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In this study, we investigate the magnetic susceptibility, entropy, and isothermal magnetization curve of the
spin-1/2 Heisenberg model on an anisotropic triangular lattice using the orthogonalized finite-temperature Lanc-
zos method. In addition, we investigate the adiabatic magnetization curve and magnetocaloric effect. We estimate
these physical quantities with sufficient accuracy in the thermodynamic limit, except at low temperatures. We
observe a 1/3 magnetization plateau in the isothermal magnetization process, whereas the plateau is observed to
have a slope in the adiabatic process. We show that the magnetocaloric effect can be used to detect the signature
of phase transitions. We believe that these results will be useful for understanding the magnetism of anisotropic
triangular lattice compounds through a comparison with experimental results in the future.
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I. INTRODUCTION

Megagauss magnetic-field generators have been developed
for over half a century [1–6]. In recent years, the magnetiza-
tion process of magnetic materials has been actively studied
using megagauss magnetic-field generators, and various quan-
tum phase transitions have been successfully observed [7–15].
Most experiments using magnetic fields exceeding 100 T have
been performed with pulse widths of a few to several tens of
microseconds [1,2]. Owing to the very narrow pulse width,
the magnetization process is expected to be an adiabatic (isen-
tropic) process rather than an isothermal process. In addition,
several studies have observed the magnetocaloric effect in
magnetic compounds [9,12,16–18]. Therefore a theoretical
study of the adiabatic magnetization process is important for
understanding these experimental results.

The spin-1/2 Heisenberg model on isotropic and
anisotropic triangular lattices is a traditional model used
in studies on magnetism. This model has been extensively
investigated for several decades [19]. Several model com-
pounds have been studied, and their magnetization processes
at low temperatures have been observed to exhibit a 1/3
magnetization plateau and various phase transitions because
of the frustration and quantum effects [20–28]. In addition,
in theoretical studies, magnetic-field-induced quantum phase
transitions at zero temperature have been found in the Heisen-
berg model on an anisotropic triangular lattice [29–31].

Very recently, A3ReO5Cl2 (A = Ca, Ba, Sr) with the
spin-1/2 anisotropic triangular lattice have been intensively
studied [32–34]. Therefore theoretical calculations of the
isothermal and adiabatic magnetization curves and magne-
tocaloric effect in the anisotropic triangular lattice Heisenberg
model are necessary for future experimental studies. How-
ever, the calculations of the adiabatic magnetization process
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for frustrated spin-1/2 systems are limited to approximately
20 sites using full exact diagonalization (FullED) [35]. Thus
numerical calculations with a larger size are necessary to
estimate the physical quantities of the anisotropic triangular
lattice compounds.

In this study, we investigate the magnetic properties of the
spin-1/2 anisotropic triangular lattice with exchange interac-
tions J and J ′, as shown in Fig. 1 using the orthogonalized
finite-temperature Lanczos method (OFTLM) [36], which is
an improved version of the standard FTLM [37,38]. The
OFTLM can be used to evaluate the adiabatic process with
high accuracy because the value of the entropy is almost
exact at low temperatures, whereas the entropy calculated by
the standard FTLM has a somewhat large standard error at
low temperatures without sufficient sampling over random
vector [36]. We first investigate the magnetic susceptibility
and magnetic entropy of the anisotropic triangular lattice up
to 36 sites under a zero magnetic field. Subsequently, we
calculate the isothermal magnetization curves at finite temper-
atures and investigate the presence of the 1/3 magnetization
plateau. Finally, we calculate the adiabatic magnetization
curves and the magnetocaloric effect. Consequently, we es-
timate the magnetic susceptibility, entropy, and isothermal
magnetization curve of the anisotropic triangular lattice of
the thermodynamic limit above certain temperatures. The 1/3
magnetization plateau at 1 � J ′/J � 0.5 is observed in the
isothermal magnetization process. In contrast, in the adiabatic
process, the anomaly corresponding to the 1/3 magnetization
plateau is not flat but inclined. Regardless of the magnitude
of the magnetic field, the magnetization does not reach satu-
ration under the adiabatic process with finite entropy, but the
temperature increases rapidly. Finally, we demonstrate that
the magnetic phase boundaries can be determined from the
magnetocaloric effect results. The results obtained using the
OFTLM will be useful for understanding the magnetism of
the anisotropic triangular lattice compounds via a comparison
with experimental results in the future.
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FIG. 1. Lattice structure of the anisotropic triangular lattice with
exchange interactions J and J ′. The solid and thin lines represent
J and J ′, respectively. We set J = 1. The black circles represent
the sites with a spin. The pink, red, and blue dashed quadrangles
represent the clusters of N = 27, N = 30, and N = 36, respectively,
used in the OFTLM with periodic boundary conditions where N is
the number of sites.

The remainder of this paper is organized as follows. In
Sec. II, we describe the anisotropic triangular lattice model.
In Sec. III, we describe the FTLM and OFTLM. In Sec. IV,
we describe the results of the magnetic susceptibility, entropy,
isothermal and adiabatic magnetization curves, and magne-
tocaloric effect of the anisotropic triangular lattice and discuss
the magnetic properties. Finally, a summary is provided in
Sec V.

II. MODEL

The Hamiltonian for the spin- 1
2 anisotropic triangular lat-

tice in a magnetic field is defined as

H =
∑
〈i, j〉

Ji, jSi · S j − h
∑

i

Sz
i , (1)

where Si is the spin- 1
2 operator at the i-th site, Sz

i is the z
component of Si, 〈i, j〉 runs over the nearest-neighbor spin
pairs, Ji, j corresponds to J and J ′ as shown in Fig. 1, and
h is the magnitude of the magnetic field applied in the z
direction. Here we set J = 1 as the energy unit. Notably,
in this model, the operator

∑
i Sz

i is a conserved quantity
because [H,

∑
i Sz

i ] = 0. Here the eigenvalue of the operator∑
i Sz

i is defined as Sz
tot. At J ′ = 0, this model becomes the

one-dimensional Heisenberg chain, whereas at J ′ = 1, the
model becomes the isotropic triangular lattice. In the present
study, we investigate the model at J ′ = 0.25, 0.5, 0.75, and 1
because several anisotropic triangular lattice compounds have
J � J ′ [25,33].

III. METHOD

The FTLM has been employed to study the finite-
temperature properties of various lattice models [39–51]. The
OFTLM is a more accurate method than the standard FTLM,
particularly at low temperatures [36]. In this section, we
describe the OFTLM and the calculation of physical quanti-
ties using this method. The partition function Z (T, h) of the
canonical ensemble at the temperature T in the magnetic-field
h is expressed as follows:

Z (T, h) =
Msat∑

m=−Msat

N (m)
st −1∑
i=0

e−βEi,m (h), (2)

where N (m)
st is the dimension of the Hilbert subspace with

Sz
tot = m in H, β is the inverse temperature 1/T (kB = 1),

and Ei,m(h) is the eigenenergy of the Hilbert subspace with
Sz

tot = m in H as a function of h. As
∑

i Sz
i is a conserved

quantity, Ei,m(h) is expressed as

Ei,m(h) = Ei,m − mh, (3)

where Ei,m is the eigenenergy of the Hilbert subspace with
Sz

tot = m at h = 0, and the second term corresponds to the
Zeeman term. We define the order of {Ei,m} as E0,m � E1,m �
E2,m � · · · � EN (m)

st ,m.
Using the standard FTLM, the partition function Z (T, h),

as shown in Eq. (2), is approximated as follows:

Z (T, h)FTL =
Msat∑

m=−Msat

N (m)
st

R

R∑
r=1

ML−1∑
j=0

e−βε
(r)
j,m (h)|〈Vr,m|ψ r

j,m〉|2,

(4)

where R is the number of random samplings of the FTLM, ML

is the dimension of the Krylov subspace, |Vr,m〉 is a normalized
random initial vector with Sz

tot = m, and |ψ r
j,m〉 [ε (r)

j,m(h)] are
the eigenvectors (eigenvalues) in the ML-th Krylov subspace
with Sz

tot = m. Similar to Eq. (3), ε
(r)
j,m(h) is expressed as

ε
(r)
j,m(h) = ε

(r)
j,m − mh.

In the OFTLM, we first calculate several low-lying ex-
act eigenvectors |�i,m〉 with NV levels (E0,m � E1,m � · · · �
ENV −1,m). We then calculate the following modulated random
vector:

|V ′
r,m〉 =

[
I −

NV −1∑
i=0

|�i,m〉〈�i,m|
]
|Vr,m〉, (5)

with normalization

|V ′
r,m〉 ⇒ |V ′

r,m〉√〈V ′
r,m|V ′

r,m〉 . (6)

Note that |V ′
r,m〉 is orthogonal to the states |�i,m〉 for i ∈

{0, 1, · · · , NV − 1}. The partition function of the OFTLM is
obtained using |V ′

r,m〉 as an initial vector as follows:

Z (T, h)OFTL =
Msat∑

m=−Msat

[
N (m)

st − NV

R

R∑
r=1

ML−1∑
j=0

× e−βε
(r)
j,m (h)|〈V ′

r,m|ψ r
j,m〉|2 +

NV −1∑
i=0

e−βEi,m (h)

]
.

(7)

064428-2



ISOTHERMAL AND ADIABATIC MAGNETIZATION … PHYSICAL REVIEW B 105, 064428 (2022)

Similarly, in the OFTLM, the energy E (T, h)OFTL, magneti-
zation M(T, h)OFTL, magnetic susceptibility χ (T )OFTL, and
magnetic entropy Sm(T, h)OFTL are obtained as follows:

E (T, h)OFTL = 1

Z (T, h)OFTL

Msat∑
m=−Msat

[
N (m)

st − NV

R

×
R∑

r=1

ML−1∑
j=0

ε
(r)
j,m(h)e−βε

(r)
j,m (h)|〈V ′

r,m|ψ r
j,m〉|2

+
NV −1∑
i=0

Ei,m(h)e−βEi,m (h)

]
, (8)

M(T, h)OFTL = 1

Z (T, h)OFTL

Msat∑
m=−Msat

[
N (m)

st − NV

R

×
R∑

r=1

ML−1∑
j=0

me−βε
(r)
j,m (h)|〈V ′

r,m|ψ r
j,m〉|2

+
NV −1∑
i=0

me−βEi,m (h)

]
, (9)

χ (T )OFTL = 1

T Z (T, h = 0)OFTL

Msat∑
m=−Msat

[
N (m)

st − NV

R

×
R∑

r=1

ML−1∑
j=0

m2e−βε
(r)
j,m |〈V ′

r,m|ψ r
j,m〉|2

+
NV −1∑
i=0

m2e−βEi,m

]
, (10)

Sm(T, h)OFTL = E (T, h)OFTL

T
− ln Z (T, h)OFTL. (11)

The last terms in Eqs. (7), (8), (9), and (10) are exact values,
which are more accurate than those obtained using the stan-
dard FTLM, particularly at low temperatures. Therefore using
the OFTLM, we could evaluate the finite-size effects more ac-
curately. For subspaces with large Sz

tot, all the eigenvalues can
be calculated using FullED because N (m)

st is small. Therefore
we use the OFTLM for small m and FullED for large m. The
conditions of the calculation are listed in Table I for N = 27,
Table II for N = 30, and Table III for N = 36. We note that
R, ML, and NV can be dependent on m in the OFTLM, but
we maintain them constant in the present study. Hereafter the
method combining the OFTLM and FullED is called OFTLM
for simplicity.

A. Benchmark of the OFTLM

We perform benchmark calculations for the standard
FTLM and OFTLM. We calculate the magnetic susceptibility
χ (T ) per site for the isotropic triangular lattice (J ′ = 1) with
N = 30. The calculation conditions of the standard FTLM
are R = 30 and ML = 150. The calculated results are shown
in Fig. 2. The standard errors of the FTLMs using the jack-
knife technique [52] are represented by the shaded regions.
The result of a previous study on the high-temperature series
expansion combined with the [7,7] Padé approximant [53] is

TABLE I. Conditions of the calculation for the N = 27 cluster.

m N (m)
st Method R ML NV

27/2 1 Exact — — —
25/2 27 FullED — — —
23/2 351 FullED — — —
21/2 2925 FullED — — —
19/2 17550 FullED — — –
17/2 80730 OFTLM 30 100 6
15/2 296010 OFTLM 30 100 6
13/2 888030 OFTLM 30 100 6
11/2 2220075 OFTLM 30 100 6
9/2 4686825 OFTLM 30 100 6
7/2 8436285 OFTLM 30 100 6
5/2 13037895 OFTLM 30 100 6
3/2 17383860 OFTLM 30 100 6
1/2 20058300 OFTLM 30 100 6

also included for comparison. In OFTLM, the error is almost
maintained within the linewidth, whereas standard FTLM has
a large error at T ∼ 0.2. Clearly the accuracy of the OFTLM is
higher than that of the standard FTLM. In addition, we com-
pare the results of FTLMs with that of the high-temperature
series expansion. As shown in Fig. 2, they are found to be in
good agreement for T > 0.4. These results suggest that the
FTLMs can be used to estimate χ (T ) in the thermodynamic
limit with high accuracy, at least for T > 0.4.

IV. RESULTS AND DISCUSSION

A. Magnetic susceptibility and entropy

Figure 3 shows the results of the magnetic susceptibility
χ (T ) [Figs. 3(a), 3(b), 3(c), 3(d)] and magnetic entropy Sm(T )
[Figs. 3(d), 3(e), 3(f), 3(h)] at h = 0 for J ′ = 0.25, 0.5, 0.75,
and 1 at N = 27, 30, and 36. The shaded regions shown in
Fig. 3 indicate the standard errors of the OFTLM using the
jackknife technique. In χ (T ), the errors are almost maintained

TABLE II. Conditions of the calculation for the N = 30 cluster.

m N (m)
st Method R ML NV

15 1 Exact — — —
14 30 FullED — — —
13 435 FullED — — —
12 4060 FullED — — —
11 27405 FullED — — —
10 142506 OFTLM 30 100 6
9 593775 OFTLM 30 100 6
8 2035800 OFTLM 30 100 6
7 5852925 OFTLM 30 100 6
6 14307150 OFTLM 30 100 6
5 30045015 OFTLM 30 100 6
4 54627300 OFTLM 30 100 6
3 86493225 OFTLM 30 100 6
2 119759850 OFTLM 30 100 6
1 145422675 OFTLM 30 100 6
0 155117520 OFTLM 30 100 6
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TABLE III. Conditions of the calculation for the N = 36 cluster.

m N (m)
st Method R ML NV

18 1 Exact — — —
17 36 FullED — — —
16 630 FullED — — —
15 7140 FullED — — —
14 58905 FullED — — —
13 376992 OFTLM 10 100 4
12 1947792 OFTLM 10 100 4
11 8347680 OFTLM 10 100 4
10 30260340 OFTLM 10 100 4
9 94143280 OFTLM 10 100 4
8 254186856 OFTLM 10 100 4
7 600805296 OFTLM 10 100 4
6 1251677700 OFTLM 10 100 4
5 2310789600 OFTLM 10 100 4
4 3796297200 OFTLM 10 100 4
3 5567902560 OFTLM 10 100 4
2 7307872110 OFTLM 10 100 4
1 8597496600 OFTLM 10 100 4
0 9075135300 OFTLM 10 100 4

within the linewidth, whereas in Sm(T ), they are sufficiently
small compared with the linewidth. Therefore these results
make the finite-size effects apparent. At N = 27, in any J ′,
χ (T ) diverges at T → 0, and Sm(T ) remains a finite value.
This is because the total magnetization Sz

tot of the ground
states is not zero but ±1/2. χ (T ) at J ′ = 0.25, as shown in
Fig. 3(a), has a maximum value at T ∼ 0.6. As J ′ increases,
the position of the maximum value decreases to T ∼ 0.4, as
shown in Fig. 3(d). This displacement of the peak of χ (T )
is consistent with the results of the previous study on the

FIG. 2. Temperature dependence of the magnetic susceptibility
χ (T ) per site for the isotropic triangular lattice (J ′ = 1) with N = 30
obtained using the standard FTLM (black solid line) and OFTLM
(red dashed line). The shaded regions indicate the standard errors
of the FTLMs using the jackknife technique. The result of the
high-temperature series expansion combined with the [7,7] Padé
approximant is also included for comparison (blue dashed line).

FIG. 3. Temperature dependence of the magnetic susceptibil-
ity χ (T ) (a–d) and magnetic entropy Sm(T ) (e–h) per site for
the anisotropic triangular lattice with N = 27, 30, and 36 at J ′ =
0.25, 0.5, 0.75, and 1 obtained using the OFTLM. The shaded re-
gions indicate the standard errors of the method using the jackknife
technique.

high-temperature series expansion [54]. As shown in Fig. 3,
for T > 0.2, χ (T ) and Sm(T ) are almost independent of size
N . Therefore the positions of the peak of χ (T ) are expected
to hardly change, even in the thermodynamic limit. Thus the
values of the exchange interactions (J and J ′) of the model
compounds can be estimated by comparing χ (T ) obtained by
using the OFTLM and the experimental results for T > 0.2. In
Sm(T ), for Sm(T )/N > 0.1, almost no size dependence is ob-
served. This suggests that the adiabatic magnetization process
discussed in Sec. IV C also has almost no size dependence for
Sm(T )/N > 0.1.

B. Isothermal magnetization process

In this subsection, we report the results of the isother-
mal magnetization process of the anisotropic triangular lattice
using the OFTLM. Figure 4 shows the magnetization and
entropy curves for J ′ = 0.25, 0.5, 0.75, and 1 at N = 27,
30, and 36. As the numerical errors are small compared
with the linewidth in Fig. 4, they are not shown. Here we
first discuss the finite-size effect of the magnetization curve.

064428-4



ISOTHERMAL AND ADIABATIC MAGNETIZATION … PHYSICAL REVIEW B 105, 064428 (2022)

0.0

0.1

0.2

0.3

0.4

S
m
/N

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

M
/M

sa
t

27site

30site

36site

J'=0.25
T=0.05

(a)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

S
m
/ N

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

M
/M

sa
t J'=0.25

T=0.1

(b)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

S
m
/N

J'=0.25
T=0.2

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

M
/M

sa
t

(c)

0.0

0.1

0.2

0.3

0.4

S
m
/N

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

M
/M

sa
t J'=0.5

T=0.05

(d)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

S
m
/N

J'=0.5
T=0.1

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

M
/M

sa
t

(e)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

S
m
/N

J'=0.5
T=0.2

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

M
/M

sa
t

(f)

0.0

0.1

0.2

0.3

0.4

S
m
/ N

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

M
/M

sa
t J'=0.75

T=0.05

(g)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

S
m
/N

J'=0.75
T=0.1

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

M
/M

sa
t

(h)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

S
m
/N

J'=0.75
T=0.2

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

M
/M

sa
t

(i)

0.0

0.1

0.2

0.3

0.4

27site

30site

36site

S
m
/N

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

h

M
/M

sa
t J'=1

T=0.05

(j)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

S
m
/N

J'=1
T=0.1

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

M
/M

sa
t

h

(k)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

S
m
/N

J'=1
T=0.2

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

M
/M

sa
t

h

(l)

FIG. 4. Magnetization and entropy curves of the anisotropic triangular lattice with N = 27, 30, and 36 under the isothermal process at
J ′ = 0.25 (a–c), J ′ = 0.5 (d–f), J ′ = 0.75 (g–i), and J ′ = 1 (j–l) for T = 0.05, 0.1, and 0.2 obtained by using the OFTLM.

At T = 0.2, almost no size effect is observed, as shown
in Figs. 4(c), 4(f), 4(i), and 4(l). At T = 0.1, there is a
slight size dependence comparable to the linewidth at low
fields, as shown in Figs. 4(b), 4(e), and 4(h). At T = 0.05,
a size dependence exists at low magnetic fields, as shown
in Figs. 4(a), 4(d), 4(g), and 4(j). These results suggest that
the magnetization curve in the thermodynamic limit can be
estimated with good accuracy at T � 0.1 using the OFTLM
for N = 36. From Figs. 4(e), 4(h), and 4(k), we expect that
the 1/3 magnetization plateau exists even in the thermody-
namic limit at T � 0.1 for J ′ � 0.5. In addition, in a previous
study, at T = 0, the 1/3 plateau was expected to be ob-
served even at J ′ ∼ 0.3 [31]. Therefore we propose that the
model compounds of the anisotropic triangular lattice with
a very narrow 1/3 plateau or without a 1/3 plateau have
J ′ < 0.5. Furthermore, by simultaneously comparing the cal-
culated magnetization curve and susceptibility with those of
the model compounds, the exchange interactions (J and J ′)
can be estimated more accurately.

The entropy has minima at the center of the 1/3 plateau
as shown in Figs. 4(d), 4(e), 4(g), 4(h), 4(j), and 4(k). This is
due to the fact that the 1/3 plateau state which corresponds to
the up-up-down structure with a threefold degeneracy in the
thermodynamic limit has an energy gap. Furthermore, at high

magnetic fields, the entropy tends to zero, regardless of J ′ as
shown in Fig. 4. This is because there is only one state that
has all spins aligned in the magnetic-field direction.

C. Adiabatic magnetization process

In experiments using pulsed magnetic fields with pulse
widths of a few to several tens of microseconds, which have
been conducted extensively in recent years [1,2], the magne-
tization process is not an isothermal process but an adiabatic
process because of the very narrow pulse width. In this sub-
section, we investigate the adiabatic magnetization process of
the anisotropic triangular lattice.

Figure 5 shows the adiabatic magnetization curves at N =
27, 30, and 36 using the OFTLM. The temperature curves
under the adiabatic magnetization process, which correspond
to the magnetocaloric effect, are also shown. The magnetiza-
tion curves and temperature curves were calculated at Sm/N =
0.075, 0.1, and 0.2. Here we first discuss the finite-size ef-
fect. At Sm/N = 0.2, almost no finite-size effect is observed,
as shown in Figs. 5(c), 5(f), 5(i), and 5(l). At Sm/N = 0.1,
in the magnetization curves, almost no finite-size effect is
observed, as shown in Figs. 5(b), 5(e), 5(h), and 5(k); how-
ever, in the temperature curves, particularly at J ′ = 0.5, a
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FIG. 5. Magnetization and temperature curves of the anisotropic triangular lattice with N = 27, 30, and 36 under the adiabatic process at
J ′ = 0.25 (a–c), J ′ = 0.5 (d–f), J ′ = 0.75 (g–i), and J ′ = 1 (j–l) for Sm(T )/N = 0.075, 0.1, and 0.2 obtained by using the OFTLM.

size dependence is observed. At Sm/N = 0.075, particularly
at J ′ � 0.5, the size dependence of the magnetization curves
and temperature curves is observed.

In the isothermal process, the magnetization curves have
a 1/3 plateau for J ′ � 0.5, whereas in the adiabatic process,
the anomaly corresponding to the 1/3 plateau is not flat but
inclined, as shown in Figs. 5(d), 5(e), 5(g), 5(h), 5(j), and 5(k).
The temperature curves have maxima around the center of the
region showing this anomaly because the entropy has minima
at the center of the plateau in the isothermal process as dis-
cussed in Sec IV B. As the temperature is not constant in the
adiabatic process, the magnetization curve is not completely
flat around M/Msat = 1/3. Furthermore, at high magnetic
fields, the magnetization M does not reach the saturation mag-
netization Msat regardless of J ′. The entropy at M = Msat is
zero as discussed in Sec IV B. In the adiabatic process, as the
entropy is constant (nonzero), M never reaches Msat, but the
temperature increases rapidly, as shown in Fig. 5. Notably, at
sufficiently small entropy, the adiabatic magnetization curves
show the flat 1/3 plateau because the temperature hardly
changes during this process. In the experiment with a high
magnetic field and a pulse width of a few microseconds,

regardless of the magnitude of the magnetic field, we expect
that M does not reach Msat unless the temperature is suffi-
ciently low.

D. Temperature and magnetic-field dependence
of the magnetic entropy

Figure 6 shows the magnetic entropy Sm as a function
of temperature T and magnetic-field h for the anisotropic
triangular lattice with N = 36 calculated using the OFTLM.
In the low-temperature region T � 0.05, vertical streaks are
visible owing to the finite-size effect.

For J ′ � 0.5, the temperature curves at Sm/N = 1
8 ln 2(∼

0.0866) have maxima, as indicated by the white arrows in
Figs. 6(b), 6(c), and 6(d). These maxima are derived from
the 1/3 plateau as described in Sec. IV C. Therefore such
temperature maxima, if experimentally obtained in the mag-
netocaloric effect measurements, would suggest the presence
of a magnetization plateau.

As shown by the red arrow in Fig. 6(a), there is a sharp drop
and rise in the temperature under the isentropic process for
Sm/N < 0.1 at J ′ = 0.25 around h = 2.5. This phenomenon
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FIG. 6. Magnetic entropy Sm per site as a function of temperature
T and magnetic-field h for the anisotropic triangular lattice with
N = 36 using the OFTLM. (a) J ′ = 0.25. (b) J ′ = 0.5. (c) J ′ = 0.75.
(d) J ′ = 1.

of a sudden temperature change around the critical magnetic
field corresponds to the divergence of the magnetic Grüneisen
ratio �h = 1

T
∂T
∂h |Sm at a quantum critical point [35,42,55,56].

Similarly, at J ′ = 0.75, a rapid temperature change is ob-
served around h = 1.0, as indicated by the red arrow in
Fig. 6(c). This anomaly would indicate the signature of a
quantum phase transition [31].

We believe that these results can be compared with those
obtained experimentally in the future.

V. SUMMARY

Inspired by the recent development of pulsed magnetic-
field generators [1,2] and the experimental results of
anisotropic triangular lattice compounds [32–34], we in-
vestigated the magnetic susceptibility, magnetic entropy,
isothermal and adiabatic magnetization curves, and the mag-
netocaloric effect of the anisotropic triangular lattice using the
OFTLM.

We obtained almost size-independent results with T � 0.2
for the magnetic susceptibility and T � 0.1 for the isother-
mal magnetization curve. The 1/3 magnetization plateau was
observed at J ′ � 0.5 in the isothermal magnetization process.
By comparing our results for the magnetic susceptibility and
isothermal magnetization curve with the experimental results,
we could quantitatively determine the exchange interactions
(J and J ′) of the anisotropic triangular lattice compounds.

In the adiabatic magnetization process, the anomaly corre-
sponding to the 1/3 plateau was not flat but inclined. This
is because the entropy of the 1/3 plateau state was lower.
We also obtained the magnetic entropy as a function of the
temperature and magnetic field for the anisotropic triangular
lattice with N = 36. In other words, we obtained the temper-
ature of the adiabatic (isentropic) process as a function of the
magnetic field, which corresponds to the magnetocaloric ef-
fect. We observed an anomaly in the temperature at J ′ = 0.75
around h = 1.0, which indicates the signature of a quantum
phase transition. We believe that our results will be useful for
understanding the experimental results of the magnetocaloric
effect in the future.

We would like to emphasize that the OFTLM is useful not
only for isothermal processes but also for adiabatic processes.
We hope that our study will motivate further theoretical and
experimental investigations of the anisotropic triangular lat-
tice in the future.
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