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Spin-space groups and magnon band topology
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Band topology is both constrained and enriched by the presence of symmetry. The importance of antiunitary
symmetries such as time reversal was recognized early on leading to the classification of topological band
structures based on the ten-fold way. Since then, lattice point group and nonsymmorphic symmetries have been
seen to lead to a vast range of possible topologically nontrivial band structures many of which are realized in
materials. In this paper, we show that band topology is further enriched in many physically realizable instances
where magnetic and lattice degrees of freedom are wholly or partially decoupled. The appropriate symmetry
groups to describe general magnetic systems are the spin-space groups. Here we describe cases where spin-space
groups are essential to understand the band topology in magnetic materials. We then focus on magnon band
topology where the theory of spin-space groups has its simplest realization. We consider magnetic Hamiltonians
with various types of coupling including Heisenberg and Kitaev couplings revealing a hierarchy of enhanced
magnetic symmetry groups depending on the nature of the lattice and the couplings. We describe, in detail, the
associated representation theory and compatibility relations thus characterizing symmetry-enforced constraints
on the magnon bands revealing a proliferation of nodal points, lines, planes, and volumes.
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I. INTRODUCTION

Most readers will be very familiar with the huge abundance
and diversity with which crystalline solids occur in nature.
Underlying the richness of the chemistry and details of the
structure is the set of lattice symmetries which fall into one of
17 wallpaper groups in 2D materials and 230 space groups in
3D materials [1]. The profusion of structures and symmetries
grows when we focus on magnetic crystals as one is then
forced to include the role of time reversal and its interplay
with magnetic order. Altogether there are 80 magnetic space
groups in 2D and 1651 in 3D [1]. These symmetry groups
and the point groups on which they are based form one of
the cornerstones of condensed matter physics as they place
constraints on couplings, dispersion relations, wave functions,
and matrix elements [2].

Symmetry is essential also to understand the variety of
possible topological band structures [3]. While band topology
can be nontrivial in the complete absence of symmetry it is
greatly enriched by its presence as may be appreciated by
inspecting the tenfold classification of band topology with
antiunitary symmetries [3,4]. The connectivity of bands in
momentum space, including the presence or absence of band
touchings, is highly constrained by lattice symmetries. Such
constraints—originating from space groups and their mag-
netic counterparts—have been the subject of intense study
in electronic band structures and underlie various partial
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classification schemes of band topology [5–23]. In turn, these
classification tables are important for identifying topological
materials.

In strongly spin-orbit coupled magnetic materials, the mag-
netic moments are typically locked to the lattice so that
transformations performed on the moments are performed
also in real space. However, as was noted long ago by
Brinkman and Elliott [24–26] there are physically natural
settings where the spin and space transformations are wholly
or partially decoupled. In this paper, we investigate these en-
hanced symmetry groups—so-called spin-space groups—in
relation to band topology. Beginning with a brief introduction
to the spin-space groups, we give an account of their impor-
tance to the understanding of physically relevant condensed
matter systems. We then turn to the investigation of constraints
on band topology arising from the spin-space symmetries.

Our presentation concentrates on magnon band topology
which is the simplest context for studying symmetries in
magnetic materials, though many of our considerations carry
over to the electronic band structures of itinerant magnetic
materials. For magnons, in common with other bosonic
excitations, particle-hole, and chiral symmetries are subsumed
by time reversal resulting in a threefold rather than a tenfold
table [27]. For this reason, crystalline symmetries and, more
generally, spin-space symmetries are especially important if
magnons are to be imbued with interesting band topology.

Magnon band structures emerge through symmetry break-
ing from an underlying lattice of interacting magnetic
moments. As we show, the symmetry of the band structure
of coherent single magnon excitations is tethered both to the
nature of the magnetic exchange Hamiltonian as well as to the
magnetic structure. Such excitations are routinely probed in
bulk magnetic materials in energy-momentum over the entire
Brillouin zone using inelastic neutron scattering.
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Previously spin-space groups were considered in the con-
text of Heisenberg models and single ion anisotropy. Here
we show that spin-space groups also appear in various in-
stances where the exchange is anisotropic. As we show, one
notable case where spin-space groups arise is in the study
of Kitaev-Heisenberg models [28] that are of considerable
current interest [29–33] owing to the rich phenomenology in
such models and their relevance to materials [34–46]. Kitaev
physics is known to range over quantum spin liquid phases
[47], complex ordered magnetic structures [35,40], rich mag-
netic field induced phase diagrams [48], nontrivial magnon
band topology [49,50], and unusual heat transport properties
[51]. In the following pages we show that spin-space groups
are essential to understand the magnon band structures of such
models and conversely can be used as a means of establishing
the importance of Kitaev-Heisenberg terms in real materials.

In the following pages, we shall mainly be interested in
nodal topology [52–55]. In other words, we study instances
of magnon band degeneracies. These are particularly enriched
in the presence of spin-space symmetries. The exploration of
nodal band topology originated with Dirac points in 2D mate-
rials. These points, that are protected by symmetry, are associ-
ated with a π winding of the Berry phase around closed loops
around the degenerate point in momentum space. By now,
many types of band degeneracy have been uncovered in sim-
ple models such as Weyl points [52–54], nodal lines [55], and
chains [56], and degenerate surfaces [57] and there has been
a great deal of experimental activity searching for such fea-
tures in the band structures of materials. In each instance, the
features are associated to some kind of topological invariant.

Here, for various models with spin-space symmetry, we
show direct connections between the enhanced symmetry and
a wide variety of richly degenerate band structures with Dirac
points in 2D, Weyl points, fourfold degenerate points, nodal
lines and planes and twofold degenerate volumes across the
Brillouin zone [52–55,57]. In addition, in the course of this
analysis we show in detail how to analyze band representa-
tions for spin-space groups including nonsymmorphic groups.

A. Short outline of the paper

(1) We show that spin-space symmetries are important to
the understanding of certain kinds of antisymmetric exchange
couplings and Kitaev-Heisenberg models in addition to the
hitherto considered Heisenberg models with certain single-ion
anisotropy.

(2) We further show how spin-space symmetries present
at the level of the magnetic exchange Hamiltonian become
mixed in the presence of certain types of magnetic order and
how these are inherited by the magnetic excitations through
magnon band representations.

(3) We make a detailed study of the representation theory
of spin-space groups. In contrast to the magnetic space groups,
the spin-space groups have not been enumerated and their
irreducible representations have not been worked out. Here
we give a self-contained account of the representation theory
of spin-space groups showing how to compute the irreducible
representations and character tables in various cases in suffi-
cient detail that similar calculations may be straightforwardly
carried out for any such group.

(4) Using the tools of representation theory and by direct
calculation of the band structures, we show that the magnon
band topology is enriched by the presence of spin-space sym-
metries. In other words, the magnetic space group associated
to the magnetic order alone does not capture the magnon
band structure and the form of the magnetic couplings is
essential to arrive at the correct band degeneracies. We show
that spin-space groups naturally lead to rich band topology
including nodal points, lines, planes, and volumes that do not
arise in the corresponding magnetic space groups. To illustrate
the generality of the methods we do this for various models
in 2D and 3D, ferromagnets and antiferromagnets, Kitaev
and antisymmetric exchange many of which are of interest in
quantum magnetism community.

(5) We show that certain groups with nontrivial spin-space
elements are isomorphic to certain magnetic space groups.
These nevertheless have higher symmetry than one would
infer from the invariance of the magnetic structure. A par-
ticularly interesting case of such an isomorphism is one to a
magnetic space group with pure effective time-reversal sym-
metry where physical time-reversal symmetry is evidently
broken by the magnetic order.

B. Detailed outline of the paper

Spin-space groups characterize the symmetries of a range
of physically relevant interacting magnetic systems. In such
cases, the standard magnetic space groups are insufficient to
capture all the symmetries of the problem.

In the next section, we give a number of examples where
such enhanced magnetic symmetries arise. In fact, such mod-
els are very common as they include Heisenberg models
that appear, to an excellent approximation, in many ma-
terials with weak spin-orbit coupling. In such models, the
spin space transformations are completely decoupled from
the lattice transformations and therefore lie at the extreme
end of possible spin-space symmetry groups. We show that
spin-space groups appear also in cases where spin-orbit cou-
pling is important. For example, for various kinds of single
ion anisotropy, for Kitaev-Heisenberg models and for certain
kinds of antisymmetric or Dzyaloshinskii-Moriya exchange.

In Sec. II C, we briefly review spin wave theory and show
that spin-space symmetries are inherited by magnons. Then,
we give a short account of the band representation theory of
spin-space groups that is the tool of choice to determine the
symmetry constraints on the magnon band structure (Sec. III).
Indeed, our analysis is grounded in the representation theory
of spin-space groups and the associated compatibility rela-
tions. In contrast to the representation theory of magnetic
space groups, this has not been worked out in detail and
our study of band topology relies on calculations of band
representations and their decomposition into irreducible rep-
resentations of spin-space groups from first principles.

Symmetry constraints on band topology have been ex-
tensively analysed for space groups and their magnetic
analogues. Here we show that the further enhancement of
symmetry in going to spin-space groups can lead to a pro-
liferation of band degeneracies including nodal points, lines,
planes and volumes. Here “nodal” refers to points, curves, sur-
faces and volumes where pairs of bands become degenerate.
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We illustrate this through a number of examples beginning
with the particularly rich case of the Heisenberg-Kitaev model
on a hyperhoneycomb lattice with a simple collinear antifer-
romagnetically ordered ground state. We show (Sec. IV A),
by direct calculation, that the magnon band structure has a
nodal plane that is punctured by a number of nodal lines and
that these features survive a tuning of the Kitaev-Heisenberg
couplings within this phase suggesting that they originate
from the Hamiltonian symmetries.

We then enumerate all the symmetries of the magnetically
ordered state. These include a combination of nonsymmor-
phic symmetry elements, antiunitary elements and spin-space
symmetries. The resulting group is not isomorphic to any of
the 1651 magnetic space groups and is instead a concrete
example of a spin-space group. Section IV B is a derivation of
the nodal plane and other degeneracies in the richly featured
band structure on the basis of the band representation theory
of this group.

Having given one detailed calculation of the magnon band
structure from a spin-space group over the entire Brillouin
zone, we present a number of further examples. The first set of
examples comes from Heisenberg models in Sec. V. We make
general observations about the nature of the spin-space sym-
metries of collinear ferromagnets and antiferromagnets and
their effect on magnon bands. In the latter case, we describe
how these symmetries can lead to nodal volumes.

In Sec. VI, we focus on the honeycomb lattice—one of
the most symmetric lattices in two-dimensions. The recent
literature on topological magnons includes the discovery of
magnon Chern bands in the Kitaev-Heisenberg honeycomb
model [49,50] and in the case of the ferromagnet with second-
neighbor antisymmetric exchange [58]. In these models, the
band topology can arise in the complete absence of symme-
try. We revisit them to show that their nontrivial spin-space
symmetries allow one to tune the appearance of Dirac points
in the magnon band structure. As a corollary, the symmetry
analysis reveals that the known Chern band regimes have the
necessary symmetry, or lack of it, to allow for nontrivial Berry
curvature.

Section VII is a detailed study of the Kitaev-Heisenberg
hyperhoneycomb ferromagnet. This model beautifully illus-
trates some important features of magnon band topology
arising from spin-space groups because the symmetry of the
model can be tuned by simply rotating the direction of the
applied magnetic field. We give the full (spin-space) sym-
metry group corresponding to each of the symmetry-distinct
moment directions revealing a hierarchy of magnetic sym-
metries. We also give the symmetry group that one would
naively anticipate purely based on the invariance of the mag-
netic structure. The latter is, by definition, a magnetic space
group and therefore generally has lower symmetry than the
spin-space group for the same moment direction.

We then enumerate all the magnon band degeneracies one
would expect for each of these symmetry groups. This reveals,
at a glance, that the spin-space group has various features
including nodal lines [59–62] and Weyl points [63,64] that
would be absent for the corresponding magnetic space group.
For many of these cases we can give simple criteria or infor-
mal arguments for the appearance of nodal features thereby
circumventing the detailed representation theory analysis.

We further show the surprising feature that the spin-space
groups arising for this model are frequently isomorphic to
some magnetic space group albeit of higher symmetry than
the one that merely leaves the magnetic structure invariant.

II. SPIN AND SPACE SYMMETRIES OF THE MAGNETIC
HAMILTONIAN

A. Spin-space groups and magnetic couplings

Given a magnetic Hamiltonian H , we shall identify all
symmetry operations that leave the Hamiltonian invariant.
This parent group will be denoted GH . In general, the Hamil-
tonian will be invariant under lattice symmetries that form a
space group G that includes the primitive translations T as
a normal subgroup and the space group then admits a coset
decomposition

G =
⋃
α

{Rα|tα}T, (1)

where a general coset representative of the space group is
conventionally denoted {R|t} where R is a point group element
and t is a non-Bravais translation. These act on a general
position r in real space as {R|t}r = Rr + t and so

{R1|t1}{R2|t2} = {R1R2|R1t2 + t1}, (2)

{R|t}−1 = {R−1| − R−1t}. (3)

The identity is denoted {E |0}. There are 17 such groups in
two dimensions—usually called the wallpaper groups—and
230 in three dimensions. In the presence of time-reversal
symmetry, we allow for the possibility of antiunitary elements
T̂ {S|w} leading to magnetic space groups M that have coset
decomposition

M =
⋃
α

{Rα|tα}T + T̂
⋃
α′

{Sα′ |wα′ }T. (4)

There are 80 magnetic space groups in two dimensions and
1651 in three dimensions. Magnetic Hamiltonians may have
higher symmetry still: in general GH is a direct product of a
magnetic space group and a group acting only in spin space.

For example, consider the canonical Heisenberg model on
some lattice with, for concreteness, nearest neighbor cou-
plings

Ĥ = J
∑
〈i, j〉

Ŝi · Ŝ j . (5)

The symmetries of this Hamiltonian include: (1) the primitive
lattice translations forming group T, (2) the symmetry ele-
ments denoted {α|tα} for α = 1, . . . , |G| belonging to space
group G, (3) the time-reversal symmetry operator T̂ : the op-

erator acts on spin as Ŝμ
i

T̂−→ −Ŝμ
i (4) the group of global spin

rotations R ∼= SO(3); and combinations of these. The parent
group is therefore GH = (G ⊕ T̂ G) ⊗ R, where G ⊕ T̂ G on
its own forms a magnetic space group of type II in the notation
of Bradley and Cracknell [1].

We use the notation [B‖{R|t}] to denote the general sym-
metry element of those symmetry groups that allow for
decoupled spin-space and real-space elements where B acts on
spin space and {R|t} is the ordinary space group element that
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does not act on spin space [65]. Such symmetry groups were
named spin-space groups in the original papers of Brinkman
and Elliott [24,25]. A classification for these groups is still
lacking. However, the spin point groups have been tabulated
[66,67].

The action of a spin-space group element on the lattice
moments Ĵμ(r) is the active transformation

[B‖{R|t}]Ĵμ(r) =
∑

ν

det(B)Bμν Ĵν ({R|t}r), (6)

where the determinant is present because magnetic moments
are pseudovectors—for example, they are invariant under in-
version. It follows that

[B1‖{R1|t1}][B2‖{R2|t2}] = [B1B2‖{R1R2|R1t2 + t1}] (7)

[B‖{R|t}]−1 = [B−1‖{R−1| − R−1t}]. (8)

In the case where the spin-orbit coupling vanishes, the
Hamiltonian is Heisenberg-like and the group elements acting
on spin space are completely decoupled from the real-space
elements—the former being the 3D rotation group. When
spin-orbit coupling is present and Hamiltonian is not fine-
tuned, the moments are usually locked to the space group
transformations. We then write

[R‖{R|t}]Ĵμ(r) =
∑

ν

det(R)Rμν Ĵν ({R|t}r). (9)

Since the magnetic Hamiltonian must be invariant under
lattice symmetries such locking is always possible and
the resulting group is one of the magnetic space groups.
There are cases where the moments transform under lat-
tice transformations but where there is a residual spin space
invariance—nontrivial elements that act purely on spin space.

The magnetic Hamiltonian in many insulating magnets
is well approximated by a Heisenberg model in those cases
where the spin-orbit coupling is weak [68], where the orbital
part of the moment is quenched or frozen out [69] or through
the fortuitous cancellation of anisotropic terms [70,71]. Such
couplings are allowed by symmetry on all lattices as well as in
amorphous solids. For example, the parent material La2CuO4

of one prominent high Tc superconducting cuprate which has
a Heisenberg exchange scale of about 100 meV [68] while any
magnetic anisotropies, for example inferred from the small
spin wave gap, are at most a hundredth of this scale [72].

In instances where there is spin-orbit coupling, the crystal
field may lead to single ion anisotropies that break the spin
rotation group from SO(3) to the local site symmetry group.
The degree to which the moment preserves its spin-only char-
acter or is mixed with the orbital moment is dependent on the
magnetic ion and the material in which it appears but we now
use Ĵμ to denote the moment operators. In general, the single
anisotropy takes the form

ĤSIA =
∑

i

∑
l,m

�l
mÔl

i,m (10)

where Ôl
i,m is a Steven’s operator which is the operator equiv-

alent of spherical harmonic Y l
m(θ, φ) and is polynomial in the

spin operators with degree l � 6 as fixed by the site symmetry.

We now give some concrete examples of possible spin
groups in lattices of moments arising from the single ion
anisotropy. While the single ion anisotropy has the site sym-
metry of the magnetic ion, there may be a hierarchy of scales.
For example, in tetragonal K2CuF4, the copper is almost
isotropic with exchange scale J ≈ 1 meV because the spin-
orbit coupling is weak. Nevertheless, it does have a detectable
easy plane anisotropy of about 10−2J with single ion Hamil-
tonian Ô2

0 = 3(Ĵ z )2 − J (J + 1) and �2
0 > 0. There is a even

weaker but detectable fourfold anisotropy [73] that can be
captured by a term in HSIA of the form Ô4

4 = (1/2)((Ĵ+
i )4 +

(Ĵ−
i )4). Thus the 3D rotation group is broken by the easy plane

anisotropy down to U(1) × Z2. The weaker terms break this
down to the site symmetry D4 in principle allowing for five
nonvanishing Steven’s operator coefficients �2

0, �4
0, �4

4, �6
0,

�6
4. There are materials where the easy plane anisotropy is

much greater (a selection of examples out of many includes
LaCo2O4, Er2Ti2O7, CoTiO3, and LiDyF4).

Analogous symmetry considerations guide our understand-
ing of interactions between magnetic moments. We mainly
restrict our attention to couplings that are bilinear in the mo-
ments:

Ĥ =
∑
i, j

Jμν
i j Ĵμ

i Ĵν
j . (11)

The Heisenberg coupling is Jμν
i j = δμνJi j but, in general,

the exchange may have anisotropies that respect the lattice
symmetries. On a single bond, in the absence of symmetry
constraints, there are nine allowed couplings: three diagonal,
three off-diagonal and antisymmetric and three off-diagonal
and symmetric. Symmetry generally places constraints on
these couplings. For example, consider a simple cubic lattice
and a nearest neighbor x̂ bond. The C4 about the axis through
the bond takes ŷ → ẑ fixing the Jyy = Jzz. The mirrors in the
planes of the cubic faces are equivalent to inversion and a C2.
Inversion leaves the magnetic moment invariant so only the
C2 acts nontrivially thus forcing the off-diagonal components
to zero. The resulting Jii+x̂ = diag(Jxx, Jyy, Jyy) and the other
nearest neighbor bond coupling can be obtained from this
using lattice symmetries. Since the most general exchange
Hamiltonian has only the lattice symmetries, the spatial and
spin transformations can be thought of as being locked to one
another and this is the limit of strong spin-orbit coupling. In
this case, the group GH is just the group G ⊕ T G as there
are no residual spin-space transformations that are decoupled
from the real-space transformations. A detailed worked exam-
ple of this kind of argument is given in Appendix B.

However, this restriction, while strictly true in principle,
does not allow for the existence of a hierarchy of exchange
couplings. For example, as we noted above, there are materi-
als in which the Heisenberg coupling is overwhelmingly the
largest coupling. In other materials, there are various well-
understood mechanisms (as well as cases with merely a degree
of fine-tuning) that can lead to certain anisotropic couplings
being significantly larger than others. We consider various
examples.

Cobalt(II) in an octahedral crystal field has a relatively
small spin-orbit coupling that, in the presence of trigonal
distortion, may lead to a single ion ground state doublet with
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easy plane anisotropy with a level splitting on the order of the
exchange scale. An example is CoTiO3 for which g⊥/g‖ ≈
1.7 [62]. It is natural to write down an effective spin one-
half model to understand the magnetism in this material and
hence single ion anisotropy terms are trivial. The easy-plane
anisotropy must therefore be included through the magnetic
interactions. Indeed, in this material the leading order descrip-
tion of the magnetism is in terms of an XXZ model

Ĥ =
∑
i, j

J⊥
i j

2
(Ĵ+

i Ĵ−
j + Ĵ−

i Ĵ+
j ) + Jzz

i j Ĵ
z
i Ĵ z

j (12)

and further anisotropies are sub-leading. The spin-space
group is therefore U(1) × Z2. The same group appears
for Dzyaloshinskii-Moriya (or antisymmetric) exchange with
collinear D vector which may appear, for example, on second
nearest neighbor bonds of the honeycomb lattice and which
may be important in the CrX3 magnets:

Ĥ = D
∑
〈〈i, j〉〉

Ĵx
i Ĵy

j − Ĵy
i Ĵx

j . (13)

A further example is Kitaev exchange. Consider a honey-
comb lattice of magnetic moments with Ising couplings along
perpendicular directions on the three bonds originating from
each lattice site. Thus

Ĥ = K
∑
〈i, j〉γ

Ĵγ
i Ĵγ

j , (14)

where γ runs over x, y, z and identically oriented bonds be-
long to the same Ising component. If we now perform a global
spin-space rotation about any of the cubic spin-space axes x,
y, z, the Hamiltonian will be left invariant. So the spin-space
group is isomorphic to point group D2. Kitaev-Heisenberg
models can arise on several lattices with edge-sharing octa-
hedra that supply a superexchange mechanism to generate
such couplings. Such lattices include the honeycomb lattice,
its three-dimensional generalizations including the hyperhon-
eycomb, the pyrochlore lattice, the kagome lattice, and so on
[28]. The same group D2 appears also for 90◦ compass models
such as the simple cubic lattice model with Jαα

ii+α̂ along the
α̂ = x̂, ŷ, ẑ bonds.

An immediate implication of the above remarks for
magnon spectra is that given spin-space group of the Hamil-
tonian GH , the pure spin rotational part R of GH can be
used to find new spin orientations that give the same magnon
spectrum. To take an almost trivial example: in the Heisenberg
case, spin rotation invariance means that the magnon spectrum
is completely invariant to changes in the moment orientation.

So far we have discussed purely magnetic models with
the aim of studying magnon band topology. However, spin-
space groups that we discuss extensively here may play a role
in electronic systems too. For example, we may minimally
couple any of the spin-space symmetric magnetic exchange
models (with Hamiltonian Ĥmag) to electrons through a
Kondo-like Hamiltonian

Ĥ =
∑

〈i, j〉,α
ti jc

†
iαc jα + H.c. +

∑
i,αβ

c†
iα Ĵμ

i · σαβ
μ ciβ + Ĥmag,

(15)

where the electronic band structure now inherits the spin-
space symmetry of the magnetic subsystem. Indeed in this
simple example, the pure electronic Hamiltonian (first term)
has a full rotational symmetry which, through the interaction
with the lattice moments (middle term), is constrained to the
lower symmetry of the magnetic Hamiltonian (last term).

B. Symmetries of the magnetically ordered ground state

In this section, we show how the considerations of symme-
try in the previous section must be adjusted in the presence
of magnetic order. Since we are ultimately interested in
magnons, we suppose the magnetic ground state is charac-
terized by local order parameter 〈Jμ

i 〉. From the parent group
GH —the group of operations that leave the magnetic Hamil-
tonian invariant—we identify the subgroup of transformations
that leave the magnetic structure invariant GM . Frequently,
the onset of magnetic order enlarges the unit cell thus break-
ing down the group of primitive translations to a subgroup.
The wave vector associated to the magnetic order may even
be incommensurate significantly lowering the symmetry. In
addition to the translation symmetries there will tend to be
combinations of translations, point group operators on the lat-
tice and spin transformations that leave the magnetic structure
invariant. Unlike the parent group, GM is generally not a sim-
ple product group. Instead the spin and space transformations
tend to be coupled.

In the case where GH = G ⊕ T̂ G − in other words,
when the spin transformations are locked to the space group
transformations—the subgroup that leaves the magnetic struc-
ture invariant is another magnetic space group.

The 1651 conventional magnetic space groups appear in
four types: (I) the ordinary space groups (230 in all), (II)
paramagnetic groups of the form G ⊕ T G (230), (III) H ⊕
T (G − H) (674), and (IV) the black and white magnetic
groups G ⊕ T {E |t}G (517), where H is a unitary space group.
In general, a magnetic space group takes the form G ⊕ AG
where A is some antiunitary element. Since the magnetic
order breaks physical time-reversal symmetry and G contains
the identity GM cannot be of the form G ⊕ T̂ G but must
instead be a type I group—one with no antiunitary elements,
or a type III or IV.

In the other extreme case of Heisenberg models, magnetic
order breaks the decoupled spin space and real space trans-
formations down to a discrete subgroup. For example, if the
magnetic structure is collinear, the pure spin space transfor-
mation, will break down to only rotations about the axis of the
moments and T̂ [C2⊥‖{E |0}] where the C2 rotation is about an
axis perpendicular to the ordered moment. On the contrary, the
space group transformations acting only on real space leave
the moments invariant and will be conserved.

C. Magnon symmetries

Here we show in outline how to determine the single
magnon excitation spectrum and the relationship between
the symmetries of the magnetic Hamiltonian and those of
the magnons. We consider the following general exchange
Hamiltonian for localized moments defined on some lattice
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and including a Zeeman term:

H = 1

2

∑
ia, jb;α,β

Jαβ

ia jbĴα
iaĴβ

jb −
∑
ia,α

hα Ĵα
ia. (16)

The couplings have the symmetry property Jαβ

ia; jb = Jβα

jb;ia. We
are supposing that the moments have nonzero expectation
values either through spontaneous or field-induced magnetic
ordering. And we use the following notation, 〈Ĵα

ia〉, for the
local order parameter with i running over the N magnetic
primitive cells and a running over the m magnetic sublattices
on a finite lattice. We further suppose that the moments are
written in a local quantization frame defined with local z com-
ponent ẑa along the ordered moment direction as in 〈Ĵα

ia〉 ≡
Sδαz and with uniform ordered moment from site to site. In
principle, we could consider ordered structures with ferri-
magnetic textures or models with different types of magnetic
ion via a straightforward extension of the methods described
here. Concurrently, we introduce local transverse directions,
x̂a and ŷa that may be chosen arbitrarily—observable quanti-
ties should not depend on the choice of transverse axes—so
there is a local phase invariance.

The angular momentum operators are bosonized through
the Holstein-Primakoff representation for spins of size S:

Ĵ z = S − â†â, (17)

Ĵ+ =
√

2S

√
1 − â†â

2S
â =

√
2S

(
1 − â†â

4S

)
â + · · ·, (18)

Ĵ− =
√

2Sâ†

√
1 − â†â

2S
=

√
2Sâ†

(
1 − â†â

4S

)
+ · · ·, (19)

where the bosons satisfy the usual commutation relations
[â, â†] = 1.

Expanding about the mean field ground state leads to the
quadratic Hamiltonian

HSW = S

2

∑
k

ϒ̂
†
(k)

(
A(k) B(k)

B�(−k) A�(−k)

)
ϒ̂(k)

≡ S

2

∑
k

ϒ̂
†
(k)M(k)ϒ̂(k), (20)

where

ϒ̂
†
(k) = (â†

k1 . . . â†
km â−k1 . . . â−km) (21)

and the Aab(k) and Bab(k) depend on the exchange couplings
in the local frame as follows:

Aab(k) = J̃+−
ab (k) − δab

∑
c

J̃zz
ac(0), (22)

Bab(k) = 1

2

(
J̃xx

ab(k) − J̃yy
ab(k) − iJ̃xy

ab(k) − iJ̃yx
ab(k)

)
= J̃−−

ab (k). (23)

Note that these expressions with the factor one-half define J̃αβ

ab
for α, β = ±.

The diagonalizing transformation on Eq. (20) to find the
spin wave spectrum,

U†(k)M(k)U (k) = �(k),

U (k)ηU†(k) = η,

where �(k) is diagonal, must preserve the commutation rela-
tions

[ϒa, ϒ
†
b ] = ηab, (24)

where ηab = 1 if a = b � m and ηab = −1 if a = b � m + 1
and zero otherwise.

It is straightforward to see that

ηM(k)U (k) = U (k)η�(k) (25)

so the diagonalizing transformation can be found by solving
this non-Hermitian eigenvalue problem. This diagonalizing
transformation has important consequences for magnon band
topology [27]. In short, the tenfold way that classifies single
particle fermion problems in the absence of lattice symme-
tries, is reduced to a threefold way with only time-reversal
symmetry that can be either absent, or present and squaring to
±1. This has the consequence of leaving only Chern insulators
in 2D or Z2 topological bands in 2D or 3D as gapped bands.

Symmetries of the spin wave Hamiltonian, Eq. (20), are in-
herited from the symmetries of the full magnetic Hamiltonian
that leave the magnetic structure invariant. In other words,
the appropriate symmetry group is GM and a particular rep-
resentation of the symmetry elements is determined from the
transformation properties of the transverse spin components
in the local quantization frame since the Holstein-Primakoff
bosons are related to them through

Ĵ+
ka →

√
2Sâka, (26)

Ĵ−
ka →

√
2Sâ†

−ka. (27)

Under a unitary element of GM , the transverse spin compo-
nents will transform into one another via a permutation of
magnetic sublattices, a rotation—that, in the ± frame amounts
to an overall phase—a transformation in momentum space and
a translation. More precisely, for spin-space transformation
[B‖{R|t}], we may write

ÛgS ϒ̂am(k)Û †
gS

=
∑

b

e−iRk·t [UB]abϒ̂bm(Rk), (28)

where [UB]ab is a matrix of phase factors e−iφab
S where indices

a and b are constrained by the real space transformation
i + a = R( j + b) + t . The boson spinor ϒ̂am is indexed by
sublattice a and particle-hole index m = 0, 1. In order to treat
antiunitary elements, we require the transformations under
time reversal:

T̂ iT̂ −1 = −i, (29)

T̂ Ĵ±
ia T̂ −1 = −Ĵ∓

ia , (30)

T̂ Ĵ±
kaT̂

−1 = −Ĵ∓
−ka. (31)

In ensuing sections, we describe in detail how to construct
band representations of the full spin-space group.

Before that, we make a couple of further important re-
marks. The first concerns the effect of higher order terms in
the spin wave expansion. Such magnon interaction terms in
general couple single magnon to multimagnon states leading
to damping and renormalization of the single magnon modes.
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In all of the following, we assume that the effect of magnon
damping is sufficiently weak that the single magnon states
have a lineshape that is negligible compared to the magnon
bandwidth. In other words, we shall rely on a robust single
particle picture throughout. In practice, this assumption is
often very reasonable. Indeed most magnetic materials are
in such a regime and magnon interaction effects tend to
be severe only in geometrically frustrated magnets with a
high density of low-lying states and especially those with
noncollinear moments or anisotropic exchange. Even where
magnon interactions are important their effect can be reduced,
at least in principle, by applying a large enough magnetic
field. Although we shall not consider magnon interactions fur-
ther in this paper, it is worth mentioning that the symmetries
of the magnetic Hamiltonian are symmetries of the magnon
Hamiltonian order-by-order in the interactions. It follows that
any symmetry protected degeneracies in the single magnon
spectrum cannot be broken by higher order terms.

Although spin-space symmetries survive magnon interac-
tions, it is possible for the symmetries of the linear spin wave
Hamiltonian to be higher than one would expect on the basis
of the foregoing discussion. In other words, the quadratic
magnon Hamiltonian may have accidental symmetries. These
are most commonly discussed in relation to order by disorder
where an accidental symmetry appears at the mean field level
and in linear spin wave theory [62,74–76]. One example is the
U(1) symmetry of strong spin-orbit coupled pyrochlore mo-
ments [77,78]. This U(1) is absent in the magnetic exchange
but appears in linear spin wave theory and is broken down to
the discrete lattice symmetries by magnon interactions. In the
case of order by disorder, both the ground state and linear spin
wave spectrum have an accidental symmetry. There are also
cases where there is no order by disorder but still the linear
spin wave spectrum is more symmetric [79]. In this paper,
we concentrate our attention on features that survive magnon
interactions as they are protected by spin-space symmetries
that appear to all orders of spin wave theory.

III. REPRESENTATION THEORY AND MAGNON
BAND TOPOLOGY

In the following sections, we work out spin-space symme-
try constraints on magnon band structures using representa-
tion theory. The approach we take is to work from the atomic
limit and build band representations introduced by Zak in
Ref. [80]. In this section we outline how to construct band
representations for magnons. The reader who is content to
skip the details can see an outline of the method in the next
paragraph.

In a nutshell, the band representation ties together all
symmetry information about the band structure at different
momenta using group elements and local atomic orbitals as
ingredients. From the band representation, one may extract
the irreducible representations at different symmetry-distinct
momenta as well as information about the connectivity of
these irreps. The building blocks of the band representation
for magnons are the on-site transverse spin components in
the local quantization frame, Ĵ±. These components form a
basis for a representation of a group that leaves the lattice site
invariant. Since this site symmetry group is a subgroup of the

full spin-space group one may carry out a well-defined induc-
tion procedure to obtain a representation of the full group that
has dimension equal to the number of bands and that is also a
function of momentum.

We now describe the process in more detail. Take a point
r in the primitive cell and act on it with elements of the
spin-space group g ∈ GS . Those elements that leave the point
invariant form a group Gr called the site symmetry group
or stabilizer group—that may include translations. By con-
struction, elements of the stabilizer group leave the magnetic
moment invariant at the site. The stabilizer group will gener-
ally have both unitary and antiunitary elements.

Now act on the point r with elements g ∈ G that are not in
the stabilizer group. The set of points thus defined

{ra = gar|ga /∈ Gr} for a = 1, . . . , n (32)

is associated to a Wyckoff position with multiplicity n where n
is the number of points generated in this way that live in the
primitive cell. The stabilizer groups associated to these points
are isomorphic.

Starting from the atomic limit, we take a set of orbitals—
essentially maximally localized Wannier functions Wia(r) −
forming a representation ρ of the stabilizer group Gr. Suppose
there are nr such functions. Then, for each element h of the
stabilizer group, the representation ρi j (h) has indices that run
from 1 to nr .

Now, given representation ρ of the stabilizer group, one
may induce to a representation of the full space group that we
write as ρ ↑ G. In real space, the dimension of the representa-
tion is (nr × n × N ) × (nr × n × N ), where N is the number
of primitive cells. In momentum space, the translations are
diagonalized and the momentum dependent representation is
a matrix of dimension (nr × n) × (nr × n) that acts on the
Fourier transformed Wannier functions:

aia(k, r) =
∑

μ

e−ik·tμWia(r − tμ). (33)

A formula for the induced representation for g ∈ G is

(ρG(g))ia; jb(k)a jb(k, r)

= e−i(gk)·tbaρ ji
(
g−1

b {E | − tba}gga
)
a jb(hk, r), (34)

where

tba = gra − rb (35)

is a Bravais lattice vector. To each site a, there is exactly one b
and these are related through ggb = {E |tba}gbh where h ∈ Gr.
This band representation contains complete symmetry infor-
mation about the bands at the discrete momentum space points
of distinct symmetry including constraints on the connectivity
of the bands in the Brillouin zone.

At each point in the Brillouin zone, k, the little group
Gk consists of elements h ∈ G such that hk = k which is
a momentum diagonal block in the band representation. We
obtain a representation of the little group at k, ρk

G = ρG ↓ Gk.
By modding out translations, we obtain the little co-group,
Ḡk at this wave vector that is isomorphic to some spin point
group. This is generally composite and can be decomposed
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into irreps using the orthogonality of irreps ρ
(α)
k

ρk
G =

⊕
α

nαρ
(α)
k . (36)

Thus the number of times the irrep α occurs is given by

nα = 1

h

h∑
m=1

χ∗
ρ

(α)
k

(m)χρk
G
(m) (37)

where the sum is over distinct relevant classes m, χσ is the
character of the representation σ , and h is the order of the
group. In this way, we obtain the symmetry distinct modes at
each wave vector. In practice, the decomposition requires the
character table of the spin point group. Later on we give some
examples of this decomposition.

So far we have discussed the representation theory for
magnons in the case where the spin-space group is unitary.
When there are antiunitary elements there are some important
new features. We have already seen how a magnetic space
group takes the general form G ⊕ AG, where A is a some
antiunitary element, the nature of which determine the type
of magnetic group. It will be useful to bear this in mind as,
in later sections, we show that certain spin-space groups are
isomorphic to magnetic space groups.

In principle, one can construct the full band representation
for the spin-space group including magnetic elements. Then
at a given momentum one can determine the decomposition
into irreducible co-representations (or coreps) of the mag-
netic little co-group. However, since our principal focus is the
symmetry-enforced degeneracies, it is possible to side-step
this process and find the band representation for the unitary
part of the group as described above. As above, we find the
irreps from the subduced representation at a given momentum.
We then determine irreducible co-representations (or coreps)
of the magnetic group associated to each unitary irrep using
the following criterion requiring access only to characters of
the unitary elements that separates the coreps into three classes
(a), (b), and (c)

∑
α

χ
(
B2

α

) =
⎧⎨
⎩

+|G| (a),
−|G| (b),
0 (c),

(38)

where the sum runs over the antiunitary elements Bα . Each
class is associated to a canonical form for the corep which,
for class (a), has the same dimension as the unitary irrep from
which it is derived while, for classes (b) and (c) the degeneracy
is doubled in passing over to the magnetic group.

Now consider two high-symmetry points k1 and k2 joined
by a high-symmetry line k1 + λ(k2 − k1). The symmetry
group along the line is a subgroup of the groups at the two
endpoints. It follows that, at each high-symmetry point, the
symmetry group associated to that point corresponds to a set
of irreducible representations Xa that, in general, are reducible
under the subgroup along the line connecting the endpoints. In
terms of the characters, for each irrep Xa at a high-symmetry
point, and irreps Yb along the high-symmetry line, there is a
compatibility relation

χ (Xa) =
∑

b

nb χ (Yb) (39)

with a similar condition at the other endpoint of the line.
Representation theory therefore supplies a discrete notion of
band connectivity in momentum space. For, given the magnon
group representation at each high-symmetry point and line
in the zone, there is a set of energy levels at each labeled
by some irrep. Indeed at each point in momentum space the
Hamiltonian set of symmetries gives us a symmetry group (lit-
tle group), which in turn gives us all the possible irreducible
representations (irreps) that can represent the group itself. An
eigenvector of the Hamiltonian (magnon excitation) at that
particular k point will transform as one of these irreducible
representations, and so we can label it with its specific irrep.
Then the compatibility relations constrain the ways in which
these levels connect to one another to form a continuous
band structure through the zone. Depending on the ordering
of the irreps in energy—that is not fixed by symmetry—the
compatibility relations may enforce crossings between bands.

IV. NODAL POINTS, LINES AND PLANES FROM
SPIN-SPACE SYMMETRY: AN EXAMPLE

A. Model and overview of results

In this section, we illustrate the proliferation of nodal
features in band structures caused by spin-space symmetries
using the example of a Kitaev-Heisenberg model on a tri-
coordinated lattice in three-dimensions: the hyperhoneycomb
lattice (Fig. 1). The Hamiltonian is

Ĥ = J
∑
〈i j〉

Ji · J j + K
∑
〈i j〉γ

Jγ
i Jγ

j − h ·
∑

i

Ji, (40)

the Kitaev-Heisenberg interaction is parametrized using angle
ϕ so that J = cos ϕ and K = sin ϕ. As discussed in Sec. II A,
the Heisenberg model alone has decoupled spin and space
degrees of freedom and the inclusion of the Kitaev exchange
coupling breaks the SO(3) spin group of the Heisenberg model
down to D2. With the onset of magnetic order, the spin and
space symmetries get broken down to a subgroup and become
intertwined so that the group ceases to be a simple product of
spin and space transformations. We consider the hyperhoney-
comb lattice primarily because these couplings are allowed by
symmetry. The lattice also has the attractive feature of having
four sublattices thus allowing for up to fourfold degeneracies
for Q = 0 magnetic order. The phases of the model in zero
field as a function of ϕ were studied in Ref. [81] and this
analysis was extended to finite field in Ref. [82]. There are
four phases in zero field: the collinear ferromagnet, a Néel
phase, and two further antiferromagnetic phases called skew-
stripy and skew-zigzag.

The hyperhoneycomb lattice is also the iridium Ir4+ sub-
lattice in β-Li2IrO3. The oxygen ions in this material form a
lattice of edge-sharing octahedra such that the Ir-O-Ir bond
angle is 90◦ and this geometry provides the basis for a mi-
croscopic mechanism leading to Kitaev-Heisenberg couplings
[34,35]. The spiral ground state of this magnet in zero field is
suggestive of the presence of significant off-diagonal symmet-
ric, or �, exchange in this system and, in general, we expect
materials to deviate from the ideal Kitaev-Heisenberg model.
However, when there is a family of magnetic materials with
similar crystal structures a certain degree of fine-tuning is
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FIG. 1. The upper figure shows the tricoordinated network of
sites on a hyperhoneycomb lattice. The primitive unit cell contains
four sites labeled from 1 to 4. The primitive unit vectors for the
four-site unit cell are given by ai. The color of the bonds reflects the
direction of the Kitaev interaction: SxSx (red), SySy (green), and SzSz

(blue) interactions, respectively. The lower panel shows the Brillouin
zone of the hyperhoneycomb lattice. The perpendicular planes are
the mirror plane of glides: d1 (red), d2 (yellow), and d3 (grey). The
high-symmetry paths are � → Y → T → Z → � → X → A1 →
Y ; T → X1; X → A → Z; and � → L. The coordinates of the points
are given in Appendix A.

compatible with the existence of materials proximate to the
Kitaev-Heisenberg limit.

The particular example we take in this section is the hyper-
honeycomb Kitaev-Heisenberg Néel antiferromagnet in zero
applied magnetic field. We note that there is an order by
disorder mechanism that fixes the moments to lie along one of
the Cartesian axes and, without loss of generality, we choose
this to be the [001] direction. This example will turn out to
have enhanced magnetic symmetry described by a spin-space
group that is not isomorphic to a magnetic space group and,
therefore, that could not be inferred simply by requiring that
the magnetic structure be left invariant by space group trans-
formations.

Figure 2 illustrates features of the magnon spectrum
within the Néel phase for nonvanishing Kitaev coupling
(ϕ = 0.35π ). The main panel shows the band degeneracies
within the first Brillouin zone. There is one plane (shown in
green) where the four magnon bands are symmetry-enforced
to pair up into two twofold degenerate bands. This plane is

Kitaev limit

Heisenberg limit

FIG. 2. (Top left) Magnon spectrum for the Néel phase and
ϕ = 0.35π [where ϕ is defined following Eq. (40)] with the band
degeneracies indicated. Nodal lines between bands (1,2) and (3,4)
are shown as green lines and those between bands (2,3) as red
lines. There is a nodal plane (green surface) and fourfold degener-
ate points (black points). The inset at the bottom right shows the
magnon dispersions along the high-symmetry path Y → Z → L in
the vicinity of the fourfold degenerate point showing the double
degeneracy along [Y Z] in the nodal plane. Section IV B accounts for
all these features through a symmetry analysis. (Insets) The insets at
the upper right show two coupling limits—the Kitaev limit ϕ = 0.5π

and Heisenberg AFM limit ϕ = 0. In the Kitaev limit, the bands
(1,2) are degenerate everywhere in the zone, bands (2,3) form two
tilted nodal planes (red surfaces) and bands (3,4) nodal planes on
the high-symmetry surface (green surfaces). The two types of nodal
planes meet along line [�Z] (black line) which is indeed fourfold
degenerate, and can be seen as the continuous shrinking of the
circular nodal loop at ϕ = 0.35π . In the Heisenberg limit, the modes
form a doubly degenerate nodal volume over the entire Brillouin zone
between bands (1,2) and (3,4) (green volume). In addition, the bands
are fourfold degenerate on some high-symmetry lines (black).

intersected by several nodal loops that can be inferred from
compatibility relations. They are protected by glide symme-
try on their respective mirror planes. One of these, between
bands two and three, is confined to the plane through the
� point perpendicular to the nodal plane. The existence of
this nodal loop implies that the nodal plane bands meet at
a fourfold degenerate nodal point (shown in black) at the Z
point. The band structure in the vicinity of the Z point, plotted
with one axis in the �-Z-Y plane and another perpendicular
to this plane, is therefore a double cone emanating from a
single point where the two cones touch along a plane. The
magnon band dispersions through the Z point in a nodal plane
direction (Y → Z) and an out of plane direction (Z → L) are
shown in the lower panel of Fig. 2. The aforementioned nodal
loop shrinks as the Heisenberg coupling is reduced, forming
a fourfold degenerate line along � → Z in the Kitaev limit.
One further symmetry-enforced nodal line runs along the
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line Z → A (and equivalently by reciprocal vector translation
along Y → A1).

B. Representation theory

We saw in Sec. III how to proceed from localized orbitals
to band structures using symmetry considerations alone. Here
we show that the representation approach allows us to account
for the symmetry protected features of a magnon model and
enumerate the kinds of magnon band topology that can arise
for the given symmetry.

The full group is GNeel = HNeel + T Cx
2 (s)HNeel with coset

representatives

HNeel = (
E + Cz

2(s)
) (

E + d1 + d3 + Ca
2

)
+ Cx,y

2 (s)
(
P + d2 + Cb

2 + Cc
2

)
(41)

giving 16 elements in all and then there are translations
in addition to these. Here we have used a notation for the

symmetry elements where pure spin transformations are la-
beled with s and the remaining elements are combined spin
and space transformations—they are locked to one another.
All symmetry elements are defined in Appendix A and a short
introduction to group notation is given in Appendix D.

The hyperhoneycomb lattice belongs to Wyckoff positions
16g. The magnon band representation (BR) ρk

G is induced
from the representation ρ

16g
S⊥ of spin transverse components

(J+, J−) around the ordering vector.
If we take as representative of the orbit the position q16g

1 =
r1, the spatial site-symmetry group is

Gq16g
1

= {E |0} + {2001| − 1/4,−1/4, 0} ∼= C2. (42)

If we now consider also the possible additional spin rotations
we get the enhanced magnetic (spin-space) site-symmetry
group GSS

16g (noting that spin rotations leave the position
invariant):

GSS
q16g

1
= [E‖{E |0}] + [2010‖{E |0}] + [4+

010‖{2001| − 1/4,−1/4, 0}] + [4−
010‖{2001| − 1/4,−1/4, 0}]

+ [2010‖{E |0}]′ + [2101‖{E |0}]′ + [2100‖{2001| − 1/4,−1/4, 0}]′ + [2001‖{2001| − 1/4,−1/4, 0}]′.

Note that the a, b, c coordinate system is used here and in all
the group theory calculation (see Appendix A). In addition,
we separate out the spin and space transformations using no-
tation introduced in Sec. II A. The first line is the unitary part
which is isomorphic to the C4 point group. In the second line,
there are antiunitary elements (prime sign) which always give
[E ||E ] when squared (the translation part is nonzero because
of the choice of origin and cancels out). From the antiunitary
elements, we obtain (a) coreps [see Eq. (38)] and so no extra
degeneracies in the irreps of C4 are expected.

The transverse components (J+, J−) therefore transform as
irreps of C4. The symmetries act on the global conventional
frame, while the transverse components are around the order-
ing directions, so in the local frames. The spin transformations
in local frames T̃S are then obtained as T̃S = RT

i TSRi where in-
dex i appears in both rotation matrices because the symmetries
considered here are site preserving. In this case, the matrix
representation of the spin rotations in the local (J+, J−) basis
is

D(2010) =
(−1 0

0 −1

)
±
,

D(4±
010) =

(∓i 0
0 ±i

)
±
. (43)

Comparing with the character table of C4, we see that the
representation decomposes to

ρ
16g
S⊥ = �3 + �4 (44)

and specifically ρ
16g
S+ = �3 and ρ

16g
S− = �4 (point group rep-

resentation notation according to [83]). Here it is important
to note that these two reps are complex conjugates of each
other, as required by the relationship between the transverse
spin components S+ (that maps to the Holstein-Primakoff a
operator) and S− (that maps to a†).

To induce the local representation to the full group (ρS⊥ =
ρ

16g
S⊥ ↑ GSS) we need to consider all the orbits of the Wyckoff

position {qα = gαq1 | gα ∈ GSS}, α = 1, . . . , n with multiplic-
ity n of the Wyckoff position. For 16g, the multiplicity inside
the primitive cell is 4 (while 16 in the conventional cell),
therefore we can choose representative gα as

g1 = [E‖{E |0}], g2 = [2-101‖{2010|−1/4,−1/4, 0}],
g3 = [E‖{m010|1/4, 0, 1/4}], g4 = [2-101‖{−1|0}]. (45)

Now we have all the ingredients necessary to use the general
formula for induction. Since the characters of the band repre-
sentation include all the information we need, we can simply
note that

χρk
G,S⊥

(h) =
{∑

α exp (−i (h k) · tαα ) χ
ρ

16g
S⊥

(
g−1

α [E‖{E | − tαα}] h gα

)
h ∈ GSS

q16g
1

0 h /∈ GSS
q16g

1

, (46)

where tαα = h qα − qα . The second line is always zero since if h /∈ GSS
q16g

1

then the symmetry will permute the sublattices giving

an off-diagonal band representation matrix. Therefore, for the Néel case, we will have

χρk
G,S± ([2010‖{E |0}]) = −4, (47)

χρk
G,S± ([4±

010‖{2001|−1/4,−1/4, 0}]) = 0. (48)
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TABLE I. Character table of the unitary part of GE
SS. The phase factor is ξ = exp(i E · (0 1

4
1
4 )) = exp(i π

2 (u + w)).

GE
SS [E‖{E |0}] [2010‖{E |0}] [4+

010‖{m100|0, 1/4, 1/4}] [4−
010‖{m100|0, 1/4, 1/4}] Type Coreps

E+
1 1 1 ξ ξ (a)

E+
2 1 1 −ξ −ξ (a)

E−
1 1 −1 ξ −ξ (c)

E−
2 1 −1 −ξ ξ (c)

Now we have the full band representations and we can sub-
duce it to different little groups ρk

S⊥ = ρS⊥ ↓ Gk
SS.

The representations of the enhanced magnetic little groups
Gk

SS are straightforward to find for points k inside the Brillouin
zone and, for symmorphic groups, also on boundary points.
Indeed, in these cases, we need only find the point group
isomorphic to the little co-group Ḡk

SS (little group without

primitive and nonsymmorphic translations) and decompose
into the irreducible representations of that group.

The nodal surface. For example, we can explicitly calcu-
late the enforcement of nodal surface E = (0, u,w) (plane
�-Z-T in conventional basis) for the Néel antiferromagnet
with [00 ± 1] moments. The little group (factored out prim-
itive translations) on this high-symmetry surface is

GE
SS/T = [E‖{E |0}] + [2010‖{E |0}] + [4+

010‖{m100|0, 1/4, 1/4}] + [4−
010‖{m100|0, 1/4, 1/4}]

+ [E‖{−1|0}]′ + [2010‖{−1|0}]′ + [4+
010‖{2100|0,−1/4,−1/4}]′ + [4−

010‖{2100|0,−1/4,−1/4}]′,

where we note that the spin and space transformations are
coupled but distinct, highlighting the importance of the en-
hanced symmetry coming from the internal spin symmetry.
The unitary part is isomorphic to C4 with character Table I.
The coreps will therefore be given by the test:∑

hk′

χE
p

(
h2

k′
) = 2

(
χE

p ([E‖{E |0}]) + χE
p ([2010‖{E |0}]))

=
{

4 = ∣∣ḠE
SS

∣∣ type (a) if p = E+
1 , E+

2
0 type (c) if p = E−

1 , E−
2 ,

(49)

where hk′ are all the antiunitary elements of the little
co-group (such that hk′k = −k + gi). We obtain therefore
a doubly degenerate corep DE−(2) = (E−

1 , E−
2 )(2) with

χ ([2010‖{E |0}]) = −2 and χ ([4±
010‖{m100|0, 1/4, 1/4}]) = 0.

Since we know the band representation ρk
G,S⊥ for every k,

we can now subduce it to the surface E and from its characters
in Eqs. (46) and (47), we get (the number in parenthesis
indicates the dimension of corep):

ρE
S± = 2 DE−(2). (50)

So we conclude, on the basis of spin-space symmetry, that
the magnons on plane E are twofold degenerate where the
antiunitary symmetry and the resulting binding of irreps is
responsible for the degeneracy.

Fourfold degenerate nodal point. To analyze the degenera-
cies of the E plane, we were able to rely on the little co-group
being isomorphic to a point group and use standard tables to
decompose the representation into irreps. However, when k
is a boundary point and there are nonsymmorphic elements,
the situation is, in principle, more complicated and we may
need to consider projective representations through the related
central extension method. This method is introduced and ex-
plained in full generality in Appendix E.

These considerations are relevant to the point Z =
(0, 0,−1) (in the conventional basis), which in the Néel

[00 ± 1] case is fourfold degenerate. This point is highly
symmetric—the little group GZ

SS is the full spin-space group.
The details of the representation theory for this point can be
found in the second section of Appendix E. Here we sum-
marize the chain of reasoning. First of all one can show that
the factor system at the Z point is nontrivial. In particular,
μ([2−101‖{−1|0}]) = −1.

We then find the central extension group for ḠZ∗
SS with

g = 2. This is a group with 32 elements that is isomorphic
to ḠZ∗

SS
∼= D4h + D4h × ([4+

010‖{m100|0}]). The irreps of ḠZ∗
SS

can be obtained by conjugating the ones of the subgroup
D4h by the symmetry [4+

010‖{m100|0}]. Of these irreps we are
only interested in the ones with �([E‖{E |0}], 1) = − I. The
table of relevant irreps is given in Table IV and these are all
two-dimensional. We then return to the antiunitary elements
and look for additional degeneracy in the corepresentations.
The standard test reveals that the magnon bands belong to
corep with class (c) binding two two-dimensional irreps. The
overall degeneracy is therefore fourfold as was to be shown.

Other symmetry constraints on the band structure. All
the degeneracies of the Neel case can be seen in Fig. 2.
Here the group theory enforced degeneracies are the nodal
plane, the fourfold degenerate points and the straight lines
A = [ZA], [YA1]. All the other curved lines are given by com-
patibility relations and are protected by glide symmetries on
mirror planes. The bands (2,3) (red) are degenerate on a chain
of loops on mirror planes d1 and d3. The band (1,2) (green) has
a closed nodal line on mirror plane d3 intersecting the nodal
plane.

V. SPIN-SPACE GROUPS AND NODAL VOLUMES

Heisenberg models have the property that the spin space
part of the symmetry group is completely decoupled from the
spatial part. In the paramagnetic phase, this symmetry group
is the three dimensional rotation group. The effect of the spin
group on the magnon band structure for Heisenberg models
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has some general features that we discuss in this section.
While this section largely reviews known results [24,25], it
is useful to revisit them and cement their spin-space origin
before breaking new ground.

The simplest case is that of the Heisenberg ferromagnet on
an arbitrary lattice. The ground state is collinear, the magnetic
structure preserves the translational symmetry of the lattice
and, because spin space and real space are decoupled, the
other lattice symmetries are also preserved. It follows that the
symmetry group of the magnetic Hamiltonian that preserves
the magnetic structure is the space group of the underlying
lattice times a spin-space group GM = G ⊗ GS , where the
elements of GS are: axial rotations through angle φ about
the moment direction, T̂ C2 where the C2 is about an axis
perpendicular to the moment direction—the choice of axis is
unimportant as a change in the axis may be absorbed into an
axial rotation. Because spin and real space have decoupled,
we label the magnon eigenstates with irreps coming from the
space group and an irrep from the spin group. This means that
there is no interplay between the spin and space parts of the
symmetry group.

The unitary part of the spin group is the continuous group
C∞. This is the only nontrivial element of the little cogroup at
a general position in the zone for a general ferromagnet. This
symmetry element leads to an infinite number of irreps labeled
by integers but the invariance of the magnetic moment under
the group operations implies that the rotation is fixed to J±

ia →
e∓iφJ±

ia . In other words, the rotation of the transverse spin
components picks out irreps with n = ±1 and also these rota-
tion operators are diagonal operators in the basis of transverse
components. Invariance of the magnon Hamiltonian under
such axial rotations [or otherwise, inspection of Eq. (23)]
shows that Bab(k) = 0 for collinear Heisenberg ferromagnets.
This ensures that magnons are eigenstates of the global trans-
verse spin rotations. Diagonalizing the Hamiltonian unitarily
then reveals that the upper A block components and the lower
A components are eigenstates of the Hamiltonian but with
different irrep label n. It follows that the magnons are each
labeled by a common 1D irrep of C∞. They also have an
irrep label originating from the space group symmetry. For
collinear Heisenberg ferromagnets, any degeneracy in the
magnon spectrum that is enforced by symmetry must come
from the space group symmetries.

For collinear ferromagnets with inversion symmetry that
maps magnetic sublattices into themselves, the nontrivial part
of the group at a general position is larger

GGP
FMI

= C‖
n (s) (E + T C⊥

2 (s)P ) (51)

and, in particular, it contains an antiunitary part. The symme-
tries act on the moments like: P : J±

a → J±
a , T : J±

a → −J∓
a

and C⊥
2 (s) : J±

a → −J∓
a [where we choose C⊥

2 (s) = Cy
2 (s)].

Therefore the additional element T C⊥
2 (s)P acts like an iden-

tity and does not mix the irreps coming from the axial
rotations.

The next simplest type of Heisenberg model is one with
a collinear antiferromagnetic ground state. The two moment
directions may be related by

Jx
a → −Jx

b Jy
a → Jy

b Jz
a → −Jz

b, (52)

where z is the quantization direction—the local direction of
the ordered/polarized magnetic moments. This transforma-
tion corresponds to a rotation of the spin local frame. It is
important to note that a simple inversion would not preserve
the right-handed convention for the frame and, above all,
would not preserve the commutation relations of the quantized
spin operators.

As in the ferromagnetic case, C∞ is an element at a general
position and the oppositely oriented moments transform under
irreps of this group with opposite signs +1 and −1.

Let us first consider the classic example of a collinear
antiferromagnet on a black-and-white lattice that includes the
cubic lattice with a simple Néel ground state and the rutile
lattice [24]. Rather than enumerating all the symmetry ele-
ments we observe that there is a simple translation τ that maps
the magnetic sublattices into one another. Then the general
position has symmetry elements

GGP
AFMbw

= (C‖
n (s) + [C⊥

2 ‖{E |τ}]) ∼= D‖
n(s). (53)

The [C⊥
2 ‖{E |τ}] mixes the two sublattices thus binding the

1D irreps of C∞ into 2D irreps of D∞. This accounts for the
double degeneracy of the modes. For certain lattices of this
sort including the cubic lattice, there is an additional symme-
try at the general position coming from the lattice inversion
symmetry that swaps the magnetic sublattices

GGP
AFMbw+I

= (C‖
n (s) + [

C⊥
2 ‖{E |τ}]) (E + T P )

∼= D‖
n(s) (E + T P ). (54)

The additional PT symmetry, taking the group into one iso-
morphic to a type II magnetic dihedral point group Dn1′, does
not further bind irreps at the general position. In passing,
we mention a case where a volume degeneracy can arise
on a black-and-white lattice in the presence of a single ion
anisotropy of the form Ô2

±2 thanks to inversion symmetry [24].
Here the general position has

GGP
AFMbw+I

= (
Cz

2(s) + [
Cx/y

2 ‖{E |τ}]) (
E + T Cxy

2 (s)P
)

∼= D‖
2(s)

(
E + T Cxy

2 (s)P
) ∼= D′‖

4 (s). (55)

The unitary part D‖
2(s) has 1D irreps, but antiunitary C4 are

created by tilted Cx
2 elements and T Cxy

2 . The final isomor-
phism is D′‖

4 (s), a type III magnetic point group (explicitly
4′2′2, i.e., with antiunitary C4 rotations), which has 2D irreps
at the general position.

For collinear antiferromagnets that do not lie on black-
and-white lattices—lattices composed of a pair of sublattices
separated by a translation—such as the honeycomb and hyper-
honeycomb lattices, the magnon bands are doubly degenerate
originating from inversion symmetry. At the general position,

GGP
AFMI

= C‖
n (s) (E + T P ). (56)

The key here is that the inversion symmetry swaps the
magnetic sublattices. The inversion acts as P : J±

a = −J∓
b ,

therefore PT : J±
a = J±

b mixes the two magnetic sublattices,
pairing the conjugate irreps into 2D irreps. Indeed, in this case,
GGP

AFMI
is isomorphic to a type II magnetic cyclic point group

Cn1′ which gives 2D irreps for n > 2 (for C2 there are no con-
jugate irreps, only a single real one). When there is inversion
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FIG. 3. Honeycomb tiling: (a) with different coloured bonds
indicating the pattern of distinct Ising couplings of the Kitaev
exchange, (b) showing the second neighbor bonds and arrows in-
dicating the direction of the DMI vector where the bond orientation
is always anticlockwise on the triangles within each hexagon, and
(c) showing the DMI vectors for the nearest neighbor DMI for a sin-
gle honeycomb layer on a substrate where, here, the bond orientation
is from the A to the B sites.

symmetry that does not swap the magnetic sublattices, the
analysis is similar to the ferromagnetic case considered above.

We have established that the hyperhoneycomb antiferro-
magnet has a double degeneracy at the general position. In
fact, it has more degeneracy still enforced by lattice sym-
metries at more symmetric wave vectors as we show in
Appendix F.

VI. ANISOTROPIC HONEYCOMB LATTICE MODELS

We turn now to the honeycomb lattice in 2D with
anisotropic exchange couplings of different types as in Fig. 3
and use k · p arguments to understand the role of spin space
symmetries in the protection of Dirac points and how these
can be gapped out leading to topological bands.

The first model we consider is the much-studied near-
est neighbor Kitaev-Heisenberg model. The relevant point
group under which the exchange is left invariant is D3d with
nontrivial symmetries including threefold rotations about the
hexagonal centers, three twofold rotational symmetries about
axes through opposite hexagonal vertices and inversion sym-
metry again about the hexagonal centers. In addition there is
the pure spin space D2 symmetry discussed above and time-
reversal symmetry.

The Kitaev-Heisenberg model has a rich semiclassical
phase diagram in an applied magnetic field [48]. In the
polarized phase—both the zero field ferromagnet and the con-
tinuously connected field-polarized regime—the two magnon
bands are connected at Dirac points when the field direction is
along meridians [xy0], [x0z], and [0yz] relative to the Carte-
sian frame that defines the Kitaev Ising directions. For other
field directions, there is an energy gap between the magnon
bands and they carry Chern number ±1 [49,50]. The sign of
the Chern number swaps between the bands when crossing
one of the meridians. These facts can be understood on the ba-
sis of the spin-space symmetries of the magnetically ordered
configurations.

As a reminder, the stability of Dirac points in honey-
comb tight-binding models follows from the presence of
time-reversal symmetry T and inversion P . Inversion swaps
sublattices and takes k → −k. A possible time-reversal opera-
tion is complex conjugation and k → −k. The effective model
in the vicinity of the Dirac point is

Hk = dx(k)σx + dy(k)σy + dz(k)σz (57)

that maps to

Hk = dx(k)σx + dy(k)σy − dz(k)σz (58)

under PT so the mass term must vanish if PT is a symmetry.
Furthermore, the Dirac points are fixed at the K and K ′ points
if C3z is also a symmetry.

Consider the highly symmetric situation where the moment
points perpendicular to the honeycomb plane—the [111] di-
rection. The symmetries are then E , C3, C′

2T , and P . C′
2 is a

lattice symmetry but it reverses the moment direction which
can be restored under the action of T . Note that there are no
spin space symmetries. The only antiunitary symmetries are
combined with lattice transformations and, in particular, the
combination of one of these elements with inversion does not
map k to itself. The result is there is no constraint that the gap
close between the magnon bands and since pure time reversal
is broken, although inversion is present, the Berry curvature
may be nonvanishing. The model therefore lies in the bosonic
Altland-Zirnbauer class A [27] and the bands may therefore
be topologically nontrivial.

Now consider the case where moments are polarized along
the meridian [xy0]. The symmetry elements are E , T Cz

2(s),
P and products of these. As in the case of [111] moments,
the time-reversal operator is a composite with a C2 symmetry.
However, in this case, the C2 is a pure spin space transforma-
tion that, therefore, does not transform the momentum. The
presence of inversion symmetry and the T Cz

2(s) are sufficient
to forbid the mass term so Dirac points are present albeit not at
the K and K ′ points owing to the absence of C3. It follows that
there are Dirac points whenever the field is aligned along any
one of the cubic meridians with one spin coordinate vanishing.

As an aside, the [100] moment direction has Dirac points
but also more symmetry than a general point along the cubic
meridians. These elements include E , Cx

2 (s), T Cy
2 (s), T Cz

2(s),
C′x

2 T , and P .
For a general moment direction [xyz] with none of these

vanishing, the only symmetries are E and P so the symmetry
constraints are not sufficient to close the gap between the
magnon bands.
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Spin-space symmetry is also important to understand mag-
netic models with Dzyaloshinskii-Moriya exchange where the
D vector in D · (Ĵi × Ĵ j ) is collinear. In this case, there is a
continuous spin space rotation symmetry about an axis paral-
lel to D. We now consider the honeycomb ferromagnet with
second nearest neighbor Dzyaloshinskii-Moriya exchange
with D perpendicular to the plane. When the moments are
polarized along D, the only manifestation of the spin-space
symmetry group is the Cz

∞ that simply adds a quantum number
±1 to the magnons as discussed for the case of Heisenberg
exchange. The remaining symmetries are identical to those of
the Heisenberg-Kitaev model as discussed above so there is a
gap between the magnon bands and nonzero Berry curvature.
In fact, once again the magnon bands have nonzero Chern
number.

If, instead, the moments are aligned in the honeycomb
plane, all the honeycomb lattice symmetries are present once
we allow for rotations in spin space around the D axis. There
is, in addition, a T Cz

2(s) symmetry that, taken together with
the inversion symmetry, ensures the presence of Dirac points
that now, owing to the Cz

3, are located at the K and K ′ points.
We contrast the model with second neighbor

Dzyaloshinskii-Moriya exchange and parallel D vector with
the model with nearest neighbor Dzyaloshinskii-Moriya with
in-plane D that may be present for single layer honeycomb
magnets grown or mounted on a substrate. In this case,
there are no spin space symmetries and, with moments
perpendicular to the plane, the only nontrivial symmetry is
Cz

3. The two bands are therefore gapped and topological. As
noted in Ref. [79], linear spin wave theory fails to capture
this feature because there are no O(S) quadratic terms
coming from the antisymmetric S±

i Sz
j couplings. In this case,

symmetry breaking due to the presence of the D coupling
comes from higher order corrections.

VII. NODAL LINES, WEYL POINTS, SPIN-SPACE GROUPS,
AND MAGNETIC SPACE GROUPS

We now return to the case of the Kitaev-Heisenberg model
on the hyperhoneycomb lattice. In Sec. IV, we identified
the Néel phase of this model as having nontrivial spin-space
group symmetry with dramatic consequences for the magnon
band structure including a nodal plane, fourfold degenerate
point and an abundance of nodal lines. We now consider
the collinear ferromagnetic phase. This offers some important
lessons about spin-space symmetry groups for magnons and
their effect on band topology. For, as we shall see, this phase
makes accessible a tower of different spin-space symmetry
groups, by tuning the direction of the moments, with a variety
of properties. For the several spin-space groups relevant to this
model, we present the features of the band structures that are
imposed by symmetry, including Weyl points and nodal lines.
For comparison, we also report the features expected on the
grounds of invariance of the magnetic structure thereby giving
several examples of how spin-space symmetry leads to richer
band structures. We shall also see that spin-space groups may
be isomorphic to ordinary magnetic space groups including
type II groups—of the form G + T G—that ordinarily would
not describe magnetically ordered systems.

FIG. 4. Phase diagram of the Kitaev-Heisenberg model in a
[111] field. The phase boundary is obtained from the condensa-
tion of magnons in linear spin wave theory about the collinear
field-polarized ferromagnetic state. The condensation wave vector is
indicated. The wave vector Ev = (− 2

3 , 0, 0) is the one characteristic
of the vortex and AF vortex phase, as in Ref. [82], which is indeed
associated with a second order phase transition.

To begin, we add a Zeeman term to the Hamiltonian,
Eq. (40). At sufficiently large fields, the moments form a
collinear ferromagnetic state and both the symmetry group
associated with the magnetic order and the extent of the
polarized phase depend on the field direction. For the [111] di-
rection, Fig. 4 shows the stability region of the field-polarized
ferromagnet as obtained from the condensation of magnons
within linear spin wave theory that also gives the ordering
wave vectors indicated. One observes that the polarized phase
is continuously connected to the zero field ferromagnetic
phase over a broad swathe of ϕ. The phase boundary into
the polarized phase is semiquantitatively similar for all field
directions while the nature of the ordered phases at lower
fields is field-dependent.

For this case, Fig. 5 shows the magnon band structure
along high-symmetry directions in the Brillouin zone for
ϕ = −3π/5 and zero applied field showing Goldstone modes
with quadratic dispersion at �. At finite field, the spectrum is
completely gapped and details of the band structure change.
However, some features are robust to changes of parameter ϕ

and the magnitude of the field: these are the Weyl point along
the line �Y and the double degeneracy of the lower and upper
magnon bands along zone boundary lines: AZ , Y T , and YA1.
These nodal lines cross at point Y .

We now examine the magnon band structure from the point
of view of symmetry. Once again, the spin space part of
the group GH consists of SO(3) for the Heisenberg coupling
alone. For the Kitaev coupling, the exchange on the x bond is⎛

⎝K 0 0
0 0 0
0 0 0

⎞
⎠ (59)

and the transformations that leave this invariant are the axial
rotations Cx

∞ and perpendicular rotation C[0yz]
2 that together

make up D∞. Taking the three inequivalent bonds together
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Φ = − 0 6Π Φ = − 0 4Π

FIG. 5. Example of a field direction without PT in the magnetic
group isomorphism, therefore allowing Weyl points. Magnon band
structure in [111] field and ϕ = −3π/5 along high-symmetry paths
in the Brillouin zone (top). Here the irrep labels are marked for
points � and Y , showing how the Weyl node along �Y arises from
compatibility relations. On the bottom the degeneracies of the band
structure are shown for case ϕ = −3π/5 (left) and −2π/5 (right).
The green lines are nodal lines between bands (1,2) and/or (3,4),
while red lines are for nodal lines between (2,3). The colored point
are Weyl points, between (1,2) (blue) and (2,3) (red). The case
ϕ = −3π/5 has a stable Weyl point along �Y . Indeed moving to
ϕ = −2π/5 this point is still present (closer to Y ). At this fine-tuned
point in parameter space, there is a proliferation of other Weyl points.
There are also new nodal lines that are protected by the glide d1 (not
by PT ) and which are therefore constrained to the mirror plane.

leaves the symmetry elements {Cx
2 , Cy

2, Cz
2} = D2. The para-

magnetic parent group is GH = (G + T G) ⊗ D2.
We now find the subgroup GM � GH that leaves the

collinear ferromagnetic structure invariant using separate al-
lowed real space and spin space transformations for the [11z]
direction with z �= 0. This turns out to be

GM = E + P + Cz
2(s)

(
d1 + Cb

2

)
+ T

(
d2 + Ca

2 + Cz
2(s)

(
d3 + Cc

2

))
(60)

The group contains distinct spin space and real space transfor-
mations as well as antiunitary elements. However, the group
is isomorphic to the magnetic space group Fd ′d ′d as we shall
discuss in more detail below.

Now, in contrast, if we lock the spin and space trans-
formations and determine the symmetries of the magnetic
structure—in other words those elements of the group

G + T G that leave the magnetic structure invariant—we find

GM = E + P + T d2 + T Ca
2 = (E + P ) + T d2(E + P ),

(61)

which is the magnetic space group C2′/c′.
The magnetic symmetry of the magnons is therefore higher

than that of the underlying magnetic structure owing to the
freedom to perform D2 transformations in spin space. This en-
hanced symmetry has important consequences for the magnon
band structure and band topology. In particular, one can show
that the lower symmetry magnetic group C2′/c′ enforces
degeneracy along line ZA but not along other directions. How-
ever, when the full symmetry group is taken into account,
as we show in Appendix G, all the aforementioned observed
magnon band degeneracies are enforced by symmetry—the
symmetry guarantees the presence of nodal lines. In addition
to arguments based on representation theory we give some
more direct justification of zone boundary nodal line degen-
eracies for the [111] hyperhoneycomb ferromagnet protected
by magnetic glides in Appendix H.

In a similar way, the spin-space group may be found
for the remaining symmetry-distinct field directions. Table II
summarizes the results for the collinear ferromagnet and for
three zero field antiferromagnetic phases—simple Néel order,
the skew-stripy phase and the skew-zigzag phase. For the
ferromagnetic phase, there are ten different groups. One of
these is the Heisenberg ferromagnet for which the group is
independent of the field direction. The remainder are for the
Kitaev-Heisenberg model for different high-symmetry direc-
tions and the general direction [xyz].

There are several observations to make about the groups
listed in the table. First of all, because the lattice has in-
version symmetry and the moments are invariant under this
operation, all the ferromagnetic spin-space groups have inver-
sion symmetry. They also all have spin-space elements and
nonsymmorphic elements. Inspection of the antiunitary part
of the group reveals that, for a random magnetic field direc-
tion, the group has no magnetic elements. Then, of the more
symmetric field directions, two ([±1 ± 1z] and [±1 ∓ 1z])
have time-reversal multiplying a glide and the rest have time-
reversal multiplying an element that acts on spin space. As we
saw when discussing honeycomb lattice models, the T C2(s)
elements behave like pure time-reversal symmetry because
they simply reverse the sign of k. Since inversion is also
present, these cases have PT symmetry. Figure 7 shows the
degeneracies in magnon band structures in instances where
there is effective PT . Both have nodal lines in the spectra
protected by PT with the Heisenberg case (in the left panel)
having various zone boundary nodal lines and one pinned to
a bisecting plane in the Brillouin zone. The less symmetric
[x0z] case (right panel) has interior nodal lines that are not
pinned.

A summary of the groups that appear by rotating the
field direction is given in Fig. 6. This plot shows the groups
arranged by increasing symmetry with the most symmetric
group—that of the Heisenberg Hamiltonian—at the top. The
decoupled spin group SO(3) for the Heisenberg exchange
is broken down to D2 by the Kitaev coupling. The figure
includes the groups that leave the magnetic structure in-
variant without spin-space transformations allowed by the

064430-15



CORTICELLI, MOESSNER, AND MCCLARTY PHYSICAL REVIEW B 105, 064430 (2022)

TABLE II. Spin-space groups GSS (and their relative unitary subgroups HSS) for various phases of the Heisenberg-Kitaev model on a
hyperhoneycomb lattice. For the collinear ferromagnet, the symmetry groups for different moment directions are listed. The right-most column
indicates whether there is an isomorphism between the spin-space group and a magnetic space group. The short-hand notation used for the
symmetry elements is: pure spin transformations are labeled with s, pure real space with r and the combined spin-space (locked) symmetry
without extra label. Appendix D has further information about the group theory notation.

Spin direction Unitary subgroup HSS Spin-space group GSS Isomorphism

Heisen. FM [x y z] (E + C‖
∞(s))

[(
E + P + d1 + Cb

2 + d2 + Ca
2 + d3 + Cc

2

)
(r)

]
HSS + T C⊥

2 (s) HSS
∼=Fddd1′ × C‖

∞(s)

Heisen. Néel [x y z] (E + C‖
∞(s))

[(
E + d1 + d2 + Cc

2

)
(r) + C⊥

2 (s)
(
(P + d3 + Cb

2 + Cc
2 )(r)

)]
HSS + T C⊥

2 (s) HSS –

[x y z] E + P + Cz
2(s)

(
d1 + Cb

2

)
HSS

∼=C2/c

[x 0 z], [0 y z] E + P + Cz
2(s)

(
d1 + Cb

2

)
HSS + T Cy/x

2 (s) HSS
∼=C2/c1′

[x y 0] E + P + Cz
2(s)

(
d1 + Cb

2

)
HSS + T Cz

2(s) HSS
∼=C2/c1′

[±1 0 0], [0 ± 1 0] (E + Cx/y
2 (s))

(
E + P + Cz

2(s)
(
d1 + Cb

2

))
HSS + T Cz

2(s) HSS
∼=C2/c1′ × C‖

2 (s)

[±1 ± 1 z] E + P + Cz
2(s)

(
d1 + Cb

2

)
HSS + T d2 HSS

∼=Fd ′d ′d

[±1 ∓ 1 z] E + P + Cz
2(s)

(
d1 + Cb

2

)
HSS + T d3 HSS

∼=Fd ′d ′d

[±1 ± 1 0] E + P + d3 + Cc
2 + Cz

2(s)
(
d1 + d2 + Ca

2 + Cb
2

)
HSS + T Cz

2(s) HSS
∼=Fddd1′

[±1 ∓ 1 0] E + P + d2 + Ca
2 + Cz

2(s)
(
d1 + d3 + Cb

2 + Cc
2

)
HSS + T Cz

2(s) HSS
∼=Fddd1′

[0 0 ± 1]
(
E + Cz

2(s)
) (

E + P + d1 + Cb
2

) + Cx,y
2 (s)

(
d2 + d3 + Ca

2 + Cc
2

)
HSS + T Cx,y

2 (s) HSS
∼=′′Fddd1′ × C‖

2 (s)′′

Néel [0 0 ± 1]
(
E + Cz

2(s)
) (

E + d1 + d3 + Ca
2

) + Cx,y
2 (s)

(
P + d2 + Cb

2 + Cc
2

)
HSS + T Cx,y

2 (s) HSS –

Skew-Stripy [0 0 ± 1]
(
E + Cz

2(s)
) (

E + d2 + d3 + Cb
2

) + Cx,y
2 (s)

(
P + d1 + Ca

2 + Cc
2

)
HSS + T Cx,y

2 (s) HSS –

Skew-Zigzag [0 0 ± 1]
(
E + Cz

2(s)
) (

E + P + d2 + Ca
2

) + Cx,y
2 (s)

(
d1 + d3 + Cb

2 + Cc
2

)
HSS + T Cx,y

2 (s) HSS –

Hamiltonian (dark blue). The figure also includes those
groups that leave the magnetic structure invariant up to spin-
space transformations (cyan) and these are all indexed using
isomorphic magnetic space group notation. The arrows con-
necting different groups reveal the symmetry enhancement in
going from dark blue to cyan groups.

Table II illustrates that, for the ferromagnet, the spin-space
groups are isomorphic to magnetic space groups except for
the [100] moment direction. In contrast, the spin-space groups
for the antiferromagnetic phases do not coincide with any of
the magnetic space groups. To understand these coincidences
better, we first note that for collinear ferromagnets the only
possible net spin transformations are axial rotations. These
commute with one another and, when they match the real
space point group transformation, the group multiplication
table matches that of a magnetic space group simply because
the spin space transformation is not distinct.

For example, the FM [±1 ± 1 0] has unitary elements:

HSS = E + P + d3 + Cc
2 + Cz

2(s)
(
d1 + d2 + Ca

2 + Cb
2

)
.

(62)

Elements like Cz
2(s)Cc

2 = [2100‖{2001| − 1/4,−1/4, 0}] can
be mapped to real space symmetry only elements [E‖{2001| −
1/4,−1/4, 0}] preserving the multiplication table of the
group. The isomorphic group is therefore an usual magnetic
group with unitary elements:

HISO = E + P + d3 + Cc
2 + d1 + d2 + Ca

2 + Cb
2 , (63)

which corresponds to the unitary part of Fddd1′. The [±1 ±
1 0] spin-space group, despite being isomorphic to a normal
magnetic space group, has an enhancement with respect to
the ground state magnetic group Fd ′d ′d with fewer unitary

elements:

HGS = E + P + d3 + Cc
2 . (64)

We further note that even where there is an isomorphism to
a magnetic space group it is important to keep track of the
spin space transformations in representation computations.
Secondly, not all ferromagnetic spin space groups are isomor-
phic to magnetic space groups. For example, for the direction
[0 0 ± 1], if we look for a magnetic space group that is closest
in form to the spin-space group, we would find Fddd1′ ×
C‖

2 (s). But if we inspect the elements of the spin-space group,
we find Cx

2 (s)Cc
2 = [4+

010‖{2001| − 1/4,−1/4, 0}] which does
not respect the multiplication rule of the Fddd1′ group (triv-
ially the square of the element is not identity). Even so,
Fddd1′ × C‖

2 (s) does correctly capture the band structure
degeneracies. This is because in this specific case, the de-
generacies are restricted to the Brillouin zone boundary, and
there the central extension groups of the two groups are iso-
morphic because only spatial elements are relevant. For AFM
cases, spin space elements may include rotations about axes
perpendicular to the moment. Since these generally do not
commute with other spin space operators one tends to find
different multiplication tables to the usual magnetic space
groups.

So far we have commented on the types of spin-space
groups that can arise in the Kitaev-Heisenberg ferromag-
net. We now examine the consequences of these groups
for the magnon bands structures. Table III summarizes the
symmetry enforced degeneracies for all high-symmetry mo-
ment directions for the hyperhoneycomb Kitaev-Heisenberg
model deduced from the representation theory of the groups
given in Table II and, in particular, both the groups expected
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TABLE III. Degeneracies in ordered Heisenberg-Kitaev models for the hyperhoneycomb lattice at all high-symmetry points, lines and
surfaces. The first four cases are antiferromagnets (where SZ = skew-zigzag and SS = skew-stripy), while the others are ferromagnets.
For Heisenberg Néel and FM ground states, the symmetries are given for a generic spin direction [x y z]. The column MS (Magnetic Space
group) lists the degeneracies expected on the basis of the magnetic space group that leaves the magnetic structure invariant (and are therefore
independent of the coupling). The column SS (Spin-Space group) lists those degeneracies coming from the spin-space group. The spin
excitations have not only all the degeneracies coming from the ground state invariance (MS) but also a significant enhancement due to the
presence of spin space symmetries (SS) (especially in the AFM cases thanks to the mixing of spin rotations with the perpendicular axis). A
checkmark represents a double degeneracy, while a number (4) a fourfold degeneracy. Nodal planes are present along E = [�ZT ] for two
AFM cases, while the nodal volume only in the Heisenberg Néel case (see general position GP).

H. Néel Néel SZ SS H. FM
[x y z] [0 0 ±1] [0 0 ±1] [0 0 ±1] [x y z] [x y z] [x 0 z] [x y 0] [±1 ±1 z] [±1 ±1 0] [0 0 ±1]

IBZ MS SS MS SS MS SS MS SS MS SS MS SS MS SS MS SS MS SS MS SS MS SS

� � � � �
Y (4) � � � � � � � �
T (4) � � (4) � � � � � � � � � � � �
Z (4) � (4) � � � � � � � � � � � � � � �
L �
� = [�Y ] � � �
� = [�Z] � � � �
� = [�X ] � � �
H = [Y T ] (4) � � � � � � � �
B = [ZT ] (4) � � � � � � � � � � � �
A = [ZA] (4) � � � � � � � � �
E = [�ZT ] � � �
J = [�XZ] �
M = [�XY ] �
GP �

for the ground state alone and the full spin-space group.
The spin-space group with its enhanced symmetry leads al-
ways to a more degenerate spectrum except for the [xy0]
case.

As we have already observed, some of the spin-space
groups have a time-reversal element multiplying a pure spin
space element. This is isomorphic to a pure time-reversal
element and the system then has PT symmetry that imposes a
reality condition on the Hamiltonian that protects nodal lines
and forbids the presence of Weyl points as in Fig. 7. In the
other cases ([xyz] and [11z]), we have the opposite scenario,
with presence of Weyl nodes and no closed nodal lines (apart
from the nodal line protected by glide symmetry constrained
to its mirror plane) as in Fig. 5. In the AFM cases, since the
symmetry is highly enhanced, the presence of closed nodal
lines is the norm, and, as we discussed, nodal planes may also
arise.

VIII. SUMMARY AND CONCLUSIONS

The study of band topology has been a gigantic enterprise
in condensed matter physics over roughly the last fifteen
years. During that time, important insights have arisen as more
symmetries have been considered. The first known topological
band insulator was a Chern insulator that was the inspira-
tion for time-reversal symmetric gapped band topology. Later
people devised topological band structures with particle-hole
and chiral symmetries and, later still, lattice symmetries and
their interplay with time-reversal symmetry. In this paper, we
have extended this programme further to include yet more

symmetric cases by including spin rotation symmetry and
analyzing the resulting spin-space groups.

We have given a number of examples of magnetic cou-
plings where spin-space groups are the appropriate symmetry
groups in the magnetically ordered phase. These include
Heisenberg models, Kitaev Heisenberg models, collinear
Dzyaloshinskii-Moriya couplings, and various kinds of single
ion anisotropy.

For various cases, we have worked out the representation
theory of the relevant spin-space group thus providing the
underlying symmetry reason for topological features in the
magnetic excitations on top of magnetically ordered states.
These calculations show in unprecedented detail how to work
out band degeneracies from the relevant group—methods
that are applicable to any other spin-space group. In many of
these cases we have contrasted our findings with the expected
band structures one would obtain with foreknowledge only of
the magnetic structure and the corresponding magnetic space
group.

We have found that spin-space groups of various sorts can
lead to nodal points (Dirac points in 2D, Weyl points and
fourfold degenerate points in 3D), nodal lines (twofold and
twofold degenerate) protected by nonsymmorphic spin-space
groups, nodal planes including those with intersecting nodal
lines and, in some instances, degenerate volumes. The rich
band structures presented in this work provide a mere glimpse
of the types of gapless band topology that can arise from
spin-space groups in the magnons of magnetic insulators and
the electronic band structures of itinerant magnetic materials.
As we should expect of groups of higher symmetry, magnetic
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FIG. 6. The hierarchy of spin-space groups for the Heisenberg-
Kitaev ferromagnet on the hyperhoneycomb lattice. At the top, there
are the paramagnetic parent groups of Heisenberg and Heisenberg-
Kitaev coupling (magenta) and, below, all the relevant subgroups
for different ferromagnetic directions. The paramagnetic spin-space
group is enhanced from the normal grey group Fddd1′ (dashed
arrow). For each ferromagnetic case, the magnetic group of the
ground state is given (dark blue) and its enhancement (arrow) by
the Hamiltonian spin-space symmetries to a group relevant for the
magnon spectra (cyan). The ground state symmetries are enhanced
in all cases as a result of the parent group pure spin-space symmetry.
For all groups we have used magnetic space group notation. For
most cases, the spin-space group is isomorphic to a magnetic space
group. The only exception is the [001] case. However, for [001], the
group Fddd1′ × C‖

2 (s) (dotted cyan) nevertheless correctly captures
the magnon band degeneracies.

groups including spin rotations are particularly efficient at
generating degeneracies in band structures.

The magnetic space groups are a subset of spin-space
groups where the spin and real space point group elements
are locked. However, we have also shown, for various ferro-
magnetic Kitaev-Heisenberg models, that certain spin-space
groups with nontrivial spin rotation elements can also be
isomorphic to magnetic space groups, albeit groups of higher
symmetry than one would expect on the basis of the magnetic
structure alone.

All of the models we have considered are in some sense
fine-tuned. That is to say that spin-orbit coupling is almost
omnipresent in condensed matter systems so that the mag-
netic Hamiltonian will tend to include all terms allowed by
symmetry and the moments will then be locked to real space.
Nevertheless, all the couplings we have included are physi-
cally allowed couplings and a degree of fine-tuning is often
feasible in condensed matter systems because the richness of
chemistry admits an exploration of possible couplings. So, for

Heisenberg FM [x0z]

FIG. 7. Example of field directions with PT in the isomorphic
magnetic space group with, therefore, nodal lines allowed every-
where in the zone. The degeneracies of the band structure are shown
for the Heisenberg case (left) and for field direction [x0z] with
ϕ = −3π/5 (right). The green lines are nodal lines between bands
(1,2) and/or (3,4), while red lines are nodal lines between (2,3).
The highly symmetric Heisenberg case has all possible enforced
degeneracy boundary zone lines (green) and the characteristic nodal
line (red). The [x0z] has a much lower symmetry, but still exhibits a
nodal line away from symmetric positions in the BZ, since it has pure
time-reversal symmetry in the isomorphic magnetic group, exactly as
in the Heisenberg case, see Table II.

example, in many first row transition metal magnets and else-
where, spin-orbit is weak compared to the principal exchange
scale and then Heisenberg models may be an excellent ap-
proximation to the magnetism. Indeed, Heisenberg exchange
and XY exchange both of which admit nontrivial spin-space
symmetries have been the canonical models of magnetism for
decades and satisfactorily account for the properties of a great
many magnetic materials.

Going beyond Heisenberg couplings, antisymmetric ex-
change that often appears as the leading exchange contribution
in the spin-orbit coupling can be associated to spin-space
group symmetries. Also, Kitaev-Heisenberg exchange has
been argued to be the dominant set of couplings in various
magnets with magnetic ions in edge-shared octahedral cages.

Even where the couplings depart from the spin-space sym-
metric surfaces in parameter space, one can imagine that
there are materials where the magnon spectra contain near
degeneracies that arise from a nearby parent Hamiltonian with
spin-space symmetries and that these degeneracies would be
otherwise mysterious. In fact, such near degeneracies could
be used to diagnose the presence of dominant Kitaev terms,
for example, or at least the absence of certain symmetry
breaking terms. Similarly, even if symmetries are violated
that would otherwise protect topological surface states, the
boundary states can remain when the couplings are proximate
to symmetric surfaces in parameter space.

Our work also sheds some light on the phenomenon of
order by disorder where accidental mean field ground state
degeneracies are broken down by fluctuations. One symptom
of order by disorder is the presence of spurious Goldstone
modes in linear spin wave theory that cannot be present in
the full interacting model by symmetry. One may ask whether
linear spin wave theory may have other incongruous features
in the spectrum that may be lifted by fluctuations. For the
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cases, we have considered in this paper where order by disor-
der is present—such as the hyperhoneycomb Néel state—the
answer is that linear spin wave theory faithfully reflects the
spin-space symmetries of the magnetically ordered state up to
the appearance of Goldstone modes.

This paper points to a number of interesting future di-
rections most notably the considerable task of carrying out
a complete classification of physically relevant spin-space
groups, their representations and associated band topology.
More immediately, it would be interesting to investigate in
detail the implications of spin-space symmetries for electronic
systems such as spin-orbit coupled magnetic semimetals and
to magnetic excitons that are not magnons. More specu-
latively, one may ask whether there are physically natural
generalizations, say for SU(N ) magnets or exotic order pa-
rameters, of the spin-space symmetries considered here to
higher symmetries still such as the polychromatic groups.

Note added. Recently, we became aware of a parallel work
on spin-space groups in relation to topology [84].
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APPENDIX A: HYPERHONEYCOMB LATTICE
CONVENTIONS AND SYMMETRIES

The hyperhoneycomb lattice is a three-dimensional lattice
(1) based around a face-centered orthorhombic cell with a four
site basis belonging to the space group Fddd (No. 70). The
primitive lattice vectors in x, y, z Kitaev coordinate system
are

R1 = (2, 4, 0), R2 = (3, 3, 2), R3 = (−1, 1, 2) (A1)

and the basis is

r1 = (0, 0, 0), r2 = (1, 1, 0),

r3 = (1, 2, 1), r4 = (2, 3, 1). (A2)

The orthorhombic conventional unit cell vectors are

a = (−2, 2, 0), b = (0, 0, 4), c = (6, 6, 0). (A3)

The reciprocal lattice vectors are

G1 = 2π
(

1
6 ,− 1

3 , 1
4

)
,

G2 = 2π
(− 1

3 , 1
6 ,− 1

4

)
,

G3 = 2π
(

1
3 ,− 1

6 ,− 1
4

)
. (A4)

This coordinate system is useful to highlight the effect of
global spin rotations compatible with the Heisenberg-Kitaev
Hamiltonian.

Throughout the paper also another coordinate system has
been used, the one used by the Bilbao Crystallographic
Server—the coordinate system of the conventional unit cell
a, b, c with origin centered at the inversion point. The latter
is simpler for dealing with lattice symmetries and has been
used for all the group theory calculations. In this coordinate
system, the primitive lattice vectors are

R1 = (
1
2 , 0, 1

2

)
, R2 = (

0, 1
2 , 1

2

)
, R3 = (

1
2 , 1

2 , 0
)

(A5)

and the reciprocal lattice vectors in the dual basis a∗, b∗, c∗
(such that, for example, a · a∗ = 2π ) are

G1 = (−1, 1,−1),

G2 = (1,−1,−1),

G3 = (−1,−1, 1). (A6)

The high-symmetry points in the first Brillouin zone in
both coordinate systems reads

� = (0, 0, 0)xyz = (0, 0, 0)abc,

Y =
(

0, 0,−π

2

)
xyz

= (0,−1, 0)abc,

T =
(

− π

6
,−π

6
,−π

2

)
xyz

= (0,−1,−1)abc,

Z =
(

− π

6
,−π

6
, 0

)
xyz

= (0, 0,−1)abc,

X =
(29π

72
,−29π

72
, 0

)
xyz

= (−29/36, 0, 0)abc,

A1 =
(11π

72
,−11π

72
,−π

2

)
xyz

= (−11/36,−1, 0)abc,

X1 =
(

− 19π

72
,−5π

72
,−π

2

)
xyz

= (7/36,−1,−1)abc,

A =
(13π

72
,−37π

72
, 0

)
xyz

= (−25/36, 0,−1)abc,

L =
(π

6
,−π

3
,−π

4

)
xyz

= (−1/2,−1/2,−1/2)abc. (A7)

The first Brillouin zone together with the high-symmetry di-
rections and points are shown in Fig. 1.

The lattice symmetries that constitute the space group G of
the hyperhoneycomb include the following.

(1) Primitive translations Ri.
(2) Inversion P at the bond center of sublattices 2,3 and

1,4 (green and red bonds in Fig. 1).
(3) Three orthogonal C2 axes at the bond center of bonds

connecting sublattices 1,2 and 3,4 (blue bonds). These axes
are parallel to the face-centered-orthorhombic lattice vectors
a, b, and c. Bonds 2,3 and 1,4 are interchanged via these C2

axes.
(4) Glide planes, d1, d2, d3, with translation Ri/2 inter-

changes bonds 1,2 and 3,4.
Therefore we have for the seven nontrival symmetry el-

ements {R|t}, in x, y, z Kitaev coordinates with l sublattice

064430-19



CORTICELLI, MOESSNER, AND MCCLARTY PHYSICAL REVIEW B 105, 064430 (2022)

index and in a, b, c system:

d1 : (x, y, z, l ) =

⎧⎪⎨
⎪⎩

(x, y,−z, 3), l = 1
(x, y,−z, 4), l = 2
(x + 2, y + 4,−z, 1), l = 3
(x + 2, y + 4,−z, 2), l = 4

= {m010| 1
4 , 0, 1

4 }abc, (A8)

d2 : (x, y, z, l ) =

⎧⎪⎨
⎪⎩

(y, x, z, 3), l = 1
(y, x, z, 4), l = 2
(y + 3, x + 3, z + 2, 1), l = 3
(y + 3, x + 3, z + 2, 2), l = 4

= {m100|0, 1
4 , 1

4 }abc, (A9)

d3 : (x, y, z, l ) =

⎧⎪⎨
⎪⎩

(−y,−x, z, 4), l = 1
(−y,−x, z, 3), l = 2
(−y − 1,−x + 1, z + 2, 2), l = 3
(−y − 1,−x + 1, z + 2, 1), l = 4

= {m001| 1
4 , 1

4 , 0}abc, (A10)

P = d1d−1
2 d3 : (x1, x2, x3, l ) =

⎧⎪⎨
⎪⎩

(−x,−y,−z, 4), l = 1
(−x,−y,−z, 3), l = 2
(−x,−y,−z, 2), l = 3
(−x,−y,−z, 1), l = 4

= {−1|0, 0, 0}abc, (A11)

Ca
2 = d−1

3 d1 : (x, y, z, l ) =

⎧⎪⎨
⎪⎩

(−y,−x,−z, 2), l = 1
(−y,−x,−z, 1), l = 2
(−y − 3,−x − 3,−z − 2, 4), l = 3
(−y − 3,−x − 3,−z − 2, 3), l = 4

= {2100|0,− 1
4 ,− 1

4 }abc, (A12)

Cb
2 = d−1

3 d2 : (x, y, z, l ) =

⎧⎪⎨
⎪⎩

(−x,−y, z, 2), l = 1
(−x,−y, z, 1), l = 2
(−x − 2,−y − 4, z, 4), l = 3
(−x − 2,−y − 4, z, 3), l = 4

= {2010| − 1
4 , 0,− 1

4 }abc, (A13)

Cc
2 = d−1

2 d1 : (x, y, z, l ) =

⎧⎪⎨
⎪⎩

(y, x,−z, 1), l = 1
(y, x,−z, 2), l = 2
(y + 1, x − 1,−z − 2, 3), l = 3
(y + 1, x − 1,−z − 2, 4), l = 4

= {2001| − 1
4 ,− 1

4 , 0}abc. (A14)

APPENDIX B: HYPERHONEYCOMB
SYMMETRY-ALLOWED EXCHANGE HAMILTONIAN

Here, taking the example of the hyperhoneycomb lattice,
we give an explicit example of how spin-orbit constrains the
exchange Hamiltonian of a spin system and how additional
global spin symmetries can arise beyond those allowed by
spin-orbit coupling.

The hyperhoneycomb unit cell has i, j = {1, 2, 3, 4} spins
and it is tricoordinated, so there are in total six bonds per
unit cell, (i, j). We consider for this system a generic bilinear
exchange Hamiltonian

Ĥ =
∑
i, j

Jμν
i j Ĵμ

i Ĵν
j , (B1)

which accounting for the primitive translations can be spec-
ified by six exchange 3 × 3 matrices, one for each bond.
Applying the space group symmetries in Appendix A we
obtain two sets of equivalent bonds. A set of equivalent

bonds contains bonds that can be transformed into each other
by symmetry operations, and therefore bonds belonging to
different equivalence sets are said to be inequivalent and
have, in principle, independent exchange Hamiltonians. We
call set a the one with (1, 2)z, (3, 4)z while set b the one
(2, 3)x, (2, 3)y, (4, 1)x, (4, 1)y where the subscript a posteriori
provides the Kitaev bond label.

In the absence of spin-orbit, the application of the
space group symmetries does not act on the spins but
only on their positions. This would result in a generic
bilinear exchange Hamiltonian to that is completely spec-
ified by only two generic symmetric matrices, one for
each set of equivalent bonds. However, free spins are
SU(2) symmetric and the only possible isotropic coupling is
Heisenberg.

In case spin orbit is present, the symmetries will act also
on spin space as pseudovector transformations. After a proper
parametrization, the constraints for set a are

J(1,2)z =
⎛
⎝Ja �a −D

�a Ja −D
D −D (Ja + Ka)

⎞
⎠, J(3,4)z =

⎛
⎝ Ja �a D

�a Ja −D
−D D (Ja + Ka)

⎞
⎠, (B2)
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and for set b,

J(2,3)x =
⎛
⎝(Jb(xy) + Kb) �′ �′′

�′ Jb(xy) �b

�′′ �b Jb(z)

⎞
⎠, J(4,1)x =

⎛
⎝(Jb(xy) + Kb) �′ −�′′

�′ Jb(xy) −�b

−�′′ −�b Jb(z)

⎞
⎠, (B3)

J(2,3)y =
⎛
⎝ Jb(xy) �′ −�b

�′ (Jb(xy) + Kb) −�′′
−�b −�′′ Jb(z)

⎞
⎠, J(4,1)y =

⎛
⎝Jb(xy) �′ �b

�′ (Jb(xy) + Kb) �′′
�b �′′ Jb(z)

⎞
⎠. (B4)

In total, we count ten possible exchange couplings. We see that the lattice supports Heisenberg-Kitaev couplings, antisymmet-
ric or Dzyaloshinski-Moriya (DM) coupling D for z bonds and different off-diagonal symmetric exchange �α . For a given bond,
the couplings are invariant under higher symmetries than the lattice as a whole. For example, �α → D2(s) and D → C∞(s).
However, only for a subset of the couplings, is there a global residual symmetry: for the Heisenberg case (with global spin
rotation symmetry) and Heisenberg-Kitaev with D2 symmetry.

In the main text, we make the standard approximation that the Kitaev couplings on inequivalent bonds are the same.

APPENDIX C: EXPLICIT QUADRATIC HAMILTONIAN FOR HYPERHONEYCOMB JK FERROMAGNET

Here we give the explicit linear spin wave Hamiltonian for the ferromagnetic hyperhoneycomb JK . The exchange in the local
quantization frame [after Eq. (16)] for the three distinct nearest neighbor bonds is

J̃x = J

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ + K

⎛
⎝ cos2 θ cos2 ϕ − cos θ cos ϕ sin ϕ cos θ sin θ cos2 ϕ

− cos θ cos ϕ sin ϕ sin2 ϕ − sin θ cos ϕ sin ϕ

cos θ sin θ cos2 ϕ − sin θ cos ϕ sin ϕ sin2 θ cos2 ϕ

⎞
⎠, (C1)

J̃y = J

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ + K

⎛
⎝ cos2 θ sin2 ϕ cos θ cos ϕ sin ϕ cos θ sin θ sin2 ϕ

cos θ cos ϕ sin ϕ cos2 ϕ sin θ cos ϕ sin ϕ

cos θ sin θ sin2 ϕ sin θ cos ϕ sin ϕ sin2 θ sin2 ϕ

⎞
⎠, (C2)

J̃z = J

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ + K

⎛
⎝ sin2 θ 0 − cos θ sin θ

0 0 0
− cos θ sin θ 0 cos2 θ

⎞
⎠, (C3)

where t{x, y, z} labels the type of Kitaev bond, while θ and ϕ are the polar and azimuthal angles that parametrize the
ferromagnetic direction with respect to Kitaev coordinate system.

The explicit A and B blocks of Eq. (20) are

A(k) = S

⎛
⎜⎜⎝

−3J − K + h/S γ12,k 0 γ ∗
41,k

γ ∗
12,k −3J − K + h/S γ23,k 0
0 γ ∗

23,k −3J − K + h/S γ12,k

γ41,k 0 γ ∗
12,k −3J − K + h/S

⎞
⎟⎟⎠, (C4)

B(k) = S

⎛
⎜⎝

0 β12,k 0 β41,−k

β12,−k 0 β23,k 0
0 β23,−k 0 β12,k

β41,k 0 β12,−k 0

⎞
⎟⎠, (C5)

where

γ12,k = γ34,k = 1
2 eik·(r1−r2 )δγ z

(
J̃xx

γ + J̃yy
γ − i

(
J̃xy

γ − J̃yx
γ

)
, (C6)

γ23,k = 1
2

(
eik·(r2−r3 )δγ x + eik·((r2+R3 )−r3 )δγ y

)(
J̃xx

γ + J̃yy
γ − i

(
J̃xy

γ − J̃yx
γ

))
, (C7)

γ41,k = 1
2 (eik·(r4−(r1+R1 ))δγ x + eik·(r4−(r1+R2 ))δγ y)

(
J̃xx

γ + J̃yy
γ − i

(
J̃xy

γ − J̃yx
γ

))
, (C8)

and

β12,k = β34,k = 1
2 eik·(r1−r2 )δγ z

(
J̃xx

γ − J̃yy
γ + i

(
J̃xy

γ + J̃yx
γ

)
, (C9)

β23,k = 1
2 (eik·(r2−r3 )δγ x + eik·((r2+R3 )−r3 )δγ y)

(
J̃xx

γ − J̃yy
γ + i

(
J̃xy

γ + J̃yx
γ

))
, (C10)

β41,k = 1
2 (eik·(r4−(r1+R1 ))δγ x + eik·(r4−(r1+R2 ))δγ y)

(
J̃xx

γ − J̃yy
γ + i

(
J̃xy

γ + J̃yx
γ

))
. (C11)

The eigenproblem for this Hamiltonian, leading to four spin wave branches, may be solved by performing a bosonic Bogoliubov
transformation as explained in the main text.

064430-21



CORTICELLI, MOESSNER, AND MCCLARTY PHYSICAL REVIEW B 105, 064430 (2022)

APPENDIX D: MAGNETIC GROUP NOTATION

In the main text, unless otherwise indicated, group ele-
ments such as twofold rotation C2 are assumed to act both on
spin and real space degrees of freedom. This substantially ab-
breviates the full spin-space notation [C2‖{C2|0}]. Sometimes
we also use an argument: C2(s) to denote an operation acting
only on spins and C2(r) acting only on real space.

The magnetic group notation used through the paper is the
one adopted in the International Tables For Crystallography,
i.e., Hermann–Mauguin notation. We do not explain this nota-
tion in detail here but only give a general overview so that the
meaning of the symbols used in this paper can be appreciated
without a detailed knowledge of these tables.

As an example, we take the hyperhoneycomb space group
Fddd and its subgroups C2/c and P-1. The symbols always
start with an uppercase letter describing the Bravais lattice
type, for example, F stands for face-centered lattice, C for
single-face centered—on C faces only—and P for primitive.
Right after the letter we have the symmetry elements of the
corresponding point group (the group that remains if one
removes all translational components from the space group).
The order of the symmetry elements follows the hierarchy of
axes if present, from the most symmetric to the lowest. The
possible symbols are: number n for rotations Cn, m for mirror
planes, −n for improper rotations Sn. Moreover when two
elements refer to the same axis they are written as n/m. In
case the group is nonsymmorphic, some of the point group
elements will be replaced by the symbol for the screw axis
(a number with a number subscript, i.e., 21) or glide planes
(letter a, b, c, n, d). Taking again the examples above we
have: Fddd having three glide planes with translation along
a quarter of the three different face diagonals (“diamond”
glide plane), C2/c having a C2 rotation, and a perpendicular
glide plane with a translation along half the lattice vector of
face C, P-1 having only inversion. The standard form uses a
short notation which shows only the generators in the shortest
unambiguous way, i.e., the symmetry elements which, when
composed, gives all the others. As an example we observe that
the glide planes d1, d2, d3 generate all the other operations in
Appendix A.

For magnetic groups, the notation is extended by indicating
with a prime an antiunitary operation. For type II groups,
one has the symbol of the space group from which it is
derived plus a 1′ at the end, indicating the pure time-reversal
operation. For type III groups, the space group symbols are
modified adding a ′ to the symmetry elements which become
antiunitary. Finally, for type IV groups, the black and white
Bravais lattice is represented by the original uppercase letter
lattice symbol with an additional subscript. For example, the
group Fddd1′ is type II with pure time-reversal and three
normal glides, while the group Fd ′d ′d is type III with one
normal glide and two magnetic glides.

APPENDIX E: CENTRAL EXTENSION METHOD AND
HYPERHONEYCOMB NÉEL KITAEV-HEISENBERG Z

POINT

1. Central extension method

The representation theory of spin-space groups mirrors that
of (magnetic) space groups. One lesson coming from space

groups is that, for most wave vectors, the decomposition of
the little co-group of that wave vector into irreps is simply
a matter of identifying the associated point group at that
point and using standard tables. An important exception is for
certain boundary points in nonsymmorphic groups where the
group composition rule is projective. A representation is said
to be projective when �(hi )�(h j ) = μ(hi, h j )�(hk ), where
� are matrix representations of group elements hi ∈ Gk

SS and
μ(hi, h j ) = exp(−igi · w j ) is an element of the factor system,
with gi = h−1

i k − k and w j the translation associated to h j . If
μ(hi, h j ) = 1 for all cases then we reduce to ordinary (non-
projective) representations. If this is not the case, we proceed
by studying the representations of the central extension of
the little co-group Ḡk∗

SS = Ḡk
SS ⊗ Zg with kernel Zg, the cyclic

group of integers 0, 1, . . . , (g − 1). The number g comes
from the parametrization of the factor system as μ(hi, h j ) =
exp(2π ia(hi, h j )/g), where a(hi, h j ) = 0, 1, . . . , (g − 1) and
the group elements are of the kind (hi, α) with product rule
(hi, α)(h j, β ) = (hih j, α + β + a(hi, h j )). Of all the irreps of
Ḡk∗

SS, we are interested only in the ones giving the right factor
system, that is the ones with �(E , α) = exp(2π iα/g) I. Since
the set of elements (hi, 0) is isomorphic to Ḡk

SS, we can now
extrapolate the character tables of those irreps and build the
table of projective irreducible representations of Ḡk

SS (and
therefore the one of Gk

SS, adding the right phase factors com-
ing from translations). The central extension method is rather
general. In case of glide symmetries, as realized in the hyper-
honeycomb examples considered here, the central extension
group takes the form of a double group since the glide symme-
try is of order two. The central extension method leads to other
groups for higher order symmetries such as multifold screws.

2. Hyperhoneycomb Néel Kitaev-Heisenberg Z point

Here we give an example where projective representations
are necessary: the Z point in the Néel phase of the Kitaev-
Heisenberg model on a hyperhoneycomb lattice.

First we must determine the factor system as explained in
the first section. The extra reciprocal lattice translation for
each spatial symmetry (noting that the spin part does not act
in reciprocal space) is

g−1 = g2100
= g2010

= gm001
= (0, 0, 2),

g2001
= gm100

= gm010
= (0, 0, 0). (E1)

The factor system will then have μ(hi, h j ) = ±1 (as ex-
pected for glide symmetry with nonsymmorphic translation
equal to half of primitive vectors). For example,

μ([2−101‖{−1|0}], [2001‖{m001|1/4, 1/4, 0}])
= exp (−2π i (0, 0, 2) · (1/4, 1/4, 0)) = +1,

μ([2−101‖{−1|0}], [2010‖{m010|1/4, 0, 1/4}])
= exp (−2π i (0, 0, 2) · (1/4, 0, 1/4)) = −1. (E2)

Since the factor system is not trivial we need to find the
projective irreducible representations. One way to do this is
by first finding the irreps of the unitary central extension of the
little co-group ḠZ∗

SS with g = 2 which is a group with 32 ele-
ments. The element of this group are of the kind (hi, α), where
hi ∈ ḠZ

SS and α ∈ {0, 1, . . . , (g − 1)}. The group has the iso-
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TABLE IV. Character table giving the relevant irreps of the unitary part of GZ
SS. The phase factor is ξ = exp(i Z · (0 1

4
1
4 )) = −i and the dot

(. . . ) indicates irrelevant symmetries—those with trivial characters.

GZ
SS [E‖{E |0}] [2010‖{E |0}] [4+

010‖{m100|0, 1/4, 1/4}] [4−
010‖{m100|0, 1/4, 1/4}] . . . Type Coreps

Z+
5a 2 2 2 ξ 2 ξ 0 (a)

Z+
5b 2 2 −2 ξ −2 ξ 0 (a)

Z−
5a 2 −2 2 ξ −2 ξ 0 (c)

Z−
5b 2 −2 −2 ξ 2 ξ 0 (c)

morphism ḠZ∗
SS

∼= D4h + D4h × ([4+
010‖{m100|0}], 0) where we

can identify the elements of D4h as

2001 → ([E‖{E |0}], 1),

4+
001 → ([2100‖{2100|0}], 0)

−1 → ([2010‖{E |0}], 0),

2100 → ([E‖{m010|0}], 0),

21-10 → ([2100‖{m001|0}], 0). (E3)

The irreps of ḠZ∗
SS can be obtained by conjugating the ones

of the subgroup D4h by the symmetry ([4+
010‖{m100|0}], 0).

Of these irres, we are only interested in the one with
�([E‖{E |0}], 1) = − I (constrain to get the proper phase fac-
tors), therefore Z±

5a(b) where (a, b) label comes from the fact
that Z±

5 of D4h are self-conjugated under ([4+
010‖{m100|0}], 0).

Considering only the elements (hi, 0) and adding the right
phase factors for translation we can build the character table
of the unitary part of GZ

SS as in Table IV.
Finally we can add now the antiunitary elements and com-

pose the coreps. The test gives∑
hk′

χZ
p

(
h2

k′
) = 4

(
χZ

p ([E‖{E |0}]) + χZ
p ([2010‖{E |0}]))

=
{

16 = ∣∣ḠZ∗
SS

∣∣ type (a) if p = Z+
5a, Z+

5b
0 type (c) if p = Z−

5a, Z−
5b

,

(E4)

where hk′ are all the antiunitary elements for which hk′k =
−k + gi, so for Z are all the antiunitary elements in the
full spin space group. We get therefore a four-degenerate
coreps DZ−

5 (4) = (Z−
5a, Z−

5b) with χ ([2010‖{E |0}]) = −4 and
χ ([4±

010‖{m100|0, 1/4, 1/4}]) = 0.
Since we know the characters of the band representations

ρk
G,S⊥ for every k we can now subduce it to the point Z,

therefore from its characters in Eqs. (46) and (47), we get (the
number in parenthesis indicates the dimension of the corep):

ρZ
S± = DZ−

5 (4). (E5)

APPENDIX F: REPRESENTATION THEORY FOR
HEISENBERG NÉEL ANTIFERROMAGNET

For the Heisenberg coupling, space group symmetry ele-
ments act only on real space [since we can always cancel
out their effect on the spins with a SO(3) rotation]. In the
antiferromagnetic case, we can then divide the space group
symmetries into two groups, those that do not swap the mag-
netic sublattice G↑↑ and those that do. The latter have to
be coupled with an additional spin rotation to preserve the
magnetic order C⊥

2 (s) G↑↓. In addition, we have to consider

pure spin rotations about axes parallel to moment directions
C‖

∞(s) (rotations ϑz). The full group is therefore GH−Neel =
HH−Neel + T C⊥

2 (s)HH−Neel with elements

HH−Neel = C‖
∞(s) × G↑↑(r) × C⊥

2 (s) G↑↓(r)

= C‖
∞(s))

[
(E + d1 + d2 + Cc

2 )(r)

+ C⊥
2 (s)

((
P + d3 + Cb

2 + Cc
2

)
(r)

)]
(F1)

excluding primitive translations. Here we have used a short-
hand notation for the symmetry elements where pure spin
transformations are labeled with s and pure real space with
r. All symmetry elements are defined in Appendix A.

The representations of the enhanced magnetic little groups
Gk

SS are straightforward to find for points k inside the Brillouin
zone.

GP = (u, v, w) —the least symmetric (general) position
has little group:

GGP
SS /T = C‖

∞(s) (E + T P ) ∼= C∞1′ (F2)

and therefore doubly degenerate modes as explained in
Sec. V.

� = (0, 0, 0)—the most symmetric point has little group:

G�
SS/T = [(G↑↑(r) + C‖

∞(s)) × (E + C⊥
2 (s)P )]

× (E + T C⊥
2 (s)), (F3)

where we have chosen C⊥
2 (s)P as a means of swapping the

magnetic sublattices. We can build the final coreps in four
steps. First, we consider only the real space group G↑↑(r) =
Fdd2 which has only 1D irreps �n. Second, multiply C∞(s)
into the group, which self-conjugates each irrep of G↑↑(r) to
�±

n (since transverse spin components transform as m = ±1
reps of C∞). Third, we add the representative C⊥

2 (s)P which
mixes spin and space transformations. In deducing the reps
of this mixed group, we need to check the conjugation of
elements with C⊥

2 (s)P:

(C⊥
2 (s)P ) S(r) (C⊥

2 (s)P )−1 = S(r) ∀ S(r) ∈ G↑↑(r),

(C⊥
2 (s)P ) ϑz(s) (C⊥

2 (s)P )−1 = ϑ−1
z (s) ∀ϑz ∈ C‖

∞(s). (F4)

Therefore the irreps will pair into two dimensional irreps
(�+

n , �−
n )(2). The last step is to consider antiunitary elements

T C⊥
2 (s). Coreps types are assessed by computing:∑

hk′

χ�
p

(
h2

k′
) = 4

∑
ϑ

χ�
p (2ϑ (s)) + 4

∑
2⊥

χ�
p (E )

= 4
∫ 2π

0
2 cos 2ϑ + 4 n χ�

p (E )

= 8 n = ∣∣H�
SS

∣∣ type (a), (F5)
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TABLE V. Character table giving the relevant irreps of the unitary part of GB
SS. The phase factor is ξ = exp(i B · (0 1

4
1
4 )) = exp(i π

2 (v − 1))
and the dot (. . . ) indicates here the infinite class of axial rotations.

GB
SS [E‖{E |0}] [ϑ±

z ‖{E |0}] . . . ∞ [2⊥‖{2010| − 1/4, 0, −1/4}] [E‖{m100|0, 1/4, 1/4}] Type Coreps

Ba
1u 2 2 cos ϑ . . . 0 2 ξ (c)

Bb
1u 2 2 cos ϑ . . . 0 −2 ξ (c)

where hk′ are all the antiunitary elements, n → ∞ is the
multiplicity of the class C⊥

2 (s) and χ�
p (E ) = 2 for 2D ir-

reps. Since the coreps are type (a) there is no further
degeneracy.

Since the least symmetric and most symmetric points in-
side the Brillouin zone have the same degeneracy, all the

intermediate cases must have the same degeneracy. Neverthe-
less the presence of nonsymmorphic symmetries can lead to
extra degeneracies corresponding to projective representations
on the zone boundaries.

B = (0, u, −1). Using spin-space group notation the [ZT ]
line has little group elements:

GB
SS/T = (

[ϑz‖{E |0}] + [
ϑz‖

{
m100|0, 1

4 , 1
4

}] + [
2⊥‖{m001| 1

4 , 1
4 , 0

}] + [
2⊥‖{2010| − 1

4 , 0,− 1
4

}])
+ (

[ϑz‖{−1|0}]′ + [
ϑz‖

{
2100|0,− 1

4 ,− 1
4

}]′ + [
2⊥‖{2001| − 1

4 ,− 1
4 , 0

}]′ + [
2⊥‖{m010| 1

4 , 0, 1
4

}]′)
, (F6)

where the elements of the kind [ϑz‖{E |0}] (or [2⊥‖{E |0}]))
represent all the rotations around the collinear axis (or π

rotation around the infinite perpendicular axes). Also the
antiunitary elements are denoted by a prime. Here the 2⊥
rotations intertwine spin and space transformations, making
the little group not a simple direct product and therefore mak-
ing it impossible to use the tabulated space group projective
representations.

To build the projective representations from scratch we
must determine first the factor system as explained in
Sec. IV B. The extra reciprocal lattice translation for each
spatial symmetry (noting that the spin part does not act on
reciprocal space) is

g2010
= gm001

= (0, 0, 2),

gm100
= (0, 0, 0). (F7)

The factor system will then have μ(hi, h j ) = ±1 and there-
fore gives nontrivial projective irreducible representations.

The unitary central extension of the little co-group ḠB∗
SS

with g = 2 is a group with 8 n elements (n is, again, the
multiplicity of the perpendicular axis). The group has the
isomorphism ḠB∗

SS
∼= D∞h + D∞h × ([E‖{m100|0}], 0) where

we can identify the elements of D∞h as

ϑz → ([ϑz‖{E |0}], 0),

2⊥ → ([2⊥‖{2010|0}], 0),

−1 → ([E‖{E |0}], 1).

The irreps of ḠB∗
SS can be obtained by conjugating those of

the subgroup D∞h with the symmetry ([E‖{m100|0}], 0). Of
these representations we are only interested in the ones with
�([E‖{E |0}], 1) = − I (this constraint ensures the correct

projective phase factors) and with �([ϑz‖{E |0}], 0) = 2 cos ϑ

(coming from the transverse spin component band representa-
tion). This points to Ba(b)

1u . The (a, b) label comes from the fact
that B1u of D∞h are self-conjugate under ([E‖{m100|0}], 0).
Considering only the elements (hi, 0) and adding the right
phase factors for translation we can build the character table
of the unitary part of GB

SS as in Table V.
Finally we consider the antiunitary elements and compose

the coreps. The test gives∑
hk′

χ�
p

(
h2

k′
) = 2

∑
ϑ

χB
p ([2ϑ±

z ‖{E |0}])

+
(

1 + exp

(
i B ·

(
1

2
0

1

2

)))

×
∑
2⊥

χB
p ([E‖{E |0}])

= 2
∫ 2π

0
2 cos 2ϑ = 0 type (c), (F8)

where hk′ are all the antiunitary elements for which
hk′k = −k + gi, so for B are the antiunitary elements
with real space transformation {m010, 2001, 2100,−1}.
We get therefore a fourfold degenerate co-representation
DB1u(4) = (Ba

1u, Bb
1u)(4) with χ ([ϑ±

z ‖{E |0}]) = 4 cos ϑ and
χ ([E‖{m100|0, 1/4, 1/4}]) = 0.

For band representation ρk
G,S⊥ we obtain:

ρB
S± = DB1u(4). (F9)

The same argument carries through for the high-symmetry
line A = (u, 0, −1), which again is 4-degenerate (line [ZA]).

H = (u, 0, −1)—Lastly the line [Y T ] line has little group:

GH
SS/T = (

[ϑz‖{E |0}] + [
ϑz‖

{
m100|0, 1

4 , 1
4

}] + [
ϑz‖

{
2001|− 1

4 ,− 1
4 , 0

}] + [
ϑz‖

{
m010| 1

4 , 0, 1
4

}])
+ (

[ϑz‖{−1|0}]′ + [
ϑz‖

{
2100|0,− 1

4 ,− 1
4

}]′ + [
ϑz‖

{
m001| 1

4 , 1
4 , 0

}]′ + [
ϑz‖

{
2010|− 1

4 , 0,− 1
4

}]′)
= (C‖

∞(s) × G↑↑(r)) × (E + PT ). (F10)
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Here the little group is a simple direct product of spin and
space. The final coreps are therefore easier to build, exploiting
tabulated projective irreps of group G↑↑(r) = Fdd2 which are
the 2D H1(2). Adding the direct product with C∞(s), the irreps
H1(2) will self-conjugate under these new elements, produc-
ing two new irreps H±

1 (2) (since again the transverse spin
component transform as m = ±1 irreps of C∞). Finally we
can consider the antiunitary PT symmetry, which produces
no extra degeneracy on the space part of the direct product (in-
deed the irreps of Fdd2 × (E + PT ) = Fddd ′ are still 2D),
while pairing up the irreps m = ±1 of the spin part, therefore
giving a fourfold degenerate line DH1(4) = (H+

1 , H−
1 )(4) as

well.

APPENDIX G: SYMMETRY ANALYSIS FOR [111] JK
FERROMAGNET

To see this, we exploit the fact that the enhanced magnetic
symmetry group is isomorphic to an ordinary magnetic space
group—which need not be the case as we shall see later—and
use the tabulated character tables at high-symmetry points and
lines to determine the enforced degeneracies. The enhanced
magnetic group isomorphism for [111] is Fd ′d ′d:

GM = E + P + d1 + Cb
2 + T

(
d2 + d3 + Ca

2 + Cc
2

)
(G1)

� = (0, 0, 0). The little co-group elements of the unitary
subgroup of GM at � has all the elements E , d1,Cb

2 and P . We
may construct the matrix representation of these elements for
the magnons and find the characters. These are computed to
be

χM
� (d1) = 0 χM

�

(
Cb

2

) = 0 χM
� (P ) = 0

⇒ �M = 2(�+
1 + �−

1 + �+
2 + �−

2 ) (G2)

where the factor of two comes about because the diagonaliza-
tion gives modes at k and −k which are identical here because
there is inversion symmetry.

We now include the effect of the antiunitary elements by
finding ∑

α′
χ

p
�

({R′
α|t ′

α}2) = 4 (G3)

for each irrep in Eq. (G2) which, according to the criterion
Eq. (38), gives only class (a) coreps. We therefore find four
distinct bands at �. In order of increasing energy, these are
�+

1 , �+
2 , �−

1 , �−
2 .

Y = (0, −1, 0)—Similarly to � the little co-group has
elements E , d1, Cb

2 , and P , the characters of the nonidentity
elements are all zero and the irreps are

Y M = 2(Y +
1 + Y −

1 + Y +
2 + Y −

2 ) (G4)

only now
∑

′ χ
p

Y ({R′
α|t ′

α}2) = 0 so the coreps are of type (c).
The coreps therefore bind unitary irreps into pairs and the
pattern of pairing is DY1 = (Y +

1 ,Y −
1 ) and DY2 = (Y +

2 ,Y −
2 ) so

there are two doubly degenerate bands at Y .
It follows from the results at � and Y , the ordering of the

� irreps in energy and compatibility relations that a crossing
of two bands between � and Y occurs in this model. There are
two such Weyl points to be consistent with fermion doubling
on opposite sides of � and, since the ordering of the � point

energies is crucial to the existence of the point, it is evidently
an accidental crossing. This calculation therefore exposes the
symmetry origin of the Weyl point between bands 2 and 3
shown in Fig. 5.

T = (0, −1, −1). Like Y and �, the little co-group at T
contains all the elements E , d1,Cb

2 ,P and the characters of the
nontrivial elements are zero giving T M = 2(T1 + T1) where T1

is a 2D irrep. Inclusion of antiunitary elements reveals that the
coreps belong to class (a) so there are two twofold degenerate
bands.

Z = (0, 0, −1). From elements E , d1,Cb
2 ,P at (0, 0,−1)

we obtain two copies of the 2D irrep Z1 and class (a) coreps so
there are two twofold degenerate magnon modes at this point.

L = ( 1
2 , 1

2 , 1
2 ). This point has only E and P elements,

zero character for the inversion symmetry and type (a) coreps
leading to four distinct modes.

B = (0, u, −1). This is the line [ZT ] with unitary sym-
metry elements E and Cb

2 . The character for Cb
2 is zero and

therefore BM = 2(B1 + B1 + B2 + B2). The coreps are of type
(a) leading to four 1D modes.

H = (0, −1, u). We focus on the line [Y T ]. The unitary
symmetry elements along the line are E and d1 and the char-
acter for d1 is zero. Then HM = 2(H1 + H1 + H2 + H2) and
the coreps are of type (c) meaning that there is a twofold
degeneracy of the magnon modes where each mode has bound
(H1, H2) irreps.

A = (u, 0, −1). We focus now on the line [ZA] (and
equivalently on [YA1]). As with the [Y T ] line, the unitary
elements along these lines are E and d1, there are four 1D
irreps that are bound into two copies of (A1, A2) so the lines
both have two twofold degenerate bands.

� = (u, 0, 0). This is the line [�X ] (and equivalently
[X1T ]), which is different to [ZA] and [Y T ] although the
unitary element are identical leading to four 1D irreps. This
is because the antiunitary elements lead to corep criterion
χ (E ) + exp(ik · (0, 1/2, 1/2)) = 2 meaning that the coreps
are type (a) and the modes are therefore singly degenerate.
Similar argument hold for line � = [�Y ] = (0, u, 0) and
� = [�Z] = (0, 0, u).

We have accounted for all the degeneracies in the magnon
spectrum from the enhanced symmetry group. If we had
instead taken the symmetry group of the underlying mag-
netic structure neglecting the pure spin space transformations
available to the Kitaev-Heisenberg coupled spins then the rep-
resentation theory would have predicted a degeneracy along
[ZA] and nowhere else.

APPENDIX H: INFORMAL ARGUMENTS FOR BAND
TOUCHING

The analysis given in the main text based on representation
theory supplied the underlying symmetry constraints on the
observed robust degeneracies in the magnon spectra. It is
occasionally possible and certainly more illuminating to give a
direct correspondence between a magnetic symmetry and any
degeneracy. For example, we have encountered time-reversal
glide symmetries, T di, in various cases. The action of the
glide is given in Eqs. (A8)–(A10). For concreteness, we con-
sider, T d2 acting on a magnon state at a given momentum
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k = k1b1 + k2b2 + k3b3:

T d2 : |k1, k2, k3, l 〉

=

⎧⎪⎪⎨
⎪⎪⎩

|k2 − k3, k2, k2 − k1, 3 〉∗, l = 1
|k2 − k3, k2, k2 − k1, 4 〉∗, l = 2
e2π ik2 |k2 − k3, k2, k2 − k1, 1 〉∗, l = 3
e2π ik2 |k2 − k3, k2, k2 − k1, 2 〉∗, l = 4

. (H1)

From this, (T d2)2 = exp(±2π ik2) = −1 when k2 = ±1/2.
This has the implication that at invariant momenta satisfying

k2 = ±1/2 and k1 − k3 = ±1/2 − along a line at the Brillouin
zone boundary—Kramers theorem enforces a degeneracy. For
the Kitaev-Heisenberg ferromagnet in [111] field, the mag-
netic symmetry includes T d2 and T d3 and the presence of
both relies on the existence of spin and space transformations.
The above straightforward argument leads to the presence of
crossing zone boundary nodal lines. Similar arguments were
employed to understand magnon nodal lines in the canted
zig-zag order in a magnetic field [85].
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