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Electrically modulated Josephson junction of light-dressed topological insulators
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In a Josephson junction mediated by a two-dimensional irradiated topological insulator, the current-phase
relation can be electrically modulated, including the 0-π phase transition and the anomalous phase shift of
the current. Qualitatively combining analyses and numerical simulations, we find that the 0-π phase transition
and anomalous phase shift can be controlled by a gate voltage and a transverse electric field, respectively.
These possible electrical modulations result from the photoinduced anisotropic helical edge states. Due to
the anisotropy and spin-momentum locking nature in the edge channels, an effective Zeeman field is caused
by an electrical potential whose orientation automatically matches the spin alignment of the edge modes.
The photoinduced anisotropy provides potential applications in Flouqet engineering helical supercurrent and
electrically modulated topological superconducting devices.
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I. INTRODUCTION

In two dimensions, topological insulators (TIs) or quantum
spin Hall insulators (QSHIs), characterized by helical edge
states that are topologically protected by the insulating bulk
state have aroused intense researching interest [1,2]. Guaran-
teed by time reversal symmetry, the helical edge states are
isotropic, i.e., the velocities of edge modes are of the same
magnitude, but with directions of motion locked to the value
of the spin projection [3–5]. The helical edge states are ex-
perimentally observed in HgTe/CdTe quantum wells [6–9],
InAs/GaSb quantum wells [10,11], and WTe2 monolayers
[12,13]. When interplaying with superconductivity, Joseph-
son currents assisted by the helical edge state were studied
theoretically [14–22] and experimentally [23–37]. A system
supporting the helical band has the potential to generate an
anomalous Josephson current [16,38]. In particular, a topo-
logical Josephson ϕ0 junction was predicted in the presence
of Zeeman field, where ϕ0 was field-tunable phase shift in the
current-phase relation [16]. However, the realization of such
a junction is still a challenge [32] because, in the theoretical
proposal, the orientation of the Zeeman field should match the
spin alignment of the edge state, which is hard to acquire in
real materials [6–9]. Moreover, the phase shift in two edge
currents parallel to the junction may compensate for each
other unless the device is finely constructed [16].

Recently, a flexible approach on manipulating the trans-
port properties in materials was achieved by applying a
high-frequency periodic driving field [39–42]. The transport
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properties were able to capture the signature of the topological
phase transitions based on Floquet theory [43,44]. In three-
dimensional (3D) systems, a Hall conductivity was induced
when a nodal ring semimetal [45–49] or Dirac semimetal was
periodically driven into a Floquet-Weyl semimetal [50,51].
Also, a spin filter effect [52] and anomalous Josephson cur-
rent [53] were created when a Floquet-Weyl half semimetal
phase occurred. In two-dimensional (2D) systems, a Floquet
chiral edge state was predicted [54] and observed [55,56]
in graphene. In addition, a quantum anomalous Hall insula-
tor (QAHI) was expected in silicene [57], transition metal
dichalcogenides [58], QSHIs [59,60], and the surface of
3DTIs [61], in which the driving field broke the time reversal
symmetry. During the transition form QSHI phase to QAHI
phase in a 2D Floquet TI, apart form the gap closing, an
anisotropy was also induced in the helical edge states [59,60].
These anisotropic helical edge states can exist in a wide range
of driving field amplitudes below the threshold value corre-
sponding to the phase critical point. Being distinct from the
isotropic ones, the velocities of the edge modes with opposite
spin are of different magnitudes. Although such an anisotropy
was first mentioned in an early work on silicene [57], it was
nearly neglected in following works [51–53,59,60]. Moreover,
the one-dimensional helical edge states can be investigated
separately [62–66]. When interacting with the magnetic com-
ponent of a circularly polarized electromagnetic wave, it was
expected that the quantized photocurrent can be induced by
the chiral anomaly in one of the edge states of a QSHI [65,66].

In this work, we find that when the supercurrent is mainly
carried by the anisotropic edge states, the current-phase re-
lations of a Josephson junction mediated by a light-dressed
TI can be electrically modulated. The setup is depicted in
Fig. 1(a). We suppose that the radiation is restricted within
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FIG. 1. (a) Schematic of a Josephson junction composed of a
topological insulator sandwiched by two conventional s-wave super-
conductors characterized by macroscopic phases ϕL/R. The length
and width of the junction are Lx and Ly, respectively. The cen-
tral topological insulator is irradiated by a high-frequency periodic
driving field, resulting in anisotropic helical edge states, where the
spin-up (spin-down) edge modes with a higher (lower) velocity
are labeled by thicker red (thinner blue) arrows. (b) The energy
spectrum of a light-dressed topological insulator ribbon confined
in the y-direction calculated form Eq. (16) without gate voltage
and transverse electric field. (c) The electric and hole disper-
sions of anisotropic helical edge states. The spin-up (spin-down)
electron/hole modes represented by the red (blue) solid/dashed lines
and the top/bottom edge modes are labeled as t/b. the net momentum
of the Cooper pair at two edge are labeled as δkt,b. The parame-
ters are t1 = 1, t2 = 0.5t1, M = 2t1, Ly = 30. The gate voltage μD

and transverse electric potential V is {μD,V } = {0, 0} in (b) and
{μD,V } = {0.1t1, 0.2t1} in (c). The parameters of the driving field
is η = 1 and we choose h̄ω = 10t1 and akA = 0.5 to clarify the
exhibition.

the central TI region, so that its influence on the supercon-
ducting leads can be neglected. The interaction between the
periodically driving field and superconductors may induce
odd-frequency superconducting pairs composed of electrons
between different Floquet sidebands [67], which is beyond our
discussions. We also assume that only the electrical compo-
nent of the radiation is considered and the radiation is applied
to the central region homogeneously, so that the photocurrent
in one edge can be compensated by that in the other edge [64].
With these simplifications, we find that, due to the photoin-
duced anisotropy and spin-momentum locking nature in the
edge channels, an effective Zeeman field that automatically
matches the spin alignment of the edge states is induced by
the electrical potential. As a result, a 0-π phase transition [see
Fig. 2(a)] in the current-phase relation is caused by the gate

FIG. 2. (a) The current-phase relation with 0-π phase transition
and the Andreev bound states spectra corresponding to the (b) 0-
phase and (c) π -phase current. The length of the junction is Lx =
1998a and μD = 0.15t1 for ϕD = π . We choose t0 = t1, μSC = 2.2t0,
�0 = 0.005t0, and T/Tc = 0.1 in the superconductor leads and tc =
t0. The parameter of the driving field is h̄ω = 50t1, akA = 0.5. Other
parameters are the same as those in Fig. 1(b).

voltage. In addition, without subtly constructing the junction,
an arbitrary ground-state phase difference is obtained [see
Fig. 3(a)], which is directly proportional to the product of the
transverse electric field and the area of the junction. Addition-
ally, we also find that through a joint manipulation of both the
gate voltage and transverse electric field the supercurrent can
become solely contributed to by one of the edges. Our work
provides an alternative access to manipulate superconducting
devices based on TIs.

The article is organized as followed. The Hamiltonian of
light-dressed TIs as well as the anisotropic helical edge states
are introduced in Sec. II. In Sec. III, the Josephson current
assisted by the anisotropic helical edge states is qualitatively
analyzed with some assumptions, which is further confirmed
by the following numerical calculations and some results be-
yond the assumptions are discussed as well. The conclusion is
given in Sec. IV.

II. EDGE STATE OF LIGHT-DRESSED
TOPOLOGICAL INSULATORS

In the basis of |s,↑〉, |px + ipy,↑〉, |s,↓〉, and | − (px −
ipy),↓〉, the Hamiltonian of a TI written in a square lattice in
the x-y plane is [7,8,59,68]

H (k) = Mkσ0τz + 2t2[sin(akx )σzτx − sin(aky)σ0τy], (1)

with the lattice constant a = 1, k = (kx, ky), and Mk = M −
4t1 + 2t1[cos(akx ) + cos(aky)], where M and t1,2 are model
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FIG. 3. (a) The current-phase relation with ϕV varying from π/2
to −π/2 in the step of π/4, corresponding to Andreev bound states
spectra exhibited in (b)–(e). The gate voltage is absent and V =
0.15t1 for ϕV = π . Other parameters are the same as those in Fig. 2.

parameters and we choose M, t1,2 > 0 without loss of gen-
erality. σ0 (τ0) and σ (τ) are the unit matrix and the Pauli
matrices for the spin (orbital) degree of freedom, respectively.
When the z axis is the spin-quantization axis, the system sup-
ports spin-momentum locking isotropic helical edge states, in
which spin-up (parallel to the z axis) electrons propagate in
one direction and the spin-down (antiparallel to the z axis)
ones propagate in the opposite direction, and both types of
electrons travel in the same magnitude of velocity.

An out-of-plane electromagnetic wave [see Fig. 1(a)] can
be written as a time-dependent vector potential [39]

A(t ) = E0

ω
(cos ωt, η sin ωt ), (2)

where E0 is the strength of the electric component of the
wave with a frequency ω and η = +1 (−1) represents right
(left)-handed circular polarization. Through the Peierls sub-
stitution, k → k + eA(t )/h̄, a time-periodic Hamiltonian is

obtained H (k, t ). Using Floquet theory, in the off-resonant
regime where the energy of the incident photon h̄ω is larger
than the bandwidth of the system, an effective Hamiltonian
takes the form as [43,44]

He f f (k) = H0(k) +
∑
n>0

[H+n(k), H−n(k)]

nω
+ Ô

(
1

ω2

)
, (3)

where Hn(k) = T −1
∫ T /2
−T /2 dtH (k, t )e−inωt are the Fourier

components of the H (k, t ) with the period T = 2π/ω. After
some algebra, the light-dressed Hamiltonian of a TI is

He f f (k) = H0(k) + Hl (k), (4)

with

H0(k) = M ′
kσ0τz + 2J0t2[sin(akx )σzτx − sin(aky)σ0τy], (5)

and

Hl (k) = ηλ1σzτz + ηλ2[sin(akx )τx − sin(aky)σzτy], (6)

where M ′
k = M − 4t1 + 2J0t1[cos(akx ) + cos(aky)],

λ1 = 8(J1t2)2/(h̄ω), λ2 = 8J2
1 t2t1/(h̄ω), and Jn = Jn(akA)

with Jn(x) being the nth-order Bessel function. Here, a
dimensionless parameter is introduced, akA = aeE0(h̄ω)−1,
to renormalize the amplitude of driving, and we choose
natural units with h̄ = 1 = e.

Without inducing significant deviations in our results,
some of the higher-order terms such as cos(akx,y) sin(aky,x )
are replaced by sin(aky,x ) for simplifying the following nu-
merical calculations. Moreover, in the process of obtaining
Eq. (4) from Eq. (3), only H0 and H±1 are involved, while the
terms containing J|n|�2(akA) are ignored because, in this work,
we focus on the regime akA < 1 in which Jn(akA) decreases
rapidly with the increasing of |n| [47,50,53].

Equation (6) describes two main photoinduced effects,
which are (i) that the strengths of band inversion of each
spin subband are, respectively, modified by λ1 and (ii) that
an anisotropy is caused in helical edge states through λ2 [see
Fig. 1(b)]. The first effect provides an alternative method
to realize the QAHI, other than magnetic doping, which
is explicitly demonstrated in some previous works [59,60].
However, in those works, the second effect was neglected
because of its small magnitude and no phase transition con-
cerned.

Now we focus on the anisotropic helical edge states. Con-
sider a quantum confinement along the y direction, deducing
from Eq. (4), the low-energy Hamiltonian of the helical edge
state is [69]

Hs
edge(kx ) = s(ηvtσ0 + vσz )h̄kx, (7)

where h̄v = 2J0at2, h̄vt = aλ2, s = 1, and −1 for the bottom
(y = −Ly/2) and top (y = +Ly/2) edges. Equation (7) can be
confirmed by the energy spectrum of a light-dressed TI ribbon
depicted in Fig. 1(b). The dispersion of each edge mode is
tilted because of vt , which is similar to the tilted Weyl cone in
Weyl semimetals [70,71]. In some previous works on type-I
Weyl semimetals [72–74], it was demonstrated that, due to
the tilting effect, an effective Zeeman field was induced by
the electrical potential. This is also valid for a light-dressed
TI. When adding an electrical potential Hs

edge(kx ) − μσ0, an
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effective Zeeman field ηvμ/vtσz is obtained after a substi-
tution kx → qx = kx − sημ/(h̄vt ). Importantly, the direction
of the effective Zeeman field automatically matches the spin
alignment of the edge state, which is of great potential in
manipulating the edge states of a TI.

Experimentally, it is a challenge to apply a Zeeman field
exactly matching the spin alignment of the helical edge state,
which tends to be affected by the imperfection of the crys-
talline structure and lacking symmetries in real materials.
For example, in a HgTe/CdTe quantum well, the preferential
spin-polarizing direction lies close to the plane of TI and per-
pendicular to the edges [7–9]. This indicates that the required
Zeeman field will inevitably cause an out-of-plane component
that may cause other unwanted side effects to the device, such
as the quantized Landau levels and the Doppler shift [17,21].
Now, by virtue of the crossover of the spin-momentum lock-
ing nature and the photoinduced anisotropy, the effective
Zeeman field automatically matches the spin alignment of
the edge state, providing an alternative electrical approach to
manipulate the edge state, which is of more flexibility and less
ambiguity compared with an external magnetic field.

III. ELECTRICALLY MODULATED TOPOLOGICAL
JOSEPHSON JUNCTION

A. Qualitative analysis

Inspired by previous works [16,17], we propose that the
anisotropic edge states provide an accessible method to elec-
trically modulate the current-phase relation of a Josephson
junction mediated by a light-dressed TI. The junction depicted
in Fig. 1(a) is composed of a light-dressed TI sandwiched by
two conventional s-wave superconductors (SCs) characterized
by macroscopic phases labeled as ϕL and ϕR, respectively. The
length and width of the junction are Lx and Ly, respectively.
Here, we first simply carry out a qualitative analysis on the
current-phase relation, which is further confirmed by the nu-
merical simulation demonstrated in Sec. III B.

If the width of the junction is sufficiently large and the
Fermi level is within the bulk gap, the total Josephson current
can be considered as the joint contributions from two individ-
ual edges. In the long junction limit and neglecting the higher
harmonic terms, the current can be approximately written as
[22,75]

J ≈ Jb sin(ϕ + δkbLx ) + Jt sin(ϕ + δkt Lx ), (8)

where Jb/t is the magnitude of the current flowing in the
bottom/top edges, which depends on the details of the junc-
tion, ϕ = ϕR − ϕL is the phase difference between two SC
leads, and δkb/t Lx is an additional phase shift acquired in the
TI region. Since in our proposal two edges have the same
length, the net momentum of the Cooper pair δkb/t plays a
crucial role in manipulating the current-phase relation [see
Fig. 1(c)].

In the presence of gate voltage and the transverse electric
field, anisotropic edge states in a light-dressed TI can be de-
scribed by the one-dimensional (1D_ Bogoliubov–de Gennes
(BdG) Hamiltonian

Hs
BdG(kx ) = s(ηvtσ0 + vσz )h̄kxξ0 − (sV + μD)σ0ξz, (9)

where ξ0 and ξ are the unit matrix and the Pauli matrices
in Nambu space, V = eEyLy/2 is half of the voltage dif-
ference between two edges, and Ey is the strength of the
transverse electric field. The corresponding dispersions are
Es

e,↑(↓)(kx ) = sηvt h̄kx + (−)svh̄kx − (sV + μD) for the elec-
tron bands and Es

h,↑(↓) = −Es
e,↑(↓)(−kx ) for the hole bands.

δkb/t can be found by solving equations Es
e/h,↑(↓)(kx ) = 0 and

the additional phase shifts are

δkbLx = (
k−1

e,↑ − k−1
h,↓

)
Lx = −ϕD − ϕV , (10)

and

δkt Lx = (
k+1

e,↓ − k+1
h,↑

)
Lx = +ϕD − ϕV , (11)

where

ϕD = ηαμDLx, (12)

and

ϕV = ηαV Lx = ηαeEyS/2, (13)

are the phase shift originating from the gate voltage and the
transverse electric field, respectively, with h̄α = 2vt/(v2 −
v2

t ) and S = LyLx. Substituting Eqs. (10) and (11) into Eq. (8),
the total supercurrent can be rewritten as

J ≈ J0 cos ϕD sin(ϕ − ϕV ), (14)

where we assumed that the current flowing in two edges are
of the same magnitude, i.e., Jt = Jb = J0. The main features
of the Josephson current captured by Eq. (14) are as follows.
(i) Due to the crossover of photoinduced anisotropy and the
spin-momentum locking nature of the helical edge state, the
sign of the supercurrent is reversed by the gate voltage as
ϕD = π , resulting to a 0-π phase transition in the junction
[see Fig. 2(a)]. Similar results can be obtained by a Zeeman
field along the spin quantization axis of the helical edges,
indicating that an effective Zeeman effect is induced by the
gate voltage in the anisotropic helical edge states. (ii) Without
subtly constructing the junction, the current-phase relation is
shifted by ϕV [see Fig. 3(a)], which is directly proportional to
the product of the transverse electric field and the area of the
junction.

The effect of vt/v on phase shift is measurable for a large
Lx, although it is negligible when studying photoinduced topo-
logical phase transitions [59,60]. The situation concerning
QAHI is beyond our current consideration. One of the rea-
sons is Andreev reflection is forbidden at the TI-SC interface
because of the lack of a chiral edge state with opposite spin
[53]. As a result, the Josephson current vanishes and may
be recovered by the activation of spin-flipping at interfaces
by two ferromagnets, which is similar to the situation of an
anomalous Josephson current through a noncoplanar ferro-
magnetic trilayer [76,77].

B. Numerical results and discussions

Now numerical results are provided to verify the qualitative
analysis above, especially Eq. (14). The SC-TI-SC junction
depicted in Fig. 1(a) can be described by the following Hamil-
tonian:

HJ = HT I +
∑

p=L,R

(Hp + Tp), (15)
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where

HT I =
∑
i, j

ĥ0C
†
i, jCi, j + ĥxC

†
i+1, jCi, j + ĥyC

†
i, j+1Ci, j + H.c.,

(16)
is the tight-binding version of the Hamiltonian in Eq. (4)

Hp =
∑
i, j

[ĥscC
†
i, jCi, j +

∑
σ

σ�eiϕpCi, j,σCi, j,σ

− t̂sc(C†
i+1, jCi, j + C†

i, j+1Ci, j ) + H.c.], (17)

is the Hamiltonian of the left (p = L) and right (p = R) SCs,
and

Tp =
∑

i=0/Lx, j

t̂cC
†
i+1, jCi, j + H.c., (18)

couples the p-SCs to the TI. The components are

ĥ0 = (M − 4t1)ξzσ0τz + ηλ1ξzσzτz + ĥE , (19)

ĥx = J0(t1ξzσ0τz − it2ξ0σzτx ) − iηλ2/2ξ0σ0τx, (20)

ĥy = J0(t1ξzσ0τz + it2ξzσ0τy) + iηλ2/2ξzσzτy, (21)

with

ĥE = −[μD + V (1 − j/Ly)]ξzσ0τ0

describing the effect of the gate voltage μD measured from
zero energy and the transverse voltage V = eEyLy/2 in
Eq. (16) and

ĥsc = (4t0 − μSC )ξzσ0τ0, (22)

t̂sc = −t0ξzσ0τ0 (23)

in Eq. (17) with a chemical potential μSC , macroscopic
phases ϕα . The finite-temperature order parameter is � =
�0 tanh(1.74

√
Tc/T − 1) with the critical temperature Tc and

t̂c = −tcξzσ0τ0 in Eq. (18). Here Ci, j = {ci, j, c†
i, j}T with ci, j =

{ci, j,s,↑, ci, j,p,↑, ci, j,s,↓, ci, j,p,↓}T and ci, j,s/p,↑/↓ (c†
i, j,s/p,↑/↓) is

the annihilation (creation) operator of the s/p orbit electron at
site {i, j} with spin ↑/↓ and the notion σ = ±1 represents
spin up and down. Without loss of generality, we choose
t1 = 1 as the energy unit, M = 2t1 and t2 = 0.5t1 in TI. t0 = t1,
μSC = 2.2t0, and �0 = 0.005t0 	 μSC in SCs. We choose
h̄ω = 50t1 to meet the high-frequency limit, which is suf-
ficiently larger than the band gap (∼t1) and the bandwidth
(∼10t1) in the undressed TI. Only the right-handed circularly
polarized driven (η = +1) is concerned here, while the case
with η = −1 is simply obtained by ϕD/V → −ϕD/V .

Using the lattice Green’s function method, the Josephson
current through column l in the TI is [53,78]

J = 1

h

∫ ∞

−∞
Tr[ĥ†

x êG<
l,l−1 − êĥxG<

l−1,l ]dE , (24)

where ê = −eηzσ0τ0 is the charge matrix. In equilibrium,
the lesser-than Green’s function is calculated by G< =
f (E )[Ga − Gr] where f (E ) is the Fermi-Dirac distribution
function. The retarded Green’s function is

Gr (E ) = 1

E − HT I − r
L(E ) − r

R(E )
, (25)

FIG. 4. The Josephson current via akA at a fixed phase difference
(a) ϕ = π/2 and (b) ϕ = 0 in various μD and V , respectively. And
we choose V = 0 (μD = 0) in (a) [(b)]. Parameters are the same as
those in Fig. 2.

and Ga = [Gr (E )]†, where the retarded self-energy r
L/R(E )

representing the coupling with left/right SC lead can be cal-
culated numerically by the recursive method [79–81] . In
addition, the energies of the Andreev bound state (ABS) levels
can be located by searching the peaks of the particle density
within the SC gap at column l (1 � l � L)

ρl = − 1

π
Im[TrGr

l,l ] (26)

at a given phase difference ϕ.
The numerical results exhibited in Fig. 2(a) confirm the

0-π transition in the current-phase relation when V = 0,
which is consistent with the qualitative analysis Eq. (14)
when ϕD = 0 and π . In the case with ϕD = π/2, the higher
harmonic terms dominate in the current, which is beyond
the assumption in Eq. (8). The 0-π transition via ϕD is also
confirmed by the ABS levels depicted in Figs. 2(b) and 2(c).
The anomalous Josephson current induced by the transverse
electric field and the corresponding ABS levels are exhibited
in Fig. 3. The Josephson current has an arbitrary and tunable
ground-state phase difference ϕV , which is directly propor-
tional to the product of the transverse electric field Ey and the
area of the central TI S. The numerical results in Fig. 3 are
well consistent with our qualitative analysis in Eq. (14) for
ϕD = 0.

Figure 4(a) exhibits an oscillating supercurrent at a fixed
phase difference ϕ = π/2 via the dimensionless driven field
amplitude akA, where the sign of the current does not reverse
unless the gate voltage is sufficiently large. On the other hand,
when the transverse electric field is applied, as depicted in
Fig. 4(b), a finite current is generated without phase differ-
ence as the driven field amplitude increases, resulting in the
anomalous Josephson current. In both cases above, the cur-
rent vanishes for a high-field amplitude because of the phase
transition form QSHI to QAHI with one of the spin channel in
the helical edge state merges into the bulk state.

Another feature predicted in Eq. (14) is that the cur-
rent oscillates cosinusoidally and sinusoidally with respect
to the gate voltage μD and transverse electric potential V ,
respectively. These oscillating behaviors whose periods are
determined by the driven field amplitude akA are also well
consistent with Eq. (14) as shown in Figs. 5(a) and 5(b)
with V = 0 and μD = 0, respectively. It should be noted that
for a small akA, such as the blue curve with akA = 0.2, the

064503-5



FU, XU, YU, LIU, AND WU PHYSICAL REVIEW B 105, 064503 (2022)

FIG. 5. The Josephson current via (a) μD with ϕ = π/2 and (b)
V with ϕ = 0 in various akA. The parameters are the same as those
in Fig. 4.

anomalous phase shift in the current is turned on by V while
a relatively larger μD is required to realize the 0-π transition.

However, these oscillating forms are broken down in some
situations. First, as shown in Fig. 6(a), when V = 0, the
current decreases as μD increases. Similar behavior is also
obtained when V increases as in Fig. 6(b). This results from
the suppression of the Andreev reflection amplitude at the
SC-TI interfaces [17]. We numerically calculate the Andreev
reflection probability in a TI-SC junction, which is described
by an Hamiltonian HT I + HR with ϕR = 0. The transverse
distribution of the Andreev reflection probability crossed the
junction is displayed in Fig. 6(c), which exhibits that the
Andreev reflection at two edges are of the same probability
and gain an identical suppression for finite μD or V . The
suppression of Andreev reflection leads to a reduction on the
supercurrent. Additionally, the distribution of the Andreev
reflection probability also validates our previous assumption
on Jt = Jb = J0 when deducing Eq. (14).

FIG. 6. The Josephson current via (a) μD with ϕ = π/2 and (b)
V with ϕ = 0. (c,d) The distribution of Andreev reflection proba-
bility Rhe at TI-SC interface in the direction perpendicular to the
junction. The parameters are the same as those in Fig. 4.

In Fig. 6(a), the oscillating pattern further diverges from
the perfect cosinusoidal form for a finite V . We argue that
the reason for this is that the currents flowing in two edges
become different from each other and the total current cannot
be described by Eq. (14). This is the so-called asymmet-
ric Josephson junction mediated by a TI without inversion
symmetry [22], where the supercurrents along two edges are
of different magnitudes. Although in this situation the ac-
curate expression of the current is beyond our discussions,
the inequality with two edge currents can be revealed in the
distribution of the Andreev reflection probability depicted in
Fig. 6(d). Compared with Fig. 6(c), it is obvious that the
inversion symmetry is broken because of the coexistence of
gate voltage and transverse electric field in the anisotropic
edge states. Only the gate voltage or the transverse electric
field alone cannot result from a broken inversion symmetry,
which also is revealed in the ABS shown in Figs. 2 and
3. Moreover, it is worth noting that, when |μD| = |V |, the
Andreev reflection process in one edge is greatly suppressed
and the total current is solely contributed to by the other
edge. In addition, when the Fermi level crosses the bulk band
because of the large gate voltage, the bulk contribution be-
comes dominant and the current gains a significant increase.
This also accounts for the behavior of the oscillating current
in Fig. 6(b).

Finally, we estimate the necessary driving field intensities
and frequencies in realizing the Josephson junction in a HgTe
quantum well with a thickness ∼7 nm [6–8]. Typically, the
energy unit in a TI is t1 = 20 meV corresponding to the bulk
gap in the order of meV [59,68]. To meet the off-resonant
limit, the energy of the incident photon is h̄ω = 50t1 = 1 eV
and thus the frequency is ω ≈ 1.57 × 1015 s−1. To observe
the Josepshon effect at akA = 0.5, a driving intensity on the
order of 109 W/cm2 is required. The estimated intensity and
the required frequency could be within experimental reach in
the near future [55,56].

IV. CONCLUSION

In conclusion, due to the periodically driven anisotropy in
the helical edge states of a TI, an effective Zeeman field is
induced by the electrical potential. Importantly, the effective
Zeeman field automatically matches the spin alignment of the
edge states, which overcomes some challenges in realizing a
topological Josephson ϕ0 junction based on ordinary TIs. By
virtue of the flexibility in tuning the electrical potential, the
current-phase relation in the SC-TI-SC junction can be finely
manipulated. The main features of the current phase relation
are captured by Eq. (14), including the 0-π phase transition
caused by the gate voltage and anomalous phase shift that is
directly proportional to the product of the transverse electric
field and the area of the junction. Our findings may have po-
tential applications on the helical supercurrent in topological
superconducting devices.
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