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Giant electromagnetic proximity effect in superconductor/ferromagnet superlattices
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We show that in superlattices with alternating superconducting (S) and ferromagnetic (F) layers the sponta-
neous magnetic field induced in the superconducting layers due to the electromagnetic proximity effect becomes
dramatically enhanced compared to the previously studied S/F bilayers. The effect reveals itself for the in-plane
orientation of the magnetic moments, both for ferromagnetic and antiferromagnetic ordering of the moments in
the F layers. In the finite-size samples the magnetic field decays from the sample surface towards the bulk of
the structure and the decay length strongly depends on the relative orientation of the sample surface, the layers
planes and magnetic moments in the F layers. The obtained results provide additional insights into experimental
data on the neutron scattering in Nb/Gd superlattices.

DOI: 10.1103/PhysRevB.105.064510

I. INTRODUCTION

The proximity effect in superconductor (S)–ferromagnet
(F) hybrid structures is known to be responsible for the rich
variety of exciting interference phenomena affecting the ther-
modynamic and transport properties of these systems [1–5].
The Cooper pairs penetrating the ferromagnet change their
spin structure and become spin-polarized under the effect of
the exchange field so that the superconducting correlation
function contains both spin-singlet and spin-triplet compo-
nents. This spin transformation results in the nonmonotonous
dependence of the critical temperature and the in-plane critical
current on the F layer thickness in planar S/F structures [6–9],
the formation of Josephson π -junctions [10,11], increase in
the electronic density of states at the Fermi level [12–15],
and so on. At the same time, the F layer affects the super-
conductor by inducing different types of magnetic ordering
there. There are two dominating mechanisms responsible for
this back-action. The first one is related to the penetration of
the spin-polarized Cooper pairs from the ferromagnet back
to the superconductor (the so-called inverse proximity effect)
[16–25]. The resulting spin polarization in the S layer is lo-
calized at the scale of the Cooper pair diffusion length near
the S/F interface, which has the order of the superconducting
coherence length ξs. The second mechanism originates from
the effect of the stray magnetic fields produced by nonuniform
magnetization of the ferromagnet revealing through the gener-
ation of the Meissner screening currents and vortex structure
in the adjacent superconductor (see, e.g., Refs. [26–28] and
Ref. [29] for a review). Note that for S/F structures with the
uniform in-plane magnetization in the F layers both mecha-
nisms predict negligibly small magnetic fields arising in the
S subsystem at distances much larger than ξs from the S/F
interface.

However, the recent theoretical and experimental works
[30–34] unveiled one more unusual consequence of the prox-
imity effect in S/F structures which is responsible for the
anomalous enhancement of the stray magnetic fields gen-
erated in the superconducting subsystem even for the case
of uniform in-plane magnetization in the F layer. This phe-
nomenon, called an electromagnetic proximity effect (EPE),
is based on the fact that the Cooper pairs penetrating into
the F layer interact with the magnetization field 4πM, which
results in a formation of Meissner screening current inside the
ferromagnet. This current induces an additional magnetic field
which penetrates the superconductor and becomes screened
at a distance of the order of the London penetration depth
λ, which strongly exceeds the Cooper pair diffusion length
ξs in type-II superconductors. Such anomalous long-range
spread of the magnetic field into the superconducting part of
S/F systems should naturally affect the operation regimes of
various logical, memory. and quantum computing elements of
superconducting spintronics [3]. In these devices the penetra-
tion of the stray magnetic field into the superconductor is often
considered as an undesirable effect because it leads to the
uncontrollable generation of the Meissner currents and pos-
sible vortex entrance. On the other hand, the sensitivity of the
EPE to the magnetic moment configuration [31] may provide
additional mechanisms for the control of the superconducting
properties of the cryogenic S/F devices.

Experimentally, EPE reveals itself in an additional long-
range magnetic field arising inside the S layer which can
be detected via a superconducting quantum interference de-
vice (SQUID) magnetometry [35,36], in the polar Kerr effect
measurements [37]. Even more detailed information about
the spatial distribution of the magnetic field in the layered
S/F structures can be extracted from the low-energy muon
spin-rotation experiments [33,34,38–40] or neutron scattering
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measurements [41–43]. In these experiments, the temperature
decrease below the superconducting critical temperature is
accompanied by the generation of the magnetic field outside
the F layers penetrating the superconducting subsystem at the
lengthscale comparable to the London penetration depth and
substantially larger than the coherence length. In addition,
in S/F1/F2 structures the amplitude of the induced magnetic
field was shown to become enhanced for the perpendicular
mutual orientation of magnetic moments in the F1 and F2

layers [38], which is in agreement with the theoretical cal-
culations of the EPE in such hybrids [31].

Note that the magnitude of the field B in S/F bilayers
emerging due to EPE appears to be small compared to the
magnetization field 4πM0 inside the ferromagnet (M0 is the
magnetization of the F layer). The ratio B/(4πM0) for typ-
ical S/F structures has the order of (ξ f /λ)2 ∼ 10−2 (ξ f is
the superconducting coherence length inside the ferromag-
net), so that in the systems where the F layer produces
the stray magnetic field due to the nonuniform magneti-
zation pattern the contribution from the EPE should be
small.

In this paper we show that the electromagnetic proxim-
ity effect becomes dramatically enhanced in the superlattices
consisting of alternating thin superconducting and ferromag-
netic layers as compared to the S/F bilayer system. Such
strengthening of the EPE arises from the additive contribu-
tions to the magnetic field coming from each F layer, and the
incremental growth of the spontaneous field becomes limited
only when the total thickness of the superlattice becomes of
the order of λ. As a result, the maximal ratio between the
spontaneous field and the magnetization field 4πM0 reaches
the value d f /(ds + d f ) where ds and d f are the thicknesses of
the S and F layers of the superlattice, respectively.

The physics of the EPE in S/F superlattices with ds, d f �
λ appears to be very similar to the one in the bulk ferromag-
netic superconductors with dominating orbital mechanism of
magnetic interaction [44]. Deep inside the sample (at dis-
tances much larger than λ from the faces) the magnetic field
averaged over the period of the superlattice should vanish
so that the magnetization field produced by F layers is to-
tally compensated by the Meissner currents. As a result, the
magnetic field in the S layer is BS = −4πM0d f /(ds + d f )
while inside the F layer it is equal to BF = 4πM0ds/(ds + d f ).
Remarkably, the lengthscale, which provides a transition from
the distribution B(r) near the sample surface to the bulk values
BF and BS , substantially depends on the relative orientation
of the sample surface, the S/F interfaces, and the magnetic
moment M in the F layers. Specifically, this decay length λ0 ∼√

〈λ2(r)〉 for the sample surface which is parallel to the M0

vector but perpendicular to the S and F layers (here the angular
brackets denote the spatial averaging over the period of the
S/F superlattice). Here λ(r) is the spatial profile of the local
London penetration depth which is typically nonuniform for
the structures with d f slightly exceeding the coherence length
ξ f inside the ferromagnet. At the same time, for the surface
parallel to the planes of the superlattice λ0 ∼ 1/

√
〈λ−2(r)〉.

Our calculation proves that the EPE effect in S/F superlattices
is of primary importance, in particular for the adequate inter-
pretation of the experimental data of the neutron scattering
measurements.

Finally, we demonstrate that the electromagnetic proximity
effect in S/F superlattices with the antiferromagnetic ordering
between the magnetic moment in the neighboring F layers can
result in a strong stray field penetrated into a thick supercon-
ductor adjacent to the superlattice. Naively, one can expect
that the EPE in such structures should be negligibly small
since the average magnetization is zero. However, the com-
pensation of the magnetic fields produced by the neighboring
F layers appears not to be full, and the resulting magnetic field
has the order of d f /λ, which is even larger than the magnetic
field generated in S/F bilayers.

Let us emphasize that the contribution of the inverse
proximity effect into the distribution of magnetization is not
taken into account in our calculations. This inverse proximity
effect is responsible for the spin polarization of electrons
and subsequent magnetization of the superconducting sur-
face layer with the width of the order of the Cooper pair
size, i.e., the superconducting coherence length ξs [17]. The
very generic estimate for the magnetization of the S layer
induced by the inverse proximity effect takes the form Ms ∼
μBn(Tc/h)(Tc/EF ) ∼ μBn × 10−5, where h is the exchange
field in the energy units, n is the electron concentration, and
μB is the Bohr magneton, Tc is a critical temperature of
an infinite superconductor and EF is its Fermi energy [31].
The relative contribution of this induced magnetization to the
magnetic-field distribution in S/F structures becomes small if
the magnetism originates from the localized spins, which is
typically of the order of the Bohr magneton μB per atom but
can be important if the magnetization in F layers is associated
with the itinerant electrons. In the later case of significant
spin polarization near the S/F boundary the corresponding
magnetic moment can partially compensate the magnetic mo-
ment of the F layers. Assuming both the coherence length
and the F layer thickness to be much smaller than the London
penetration depth one can easily take into account this partial
magnetic moment compensation replacing the bare magneti-
zation M0 in our expressions by the effective magnetization

FIG. 1. Sketch of S/F superlattice. The three types of surface
with different orientation with respect to the S/F interfaces and the
direction of magnetic moment in the F layers are indicated as I, II,
and III. The directions of the magnetic field and superconducting
currents are shown by the blue and red lines, respectively.
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averaged over the region of the F layer and the adjacent S
layer region of the thickness ∼ξs.

The paper is organized as follows. In Sec. II we discuss the
basic equations which allow to calculate the magnetic-field
profiles in multilayered S/F structures. In Sec. III we analyze
the electromagnetic proximity effect in the infinite S/F su-
perlattice and calculate the spatial distribution of the induced
magnetic field. In Sec. IV we analyze the magnetic-field pro-
files near the sample surface and calculate the characteristic
decay lengths corresponding to different orientations between
the sample surface, the S/F interfaces, and the magnetic mo-
ment direction in the F layers. In Sec. V we calculate the
magnetic field profiles for the S/F structures with the finite
number of periods N and compare the results with the recent
experimental data on the neutron scattering in Nb/Gd super-
lattices. In Sec. VI we demonstrate the presence of strong
EPE in S/F superlattices where the magnetic moments in
the neighboring F layers have opposite direction. Finally, in
Sec. VII we summarize our results.

II. MODEL

We consider the multilayer S/F structure consisting of the
identical S layers of the thickness ds � λ and the F layers of
the thickness d f � λ (see Fig. 1). The magnetization vectors
M in all F layers are assumed to have the same magnitude
M0 and to be directed along the y axis. Also we assume that
the sample has the form of the brick with the faces oriented
parallel or perpendicular to the layers and magnetization M.
They can be classified into three types (which are marked as I,
II, and III in Fig. 1) depending on their orientation with respect
to the S/F interfaces and the direction of the magnetization M
in the F layers, which is important for the future analysis.

To calculate the spatial profile of the magnetic field in-
duced due to EPE we use the standard London approach
assuming the local relation js(r) = −(c/4π )λ−2(r)A(r) be-
tween the superconducting current js and the vector potential
A which is typical for the systems in the dirty limit. The
Maxwell equation for the magnetic field B = rot A takes the
form

rot rot A + λ−2(r) A = 4π rot M. (1)

Here we take into account that the total current contains two
contributions j = js + jm where jm = c rot M is the magneti-
zation current flowing along the edges of the ferromagnetic
layers. The magnetization is taken in the form M = M(r)y0

with M(r) = M0 inside the F layers and M(r) = 0 elsewhere.
The Cooper pairs penetrating the ferromagnet induce the

superconducting correlations there. As a result, the screening
parameter λ−2 becomes nonzero inside the F layers. Our main
results do not depend on the specific form of the λ−2(x) profile
(x is the coordinate axis across the layers with the origin in the
center of the F layer), which is only assumed to be a periodic
function with the period d = ds + d f . However, to obtain the
quantitative results relevant for the specific S/F structure one
may use, e.g., the Usadel theory, which allows the calculation
of the function λ−2(x). As an illustration, let us consider
the limiting case when the exchange field exceeds the super-
conductor critical temperature h � Tc and the normal-state

conductivity σs of the S layers strongly exceeds the conductiv-
ity σ f of the F layers. Then from the well-known solution of
the linearized Usadel equation with the rigid boundary condi-
tions at the S/F interfaces [30] we find that inside the S layers
the London penetration depth λ(x) = λs = const. while in the
nth F layer occupying the region −d f /2 < (x − nd ) < d f /2
the screening parameter takes the form (see the Appendix for
the calculation details)

λ−2(x) = 1

λ2
s

Re

[
cosh2 q(x − nd )

cosh2 (qd f /2)

]
. (2)

Here q = √
2i/ξ f and ξ f is the coherence length inside the

ferromagnet. To provide an effective interaction of the su-
perconducting correlations through the F layers we assume
d f � ξ f in this paper.

III. SPONTANEOUS MAGNETIC FIELD IN S/F
SUPERLATTICES WITH LARGE NUMBER OF LAYERS

We start from the simplest case when all sizes of the S/F
superlattice strongly exceed the London penetration depth λ

and, thus, the typical scale of the magnetic field variations.
As a first step, let us calculate the distribution of the magnetic
field far (at distances much larger then λ) from the sample
surface where the superlattice can be considered as infinite.

To solve Eq. (1) deep in the bulk of the sample we may
choose the vector potential A = A(x)z0. Obviously, the valid-
ity of such an ansatz for A breaks down at distances � λ from
the sample surface. The later case will be considered in detail
in Sec. IV. Far from the surface Eq. (1) for the function A(x)
takes the form

A′′
xx(x) − λ−2(x)A = −4πM ′

x(x). (3)

Disregarding the edge effects we will search the spatially
periodic solution Ã(x) for the vector potential so that Ã(x +
d ) = Ã(x) where d = ds + d f . It is convenient to perform the
Fourier transform of all terms in Eq. (3):

Ã(x) =
∑

n

Ãn exp(iknx), k = 2π/d, (4)

4πM ′
x(x) = 8π iM0

d

∑
n

sin

(
knd f

2

)
exp(iknx), (5)

λ−2(x) =
∑

n

Ln exp(iknx). (6)

For the specific case when the origin of the x axis is cho-
sen in the middle of the F layer the coefficients Ln = L−n

are real [see the Appendix for the explicit expression for Ln

corresponding to the profile (2)]. Assuming d � λ we solve
the Eq. (3) perturbatively, keeping the terms up to the order
∼O[(d/λ)2]. The resulting expressions for the coefficients Ãn

read

Ã0 = 0, (7)

Ãn 	=0 = 4iM0

kn2

[
sin(kns) −

∑
m 	=0

Ln−m

k2m2
sin(kms)

]
, (8)

where s = d f /2.
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In Eq. (8) the dominant contribution comes from the first
term, which does not depend on λ. This vector potential cor-
responds to B = 4πM0ds/d inside each ferromagnetic layer
and B = −4πM0d f /d in a superconducting layer. Remark-
ably, the magnetic field averaged over the S/F period of the
superlattice 〈B〉 = 0. This regime is analogous to the one real-
ized in the ferromagnetic superconductors where the Meissner
currents fully compensate the magnetic field produced by
magnetization. The fact of such total compensation does not
depend on the specific magnitude of the London penetration
depth provided we consider the region far from the sample
surface.

The second term in Eq. (8) is a correction describing
the inhomogeneity of the Meissner screening currents at the
lengthscale of the order of d � λ. The resulting profile of the
magnetic field accounting for this correction takes the form

B̃(x) = 4π [M(x) − 〈M〉] +
∑

m,n 	=0

4M0Ln−m

k2m2n
eiknx sin(kms),

(9)

where 〈M〉 = M0d f /d is the magnetization averaged over the
S/F structure period and Ln are the Fourier harmonics of
λ−2(x). Although the effects coming from the inhomogeneity
of the Meissner currents are small for the structures with
d � λ they can become significant in the systems with d ∼ λ
where they may result in the smoothing of the meander-like
profiles of the magnetic field inside the superlattice.

IV. EDGE EFFECTS

In this section we take into account the finite dimensions of
the S/F superlattice and analyze the profiles of the magnetic
field near the sample surface of the three types shown in Fig. 2.
Although deep in the bulk of the sample the average magnetic
field vanishes (see Sec. III) near its surface it becomes nonzero
and its decay length depends on the type of surface.

We start from the case of the type-I surface which is paral-
lel to the S/F planes [Fig. 2(a)]. In this case the magnetic field
and the corresponding vector potential are directed along the
y and z axes, respectively, so that

B = B(x)y0, A = A(x)z0. (10)

Assuming that the total superlattice thickness strongly ex-
ceeds λ we consider the semi-infinite structure with alter-
nating S and F layers occupying the region x > −d f /2 and
a vacuum at x < −d f /2. Inside the S/F lattice the vector
potential satisfies Eq. (3). Searching the solution in the form

A(x) = Ã(x) +
∑

n

An exp[i(kn + q)x], (11)

and performing the Fourier transformation we get

(kn + q)2An +
∑

m

Ln−mAm = 0. (12)

This system has a nontrivial solution only provided

q = i
√

L0

(
1 −

∑
n>0

|Ln|2
L0k2n2

)
. (13)

Here we take into account that L−n = Ln. The value of q is
purely imaginary and the chosen sign of q corresponds to the

FIG. 2. Schematic profiles of the magnetic field and supercon-
ducting currents near the three types of the sample surface.

solution decaying towards the bulk of the sample. In the lead-
ing order over the small parameter (d/λs) the characteristic
decay length is λ0 = L−1/2

0 = 〈λ(x)−2〉−1/2.
The amplitudes An are defined by the boundary condition

reflecting the continuity of the magnetic field at the outer
boundaries of the sample

A′(−d f /2) = Bext + 4πM ≈ A′
h(−d f /2) + iqA0, (14)

A0 = −λ0

(
B + 4πM0

d f

d

)
, (15)

where Bext is the external magnetic field, which is assumed to
be directed along the y axis. The corresponding solution for
the magnetic field takes the form

B(x) = B̃(x) + (Bext + 4πM0d f /d ) exp(−x/λ0). (16)

Thus, near the type-I surface the magnetic field profile can be
well approximated by B(x) = Bext + 4πM(x) while far from
the surface the magnetic field profile is described by Eq. (9).

Now we turn to the analysis of the case of the type-II
surface [Fig. 2(b)]. The S/F structure is assumed to occupy
the half-space z < 0. In this case the magnetic field is directed
along the y axis while the vector potential has two components
in the xz plane

B = B(x, z)y0, A = Az(x, z)z0 + Ax(x, z)x0. (17)
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Far from the structure surface, i.e., at y → −∞, the supercon-
ducting current js and A have only one z component. However,
in the vicinity of the surface the x component should appear
to guarantee the current continuity condition div js = 0.

In this geometry it is more convenient to analyze the equa-
tion for the magnetic field H(r) = B(r) − 4πM(r) instead of
equations for B(r) or A(r). Inside the S/F structure H satisfies
the London-type equation

−rot (λ2rot H) − H = 4πM, (18)

and the boundary condition

Hy(z = 0) = Bext. (19)

We neglect a small oscillating component of H and apply a
perturbation approach with a small parameter (d/λ). In the
first order it gives the following expression for Hy:

Hy = −4π〈M〉 + (Bext + 4π〈M〉) exp(z/
√

〈λ2〉). (20)

The corresponding magnetic field inside the sample can be
restored by adding the F-layers magnetization field

By(x, y) = 4πM(x) + Hy(x, y). (21)

The type-II surface does not generate stray field so that the
magnetic field is equal to the external field, i.e., By = Bext.
Remarkably, from Eq. (20) one sees that the typical scale
characterizing the magnetic field decay for the type-II surface
differs from the one previously obtained for the type-I surface.
Specifically, for the type-II surface it is equal to 〈λ2〉1/2.

Finally, we turn to the case of the type-III surface. We
assume that the S/F structure occupies the half-space y < 0
[Fig. 2(c)]. In contrast to the previous cases, the S/F lattice
with the type-III boundary produces the nonzero stray mag-
netic fields outside the sample. The corresponding magnetic
field near the type-III structure surface lies in the xy plane
while vector potential and superconducting current js have
only the z-component

B = By(x, y)y0 + Bx(x, y)x0, A = A(x, y)z0. (22)

Applying the Fourier transformation to the A(x, y) profile

A(x, y) =
∑

n

An(y) exp(iknx), (23)

we obtain the following London equation:

∂2An

∂y2
− (kn)2An = �(−y)

[∑
m

Ln−mAm+4ikM0 sin(kns)

]
,

(24)

where �(y) is the Heaviside step function. To match the
solutions inside and outside the sample one needs to impose
the boundary condition, which requires the continuity of By

at the sample surface. Then neglecting the small contributions
∼O[(d/λs)2] the solution of Eq. (24) takes the form

A0 = 0, (25)

An = − 2iM0d

πn2
sin(kns)

[
�(−y) + sgn(y)

2
exp(−k|ny|)

]
.

(26)

The corresponding magnetic field reads

Byn(x) = 4M0

n
sin(kns)

[
�(−y) + sgn(y)

1

2
exp(−k|ny|)

]
,

(27)

Bxn(x) = 2iM0

n
sin(kns) exp(−k|ny|). (28)

Deep inside the sample (y → −∞) the magnetic field ap-
proaches Eq. (9) while outside the sample the stray magnetic
field decays at the scale of the order of d so that far from
the surface (at y → +∞) B → 0. At the same time, near the
type-III surface in the region of the thickness d the magnetic
field profile has the form schematically shown in Fig. 2(c). In
contrast to the previous cases, for an infinite type-III surface
the average over the structure period d superconducting cur-
rents are absent.

Thus, the magnetic field emerging due to the electromag-
netic proximity effect near the surface of the S/F superlattice
brick is sensitive to the relative orientation between the plane
of the boundary, the direction of magnetization in the F layers,
and the interfaces between the S and F layers.

V. GIANT ELECTROMAGNETIC PROXIMITY EFFECT IN
S/F STRUCTURES WITH FINITE NUMBER OF LAYERS

In this section we demonstrate that S/F superlattice with
large but finite number of layers enables dramatic enhance-
ment of the electromagnetic proximity effect as compared
to the previously studied S/F bilayers [30] and S/F/F spin
valve structures [31]. Specifically, in structures with S/F lat-
tices placed on top of the semi-infinite superconductor the
spontaneous magnetic field at the interface of the thick su-
perconductor can reach the values of the order of the F layers
magnetization M0 while in S/F systems such a field has the
order of (d f /λ)2M0 ∼ 10−2M0. To obtain such strong en-
hancement of the effect one needs to consider the S/F lattice
of the total thickness of the order of λs and d � λs.

In what follows we consider two types of structures: (i)
S/F lattice placed on top of the bulk superconductor and (ii)
isolated S/F superlattice surrounded by vacuum or insulator.
We assume that the superlattice has the finite number N of
S/F periods and the layers have the infinite lateral size. To
calculate the spatial profiles of the magnetic field in these
structures we apply the well-known transfer matrix method.
In particular, we solve the London equation inside each S/F
period, thus, obtaining the relations between the values of
the magnetic field H and the normalized vector potential
a = A/λ0 at the opposite sides of the S/F period [at nth and
(n + 1)th S/F interface, where n enumerates the S/F periods].
In this approach the difference between two types of struc-
tures described above is accounted for by different boundary
conditions at the interface between the superlattice and bulk
superconductor or vacuum.

To solve the London equation for the nth S/F bilayer we
choose a coordinate system shown in Fig. 3 so that the vector
potential and the magnetic field depend only on the coordinate
x across the layers: A = a(x)λ0z0 and H = H (x)y0. Taking
B = H + 4πM we integrate the relation rotA = B and the
London equation rotH = −λ−2(x)A along the x axis over the
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FIG. 3. Sketch illustrating the choice of the coordinate system
used for the description of the S/F lattice with finite number of
layers.

bilayer thickness d and obtain the following integral equa-
tions for the functions a(x) and H (x):

a(xn+1) = a(xn) −
∫ xn+1

xn

[H (x′) + 4πM(x′)]λ−1
0 dx′, (29)

H (xn+1) = H (xn) −
∫ xn+1

xn

λ−2(x′)λ0a(x′)dx′. (30)

Here the distribution λ(x) is determined by Eq. (2), xn and
xn+1 = xn + d are the coordinates of the neighboring S/F
interfaces chosen in a way that the nth S layer occupies the
region xn < x < xn + ds while the position of the nth F layer
corresponds to the region xn + ds < x < xn+1 (see Fig. 3).
These two linear equations establish the following relations
between the values a(xn) and H (xn) with the values a(xn+1)
and H (xn+1):

vn+1 = Ĉvn + m, (31)

where

vn =
(

a(xn)
H (xn)

)
, Ĉ =

(
1 + R P

P 1 + S

)
, (32)

m = 4πM0

(−d f /λ0

Q

)
. (33)

To get the values R, S, P, Q we solve the integral Eqs. (29) and
(30) using the perturbation approach with the small parameter
d/λ0 � 1. In the second order of the perturbation theory we
obtain

R =
∫ d

0

∫ x

0

dx′

λ2(x′)
dx, P = − d

λ0
, (34)

S =
∫ d

0

xdx

λ2(x)
, Q =

∫ d

ds

(x − ds)dx

λ2(x)
. (35)

In what follows we consider the superlattice consisting of N
spatial S/F periods so that the sample outer boundaries cor-
respond to the planes x1 = 0 and xN+1 = Nd . Equation (31)
should be supplemented with the equations for the vectors v1

and vN+1 corresponding to the boundary conditions of the S/F
lattice.

Let us start from the description of the giant electromag-
netic proximity effect emerging in the systems where the
S/F lattice is positioned on top of the bulk superconductor
occupying the region x < 0. In this case at x < 0 the magnetic

field and the corresponding vector potential exponentially de-
cay towards the bulk of the superconductor: By(x) = H (x) =
H (0) exp(x/λs) and a(x) = a(0) exp(x/λs). This gives us the
following boundary condition coupling the functions H (x)
and a(x) at x = 0: λsH (0) = λ0a(0). At the same time, in
the plane x = Nd corresponding to the interface between the
S/F lattice and vacuum one has H (Nd ) = 0 (here we assume
for simplicity that there is no external magnetic field). As a
result, in terms of the vector vn the above two conditions can
be rewritten in the form

v1 =
(

a(0)
λ0a(0)/λs

)
, vN+1 =

(
a(Nd )

0

)
. (36)

We introduce the auxiliary vector w = (Î − Ĉ)−1m which
satisfies the equation w = Ĉw + m (here Î is the unit 2 × 2
matrix). Thus, from Eq. (31) the vectors v1 and vN+1 can be
linked:

vN+1 = w + ĈN (v1 − w). (37)

The system of Eqs. (37) and (36) enable to find the constant
a(0) and, thus, calculate the magnetic field amplitude H (0).

To illustrate the dramatic enhancement of the electromag-
netic proximity effect by the S/F lattice it is enough to keep
only the terms up to the order O(d/λ0) so that one may put all
the values R, S, and Q equal to zero. Then

CN ≈
(

cosh ψ sinh ψ

sinh ψ cosh ψ

)
,

w

4πM0
≈

(
0

d f /d

)
, (38)

where ψ = Nd/λ0. Then for the magnetic field By(0) we
finally obtain

By(0) = 4πM0
d f

d

λ0(1 − cosh ψ )

λ0 cosh ψ + λs sinh ψ
. (39)

In the limit Nd � λ0 this expression reduces to

By(0) = −4πM0
d f λ0

d (λs + λ0)
. (40)

One sees that in the case d f ∼ d and λs ∼ λ0 the resulting
magnetic field induced inside the bulk superconductor has
the order of M0. This results is in a sharp contrast with the
case of the S/F bilayer where the spontaneous magnetic field
By ∼ (d f /λs)2M0 � M0. Thus, S/F lattices provide the way
to increase the electromagnetic proximity effect by at least
two orders of magnitude. In Fig. 4 we show the profile of
the magnetic field for the specific S/F structure with N = 12
periods on top of the bulk superconductor (all the system
parameters are indicated in the figure caption). The spatial
profile of λ−2(x) distribution was found using the Eq. (2) for
ξ f = 4 nm (shown in the Fig. 4 inset). Note that the profile
λ−2(x) in the N th layer differs from the ones in all other F
layers since this layer contacts with the vacuum instead of a
superconductor. As a result, the matrix Ĉ for the N th period
should be modified in a way that the value d f /2 in the Eq. (2)
should be replaced with d f . This modification, however, does
not change significantly the final result provided N � 1.

Recently, the spatial profiles of the magnetic field inside
the S/F superlattices were analyzed in the neutron scat-
tering experiments [41]. To model the situation realized in
this experiment we consider the S/F lattice which consists
of N = 24 periods and is surrounded by a vacuum so that
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(nm)

(nm)

FIG. 4. The magnetic-field profile B(x) in (a) S/F superlattice
with N = 12 bilayers which is in contact with thick (d0 = 300 nm)
superconducting layer (ds = 25 nm, df = 5 nm, λs = 120 nm). The
inset shows the profile λ−2(x) inside a single S/F period, ξ f = 4 nm.
(b) A similar system with N = 24 bilayers with vacuum or insulator
on both outer interfaces.

By(0) = By(Nd ) = 0. Solving numerically Eq. (37) with the
appropriate boundary conditions we calculate the spatial dis-
tribution of the magnetic field By(x) inside the structure. We
choose the following parameters of the lattice: ds = 25 nm,
d f = 5 nm, λs = 120 nm, and ξ f = 4 nm. The resulting By(x)
distribution is shown in Fig. 4(b). Clearly, in the central part of
the structure (far from the sample surface) the magnetic-field
profile approaches the one relevant for the infinite lattices
described in Sec. III: the magnetic field averaged over the
structure period is equal to zero so that in the F layers BF

y ∼
4πM0ds/d while in the S layers BS

y ∼ −4πM0d f /d , (these
values are marked with dash lines in Fig. 4). It is important
to note that in Ref. [41] the magnetic field distribution was re-
stored without taking into account the EPE effect. Therefore,
the B(x) distribution in Ref. [41] qualitatively differs from the
one shown in Fig. 4(b).

Comparing our results with the experimental data, one
can argue that in the experimentally realized structures the
magnetic moment of each F layer in the S/F lattice is not
necessarily fixed and can vary self-consistently with the vari-
ation of the spontaneous field produced by all other layers due
to the electromagnetic proximity effect. However, as we show
below, this does not change our conclusions, qualitatively only
reducing the value of the magnetic field in all layers. Without
going into the detail of the microscopic mechanisms beyond
the magnetic response of the F layers we consider a simplified
model which assumes the linear relation between the mag-
netization M in the F layers and the local magnetic field B
characterized by the susceptibility χ = ∂M/∂B (4πχ < 1).
We assume that both M and B are oriented along the y axis, so

(nm)

FIG. 5. B(x) distribution in a system with 30 bilayers (ds =
25 nm, df = 5 nm, λs = 120 nm) on a thick (d0 = 210 nm) supercon-
ducting layer for fixed magnetization of the F layers (χ = 0, black
line) and for variable magnetization (M = M̃0 + 4πχB, 4πχ = 0.5,
red line). The values BS

y and BF
y for the two cases are shown by red

and black lines, correspondingly. The open and filled circles shows
the magnetic field in the F layer for the cases χ = 0 and 4πχ = 0.5.

that the linear relation takes the form

M = M̃0 + χB, (41)

where M̃0 is a constant which can be expressed through the
magnetization MF of the isolated ferromagnet in the absence
of the external magnetic field as M̃0 = MF (1 − 4πχ ). Sub-
stituting the relation (41) into the integral Eqs. (29) and (30)
we get modified expressions of the matrix Ĉ and the vector
m. It results in the renormalization of the effective penetration
depth which takes the form

λ̃ =
{∫

1

[1 − 4πχ (x)]λ2(x)
dx

}− 1
2

. (42)

Here χ (x) is constant in the F layers and equal to zero in-
side the S layers. For the case of the uniform profile λ(x) =
λ0 relevant, e.g., for the structures with d f � ξ f Eq. (42)
reduces to

λ̃ = λ0
√

α, where α = 1 − 4πχ

1 − 4πχds/d
< 1. (43)

To calculate the profile of the magnetic field inside the S/F
lattice one needs to account the relation (41) self-consistently.
The magnetization inside the ferromagnets becomes depen-
dent on the number of the F layer. To analyze how the
dependence M(B) affects the magnetic-field distribution we
compare two cases χ = 0 and 4πχ = 0.5 considering the
S/F lattice with N = 30 periods on top of a 210-nm-thick
superconductor (see Fig. 5). The linear dependence between
magnetization and the field B results in the decrease of the
magnetization inside the F layers as compared to the case of
fixed magnetization which comes from the opposite directions
between the magnetization M0 and the local magnetic field
intensity H. Far from the sample surface the magnetic field in
the S and F layers (BS

y and BF
y , respectively) takes the values

Bs = −4πMF d f α/d, (44)

B f = 4πMF dsα/d. (45)

Thus, the dependence of the magnetization on the local mag-
netic field results only in the small damping of the magnetic

064510-7



PUTILOV, MIRONOV, MEL’NIKOV, AND BUZDIN PHYSICAL REVIEW B 105, 064510 (2022)

field in all layers (see the factor α < 1) without any qualitative
changes in the described phenomena.

VI. SUPERLATTICES WITH
ANTIFERROMAGNETIC ORDERING

Interestingly, the electromagnetic proximity effect can pro-
duce stray magnetic field even when the magnetic moments in
two neighboring F layers of the S/F superlattices have the op-
posite directions (we will refer to such situation as to the case
of antiferromagnetic ordering). For such types of structures
one can naively expect that the electromagnetic proximity
effect should be small since the average magnetization is zero.
However, it is not the case: the S/F lattice positioned on top of
the bulk superconductor induces spontaneous magnetic field
of the order of (d f /λ)M0 in this superconductor which is
larger than in a single S/F bilayer.

To demonstrate the origin of this effect we consider the
S/F lattice where the projection of magnetization of the nth F
layer to the y axis is equal to M0 for even n and −M0 for odd
n. The thickness of all F layers is assumed to be the same and
equal to d f . To calculate the magnetic-field profiles we use the
relations (29) and (30), which are valid for the structures under
consideration. Following the calculation procedure, which is
similar to the one used in Sec. V, we obtain the equation

vn+1 = Ĉvn + (−1)n−1m. (46)

and the boundary conditions (36). Note that the spatial pe-
riod of the lattice with alternating direction of the magnetic
moments is equal to 2d . For an even layer number n the
equations takes the following form:

vn+1 = Ĉvn + m, (47)

vn+2 = Ĉvn+1 − m = Ĉ2vn + (Ĉ − Î )m. (48)

The further procedure is analogous to the ferromagnet or-
dering. We introduce an auxiliary vector w = −(Ĉ + Î )−1m
which satisfies the equation w = Ĉ2w + (Ĉ − Î )m. Then
solving Eq. (37) with the new expression for the vector w

we find that the solution coincides with Eq. (40) where one
should replace d f /d with −d f /2λ0. In the case of thick an-
tiferromagnetically ordered S/F lattice (Nd � λ) placed on
top of the thick superconducting layer occupying the region
x < 0 the value of spontaneous magnetic field at the inter-
face between the S/F lattice and the bulk superconductor is
equal to

By(0) = 2πM0
d f

λs + λ0
. (49)

Surprisingly, this field exceeds the spontaneous field induced
by a single ferromagnet with d f ∼ ξ f [the later field has the
order of (d f /λ)2M0] [30]. The numerical solution of Eq. (46)
for the case of the antiferromagnetic ordering between the
neighboring F layers in the S/F lattice confirms the above
result. The corresponding profiles of the magnetic field are
shown in Fig. 6. Thus, even in the case when the average
magnetization of the S/F multilayered structure is zero the
electromagnetic proximity effect induced by this magnetiza-
tion can remain significant.

(nm)

FIG. 6. Distribution of magnetic field By(x) in a multilayer struc-
ture with antiferromagnetic ordering (ds = 25 nm, df = 5 nm, λs =
120 nm) which is placed on the thick (d0 = 300 nm) superconductor.
We show the range −0.2πM0 < B < 0.2πM0 to visualize the distri-
bution B(x) in superconducting layers.

VII. CONCLUSION

To sum up, we demonstrate that the electromagnetic
proximity effect in superlattices consisting of an alternating
ferromagnetic and superconducting layer can be strongly en-
hanced for the case of thick superlattices. Besides that, the
S/F superlattice can induce the spontaneous magnetic field
in the adjacent bulk superconductor, which is of the order
of the magnetization field M0 inside the ferromagnetic layers
[while in S/F bilayers this field is damped by the factor
∼(d f /λ)2 ∼ 10−2]. In the S/F lattice far from the sample
surface (i.e., at distance much larger than λ) the magnetic
field B averaged over the spatial period of the structure is zero
(similar to the situation in the ferromagnetic superconductors)
so that inside the F layers the magnetic field is equal to BF =
4πM0ds/(ds + d f ) while in the S layers this field has the
opposite direction and is equal to BS = −4πM0d f /(ds + d f ).
Such full compensation of the magnetization field inside the
F layers by the Meissner screening current is crucial for the
adequate interpretation of the upcoming data in the neutron
or muon scattering experiments. At the same time, near the
sample surface, the profiles of the magnetic field are sub-
stantially modified. In particular, the characteristic length of
the magnetic field decay as well as the ability to generate
the stray magnetic fields in the outer space of the sample
strongly depends on the relative orientation between the plane
of the surface, the plane of the layers, and the magnetization
direction. This effect may have a significant influence on
the spontaneous fields generated in the experimentally realiz-
able finite-size samples. Finally, we show that in S/F lattices
with the opposite directions of the magnetic moments in the
neighboring F layers the electromagnetic proximity effect is
responsible for the generation of spontaneous magnetic field
with the magnitude of the order of (d f /λ)M0. Remarkably,
these fields appear to be much larger than the fields generated
in S/F bilayers.

Note that that the spontaneous magnetic fields induced
by S/F superlattices can be larger than the superconducting
lower critical field Hc1 which suggests the possible genera-
tion of Abrikosov vortices if the structure thickness exceeds
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λ. The back-action of vortices on the superconducting con-
densate responsible for the EPE should produce a variety of
nonuniform magnetic and superconducting states similar to
the ones in ferromagnetic superconductors.

In addition, S/F superlattices may significantly enhance
the long-range magnetic interactions between magnetic mo-
ments of ferromagnets recently predicted for the F/S/F
sandwiches [31] and, thus, become a perfect platform for
the engineering of artificial complex magnetic interactions
in S/F heterostructes. Also it is interesting to analyze the
Josephson transport through S/F lattices since the sponta-
neous magnetic fields generated due to the proximity effect
may significantly influence the behavior of the critical current
in external magnetic field. Since the described phenomena do
not require specific conditions and are expected to arise in
typical experimentally realizable S/F structures we hope that
our predictions could be verified already in the near future.
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APPENDIX: CALCULATION OF THE LONDON
PENETRATION DEPTH PROFILE

To calculate the spatial profile of the magnetic screening
parameter λ−2(x) we solve the linearized Usadel equation and
follow the procedure used in Ref. [30]. The main differ-
ence from the Ref. [30] is that in our case the F layer
is put between two superconducting layers, so that we im-
pose the rigid boundary conditions on both S/F interfaces.
Equation (2) gives us a resulting λ−2(x) distribution (2) inside
the F layer. The explicit expressions for the Fourier harmonics
Ln of λ−2(x) can be calculated straightforwardly and take the
form

Ln = 1

kdλ2
s

[
sin

(
knd

2

)
− sin(kns)

]
+ 2

dλ2
s

[
sin(kns)

k cosh2(qns)

+ q sinh(2qns) cos(kns) + k sin(kns) cosh(2qns)

2(4q2 − k2n2) cosh2(qns)

+ c.c.

]
. (A1)
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