

tobsν exp(−�U/T ) if T > Tq(P),
tobsν exp(−A/h̄) if T < Tq(P).

Hence one can see that the position of the rapid cavitation
line depends on the temperature and the rate of sweeping the
pressure in liquid.

Depending on the expectation time tobs, one can discern
two opposite cases in the position of the rapid cavitation line
in the T -P diagram (Fig. 6). The first case is restricted with
the inequality

ln(νtobs) � 4πσR2
cτc/h̄ (14)

and implies the limit of low cavitation rates, i.e., small
1/tobs. This corresponds to the large lifetime of a single elec-
tron bubble against its cavitation. In this case [Fig. 6(a)],
the rapid cavitation line lies far from the critical pressure
Pc. Therefore the existence of the critical pressure has no
significant effect on the cavitation dynamics. In the clas-
sical thermal activation region, the cavitation pressure is
strongly temperature-dependent according to |P| ∝ 1/T 1/2. In
the quantum T < Tq region, the attainable cavitation pres-
sure is almost independent of temperature. Correspondingly,
the crossover temperature Tq, proportional to |P|3/2, is sig-
nificantly smaller than the maximum crossover temperature
Tq, max.

For the opposite case of high cavitation rates when in-
equality (14) is invalid, the existence of instability affects
essentially the position of the rapid nucleation line at suf-
ficiently low temperatures [Fig. 6(b)]. As the temperature
lowers, the rapid cavitation line should approach closer the
instability line since the smallness of potential barrier can
compensate a decrease of temperature in the classical expo-
nent, providing us the high cavitation rates. As a result, in the
thermal activation regime, the temperature behavior for the
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cavitation pressure should go over from drastic |P| ∝ 1/T 1/2

to the smoother one

P = 1 − (
T/T�

)2/3

in the low temperature region if T � Tq, max. Here T∗ is some
typical temperature which can be determined from Eq. (2)
with the classical exponent at p → 1. From the experimental
point of view, this distinctive feature, associated with the
closeness to the critical pressure Pc, can deliver some trouble
in determining the crossover temperature between the clas-
sical and quantum regimes, imitating the genuine crossover
with the transition to almost temperature-independent behav-
ior for the observable imbalance of a bubble.

Another specific feature is associated with the presence
of two regions for the thermal activation regime at various
pressures P for the same temperature T < Tq, max (Fig. 5).
However, as is seen from Figs. 6(a) and 6(b), the observa-
tion of such reentrant behavior is impossible under the fixed
cavitation rate.

VIII. SUMMARY

The single electron bubbles in liquid helium play a role
of nucleation sites facilitating the inception and cavitation of
gas bubbles. The experimental realization and observation of
such bubble cavitation at sufficiently low temperatures allow
one to study the macroscopic quantum nucleation phenomena.
In fact, below the thermal-quantum crossover temperature the
classical activation mechanism becomes ineffective and the
quantum tunneling one is predominant. In this paper, we have
attempted to motivate, define and discuss the question: what
is the influence of energy dissipation and sound emission
accompanying the bubble growth on the quantum cavitation
in liquid helium?

To our mind, the most intriguing point for experimental
systematic study is that the dissipative processes and sound
emission are responsible for the temperature behavior of the
cavitation rate in the quantum regime. The temperature be-
havior of quantum nucleation probability of electron bubbles
in liquid helium is strongly dependent on whether the liquid
is superfluid 4He or normal fluid 3He. In superfluid 4He, the
sound emission effect prevails over the viscous dissipation due
to small density of normal component and facilitates the bub-
ble cavitation as compared with the dissipationless models. In
contrast, in normal fluid 3He the viscous dissipative processes
are predominant and decelerate the quantum cavitation rate.
The temperature behavior of cavitation rate in 3He and 4He
differs in kind as well. Unlike superfluid 4He, the cavitation
rate in normal 3He should exhibit a small minimum in the
region of the quantum-thermal crossover temperature.

The important characteristic for the nucleation dynamics is
the thermal-quantum crossover temperature. Under conditions
of small number of experimental nucleation events, the rapid
nucleation line is commonly determined. Its position in the
temperature-pressure diagram depends on the time of obser-
vation or rate of pressure sweep. The higher pressure sweep
rate allows one to advance towards the absolute instability or
spinodal.

FIG. 7. The schematic of probability function � vs x.

APPENDIX: STOCHASTIC ELEMENTS OF NUCLEATION

The transition from the metastable state to stable one starts
from the fluctuating inception of a stable nucleus and has
a probabilistic and stochastic character. Accordingly, to de-
scribe the transition kinetics, it is necessary to introduce a
transition probability function. Let x be physical parameter re-
sponsible for the transition, e.g., pressure or temperature. Let
x = 0 imply the equilibrium state and x > 0 correspond to the
region of metastability and decay. As usual, the experimental
observation procedure consists in the gradual increase of pa-
rameter x = x(t ) with the next record of emerging the stable
phase at some value x(t ) attained at the corresponding time
moment t . When the experiment is reiterated, the expectation
time t as well as parameter x, in general, will be other ones.

The probability of nucleating the stable state between t and
t + dt can be connected with the nucleation rate �(x) as

d� = (1 − �)� dt

or, using dx = ẋdt , as

d� = (1 − �)�
dx

ẋ
.

Taking into account that the nucleation probability �(x) van-
ishes in the stable region, i.e., �(x � 0) = 0, we arrive at the
nucleation probability at the given value of parameter x

�(x) = 1 − exp

(
−

∫ x

0

�(x)

ẋ
dx

)
.

Since the nucleation probability �(x) should drastically en-
hances as parameter x increases, the plot of nucleation
probability � as a function of parameter x resembles the S-
shaped curve varying from zero to unity (Fig. 7). The similar
curves are observed in the cavitation experiments in liquid
helium, e.g., Refs. [3,25].

Let us introduce the probability density p(x) according to

p(x) = d�/dx,

which has the meaning of nucleation frequency as a ratio
of the number of nucleation events recorded at the given
value x to the total number of nucleation events. In principle,
the measurement p(x) allows one to determine the rate �(x)
describing the decay probability of metastable state. The qual-
itative behavior of curve p(x) or histogram for the number of
events is shown in Fig. 8 and has a maximum at some value x̄
corresponding to the most probable nucleation of stable phase.
The similar histograms are observed, for example, in the
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FIG. 8. The schematic for the histogram of nucleation probabil-
ity p(x) = d�(x)/dx vs x.

experiments on crystallization of overpressurized superfluid
helium [1] or phase separation of supersaturated 3He - 4He
mixtures [6]. The main demerit of these histograms obtained
is the small number of measurements and, correspondingly,
large statistical error preventing from the reliable determina-
tion of nucleation rate �(x).

As a rule, due to strong exponential dependence on x,
the width �x of distribution p(x) is not large as compared
with the mean value x̄, i.e., �x � x̄. In this case, the most
of experimental points concentrate within the narrow region
near x̄. In this way, the position of rapid nucleation line or
nucleation threshold is determined in experiment. In essence,
the rapid nucleation line separates the metastable states into
two regions from the viewpoint of typical timescale of ex-
perimental observation. The position of rapid nucleation line
depends on the sweeping rate ẋ(t ). The enhancement of rate
ẋ(t ) allows us to progress to the region of larger values x.

Let us find the nucleation threshold x̄ from condition
d p(x)/dx = 0 and estimate the half width of distribution p(x).
For this purpose, it is convenient to expand ln p(x) near x = x̄.
Then we have approximately

p(x) ≈ p(x̄) exp

(
− 1

2
(x − x̄)2 d2 ln p(x̄)

dx2

)
,

where the threshold x̄ satisfies the equation

�(x)

ẋ
− �′(x)

�(x)
+ ẋ′

ẋ
= 0.

The half width �x of distribution is given by

�x =
(

8 ln 2

d2 ln p(x̄)/dx2

)1/2

,

where

d2 ln p(x̄)

dx2
= �′′

�
− �′2

�2
− �′

ẋ
+ �′

�

ẋ′

ẋ
− ẋ′′

ẋ
.

Suppose that x(t ) ∝ t or ẋ = const in experiment. Then the
threshold of rapid nucleation x̄ is determined from

ẋ�′(x) = �2(x)

and the half width is given by

(�x)2 = 8 ln 2
�2

2�′2 − ��′′ .

The cavitation rate far from the absolute instability can satis-
factorily be approximated by the exponential function like

�(x) = ν exp[−A(x)] and A(x) = (x0/x)n.

Then we find straightforwardly the half width of distribution

(�x)2 = 8 ln 2

n
x2

0
(x̄/x0)n

n + 1 + n(x0/x̄)n
,

where x̄ is the value at the maximum of distribution p(x)
satisfying the equation

e−(x0/x̄)n = nẋ

νx0

(
x0

x̄

)n+1

.

(i) Consider first the case of large sweeping rate ẋ � νx0/n.
Then we have

x̄ ≈ x0

(
nẋ

νx0

) 1
n+1

and (�x)2 ≈ 8 ln 2

n(n + 1
x2

0

(
nẋ

νx0

) n+2
n+1

.

The high sweeping rate allows one to penetrate to the region
of higher values of parameter x as x̄ � x0 and x̄ ∝ xn/(n+1)

0 .
(ii) In the case of low sweeping rate ẋ � νx0/n, the achiev-

able values x becomes much smaller and the distribution p(x)
narrows noticeably as

x̄ ≈ x0

ln(νx0/nẋ)
� x0,

(�x)2 ≈ 8 ln 2

n2

x2
0

[ln(νx0/nẋ)](2n+2)/n
� x2

0 .

On the neglect of slow logarithmical dependence on x0 in
the denominator we have x̄ ∝ x0 or x0/x̄ ≈ const. The latter
means that in this case (ii) we can employ the condition of
constancy for the exponent A(x) ≈ const in the cavitation rate
� = ν exp[−A(x)].

In the first case (i) the condition of constancy of deriva-
tive A′(x) ≈ const determines the functional dependence of
achievable value x̄ as a function rate ẋ.

Let us turn now the case of close vicinity xc − x � xc to the
critical pressure or absolute instability where the cavitation
rate is approximated with the formula

�(x) = ν exp
(−A(x)

)
, A(x) = a(xc − x)n.

Then the threshold of rapid cavitation satisfies the equation

exp[−a(xc − x)n] = (naẋ/ν)(xc − x)n−1.

(i) Again, we start from the case of high sweeping rate ẋ �
ν/(na1/n) and have

x̄ = xc −
(

ν

naẋ

) 1
n−1

,

(�x)2 = 8 ln 2

n(n − 1)

(
1

a

) 1
n−1

(
nẋ

ν

) n−2
n−1

.

(ii) For the low sweeping rate ẋ � ν/(na1/n), we find

x̄ = xc −
(

1

a
ln

ν

nẋa1/n

)1/n

,

(�x)2 = 8 ln 2

n2

(
1

a

)2/n( 1

ln ν
nẋa1/n

) 2n−2
n

.
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Similar to the previous case the functional dependence of
average value x̄ on rate ẋ is approximately determined by
equality A′(x) ≈ const in case (i) and by condition A(x) ≈
const in case (ii). For n = 1, we have the simple expressions

x̄ = xc − 1

a
ln

ν

aẋ
, (�x)2 = 8 ln 2

a2
.

The enhancement of sweeping rate ẋ permits to reach
the region of larger values x and shift the rapid cav-
itation threshold in the direction of absolute line or
critical pressure. At the same time the width �x of his-
togram for the probability distribution p(x) increases as
well.
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