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Hybrid systems that combine spin ensembles and superconducting circuits provide a promising platform for
implementing quantum information processing. We propose a non-Hermitian magnon-circuit-QED hybrid model
consisting of two cavities and an yttrium iron garnet (YIG) sphere placed in one of the cavities. Abundant
exceptional points (EPs), parity-time (PT )-symmetry phases, and PT -symmetry broken phases are investigated
in the parameter space. Tripartite high-dimensional entangled states can be generated steadily among modes of
the magnon and photons in PT -symmetry broken phases, corresponding to which the stable quantum coherence
exists. Results show that the tripartite high-dimensional entangled state is robust against the dissipation of hybrid
system, independent of a certain initial state, and insensitive to the fluctuation of magnon-photon coupling.
Further, we propose to simulate the hybrid model with an equivalent LCR circuit. This paper may provide
prospects for realizing multipartite high-dimensional entangled states in the magnon-circuit-QED hybrid system.
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I. INTRODUCTION

Hybridizing two or more quantum systems can combine
complementary advantages of different systems and improve
the multitask processing ability, which is the key to re-
alizing quantum information processing [1–8]. Strikingly,
more macroscopic objects, such as superconducting circuits
possessing advantages of flexibility, scalability, and tunabil-
ity [6,9,10], are strongly coupled to electromagnetic fields,
making them easy to entangle together even with shorter co-
herence times [11,12]. However, microscopic systems (such
as spin ensembles), naturally decoupled well from their envi-
ronment and reaching relatively long coherence times [13,14],
can be integrated into a circuit by means of techniques of trap-
ping and doping. Consequently, a hybrid system can combine
the rapid operations of superconducting circuits and the long
coherence time of spins.

Among possible materials of spin ensembles, a single-
crystal yttrium iron garnet (YIG) sphere has shown up
recently as a promising candidate for hybrid systems, ben-
efiting from excellent characteristics of low magnetization
damping, long life, easy adjustment, as well as strong cou-
pling between magnon and photon [15–18]. Coherent and
dissipative couplings have been identified experimentally in
coupled magnon-photon hybrid systems [16,19–29]. In the
earlier studies, the coherent coupling between modes of
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photon and magnon has been proved by the anticrossing or the
level repulsion of two coupled modes at/near their common
resonance frequencies [30–34]. In contrast to the anticrossing
level shown in coherently coupled magnon-photon systems,
dissipative coupled systems exhibit the level attraction at
exceptional points (EPs) [24–26,35,36], which opens a new
avenue for exploring non-Hermitian quantum physics and
parity-time (PT ) symmetry in dissipative coupled magnon-
photon systems.

So far, many applications and effects have been explored
based on dissipative coupled magnon-photon systems, for ex-
ample nonreciprocal microwave engineering [37], generation
of the steady entangled state [38], quantum sensing [39],
distant magnetic moments [27,40], and anti-PT symmetry
[41]. Recently, Yuan et al. [38] reported that a high-fidelity
Bell state of magnon and photon can be generated in the
PT -symmetry broken phase. Also, it has been proposed that
tripartite entanglement among the deformation mode, magne-
tostatic mode, and microwave cavity mode may be realized in
a cavity magnomechanical system via magnetostrictive inter-
action and magnetic dipole interaction [42]. Comparing with
bipartite and tripartite binary entangled states, multipartite
high-dimensional entangled states, which can enhance the
violations of local realism [43] and the security of quantum
cryptography [44–47], have attracted much interest owing
to the larger channel capacity of quantum communication
and the higher efficiency of quantum information process-
ing. To this end, high-dimensional entanglement has been
not only generated theoretically in various physical platforms
[48–53], but also investigated experimentally in photonic sys-
tems [54,55], cold atoms [56,57], and trapped ions [58].
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In this paper, we propose a non-Hermitian magnon-circuit-
QED hybrid system consisting of two cavities and an YIG
sphere inside one of cavities. We derive analytically an ef-
fective Hamiltonian of the hybrid magnon-photon system and
its energy spectra, and then abundant EPs, PT -symmetry
phases and PT -symmetry broken phases are investigated
in the parameter space. In PT -symmetry broken phases,
through the Zeeman effect between photon and magnon
modes and the electric dipole interaction between modes of
photons, a tripartite high-dimensional entangled state can be
generated steadily among the modes of magnon and pho-
ton, corresponding to which the stable quantum coherence
exists. Our paper may facilitate potential applications of
magnon-circuit-QED hybrid systems in quantum informa-
tion processing, because of the following advantages and
interests. First, by varying systematic parameters, there are
abundant EPs, PT -symmetry phases and PT -symmetry bro-
ken phases in comparison with Refs. [38,59–63]. Second,
the steady quantum coherence among the modes of magnon
and photon exists in PT -symmetry broken phases, with re-
spect to which tripartite high-dimensional entangled states
can be generated. However, both of quantum coherence and
entanglement states appear with intense oscillations in PT -
symmetry phases, which is contrary to the universal viewpoint
that the state is unstable as the PT symmetry is broken.
This anomaly can be further understood by the competition
of the evolution of non-Hermitian system and particle number
conservation of the hybrid system. Finally, the fidelity of
tripartite high-dimensional entangled state and the quantum
coherence are robust to the dissipation of hybrid system,
independent of a certain initial state, and insensitive to the
fluctuation of magnon-photon coupling. By comparing with
a previous study in the magnon-cavity QED hybrid system,
the present scheme for generating tripartite entanglement is
originated from the Zeeman effect between the modes of
photon and magnon via non-Hermitian coupling and the elec-
tric dipole interaction between the modes of photons in the
magnon-circuit-QED hybrid system. The entanglement re-
sulted from the evolution of non-Hermitian system is not only
tripartite but also high dimensional. Therefore, the present
work may provide prospects for realizing multipartite high-
dimensional entangled states in the magnon-circuit-QED hy-
brid system and further applications in quantum information
processing.

II. THEORETICAL MODEL AND IMPLEMENTATION
IN NANOCIRCUIT

A. Model and Hamiltonian

As illustrated in Fig. 1(a), we consider first an abstract
model of a three-mode coupled magnon-photon hybrid system
including two microwave photon modes a and b in cavities
A and B, respectively, and one magnon mode c in the YIG
sphere, where the photon mode a is coupled to the photon
(magnon) mode b (c) via the electric (magnetic) dipole inter-
action with net coupling strength r (g). In particular, there is a
coherent coupling between the microwave photon mode a and
the magnon mode c due to the Ampére effect and the Faraday
effect, corresponding to the coupling strength g. Meanwhile,
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FIG. 1. (a) Schematic diagram for couplings of the microwave
photon mode a to the microwave photon mode b with strength r
and the magnon mode c with the direct strength g or feedback
action strength geiφ . (b) Schematic layout of the proposed hybrid
system. The design of planer cross-line microwave circuit cavity is
composited by a Michelson-type microwave interferometer with two
short-terminated vertical arms and two horizontal arms, in which port
1 and port 2 are connected to a vector network analyzer to enable
microwave-transmission measurements [64,65]. The planar cavities
A and B placed in the x − y plane are coupled to each other by
the intercavity capacitor. The YIG sphere magnetized to saturation,
where the Kittel mode of magnon is excited by a an external magnetic
field B0 along the z direction, is mounted at the center of planar
microstrip-cross junction in the cavity A. (c) Equivalent circuit of the
coupled magnon-photon system. Circuit elements are used to model
the cavity A (B) and the YIG sphere.

due to the effect of Lenz’s law, the microwave current in the
cavity A also creates a back action on the the YIG sphere to
impede the magnetization of the magnon mode, which leads
to a dissipative magnon-photon coupling, corresponding to the
coupling strength geiφ . The phase difference φ results from the
competition between the coherent and dissipative couplings
[25]. Such a model of the magnon-photon system can be
described by a non-Hermitian interaction Hamiltonian

Ĥ = ωaâ†â + ωbb̂†b̂ + ωcĉ†ĉ + g(âĉ† + eiφ â†ĉ)

+ r(eiθ âb̂† + e−iθ â†b̂), (1)

where â (b̂) and ĉ are annihilation operators of the uniform
precession modes for the photon mode a (b) and the magnon
mode c. θ is a phase shift coming from the crosstalk effects
between the fields produced inside the cavities A and B. When
the driving torque on the magnetization of magnon from Am-
pére’s law is more (less) than the retarding torque on the
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magnetization of magnon from Lenz’s law, φ = 0 (φ = π )
corresponds to a purely coherent (dissipative) coupling.

B. Implementation in nanocircuit

According to existing circuit-QED technologies, one can
construct a magnon-circuit-QED hybrid system to implement
the model proposed above via arranging planar microwave
cavities A and B and the YIG sphere, as shown in Fig. 1(b).
The electric dipole interaction between the cavities A and
B can be realized by using an intercavity capacitor. The
magnons embodied by a collective motion of a large number
of spins in a ferrimagnet can be provided by an YIG sphere.
At the same time, an external magnetic field B0 along the z
direction magnetizes the YIG sphere to saturation and then
induces the Kittel mode of magnons in the YIG sphere [66].
The Zeeman effect is achieved by placing an YIG sphere
inside the cavity A so that it overlaps with the microwave
magnetic field of the cavity A. This setup can be continuously
tuned for the YIG sphere position to change the local field
and the coupling effect, which can further realize dissipative
coupling or coherent coupling between the YIG sphere and
the cavity A.

In order to describe quantitatively non-Hermitian coupling
in the hybrid system, both the dissipative coupling and the
coherent coupling can be realized by an LCR-circuit model,
corresponding to the existence of the resistance-dominated
coupling and the inductance-dominated coupling, respectively
[26]. Equivalently, the hybrid system can be quantized into a
series of circuit components of the capacitance, inductance
and resistance in Fig. 1(c). The dissipative and coherent
couplings between the YIG sphere and the cavity A can be
modeled by a mutual resistance R1 and a mutual inductance
L1, respectively [26]. Also, the cavity-cavity coupling can be
modeled by an intercavity capacitor. As long as the intercavity
capacitance C is much smaller than the capacitance Ca (Cb) of
the cavity A (B), photons can hop between the cavities A and
B [67] with the intercavity coupling strength r ≈ 2Z0Cωaωb,
Z0 being the characteristic impedance of the transmission line
[68]. Based on the standard process quantization of an LCR
circuit [69], the frequencies of the cavities A and B and the
YIG sphere are expressed as ωa = 1/

√
LaCa, ωb = 1/

√
LbCb

and ωc = 1/
√

LmCm, respectively, and the damping rates
are γa = Ra/2Laωa, γb = Rb/2Lbωb and γm = Rm/2Lmωc, re-
spectively.

The Hamiltonian of the hybrid system shown in Fig. 1(b)
reads in an ideal situation as

Ĥ = ĤYIG + ĤA,B + ĤA−c + ĤA−B. (2)

ĤYIG is the free Hamiltonian of the YIG sphere, and ĤA,B is
the free Hamiltonian of the cavities A and B. ĤA−c (ĤA−B) is
the interaction Hamiltonian of the cavity A and the YIG sphere
(the cavity B), respectively. Concretely,

ĤYIG = −
∑

i

g∗μBB0 · Ŝi − J
∑
i, j

Ŝi · Ŝ j,

ĤA,B =
∑

n=a,b

1

2

∫ (
ε0E2

n + 1

μ0
B2

n

)
dxdydz,

ĤA−c = −
∑

i

Ŝi · H,

ĤA−B = C
∫

ḂadSa ·
∫

ḂbdSb. (3)

For ĤYIG, J is the exchange constant, g∗ the g factor, μB

the Bohr magneton, B0 the external magnetic field along the
z axis in order for the YIG sphere to be magnetized, and
Ŝi ≡ (Ŝx

i, Ŝy
i, Ŝz

i ) the Heisenberg spin operator for the ith
site. For ĤA,B, Ea(b) and Ba(b) are respective components of
electric field and magnetic field in the cavity A (B), and ε0 and
μ0 are vacuum permittivity and susceptibility, respectively.
For ĤA−c, H is the corresponding magnetic field acting on the
spin. For ĤA−B, C is the intercavity capacitance, and

∫
ḂndSn

is the voltage profile in the cavity n (n = a, b) [70,71].
The Heisenberg operators can be expressed as bosonic

operators ĉi and ĉ†
i by using the Holstein-Primakoff transfor-

mation [72]

Ŝz
i = S − ĉi

†ĉi,

Ŝ+
i = ĉi

√
2S − ĉi

†ĉi,

Ŝ−
i = ĉi

†
√

2S − ĉi
†ĉi, (4)

where S is the total spin on each site and Ŝ± ≡ Ŝx
i ± iŜy

i .
The bosonic operators are related to the spin-wave operators
by Fourier transformation ĉi = 1/

√
N

∑
qc

e−iqc·ri ĉqc (ĉ†
i =

1/
√

N
∑

qc
eiqc ·ri ĉ†

qc
), ĉqc (ĉ†

qc
) representing the annihilation

(creation) operator in the spin-wave mode with wave vec-
tor qc [73,74]. Substituting these operators into ĤYIG, the
Hamiltonian of magnetostatic modes in the YIG sphere under
the static limit [74] can be written as ĤYIG = ∑

qc
ωqc ĉ

†
qc

ĉqc .
Then the magnetic fields of cavities A and B can
be quantized as Bn = i

∑
qn

√
ωqn/4Vnqn × [u(qn)n̂qn eiqn·r −

u∗(qn)n̂†
qn

e−iqn·r] (n = a, b), where u(qn) is the complex am-
plitude of field in the cavity, n̂qn and n̂†

qn
the annihilation and

creation operators of the cavity at frequency ωqn with wave
vector qn, and Vn the volume of the cavity. By substituting
magnetic fields into ĤA,B, we obtain the quantized Hamil-
tonian of microwaves ĤA,B = ∑

qa,qb
ωqa â†

qa
âqa + ωqb b̂

†
qb

b̂qb

[75].
However, there are not only a coherent coupling on ac-

count of the Ampére effect and the Faraday effect, but also
a dissipative coupling on account of Lenz effect between the
YIG sphere and cavity A [25]. In this case, the oscillating
field H acting on the local spin includes a direct action of the
microwave h1 and a reaction field of the precessing magneti-
zation h2 = h1δei	 [25–28], where δ and 	 are the relative
amplitude and phase of the two fields, respectively. In the
presence of both coherent and dissipative couplings, accord-
ing to the standard quantization process and the rotating-wave
approximation, one can recast the Hamiltonian (2) into

ĤYIG =
∑

qc

ωqc ĉ
†
qc

ĉqc ,

ĤA,B =
∑
qa,qb

ωaâ†
qa

âqa + ωbb̂†
qb

b̂qb,
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ĤA−c =
∑
qa,qc

gqa,qc (âqa ĉ†
qc

+ eiφ â†
qa

ĉqc ),

ĤA−B =
∑
qa,qb

rqa,qb (eiθqa ,qb âqa b̂†
qb

+ e−iθqa ,qb â†
qa

b̂qb ), (5)

where φ = 2 arctan[−δ sin 	/(1 + δ cos 	)] is a tunable
phase [25–28,38], θqa,qb a phase coming from the two rf
fields in the cavities A and B joined by microstrips with
the intercavity capacitor, gqa,qc the magnon-photon cou-
pling strength between the magnetostatic mode cqc and the
microwave cavity mode aqa , and rqa,qb the photon-photon
coupling strength between microwave cavity modes aqa and
bqb . The magnon-photon coupling strength via Zeeman effect
and the photon-photon coupling strength via electric dipole
interaction can be expressed as [67,71,76]

gqa,qc = g∗μB

√
2S

2

∫
V

dr Ba(r) · sqc (r),

rqa,qc = 1

2
Z0C

√
ωqa (ωqb + 
ab)φAφB, (6)

where Ba(r) is the strength of microwave magnetic field in the
cavity A at the position r of the spin, sqc (r) the orthonormal
mode function describing the spatial profile of the amplitude
and phase for the magnetostatic mode cqc , Z0 the characteristic
impedance of the transmission line, 
ab the frequency detun-
ing between the cavities A and B arising from the external
magnetic field B0, and the φa (φb) the classical mode function
of cavity A (B). The magnon-photon coupling is dissipative
only when the YIG sphere is mounted at the center of planer
microstrip-cross junction in the cavity A. Otherwise, it is a
coherent coupling [26].

It is supposed that the microwave magnetic field in the cav-
ity A is uniform throughout the YIG sphere, so the magnetic
dipole coupling vanishes except for the uniform magnetostatic
mode, i.e., the Kittel mode of magnon at frequency ωc [76].
The photon then only interacts strongly with the magnon
around the Gamma point (i.e., the Kittel mode) so as to match
the resonant/near-resonant frequency ωa (ωb) in the cavity
A (B) and ωc in the YIG sphere [38,77,78]. Thus the sum
in Eq. (5) can be removed to obtain Eq. (1). It should be
emphasized that the frequency ωb can be tuned by the exter-
nal magnetic field, which can further affect the cavity-cavity
detuning.

C. Energy spectrum

The Hamiltonian (1) is non-Hermitian, but there are still
real eigenvalues [79], because Hermicity is not a necessary
condition for a physical quantum theory [79]. Importantly,
under the condition of φ = nπ (n = 0, 1, 2...), the Hamilto-
nian (1) is PT symmetric, [Ĥ,PT ] = 0, where P and T
are parity inversion and time reversal operators, respectively.
When the Hamiltonian (1) holds real eigenvalues, the phase
of the system can be regarded as the PT -symmetry phase.
However, the PT -symmetry broken phase is characterized by
complex eigenvalues [80]. When the YIG sphere is mounted
at the center of microstrip cross junction in the cavity A, the
dissipative magnon-photon coupling is absolutely dominant

owing to the Lenz effect inducing a feedback microwave cur-
rent on the YIG sphere and in turn impeding the excitation
of the magnon, which results in the phase φ = π [25,26].
In this situation, we can obtain analytically three complex
eigenvalues ωn (n = 1, 2, 3) of Hamiltonian (1)

ω1 = A
3

− 21/3(3B − A2)

3E + E
21/3

,

ω2 = A
3

− (1 + i
√

3)(3B − A2)

3×22/3×E1/3
− (1 − i

√
3)E1/3

6×21/3
,

ω3 = A
3

− (1 − i
√

3)(3B − A2)

3×22/3×E1/3
− (1 + i

√
3)E1/3

6×21/3
, (7)

where A = ωa + ωb + ωc, B = g2
1eiφ + r2 − ωcωa −

ωcωb − ωaωb, C = −ωcωaωb + ωcr2 + g2
1eiφωb, D =

−A2B2 + 4B3 − 4A3C + 18ABC + 27C2, and E =
2A3 − 9AB − 27C + 3

√
3
√
D. We plot the real and

imaginary parts of the three eigenvalues ωn, respectively,
represented by solid and dotted lines in the y-z plane of
Fig. 2. Specifically, the real and imaginary parts of energy
spectrum versus the magnon-photon coupling strength g/2π

and the frequency detuning of the magnon-photon coupling

 = (ωa − ωc)/2g are also plotted in Figs. 2(a)–2(c) and
Figs. 2(d)–2(f), respectively. We take the photon-photon
coupling strength r/2π = 50 MHz and θ = 1.1π for
example and select three decreasing magnon-photon
coupling strength ranges g/2π ∈ [0, 70] MHz in (a) and (d),
g/2π ∈ [0, 25] MHz in (b) and (e), and g/2π ∈ [0, 10] MHz
in (c) and (f), respectively. It is noted that the value of
coupling phase θ has no impact on the energy spectrum
of the hybrid system. Obviously, the real parts of energy
spectrum show two surfaces of eigenvalues merge into one
hybrid surface in Figs. 2(a)–2(c). In other words, Fig. 2
demonstrates a typical spectrum of level attraction (φ = π ).
As shown in Figs. 2(d)–2(f), when the eigenvalues are
real (imaginary), PT -symmetry (PT -symmetry broken)
phases are appeared. The phase transitions at EPs are
shown by black solid points. Depending on ranges of
magnon-photon coupling strength, the regions of PT
symmetry, PT -symmetry broken phases and the number
of EPs can be changed. For convenience, we take the x − z
plane as an example to identify the regions of PT symmetry
and PT -symmetry broken phases. In Figs. 2(a) and 2(d)
with the magnon-photon coupling strength g/2π = 70 MHz,
when 
 ∈ [−3,−1.03) ∪ (1.03, 3] (real eigenvalues) and

 ∈ [−1.03, 1.03] (imaginary eigenvalues), there are two
PT -symmetry phases and one PT -symmetry broken phase,
respectively, with the separation of two EPs at 
 = ±1.03. In
Figs. 2(b) and 2(e) with the magnon-photon coupling strength
g/2π = 25 MHz, three EPs (
 = −1.38, 0, 1.38) divide the
PT -symmetry broken area into two adjacent parts in the
region of 
 ∈ (−1.38, 1.38). Two parts of PT -symmetry
phases exist in the region of 
 ∈ [−4,−1.38] ∪ [1.38, 4].
In Figs. 2(c) and 2(f) with the magnon-photon coupling
strength g/2π = 10 MHz, by continuously decreasing the
magnon-photon coupling strength, it is distinct that two
parts of PT -symmetry broken phases are separated further
than Figs. 2(b) and 2(e). And three parts of PT -symmetry
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FIG. 2. Energy spectrum vs the magnon-photon coupling strength g/2π and the frequency detuning of the magnon-photon coupling

 = (ωa − ωc )/2g by setting three decreasing magnon-photon coupling strength ranges g/2π ∈ [0, 70] MHz in (a) and (d), g/2π ∈
[0, 25] MHz in (b) and (e), and g/2π ∈ [0, 10] MHz in (c) and (f), respectively. [(a)–(c)] Real parts of the eigenvalues. [(d)–(f)] Imaginary
parts of the eigenvalues. PT -symmetry broken phases in the x − z plane: [(a),(d)] 
 ∈ [−1.03, 1.03] with g/2π = 70 MHz; [(b), (e)]

 ∈ [−1.38, 0) ∪ (0, 1.38] with g/2π = 25 MHz; [(c), (f)] 
 ∈ [−2.24, −0.88) ∪ (0.88, 2.24] with g/2π = 10 MHz. PT -symmetry phases
in the x − z plane: [(a),(d)] 
 ∈ [−3, −1.03) ∪ (1.03, 3] with g/2π = 70 MHz; [(b),(e)] 
 ∈ [−4, −1.38) ∪ (1.38, 4] with g/2π = 25 MHz;
[(c),(f)] 
 ∈ [−4, −2.24) ∪ (−0.88, 0.88) ∪ (2.24, 4] with g/2π = 10 MHz. Parameters: r/2π = 50 MHz, φ = π , and θ = 1.1π .

phases are separated by four EPs at 
 = ±0.88 and ±2.24,
respectively.

III. TRIPARTITE HIGH-DIMENSIONAL ENTANGLED
STATES AND ROBUSTNESS

In this section, we use the model to generate the tripartite
qubit entangled state and high-dimensional entangled states.
Then we discuss the robustness of the entangled states and
quantum coherence in the PT -symmetry broken phases.

A. Generation of tripartite qubit entangled state

We focus on the generation of tripartite qubit entangled
state among the modes of magnon and photon in PT -
symmetry broken phases. Firstly, the evolution of the hybrid
system can be evaluated by using the master equation [81]

∂ρ̂

∂t
= −i[Ĥ1, ρ̂] − i{Ĥ2, ρ̂} + 2i〈Ĥ2〉ρ̂, (8)

where ρ̂ is the density matrix of the system, Ĥ1 (Ĥ2) is a
Hermitian (anti-Hermitian) operator by recasting the effec-
tive Hamiltonian as Ĥ1 ≡ (Ĥ + Ĥ†)/2 (Ĥ2 ≡ (Ĥ − Ĥ†)/2),
〈Ĥ2〉 = tr(ρ̂Ĥ2), and the brackets [·] and {·} represent the
commutator and anticommutator, respectively. Specially, the
resulting equation is nonlinear in the quantum state ρ̂ by
adding the third term so as to preserve tr(ρ̂) = 1. By solving
the evolution of density matrix ρ governed by Eq. (6), an
initial pure state |φ0〉 = |001〉a,b,c with a mean particle number
N = 〈â†â + b̂†b̂ + ĉ†ĉ〉 = 1 is taken as an example. Then we
introduce nonlocal modes

Â1,2 = â ± b̂e−iθ

√
2

. (9)

And assume that ωa = ωb = ω and the large detuning
condition |ω − ωc − r| 
 |g|. After transforming into the
interaction picture of the nonlocal modes, the interaction
Hamiltonian reads as

Ĥeff = geff (Â†
1ĉ + Â1ĉ†eiφ ), (10)

where Â1 = (â + b̂e−iθ )/
√

2 and geff = g/
√

2. Accord-
ingly, the hybrid system evolves in the finite sub-
space {|0̃1〉A1,c, |1̃0〉A1,c}, where |0̃〉A1 and |1̃〉A1 are Fock
states of the mode A1, represented by |00〉a,b and
(|10〉a,b + eiθ |01〉a,b)/

√
2, respectively, on the basis of

{|0〉a, |1〉a, |0〉b, |1〉b}. By solving the eigenequation Ĥ |φm〉 =
ωm|φm〉, eignstates of the hybrid system are obtained

|φm〉 = cos θm|1̃0〉A1,c + eiψm sin θm|0̃1〉A1,c, (11)

where θm and ψm are related with eiψm tan θm = (ωk −
ω)/g (k = 1, 2, 3...). If the initial state is ρ̂0 = |0̃1〉A1,c〈0̃1|,
the time-dependent density matrix can be further written as
[81]

ρ̂ =
∑

k, j pk, je−iωk j t |φk〉〈φ j |∑
k, j pk, je−iωk j t tr(|φk〉〈φ j |) , (12)

where ωk, j = ωk − ω∗
j and pk, j are expansion coefficients. As

t → ∞, the steady density matrix is ρ̂(∞) = |φ1〉〈φ1|. On the
one hand, the steady state is |φ1〉 = (|1̃0〉A1,c + i|0̃1〉A1,c)/

√
2,

which is a Bell state in the general form on the basis
of {|0̃1〉A1,c, |1̃0〉A1,c}. On the other hand, it is a tripartite
entangled state with |φ1〉 = |100〉a,b,c/2 + eiθ |010〉a,b,c/2 +
i|001〉a,b,c/

√
2 on the basis of {|0〉a, |1〉a, |0〉b, |1〉b, |0〉c, |1〉c}.

In Fig. 3, we plot numerically population evolution of the
system, including the ideal entangled state and other evolu-
tion states in PT -symmetry broken phases. By satisfying the
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FIG. 3. Population evolution of the target tripartite entan-
gled state |φ1〉 = (|1̃0〉A1,c + i|0̃1〉A1,c )/

√
2 and its three compo-

nent states, based on the initial state |001〉a,b,c in PT -symmetry
broken phases. Parameters: ωc/2π = 6 GHz, ωa/2π = ωb/2π =
5.95 GHz, g/2π = 6 MHz, r/2π = 50 MHz, and θ = 1.1π .

large detuning condition, we set ωc/2π = 6 GHz, ωa/2π =
ωb/2π = 5.95 GHz, g/2π = 6 MHz, and r/2π = 50 MHz
that is accessible in [20,21,26,27,67,68,82]. The fidelity is
formulated as F (t ) = tr

√〈φ1|ρ̂(t )|φ1〉, where |φ1〉 and ρ̂(t )
are the target state and the time-dependent density matrix of
the system by solving Eq. (8). It is identified that the pop-
ulation of |010〉a,b,c and |100〉a,b,c has the exactly identical
evolution with population 0.25 while the population of the
initial state |001〉a,b,c becomes 0.5 at the time T = 0.2 μs.
Evidently, the population of the target state |φ1〉 evolves from
about 0.7 to 1, signifying the successful creation of a steady
tripartite entangled state in PT -symmetry broken phases. In
fact, in a tripartite system, quantum coherence may exist
due to the collective participation of several subsystems, or
can be attributed to coherence located within the subsystems.
Therefore, the magnon-photon entanglement can be quanti-
fied through the collective coherence, which are given by
expression [83]

C =
√

S

(
ρ̂ + ρ̂π

2

)
− S(ρ̂ ) + S(ρ̂π )

2
, (13)

in which S is the von Neumann entropy, ρ̂ the density
matrix of the hybrid system, and the closest product state
ρ̂π ≡ ρ̂min = ρ̂a ⊗ ρ̂b ⊗ ρ̂c. Figures 4(a) and 4(b) show the
time evolution of fidelity (thin dotted line) of |φ1〉 and the
collective coherence (thin solid line) without losses in the
PT -symmetry broken phase and the PT -symmetry phase,
respectively. Apparently, in the PT -symmetry broken phase
with complex eigenvalues ωn, F and C approach 1 and 0.806,
respectively, when the system without losses evolves to the
tripartite entangled state |φ1〉. Nevertheless, the system en-
ters into the PT -symmetry phase as the eigenvalues ωn are
real. The hybrid system has no gain modes, which results in
the unstable dynamics of collective coherence and fidelity.
Thus, the steady tripartite entangled state and the collective
coherence can be steady in the PT -symmetry broken phase
but oscillate in the PT -symmetry phase. Actually, this
anomaly can be further understood by the competition of the
evolution of non-Hermitian system and the particle number
conservation in the hybrid system. When the hybrid system
lies in the PT -symmetry broken phase, the evolution of the

FIG. 4. Time dependence of the collective coherence of
the system and the fidelity of |φ1〉 = (|1̃0〉A1,c + i|0̃1〉A1,c )/

√
2,

based on the initial state |001〉a,b,c (a) in the PT -symmetry
broken phase and (b) in the PT -symmetry phase. Parame-
ters: (a) ωc/2π = 6 GHz, ωa/2π = ωb/2π = 5.95 GHz, g/2π =
6 MHz, r/2π = 50 MHz, and κa/2π = κb/2π = γm/2π = 0.1g;
(b) ωc/2π = 6 GHz, ωa/2π = ωb/2π = 6 GHz, g/2π = 6 MHz,
r/2π = 50 MHz, and θ = 1.1π .

system guarantees not only the process of gain and loss but
also the particle conserving process. The coexistence of two
processes will render the initial state to evolve in the steady
target entangled state. As for the PT -symmetry phase, evo-
lution of the hybrid system does not involve gain and loss,
and hence can not render the system to a steady state. The
oscillation phenomenon is analogous to the unitary evolution
of traditional Hermitian systems with a real beam-splitter type
interaction through the particle conserving process [84].

B. Generation of tripartite high-dimensional entangled states

In the following, we consider the hybrid system evolving
in the Hilbert subspace of N > 1, when the system is under
the PT -symmetry broken phase. Firstly, we take an example
of an initial pure state |ψ2〉 = |0̃2〉A1,c with a mean particle
number N = 2. By solving the master equation (6), a steady
tripartite three-dimensional entangled state can be generated
by satisfying the large detuning condition, which is repre-
sented as

|φ2〉 = 1

2
|2̃0〉A1,c − i√

2
|1̃1〉A1,c − 1

2
|0̃2〉A1,c, (14)

where |2̃〉A1 can be represented by (|20〉a,b + eiθ
√

2|11〉a,b +
e2iθ |02〉a,b)/2, on the basis of {|0〉a, |1〉a, |2〉a, |0〉b, |1〉b, |2〉b}.
In Fig. 5(a), with the same parameters as in Fig. 3, we nu-
merically plot the time evolution of populations for the target
entangled state |φ2〉, the initial state |ψ2〉, and other evolution
states. The populations of |101〉a,b,c and |011〉a,b,c (|020〉a,b,c
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FIG. 5. Population evolution of the target tripartite high-
dimensional entangled states and their component states for
(a) |φ2〉 = |2̃0〉A1,c/2 − i|1̃1〉A1,c/

√
2 − |0̃2〉A1,c/2 based on the ini-

tial state |002〉a,b,c and (b) |φ3〉 = i
√

2|0̃3〉A1,c/4 + √
6|1̃2〉A1,c/4 −

i
√

6|2̃1〉A1,c/4 − √
2|3̃0〉A1,c/4 based on the initial state |003〉a,b,c. Pa-

rameters: ωc/2π = 6 GHz, ωa/2π = ωb/2π = 5.95 GHz, g/2π =
6 MHz, r/2π = 50 MHz, and θ = 1.1π .

and |200〉a,b,c) have the identical trend reaching 0.25 (0.06).
The population of initial state |002〉a,b,c evolve from 1 to 0.25,
and the population of |110〉a,b,c is close to 0.16 finally. Ob-
viously, the population of |φ2〉 reaches nearly 1 and remains
steady at the end of evolution, which indicates the successful
creation of the tripartite high-dimensional entangled state.
Next, by setting initially a mean particle number N = 3 and
choosing an initial state as |ψ3〉 = |0̃3〉A1,c, we obtain a tripar-
tite four-dimensional entangled state

|φ3〉 =
√

2

4

(√
3|1̃2〉A1,c − i

√
3|2̃1〉A1,c − |3̃0〉A1,c + i|0̃3〉A1,c

)
,

(15)

where |3̃〉A1 can be represented by (e2iθ
√

6|12〉a,b +
eiθ

√
6|21〉a,b + √

2|30〉a,b + e3iθ
√

2|03〉a,b)/4, on the basis
of {|0〉a, |1〉a, |2〉a, |3〉a, |0〉b, |1〉b, |2〉b, |3〉b}. Also, the
population of the initial state, the target state and other
evolution states are exhibited in Fig. 5(b) with the same
parameters as Fig. 5(a). The fidelity of |φ3〉 reaches unity
and remains stable at the end of evolution. Thus, the result
reveals that the tripartite high-dimensional entangled state
can be generated in this scheme. Figures 6(a) and 6(b) show
the time evolution of the collective coherence (thin-solid
line) and fidelity (thin-dotted line) with |φ2〉 and |φ3〉 in the
PT -symmetry broken phase, respectively. As expected, the
fidelity of |φ2〉 and |φ3〉 can be both achieved by unity in the
PT -symmetry broken phase, when not considering losses.
The final collective coherence of |φ2〉 and |φ3〉 are 0.902 and
0.937, respectively, and keep steady. The tripartite entangled
state has the larger collective coherence when the initial state

FIG. 6. Time dependence of the collective coherence
and fidelity of tripartite high-dimensional entangled states
(a) |φ2〉 = |2̃0〉A1,c/2 − i|1̃1〉A1,c/

√
2 − |0̃2〉A1,c/2 based on the initial

state |002〉a,b,c and (b) |φ3〉 = i
√

2|0̃3〉A1,c/4 + √
6|1̃2〉A1,c/4 −

i
√

6|2̃1〉A1,c/4 − √
2|3̃0〉A1,c/4 based on the initial state |003〉a,b,c

in the PT -symmetry broken phase. Parameters: ωc/2π = 6 GHz,
ωa/2π = ωb/2π = 5.95 GHz, g/2π = 6 MHz, r/2π = 50 MHz,
θ = 1.1π , and κa = κb = γm = 0.1g.

is of a larger mean particle number. In order to represent
more intuitively the relation among the frequency detuning
of the magnon-photon coupling, the collective coherence,
and the fidelity of tripartite high-dimensional entangled
state, a full phase diagram of the system is shown in Fig. 7.
In PT -symmetry broken phases, the collective coherence
remains the maximum and steady value, independent of the
magnitude of detuning. Meanwhile, the fidelity becomes
unity under the condition of 
 ≈ ±2.5. We find that the
collective coherence and the fidelity are of oscillations
and cannot reach the maximal value in the PT -symmetry
phases. Therefore, the EPs at 
 = ±1.9 and ±3.1 play an
important role of critical point whether the target tripartite

FIG. 7. Collective coherence and the fidelity of the target tri-
partite high-dimensional entangled state |φ3〉 as functions of the
frequency detuning of the magnon-photon coupling 
. Parameters:
ωc/2π = 6 GHz, ωa/2π = ωb/2π = 5.95 GHz, g/2π = 6 MHz,
r/2π = 50 MHz, θ = 1.1π , and Ttotal = 0.2 μs.
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FIG. 8. Collective coherence as the function of evolution time
with the total number of particles from N = 1 to N = 6 based on
the initial state |00N〉a,b,c. Parameters: ωc/2π = 6 GHz, ωa/2π =
ωb/2π = 5.95 GHz, g/2π = 6 MHz, r/2π = 50 MHz, and
θ = 1.1π .

high-dimensional entanglement can be generated steadily.
In Fig. 8, we numerically work out the time evolution of
the collective coherence with the total number of particles
from 1 to 6. Apparently, the collective coherence has the
lager value with the increase of N . Nevertheless, when
N = 2, 3, 4, 5, 6, the collective coherence increases slowly
and lies in the position between 0.937 and 0.972. By
magnifying the time range T ∈ [0.12, 0.17] μs, tripartite
high-dimension entangled states can be obtained with
the collective coherence of 0.902, 0.937, 0.955, 0.965,
and 0.972, respectively, when N = 2, 3, 4, 5, 6. As for
the maximal tripartite high-dimensional entangled states
|�n〉 = 1√

N+1
(
∑N

k=0 |k, k, k〉a,b,c ), their collective coherence
can reach 0.941, 0.970, 0.983, 0.989, and 0.993, respectively,
corresponding to N = 2, 3, 4, 5, 6, calculated by Eq. (13). In
fact, tripartite high-dimensional entangled states proposed
here are not the standard ones |�n〉, and hold collective
coherence slightly less than the maximal ones for the integer
N ∈ [2, 6]. However, tripartite high-dimensional entangled
states |φn〉 have also enough capacity to complete tasks of
quantum information. Besides, the tripartite high-dimensional
entangled state |φn〉 can still collapse possibly to entanglement
states, such as |1̃〉A1 , |2̃〉A1 , and |3̃〉A1 , when quantum
measurements are introduced.

C. Robustness of entanglement

In this subsection, we discuss the robustness of the tri-
partite high-dimensional entangled state against environment
noises. Three dominant influence aspects are considered: (i)
losses of cavity A, cavity B and the magnon with decay rates
κa, κb, and γm, respectively; (ii) different initial states; and
(iii) unexpected magnon-photon coupling g. When the hybrid
system with PT -symmetry broken phases is in an ideal en-
vironment, the result shows that the collective coherence and
the fidelity of tripartite entangled states |φ1〉, |φ2〉, and |φ3〉
remain stable in Figs. 4(a), 6(a), and 6(b). In order to give a
quantitative illustration of the effects of losses of cavity modes
and the magnon mode, the dynamics of the lossy system is
governed by adding Lindblad operators of cavity modes and

FIG. 9. Infidelity of the steady tripartite high-dimensional entan-
gled state vs the decay ratio with different magnon-photon coupling
strengths. We choose κa = κb = γm = γ and geff/2π = 212 MHz,
42.4 MHz, 21.2 MHz, and 4.2 MHz, respectively. Parameters:
ωc/2π = 6 GHz, ωa/2π = ωb/2π = 5.95 GHz, g/2π = 6 MHz,
r/2π = 50 MHz, θ = 1.1π , and Ttotal = 0.2 μs.

the magnon mode into the master equation

∂ρ̂

∂t
= −i[Ĥ1, ρ̂] − i{Ĥ2, ρ̂} + 2i〈Ĥ2〉ρ̂ + γmD[ĉ]

+ κaD[â] + κbD[b̂], (16)

where D[Â] = Âρ̂Â† − Â†Âρ̂/2 − ρ̂Â†Â/2 with Â = â, b̂, or
ĉ is a Lindblad operator [85] describing the loss effect of the
cavity A, cavity B or the magnon, respectively. For conve-
nience, we assume that κa = κb = γm = 0.1g that is accessible
in experiment [20,21]. Through solving the master equa-
tion with losses, we can obtain time evolution of the fidelity
and collective coherence of |φ1〉 with thick lines in Fig. 4(a),
|φ2〉 and |φ3〉 with thick lines in Figs. 6(a) and 6(b), respec-
tively. The fidelity of |φ1〉, |φ2〉, and |φ3〉 are 0.926, 0.856,
and 0.793, respectively. And the collective coherence of |φ1〉,
|φ2〉, and |φ3〉 are 0.678, 0.794, and 0.848, respectively. Tri-
partite high-dimensional entangled state |φ3〉 is most affected
by losses due to the largest particle number N . In Fig. 9,
we plot the infidelity (1 − F ) of tripartite high-dimensional
entangled state |φ3〉 at the end of evolution time Ttotal = 0.2 μs
as a function of losses of the cavities and the magnon with
different coupling strengths geff in the PT -symmetry broken
phase. As the decay rate γ increases, the infidelity of tripartite
entangled state shows a trend of increase. When geff/2π =
{42.4, 21.2, 4.2} MHz, the three lines of infidelities are of
insignificant differences, indicating that the magnon-photon
coupling strength has little effect on the fidelity as 4.2 MHz
� geff/2π � 42.4 MHz. However, under the condition of
geff/2π = 212 MHz, the infidelity reaches 0.37 at the point
γ /geff = 0, because of the magnon-photon coupling strength
mismatching the large detuning condition |ω − ωc − r| 
 |g|.
The fidelity of the tripartite high-dimensional entangled state
|φ3〉 can be over 90% with γ /geff < 0.1, when the large de-
tuning condition is well satisfied. In the protocol above, the
tripartite high-dimensional entangled state |φ3〉 is achieved
through setting the initial state as |ψ3〉 = |003〉a,b,c. To test
dependence on the initial state, we plot the time evolution of
the fidelity and collective coherence for |φ3〉 with different
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FIG. 10. Time dependence of (a) fidelity of the tripartite high-
dimensional entangled state |φ3〉 and (b) collective coherence with
different initial states by satisfying the condition of the mean par-
ticle number equal to 3. Parameters: ωc/2π = 6 GHz, ωa/2π =
ωb/2π = 5.95 GHz, g/2π = 6 MHz, r/2π = 50 MHz, and
θ = 1.1π .

initial states satisfying the condition of the mean particle
number N = 3 in Figs. 10(a) and 10(b), respectively. Inter-
estingly, both of high fidelity and steady collective coherence
can be attained by choosing different initial states to meet
the condition of N = 3. In particular, different initial states
for the collective coherence have almost the identical evo-
lution trend. Thus, the dynamic evolution of the system is
independent of a certain initial state, which can be satisfied
with the condition of ∂N/∂t = 0 proved by the commutation
relation [N, Ĥ ] = 0. According to various of initial states in
Fig. 10(a), the shortest evolution time for achieving unity
fidelity of |φ3〉 is different, determined by the population
of the initial state at T = 0. Therefore, we can choose the
initial state, which is of the largest population in the tripar-
tite entangled state (e.g., |101〉a,b,c, |002〉a,b,c, and |011〉a,b,c

for |φ2〉; |111〉a,b,c, |102〉a,b,c, and |012〉a,b,c for |φ3〉) so that
the target entangled state with the saturation fidelity can be
generated more efficiently. Due to influences of external
temperature and experimental techniques, the initial state of
the hybrid system may not be prepared perfectly as a pure
state. Thus, it is convenient to introduce a parameter p that
characters the purity of initial state so as to identify the
robustness of generating the desired high-dimensional en-
tanglement. The initial state is assumed with a mixed state
represented as ρ0 = p|0̃3〉A1,c〈0̃3| + (1 − p)|3̃0〉A1,c〈3̃0|. As
shown in Fig. 11(a), we plot the fidelity of |φ3〉 versus the
evolution time T and the purity p of initial state with respect
to |0̃3〉A1,c. We can learn that the fidelity is not dependent of a
certain initial state but the evolution time. The non-Hermitian
property of the hybrid system in the PT -symmetry broken
phase results in three eigenmodes, whose imaginary parts are

FIG. 11. (a) The fidelity of the steady high-dimensional en-
tangled state |φ3〉 vs the evolution time and the purity p of the
initial state with respect to |0̃3〉A1,c. The red solid line repre-
sents 0.99 fidelity contour line of the steady high-dimensional
entangled state |φ3〉. (b) Time evolution of the fidelity for the
steady high-dimensional entangled state |φ3〉 with the initial density:
ρ ′

0 = ∑3
n=0 pn|0̃n〉A1,c〈0̃n|. Parameters: ωc/2π = 6 GHz, ωa/2π =

ωb/2π = 5.95 GHz, g/2π = 6 MHz, r/2π = 50 MHz, and
θ = 1.1π .

positive, negative, and zero, respectively. The eigenmode with
a positive (negative) imaginary part is corresponding to a
gain (loss) mode. The particle number of the system in the
gain mode will increase until all particles are in this state.
That is, the hybrid system behaves as a attractor, while in
the PT -symmetry broken phase each mixed state is asymp-
totically purified to a ground state [81]. Specially, we plot
a 0.99 fidelity contour line of the steady high-dimensional
entangled state |φ3〉 in Fig. 11(a). When the initial state is
pure with p = 1, the shortest evolution time is 0.06 μs to
reach the fidelity F = 0.99. By comparison with the ini-
tial density matrix ρ̂0 = 0.2|0̃3〉A1,c〈0̃3| + 0.8|3̃0〉A1,c〈3̃0|, the
steady high-dimensional entangled state with F = 0.99 re-
quires T = 0.08 μs at least. The red line indicates that a larger
proportion of |0̃3〉A1,c in the initial state demands a shorter
evolution time to realize a saturation fidelity of the tripar-
tite high-dimensional entangled state. On the other hand, we
further consider an initial state as ρ ′

0 = ∑3
n=0 pn|0̃n〉A1,c〈0̃n|

where the total particle number is less than 3. In Fig. 11(b),
the steady entangled state is always of a high fidelity at the end
of evolution, showing independence of creating the tripartite
high-dimensional entangled state on a certain initial state with
the total particle number being either equal to or less than 3.
Furthermore, in Fig. 11(b), we can increase the proportion
of the state |0̃3〉A1,c in the initial state so as to shorten the
evolution time to attain the saturation fidelity of |φ3〉, when
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FIG. 12. Collective coherence and the fidelity of the steady tri-
partite high-dimensional entangled state as functions of disorder δ

of the magnon-photon coupling strength g. Parameters: ωc/2π =
6 GHz, ωa/2π = ωb/2π = 5.95 GHz, g/2π = 6 MHz, r/2π =
50 MHz, θ = 1.1π , and Ttotal = 0.2 μs.

the initial state is mixed with |0̃1〉A1,c, |0̃2〉A1,c, and |0̃3〉A1,c.
In addition, the existence of some circuit imperfections in
the magnon-circuit-QED hybrid system, such as the mutual
inductance, the self-inductance of circuit, and the unstable ex-
ternal magnetic field, may cause a variation in ideal couplings.
In order to study the robustness of the protocol against the
variation of cavity-magnon coupling strength, we add a ran-
dom disorder into coupling strength g′ = g(1 + rand[−δ, δ])
where rand[−δ, δ] is to pick up a random number in the range
of [−δ, δ]. The relation among the fidelity of steady entangled
state |φ3〉, collective coherence and the disorder δ ∈ [0, 1] is
exhibited in Fig. 12. It is the disorder that is randomly sampled
51 times, and then the fidelity and collective coherence are
taken as an average of the 51 results. Learning from the
red-diamond line unchanged with varying δ, the collective
coherence is independent of the disorder of cavity-magnon
coupling strength, which reflects the robustness due to the

non-Hermitian property of PT -symmetry broken phases. Un-
der the condition of δ ∈ [0, 0.5], the fidelity always remains
above 99.5%. Nevertheless, the fidelity oscillates obviously
between 94.5% and 99.2% with δ ∈ [0.65, 1], on account of
fluctuations of parameter g affecting approximate conditions
to produce an effective Hamiltonian (8) for the steady tripar-
tite high-dimensional entangled state.

IV. CONCLUSION

To summarize, we have proposed a non-Hermitian model
of the magnon-circuit-QED hybrid system. There are the
steady quantum coherence and tripartite high-dimensional en-
tangled states among the modes of magnon and photon in
PT -symmetry broken phases in the proposed system. The
tripartite high-dimensional entangled state and the quantum
coherence are robust to the dissipation of hybrid system and
the fluctuation of magnon-photon coupling. Besides, the tri-
partite high-dimensional entangled state is independent of a
certain initial state. We take into account the experimental
considerations, including the implementation of the model,
the design of equivalent circuit diagram and the realization
of non-Hermitian coupling between the modes of magnon
and photon in the circuit. This paper provides an approach
to generate tripartite high-dimensional entangled states and
is expected to be helpful for realizing tripartite and even
multipartite high-dimensional entangled states in the non-
Hermitian system with the hybridization of the magnon and
the circuit-QED system.
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