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We present a first-principles approach for the computation of the magnetic Gibbs free energy of materials using
magnetically constrained supercell calculations. Our approach is based on an adiabatic approximation of slowly
varying local moment orientations, the so-called finite-temperature disordered local moment picture. It describes
magnetic phase transitions and how electronic and/or magnetostructural mechanisms generate a discontinuous
(first-order) character. We demonstrate that the statistical mechanics of the local moment orientations can be
described by an affordable number of supercell calculations containing noncollinear magnetic configurations.
The applicability of our approach is illustrated by firstly studying the ferromagnetic state in bcc Fe. We
then investigate the temperature-dependent properties of a triangular antiferromagnetic state stabilizing in two
antiperovskite systems Mn3AN (A = Ga, Ni). Our calculations provide the negative thermal expansion of these
materials as well as the ab initio origin of the discontinuous character of the phase transitions, electronic and/or
magnetostructural, in good agreement with experiment.
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I. INTRODUCTION

Solid-state magnetic materials form the basis of many cur-
rent and upcoming technologies, and are thus subject to a field
of research that is in continuous development. Some examples
are caloric refrigeration [1–3] and gas liquefaction [4], per-
manent magnets in engines and other electronic equipment,
and spintronic technology including magnetic field sensors,
neuromorphic computing, and different devices for storage
and processing of information [5–10]. The central component
for their functionality is the formation and exploitation of
complex magnetic structures, such as topologically protected
skyrmions [11,12], antiferromagnetic [13] and helimagnetic
[14,15] states, and high coercivity in ferromagnets [16,17]
and ferrimagnets [18,19]. The fundamental understanding and
prediction of this broad range of magnetic states is, therefore,
crucial to advance and create new functional mechanisms.

The properties of these magnetic states can strongly de-
pend on temperature. In fact, sometimes their stabilization
is linked to the presence of thermal fluctuations [11,20] and
their functionality usually involves magnetic phase transitions
driven by temperature changes. The development of a first-
principles tool describing temperature-dependent magnetic
states and phase transitions among them is a challenging task
but also a necessity to reliably predict and explain magnetic
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phenomena in materials. Major work has been done for the de-
scription of thermal fluctuations of local magnetic moments,
including both their transverse [21–23] and longitudinal
degrees of freedom [24,25]. Many of these theoretical devel-
opments also account for a finite-temperature magnetoelastic
or magnetophonon coupling [26–29]. However, most of them
focus on the paramagnetic state, i.e., a high-temperature limit
in which the local magnetic moment orientations are fully dis-
ordered away from a description of intermediate temperatures.

In this work we present a computational approach to cal-
culate the ab initio Gibbs free energy of a magnetic material,

Gtot = Umag − T Smag −
∑

n

H · 〈μnên〉 + σαβεαβ, (1)

whose minimization provides the dependence on temperature
of the most stable magnetic states for given values of an ex-
ternal magnetic field H and an applied mechanical stress σαβ ,
the latter causing a material deformation described by a strain
tensor εαβ . {ên} are unit vectors prescribing the orientations
of the local magnetic moments, located at lattice sites {n}
and with magnitudes {μn}. The central tenet of our approach
is to assume that {ên} vary very slowly in comparison with
{μn} and with the underlying interacting electron system. This
means that an ab initio magnetic energy can be specified for
different configurations {ên} and that Gtot can be obtained by
carrying out ensemble averages over {ên}, denoted by 〈. . .〉.
For example, the internal magnetic energy is

Umag = 〈Eint({ên})〉 =
∫ ∏

n

[d ên]P({ên})Eint({ên}), (2)

where P({ên}) ∝ exp[−βEint] is a Boltzmann probability dis-
tribution for the local moment orientations. An associated
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FIG. 1. Magnetically constrained supercells for different local
moment configurations {ên}, represented by the arrows, for the case
study of ferromagnetic bcc Fe. Constraining magnetic fields are
not shown. Different temperatures correspond to different orienta-
tional probability distributions P({ên}). The method is illustrated here
for P({ên}) fully prescribed by single-site internal magnetic fields
{βhn = βh}, or equivalently by single-site local order parameters
{mn = m}, where βh is set along ẑ (see Sec. II B 1). Note that
these quantities are site independent for a ferromagnetic state. The
smaller the value of m, the larger the magnetic thermal fluctuations.
Results are shown for {m = 0, 0.50, 0.90, 0.99}, which correspond
to {βh = 0, 1.80, 9.99, 99.94} via Eq. (20). Red and blue arrows
are used for orientations with a polar angle being θn < π/2 and
θn � π/2, respectively.

magnetic entropy forms the second term in the right-hand side
of Eq. (1) and is given by Smag = −kB〈ln[P({ên})]〉, kB being
the Boltzmann constant.

In our work the thermodynamic averages to compute Gtot

are performed as superpositions of supercell ab initio cal-
culations that are magnetically constrained to different sets
of {ên}. Figure 1 shows magnetically constrained supercells
for a thermodynamically excited ferromagnetic state of bcc
Fe using this method, where higher and lower temperatures
correspond to a set of largely disordered and ordered local mo-
ment orientations {ên}, respectively. Most importantly, Eq. (1)
is a general expression that we can compute for an arbitrary
probability distribution. In our approach, therefore, different
theories for P({ên}) can be constructed by restricting the
thermal configurations to a meaningful magnetic phase space
described by a trial magnetic Hamiltonian that can include
the effect of nonlocal correlations, which will be explained
in Sec. II [see Eq. (9)]. Another important outcome of this
work is the demonstration that the statistics of noncollinear
magnetic configurations can be described even with a low

number of constrained calculations for supercells of relatively
small size, thus being computationally affordable.

A key aspect of our approach is to provide the depen-
dence of Gtot on an expansion in powers of magnetic order
parameters akin to a Ginzburg-Landau theory. This describes
a hierarchy of local moment correlation functions [30], ac-
counting for pairwise and multisite magnetic interactions,
and their magnetostructural coupling (see Sec. II C). Higher
than pairwise free energy terms can generate discontinu-
ous and ordered-to-ordered magnetic phase transitions, fully
quantified and provided by our approach. As a demonstrator
of this, we study the noncollinear, geometrically frustrated,
magnetism of Mn-based antiperovskite materials [31], which
are driving strong interest owing to a discontinuous phase
transition to a triangular antiferromagnetic state with a giant
barocaloric effect [32–34]. We provide the ab initio origin of
this transition, how it depends on the chemical composition,
and compare our results with experiment.

This paper is organized as follows. In Sec. II we set the
theoretical framework and present our approach. Section II B
explains how to compute Eq. (2) using magnetically con-
strained supercells. In Secs. II C and II D we describe the
effect of multisite magnetic interactions and magnetovolume
coupling on the character of magnetic phase transitions. Com-
putational details are given in Sec. II E. In Sec, II F we apply
our approach to the well studied ferromagnetic state of bcc Fe
as an instructive example, while Sec. III focuses on the mag-
netism of antiperovskite materials. Conclusions and outlook
are given in Sec. IV. The paper finalizes with the Appendix,
which shows the performance of the Gibbs free energy calcu-
lation using smaller supercells.

II. AB INITIO THEORY OF THE MAGNETIC
GIBBS FREE ENERGY

A. Theoretical framework

The basis of our ab initio modeling is density functional
theory (DFT), formally extendable to finite temperatures [35].
DFT describes the local moment orientations {ên} as emerging
quantities from the local spin polarization of the magnetic
moment density. This establishes a framework to model trans-
verse magnetic fluctuations at different temperatures, at and
below the paramagnetic state, known as the disordered local
moment (DLM) theory [21]. Our approach is based on this
DLM theory and allows its application generally with any
ab initio machinery able to employ magnetic constraints, as,
for example, developed in Refs. [27,36–38]. Hence, we open
the opportunity to use DFT codes based on a plane wave basis
instead of the Korringa-Kohn-Rostoker formulation of DFT,
and its bond to the single-site coherent potential approxima-
tion [39,40] to carry out the ensemble averages.

The central component of DLM theory is an adiabatic
approximation for the orientations of the local magnetic mo-
ments, {ên}. These orientations are thus considered to evolve
very slowly in comparison with the fast electronic motions
forming the underlying many-electron interacting subsystem.
Such an assumption means that thermally induced transverse
magnetic excitations can be obtained from DFT calculations
constrained to comply with different magnetic configurations
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{ên}, i.e., ∫
�n

d3r μ(r; {ên}) = μn({ên})ên, (3)

where μ(r; {ên}) is the magnetic moment density, and �n

is the volume defining the region at site n in which a local
moment of size μn emerges.

Formally, a self-consistent calculation of the DFT-based
total energy for given magnetic configurations {ên} can be
used to obtain the magnetic energy, Eint({ên}) [21], intro-
duced in Eq. (2). Such a calculation should be available by,
for example, applying constraining single-site magnetic fields
that establish {ên} as minima of the system. We consider that
the magnitudes {μn} evolve in a much shorter timescale than
the local moment orientations so that {μn} instantaneously
adapt to a given configuration {ên}. We thus obtain {μn} self-
consistently with respect to a given orientational configuration
{ên}. However, their thermal fluctuations could be described
by performing additional averages [24].

Eint({ên}) provides the corresponding partition function

Z =
∫ ∏

n

[d ên] exp [−βE ({ên})], (4)

where β = 1
kBT , kB and T being the Boltzmann constant and

the temperature, and

E ({ên}) = Eint({ên}) − H ·
∑

n

μnên (5)

is the magnetic energy also including a coupling of the local
magnetic moments with an external magnetic field H. Note
that {ên} are treated as classical quantities and so Z and
ensemble averages are obtained by performing integrals over
all solid angle space, d ên = dθndφn sin θn. The probability
of the system being in a magnetic state with local moment
orientations {ên} is, therefore,

P({ên}) = exp [−βE ({ên})]

Z , (6)

which gives the exact magnetic Gibbs free energy of the sys-
tem by carrying out ensemble averages over all appropriately
weighted magnetic configurations,

G = −kBT lnZ

=
∫ ∏

n

[d ên]P({ên})[E ({ên}) + kBT ln P({ên})]. (7)

The complex many-electron origins of Eint({ên}) in metal-
lic systems makes its dependence on the orientational
magnetic configurations very complicated. Consequently,
Eint({ên}) can contain pairwise as well as higher order mag-
netic interaction terms,

Eint({ên}) = Eint,0 −
∑

i j

Ji j êi · ê j

−
∑
i jkl

Ki jkl (êi · ê j )(êk · êl ) − · · ·, (8)

where Eint,0 is a reference energy. In principle, the full com-
plexity and myriad of magnetic interactions in Eint({ên}) could

be computed using DFT calculations if given enough com-
puter time. However, the necessary computational costs are
very far from available high-performance computational re-
sources. Alternatively, we use a trial Hamiltonian generally
given as

Htr = −
∑

n

hn · ên +
∑
n,n′

H (2)
n,n′ (ên, ên′ )

+
∑

n,n′,n′′
H (3)

n,n′,n′′ (ên, ên′ , ên′′ ) + · · · , (9)

where {hn} are single-site internal magnetic fields, also called
Weiss fields, forming the simplest mean-field theory for the
interactions. In this work we only consider the single-site
terms [see Eq. (14)], but by including higher order terms,
{H (2)

n,n′ (ên, ên′ ), . . . }, our treatment can be systematically im-
proved to account for different types of nonlocal magnetic
correlations [21]. In Sec. II B 1 we invoke the Peierls-
Feynman inequality to find an upper bound of G [41,42],
in analogy to the Gibbs-Bogoliubov inequality typically ap-
plied for the free energy of an ionic Hamiltonian [43,44].
This establishes a theory to calculate the Gibbs free energy
and Umag = 〈Eint〉tr, which contains the effect of all magnetic
interactions, with respect to the associated trial probability
distribution,

P({ên}) ≈ Ptr({ên}) = 1

Ztr
exp [−βHtr], (10)

where Ztr is the corresponding partition function.
The consideration of Eq. (10) reduces the thermally in-

duced magnetic configurations to be studied to an affordable
and meaningful magnetic phase space. A central task of our
approach is to provide the internal magnetic energy as a func-
tion of the local magnetic order parameters of the system for
this probability distribution,

mn = 〈ên〉tr, (11)

i.e., Umag({mn}). 〈. . .〉tr indicates an average over {ên} with
respect to Ptr({ên}). As will be explained in Sec. II B 1 and
as illustrated in Fig. 1, in this work the trial orientational
probability distribution is prescribed by the values of the order
parameters, Ptr({ên}; {mn}). In Table I we advance and summa-
rize the central steps, and their relation to the different sections
and equations in the paper, for the computation of Umag({mn}).
These steps can be repeated for different lattice attributes to
also obtain the dependence on the crystal structure and the
consequent magnetostructural coupling. Once Umag and its
dependencies have been computed, the Gibbs free energy is
directly obtainable from Eq. (1).

B. Computation of Umag = 〈Eint〉tr using magnetically
constrained supercell calculations

Umag = 〈Eint〉tr is obtained by carrying out an average of the
magnetic energy over {ên} with respect to a trial probability
distribution Ptr({ên}) through Eq. (2). Formally, a Monte Carlo
integration can be employed,

〈Eint〉tr ≈ V NMC,rand

�

NMC,rand

NMC,rand∑
i

[
Ptr

({ên}rand
i

)
Eint

({ên}rand
i

)]
, (12)
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TABLE I. Central steps to obtain the dependence of the internal magnetic energy on the local order parameters.

(1) A set of values {mn} = {m1, . . . , mN } are chosen, N being the number of magnetically constrained sites in the supercell.
(2) From {mn}, we obtain Ptr ({ên}) using Eqs. (20) and (23) via mapping through {βhn}. See Sec. II B 1 for details.
(3) NMC DFT calculations with local moment orientations {ên} constrained following Ptr({ên}) are performed. Section II B 2 gives details on

how to obtain {ên} for each DFT calculation, which correspond to different polar and azimuthal angles given by Eqs. (25) and (26),
({θn, φn}1, {θn, φn}2, . . . , {θn, φn}NMC ).

(4) The internal magnetic energy is computed by carrying out the average Umag = 〈Eint〉tr, using Eq. (13) in Sec. II B.
(5) Steps (1)–(4) are repeated for different sets of values of {mn} to obtain Umag({mn}). This is done for {mn} describing the magnetic phases

of interest. For example, in the case of the ferromagnetic state of bcc Fe the magnitudes of the order parameters are identical at all sites.
Different values spanning from mn = 0 (paramagnetic) to mn = 1 (fully ordered ferromagnetic) can then be chosen for a given
spin-polarization axis.

where V� = ∫
d ên = 4π is the solid angle volume, {ên}rand

i
is a set of fully random local moment orientations, and
NMC,rand is the number of sets generated. Eint({ên}rand

i ) can
be calculated using constraining magnetic fields in DFT
calculations for supercells with fully random local mo-
ments. The number of atoms within the supercell, Nsc, must
be large enough to reduce box-size effects satisfactorily.
Once NMC,rand magnetically constrained supercell calculations
have been performed, Eq. (12) provides an approximated
value of 〈Eint〉tr for an arbitrary shape of Ptr({ên}). Note
that different Ptr({ên}) correspond to different states of mag-
netic thermal disorder (see Fig. 1). However, the minimum
value of NMC,rand to obtain accurately enough results in-
creases for probability distributions Ptr({ên}) that describe
magnetic configurations away from fully random local mo-
ment orientations. It is to be presumed, therefore, that NMC is
prohibitively large.

To circumvent this computational constraint, we approxi-
mate Eq. (2) instead by

〈Eint〉tr ≈ 1

NMC

NMC∑
i

Eint
({ên}Ptr ({ên})

i

)
, (13)

where now NMC magnetically constrained DFT calculations
are performed for sets of local moment orientations that,
instead of being fully random, directly obey the probabil-
ity distribution. We have found (see Secs. II F and III) that
computationally affordable values of NMC can be achieved
using Eq. (13) because the constrained magnetic configura-
tions here already follow Ptr({ên}). The downside, however,
is that a whole set of NMC configurations needs to be com-
puted for each probability distribution that one aims to study;
for example, for each panel in Fig. 1. In the following
section we show the case of the simplest single-site mean-field
theory.

1. Peierls-Feynman inequality

Albeit our supercell approach to compute Eq. (13) is in
principle implementable for a general expression of Eq. (9),
we choose a trial Hamiltonian that contains only single-
site magnetic fields, or Weiss fields, as originally used by
Gyorffy et al. [21],

Htr = −
∑

n

hn · ên. (14)

This Htr describes local magnetic moments whose orienta-
tions are sustained by mean fields {hn}, which can contain the
effect of an external magnetic field if present. The partition
function associated with Htr is

Ztr =
∏

n

∫
d ên exp [βhn · ên] =

∏
n

4π
sinh(βhn)

βhn
, (15)

and so the corresponding probability for a magnetic configu-
ration {ên} becomes

Ptr({ên}) = 1

Ztr

∏
n

exp [βhn · ên] =
∏

n

Pn(ên), (16)

where hn is the magnitude of hn. Owing to the single-site
nature of Htr, Eq. (16) defines single-site probability distri-
butions for each local moment orientation,

Pn(ên) = βhn

4π sinh(βhn)
exp [βhn · ên]. (17)

The Peierls-Feynman inequality [41,42] provides an upper
bound of G given in Eq. (7), which we refer to as Gu,

G � Gu = Gtr + 〈E ({ên})〉tr − 〈Htr({ên})〉tr, (18)

where Gtr = −kBT lnZtr is the associated Gibbs free energy
of the trial Hamiltonian, and we recall that 〈. . .〉tr indicates an
average over {ên} with respect to Ptr({ên}). From Eqs. (5) and
(18) one can finally write

Gu = 〈Eint〉tr − H ·
∑

n

μnmn − T Smag. (19)

The previous result becomes Eq. (1) after applying a Legendre
transform accounting for the effect of mechanical stress. It
also introduces the magnetic local order parameters as the
averages of the local moment orientations, as previously given
in Eq. (11),

mn = 〈ên〉tr =
∫

d ênPn(ên)ên

=
[ −1

βhn
+ coth(βhn)

]
ĥn,

(20)

as well as an expression for the magnetic entropy associated
with the orientational configurations {ên},

Smag({mn}) =
∑

n

Sn(mn), (21)
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FIG. 2. Single-site probability distribution for different values of
mn [see Eq. (23)]. The inset shows how the dependence of mn on βhn

is described by the Langevin function [see Eq. (20)].

where

Sn = −kB

∫
d ênPn(ên) ln Pn(ên)

= kB

[
1 + ln

(
4π

sinh(βhn)

βhn

)
− βhn coth(βhn)

]
. (22)

Note that {Pn(ên)} is prescribed by {mn} since both of them
are univocally given by {βhn}.

This mean-field theory produces a typical classical be-
havior of mn following the Langevin function, as shown in
Eq. (20) and plotted in the inset of Fig. 2. At zero temperature
the local order parameter, which is always parallel to ĥn,
has a magnitude equal to one, mn = ĥn. This means that ên

does not thermally fluctuate. Note that in this limit, T → 0,
{βhn} → ∞ and {hn} has a finite value. On the other hand,
at high enough temperatures the thermal fluctuations can be-
come sufficiently large to establish local moments fluctuating
randomly over all possible orientations. This corresponds to
a fully disordered, paramagnetic state described by mn = 0
({hn = 0}) and being present above Curie or Néel transition
temperatures. We highlight that these transition temperatures
as well as the dependence of the order parameters on temper-
ature, {mn(T )}, are obtained by minimizing the free energy at
different values of T , as explained in Sec. II D. The snapshots
shown in Fig. 1 of different magnetically constrained configu-
rations correspond to different probabilities {Pn(ên)} (or {mn})
for a thermally fluctuating ferromagnetic state of bcc Fe.

2. Magnetically constrained supercell configurations

As indicated above, the probability distribution at each
magnetic site n follows Eq. (17) independently owing to the
single-site nature of Eq. (14),

Pn(ên) = βhn

4π sinh(βhn)
exp [βhn cos θn], (23)

where 0 � θn � π is the angle between ên and hn (or the
magnetic local order parameter mn). In Fig. 2 we show the
behavior of Pn(ên) against θn for different values of βhn.
While βhn = 0 describes a magnetic site that is fully disor-
dered (mn = 0), βhn → ∞ corresponds to a nonfluctuating
local moment orientation ên = ĥn (mn = 1). We use a standard

generator of uniformly distributed random numbers to obtain
different magnetic configurations, which are the inputs in our
magnetically constrained supercell calculations. Rotating the
ẑ axis such that it is aligned with hn allows one to write
ên = (sin θn cos ϕn, sin θn sin ϕn, cos θn), where 0 � ϕn � 2π

is an in-plane angle. Since the probability integral must be
normalized, we can obtain θn by considering

2π

∫ θn

0
dθ sin θ

βhn

4π sinh(βhn)
exp [βhn cos θ ] = xθ

n , (24)

where xθ
n is a random number ({0 � xθ

n � 1}) and the 2π

factor comes from the in-plane integration. Solving Eq. (24)
gives

θn = arccos

{
1

βhn

(
ln

[
exp(βhn) − 2xθ

n sinh(βhn)
])}

. (25)

On the other hand, Eq. (23) does not depend on ϕn, which
means that ϕn is fully random and can be obtained directly
using another random number xϕ

n ({0 � xϕ
n � 1}),

ϕn = 2πxϕ
n . (26)

The local moment orientations for each magnetic configu-
ration {ên}{Pn(ên )}

i are thus obtained from N pairs of random
numbers, {xθ

n , xϕ
n }, using Eqs. (25) and (26) for given values

of {βhn} (or {mn}) defining the probability distribution. Here
N is the number of magnetic sites in the supercell. This is how
the orientations shown in Fig. 1 have been obtained.

C. Hierarchy of local moment correlation functions and their
magnetoelastic coupling

Since in our mean-field theory Ptr({ên}) is uniquely pre-
scribed by {βhn}, which in turn unequivocally map to {mn},
the average of Eint has a direct dependence on {mn}. From
Eqs. (2) and (8) we therefore have

Umag = 〈Eint〉tr = U (0) −
∑

i j

U (2)
i j mi · m j

−
∑
i jkl

U (4)
i jkl (mi · m j )(mk · ml ) − h.o., (27)

where {U (2)
i j ,U (4)

i jkl , . . . } form a hierarchy of second- and
higher order local moment correlations that are characteris-
tic of the magnetic material investigated. Here h.o. stands
for higher order terms. These local moment correlations de-
scribe expansion coefficients of the internal magnetic energy
in terms of the magnetic local order parameters, in the spirit
of a Ginzburg-Landau theory. As mentioned above, the depen-
dence of 〈Eint〉 on {mn} is performed through the computation
of Eq. (13) using magnetically constrained supercells. We
realize this calculation for a reduced phase space of {mn}
containing the magnetic states of interest only, e.g., the fer-
romagnetic state in bcc Fe and a triangular antiferromagnetic
state in Sec. III (see Table I).

〈Eint〉tr can be calculated for different lattice parameters and
crystal structures and so its dependence on deformation can
be also obtained. An expression of the Gibbs free energy in
Eq. (19) that accounts for the effect of an applied hydrostatic
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pressure p is given by the following Legendre transform:

Gtot =Gu + pV

=〈Eint〉tr({mn},V ) − T Smag({mn})

− H ·
∑

n

μnmn + pV.

(28)

Here {U (0),U (2)
i j ,U (4)

i jkl , . . .} inside 〈Eint〉tr depend on the
volume V . Considering a parabolic dependence on V for the
internal magnetic energy in the paramagnetic limit we can
write

lim
{mn}→{0}

〈Eint〉tr = U (0)(ω) = U (0)(VPM) + 1
2γVPMω2, (29)

where VPM is the volume that minimizes the free energy in this
paramagnetic limit, ω = V −VPM

VPM
is the relative volume change,

and γ is the inverse of the compressibility (bulk modulus)
describing the energy cost caused by the application of p in the
paramagnetic state. γ is computed, therefore, by calculating
the change of the internal magnetic energy Umag = 〈Eint〉tr at
different volumes in supercells containing fully random local
moment orientations. Note that Eq. (28) can be formally gen-
eralized to account for more complicated deformations caused
by the application of different types of stresses, as given by
Eq. (1).

D. Minimization of the Gibbs free energy: First-order magnetic
phase transitions generated by electronic and/or

magnetoelastic mechanisms

Once Gtot has been obtained for a given magnetic material,
it can be minimized with respect to {mn} for different values
of T , H, and the crystal structure. This enables the ab initio
study of temperature-dependent magnetic anisotropy [19,23],
magnetic phase transitions and diagrams of different sort
[22,45–48], and (multi-)caloric effects for solid-state refriger-
ation [33,49,50]. Note that the second term in the right-hand
side of Eq. (19), i.e., the magnetic entropy, follows analyti-
cal expressions that are directly provided by the chosen trial
Hamiltonian [see Eq. (21)]. Umag = 〈Eint〉tr is in consequence
the only part of Gtot that is material dependent, obtained from
first principles through the computation of Eq. (13).

Higher than quadratic free energy coefficients in Eq. (27)
fundamentally generate discontinuous (first-order) magnetic
phase transitions from the paramagnetic state. This is a
well known result formerly studied in MnAs, for which the
emergence of fourth-order coefficients is driven by a mag-
netovolume coupling [51] [we also show this here through
Eq. (34)]. However, our Gibbs free energy can also depend on
quartic and higher order local moment correlation functions
({U (4)

i jkl (ω), . . . }). These correlations are higher-order free en-
ergy terms with a purely electronic origin, evidenced by the
fact that they can emerge for calculations where the crystal
structure is fixed. They describe the feedback to the magnetic
interactions from the response of the underlying electronic
structure to different states of thermally fluctuating magnetic
order {mn} [30]. We have already shown how these multisite
interactions generate first-order magnetic phase transitions
experimentally observed in several materials [33,47,50]. An
itinerant electron metamagnetism producing first-order transi-

tions was already described by Wolfarth and Rhodes [52], and
examples have been reported and explained by Fujita et al. for
La(FexSi1−x )13 compounds [53,54].

To exemplify how a first-order transition can be produced
by both purely electronic and/or magnetoelastic effects, we
consider materials that are composed of equivalent magnetic
lattice sites. This implies that {mn = mm̂n}, i.e., the size of the
local order parameters, m, is site independent. In this case and
in the absence of external stimuli (H = 0, p = 0), the Gibbs
free energy in Eq. (28) becomes

Gtot = −T Smag + U (0)(VPM) + 1

2
VPMγω2

− U (2)(ω)m2 − U (4)(ω)m4 − U (6)(ω)m6 − · · ·. (30)

where

U (2)(ω) =
∑

i j

U (2)
i j (ω) cos(θi j ),

U (4)(ω) =
∑
i jkl

U (4)
i jkl (ω) cos(θi j ) cos(θkl )

...

(31)

play the role of effective coefficients compactly containing the
overall effect of all the local moment correlations, θi j being
the relative angle between mi and m j . We now assume that the
magnetovolume coupling is described by a linear dependence
for the second- and fourth-order terms,

U (2) ≈ U (2)
0 + α(2)ω,

U (4) ≈ U (4)
0 + α(4)ω,

(32)

but that higher order coefficients are constant, U (nc�6) ≈
U (nc�6)

0 , where nc is the order of the interaction. This is
adopted here for illustrative purposes, but our ab initio results
presented in Secs. II F and III are obtained without making any
assumption in this regard. Minimizing Eq. (30) with respect to
ω then gives

ω = 1

VPMγ
(α(2)m2 + α(4)m4), (33)

which introduced back into Eq. (30) finally provides

Gtot = −NkBT ln 4π + U (0)(VPM) −
(

U (2)
0 − 3

2
kBT N

)
m2

−
(

U (4)
0 + [α(2)]

2

2VPMγ
− 9

20
kBT N

)
m4 + O(m6), (34)

where N is the number of magnetic atoms. To obtain the
previous equation we have used the following expansion of
the magnetic entropy:

Smag = kB

∑
n

(
ln 4π − 3

2
m2

n − 9

20
m4

n − · · ·
)

, (35)

which can be derived by combining Eq. (21) together with
Eqs. (20) and (22).

A mathematical analysis of Eq. (34) shows that a
second-order (continuous) magnetic phase transition from the
paramagnetic state, i.e., from m = 0 to m 	= 0 by lowering the
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FIG. 3. Critical line separating regions in which the magnetic
phase transition from the paramagnetic state is second order or first
order, as given by Eq. (38). This critical line is plotted as a function of
the electronic mechanism, described by the multisite term U (4)

0 , and
the magnetovolume coupling, described by α(2). The figure shows
results computed for bcc Fe (Sec. II F), as well as for Mn3GaN and
Mn3NiN after considering a lattice thermal expansion (see Sec. III).

temperature, occurs when ∂2Gtot
∂m2 |m=0 = 0, which gives

Ttr,sec = 2U (2)
0

3kBN
, (36)

and that such a transition becomes discontinuous when

lim
m→0

∂2Gtot

∂m2

∣∣∣∣∣
T =Ttr,sec

= 0−. (37)

Equation (37) means that a first-order character arises when
the overall fourth-order coefficient at T = Ttr,sec is negative
[51,55], giving rise to the following condition:

U (4)
0 + [α(2)]

2

2VPMγ
>

3

10
U (2)

0 , (38)

which we plot in Fig. 3. Equation (38) shows that a mag-
netovolume coupling α(2) always contributes to enhance the
first-order character of the magnetic phase transition regard-
less of its sign. On the other hand, U (4)

0 has to be positive to do
so, and at least 30% of the magnitude of U (2)

0 if the discontinu-
ous character has a purely electronic origin. Both interactions
are possible mechanisms driving magnetic phase transitions
of different types and between different magnetic states. In
Sec. III we study the Mn-based antiperovskite materials class,
which exhibits a first-order phase transition to a triangular
antiferromagnetic state whose origin is mainly electronic or
magnetoelastic depending on the chemical composition of the
material.

E. Computational details

All our fully noncollinear DFT calculations have been per-
formed using the Vienna Ab Initio Simulation package (VASP)

[56–59]. VASP already includes a method to magnetically con-
strain supercells to different local moment orientations {ên},
developed by Ma and Dudarev [36]. Albeit we use such an
implementation in this work, our approach can be applied to-
gether with any other DFT code suitable to perform magnetic
constraints. Spin-orbit effects have not been considered. The
parameter λ (referred to as a Lagrange multiplier in Ref. [36])
describing the energy penalty term Ep to the total energy
functional has been increased from low to high values as λ =
1, 3, 5, 7, 10, 15, 20, 25, 30 eV to preserve numerical stability
within the DFT calculation. We have found that the final value
of λ = 30 eV provides a satisfactory energy convergence with
respect to the energy scale of the disordered and partially
disordered magnetic states studied. We have constrained the
orientation of the local moments only so their sizes have been
allowed to relax within the self-consistent calculation for each
magnetic configuration {ên}, which is a fundamental feature
of the timescale separation of our theory (see Sec. II A). The
Wigner-Seitz radius needed as input for magnetic constraints
was 1.323, 0.741, 1.217, and 1.286 Å for Mn, N, Ga, and Ni,
respectively.

We have employed the projector augmented-wave method
[60] implemented in VASP within the Perdew-Burke-Ernzerhof
generalized gradient approximation [61] to describe exchange
and correlation effects. The Brillouin zone has been sam-
pled using a 2 × 2 × 2 Monkhorst-Pack k grid for supercells
containing 432 atoms for bcc Fe (6 × 6 × 6 supercell of a
cell of two atoms) and 320 atoms for Mn3AN (A = Ga, Ni)
(4 × 4 × 4 supercell of a cell of five atoms). The cutoff energy
has been 400 and 500 eV, respectively. Results for these mate-
rials are shown in Secs. II F and III. In the Appendix we show
the results obtained for smaller supercells. The width of the
smearing determining the partial orbital occupancies has been
0.1 eV. Finally, all the performed magnetically constrained
DFT calculations have been supported, accelerated, and man-
aged by pyiron, an integrated development environment [62].

F. Gibbs free energy of ferromagnetic bcc Fe

1. Dependence on ferromagnetic disorder

To illustrate how the magnetic Gibbs free energy of a
material is obtained and minimized using our supercell-based
ab initio approach, first we present its application to the refer-
ent bcc Fe. Focusing on the study of the ferromagnetic state, it
follows that all the lattice sites of bcc Fe are equivalent. This
means that in our mean-field theory all the local magnetic
moment orientations {ên} fluctuate with the same single-site
probability distribution. The thermal fluctuations of a ferro-
magnetic state pointing along the ẑ direction are, therefore,
described by {βhn = βhẑ}, or by {mn = mẑ}. Note that m =
−1
βh + coth(βh) from Eq. (20). The values of the single-site
magnetic fields and local order parameters are consequently
the same for all sites.

We first compute the dependence of the internal magnetic
energy on m as summarized in Table I. Panels (a), (b), and (c)
in Fig. 4 show the total energies of ten different orientationally
constrained snapshots in 6 × 6 × 6 supercells of two-atom
cells of bcc Fe obtained for m = 0, m = 0.50, and m = 0.90,
respectively (red dotted lines). Pictures of magnetic configura-
tions for these values of m are represented in Fig. 1. The lattice
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FIG. 4. Magnetic and electronic properties of bcc Fe for three different thermally fluctuating states of ferromagnetic order, m = 0
(T � Tc = 1590 K), m = 0.50 (T = 1320 K), and m = 0.90 (T = 410 K). The associated values of the temperature are obtained only after
minimizing the free energy in Sec. II F 2. (a),(b),(c) Total energy per atom with respect to Um=0 ≡ 〈Eint〉tr(m = 0) of a 6 × 6 × 6 supercell of a
two-atom cell of bcc Fe (432 atoms). Each panel shows ten values of the energy obtained for different local moment orientation configurations
{ên}{Pn (ên )}

i following the probability distribution {Pn(ên)}, which is prescribed by the value of m (red dotted lines). The accumulative average
of this quantity is also plotted (continuous blue line), which gives Umag = 〈Eint〉tr through Eq. (13). (d)–(f) Total density of states per atom.
Vertical dashed lines indicate the position of the Fermi energy. (g)–(i) Magnitudes of the local moments, {μn}, for all the sites and all ten
different magnetic configurations studied. {μn} are not constrained and so these are obtained self-consistently throughout the DFT cycle.
Corresponding histograms are also shown.

parameter used is a = 2.83 Å, which is the value that mini-
mizes the energy in the ferromagnetic state within our DFT
approximations [63]. We have found that the average of the
total energy over NMC = 10 different magnetic configurations
for each value of m suffices to compute Umag = 〈Eint〉tr using
Eq. (13) within an error of only a small number of meV per
atom (continuous blue line). The energy scale of the magnetic
thermal fluctuations for the ferromagnetic state of bcc Fe is
such that 〈Eint〉tr(m = 0) − 〈Eint〉tr(m = 1) ≈ 200 meV/atom.
We therefore can conclude that the application of Eq. (13)
provides a satisfactory accuracy to obtain the dependence
of the internal magnetic energy on sizable changes of
m. However, the description of quantities with a smaller
energy scale, such as the magnetocrystalline anisotropy,
would require one to increase NMC and/or the size of the
supercell.

The magnetic disorder characterizing the highly fluctuating
paramagnetic state (m = 0) covers a wide range of magnetic
excitations, which directly impacts the underlying electronic
structure. Disorder typically broadens the spectral density
function of electronic states in perfect periodic metals
[64–66]. Consequently, a broadening of the total density
of states (DOS) is also expected, as shown in Fig. 4(d).
Indeed, decreasing the amount of magnetic disorder by
increasing the value of m directly reduces the number of

magnetic excitations, thus sharpening the peaks of the DOS
in Figs. 4(e) and 4(f).

The timescale separation between slowly evolving local
moment orientations {ên} and a rapidly adapting electronic
structure is a central tenet of our DLM theory. Within this
framework we allow the magnitudes of the local moments
{μn} to relax for a given magnetic configuration of the orien-
tations within the self-consistent DFT cycle. In other words,
we assume that these longitudinal fluctuations are much faster
than the transverse ones and that their energy scale is much
larger. In Figs. 4(g)–4(i) we show the relaxed values of {μn}
for all the sites of the ten configurations {ên} obtained for
m = 0, m = 0.50, and m = 0.90. For an almost fully ordered
ferromagnetic state (m = 0.90) the sizes of the local moments
vary very little around their mean value. However, for highly
disordered configurations (m = 0, m = 0.50), μn can deviate
substantially owing to nonferromagnetic environments sur-
rounding a given site n. The mean value of the magnetic
moment magnitude, 〈μn〉, decreases slightly by lowering the
order parameter from m = 0.50 to m = 0. Interestingly, we
have found a nonmonotonous behavior around m = 0.80 at
which a maximum of 〈μn〉 occurs. This is shown in Fig. 5(a),
where we plot 〈μn〉 against m for different volumes. The verti-
cal bars indicate the standard deviation, which becomes larger
by decreasing m in accordance to Figs. 4(g)–4(i). To obtain
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FIG. 5. Magnetic properties of bcc Fe at different values of the
ferromagnetic order parameter and of the lattice parameter a, which
link to different volume changes relative to the paramagnetic state,
ω = V −VPM

VPM
. (a) Mean value of the local moment magnitudes against

orientational ferromagnetic order m. Vertical bars indicate the stan-
dard deviation. Since these have very similar magnitudes for all
curves, we show them only for one of them for clarity. (b) Internal
magnetic energy Umag = 〈Eint〉tr per atom as a function of m with
respect to its value in the paramagnetic state [U (0)(VPM), m = 0].
The computed ab initio data is plotted with points, together with
bars showing the standard error. Continuous lines correspond to the
least-squares regression of Eq. (39). (c)–(e) Internal energy coeffi-
cients { 1

2VPMγω2,U (2),U (4)} against ω (data points), where U (0) −
U (0)(VPM) = 1

2VPMγω2. Their linear regressions are also shown (con-
tinuous lines). All the results are given in meV/atom and error bars
associated to the regressions are provided.

the temperature dependence, which is encoded in m(T ), we
need to minimize the free energy with respect to m at different
values of T , which we address in the following.

2. Minimization of the free energy at different temperatures

The construction of the free energy, Gtot, requires one to
firstly obtain Umag = 〈Eint〉tr for different values of m, which
must follow a polynomial dependence of even terms [see
Eq. (27)]. In Fig. 5(b) we show 〈Eint〉tr against m computed
for different volumes V , which we can express in terms of ω

(see Sec. II C). We have found that the ab initio data obtained
can be described very well by

〈Eint〉tr − U (0)(VPM) = 1
2VPMγω2 − U (2)m2 − U (4)m4, (39)

where we have subtracted the value of the paramagnetic
energy at VPM, U (0)(VPM), such that the first term in the right-
hand side becomes U (0) − U (0)

VPM
= 1

2VPMγω2 [see Eq. (29)].
A least-squares regression of Eq. (39) can be performed to

TABLE II. Coefficients describing the internal magnetic energy,
the bulk modulus in the paramagnetic limit (γ ), and the magneto-
volume coupling. These are obtained by performing a least-squares
regression of U (0)(V ) = U (0)(VPM) + 1

2VPMγω2 and of Eq. (32). The
value of VPM given corresponds to a unit cell containing a single atom.
Error estimations associated to the regression are also given.

VPM γ U (2)
0 α(2) U (4)

0 α(4)

(Å3) (GPa) ( meV
atom ) ( meV

atom ) ( meV
atom ) ( meV

atom )

11.30±0.09 202 ± 2 206 ± 1 378 ± 26 −6.1 ± 1.3 −300 ± 40

obtain { 1
2VPMγω2,U (2),U (4)} for the different volumes stud-

ied. We show the results in Figs. 5(c)–5(e) with data points.
Figure 5(c) demonstrates that the internal magnetic energy in
the paramagnetic state, U (0), follows a pronounced parabolic
behavior with a minimum at VPM, as stated in Eq. (29). On the
other hand, U (2) and U (4) show a linear dependence, following
the behavior in Eq. (32).

We can perform another regression, now of
{U (0),U (2),U (4)} with respect to ω, to obtain
{VPM, γ ,U (2)

0 , α(2),U (4)
0 , α(4)} using Eqs. (29) and (32).

We show the results obtained in Table II. The bulk modulus
in the paramagnetic state that we have computed agrees
satisfactorily with experiment [67]. Most importantly, we have

found that U (4)
0

U (2)
0

= −0.03 � 3
10 and (α(2) )2

2VPMγU (2)
0

= 0.02 � 3
10 .

According to Eq. (38), these numbers directly imply that the
fourth-order terms in the free energy coming from the purely
electronic source U (4)

0 or from the magnetovolume coupling
α(2) cannot generate a first-order character for the transition.
See Fig. 3 for a graphical representation of the position
of bcc Fe with respect to the critical line defining the
condition of a first-order transition. This means that the
paramagnetic-ferromagnetic phase transition is continuous

and occurs at Tc = 2U (2)
0

3kBN = 1590 K as given by Eq. (36) (note

that the value of U (2)
0 in Table II is already given in units of

energy per atom). The computed value of Tc is somewhat
larger than the experimental one [68], but in satisfactory
agreement considering the mean-field nature of our theory.
A similar value has also been obtained using a mean-field
and random phase approximation [69]. We also note that
the leading magnetovolume coefficient, α(2), is fairly small,
which also agrees with experiment [68].

Introducing the values obtained for {VPM, γ ,U (2)
0 ,

α(2),U (4)
0 , α(4)} into Eq. (39) allows one to construct Gtot

[Eq. (30)], whose analytical minimization with respect to ω is
given by Eq. (33). We can, therefore, compute the dependence
on temperature of the magnetization and other properties by
numerically finding the value of βh that minimizes Eq. (30)
at different values of T , which is equivalent to perform a
minimization with respect to m. Figure 6 shows the results
obtained for 〈μn〉(T ) and ω(T ), as well as for the total
magnetization per atom, M(T ) = m(T )〈μn〉(T ). Indeed, the
paramagnetic-ferromagnetic phase transition is continuous
and occurs at Tc = 1590 K. Albeit 〈μn〉(T ) presents a
nonmonotonic dependence on T , it is negligible and so
the total magnetization behaves monotonously because its
major contribution comes from m(T ). A prediction of our
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FIG. 6. Dependence on temperature of (a) the total magnetiza-
tion, M, the mean value of the magnitude of the local moments, 〈μn〉,
and of (b) the relative volume change, ω, obtained for bcc Fe.

calculations is that α(2) is positive, which directly implies
that the volume increases by lowering the temperature through
Tc, the so-called negative thermal expansion (NTE). However,
the computed effect is very small in comparison with the
intrinsic lattice thermal expansion measured experimentally
[68]. On the other hand, α(4) is negative and sufficiently large
to cause a decrease of ω at lower temperatures when the
fourth-order free energy terms become important.

III. AB INITIO ORIGIN OF FIRST-ORDER MAGNETIC
PHASE TRANSITIONS IN ANTIPEROVSKITE

NITRIDE MATERIALS

Mn-based antiperovskite nitride systems Mn3AN, where A
can be one or a solution among different transition metals and
semiconductor elements, form a magnetic materials class that
has been largely studied over the last decades owing to their
interesting magnetic properties [70–80]. The corresponding
cubic crystal structure belongs to the perovskite space group
221 in which A, N, and Mn atoms sit on corners, centers, and
face centers of the unit cell, respectively. In these materials
a magnetic phase transition from the paramagnetic state to
a triangular antiferromagnetic state occurs at different tem-
peratures and emerges from the geometrical frustration of
antiferromagnetic interactions between nearest neighbor Mn
atoms. The transition is accompanied by a substantial NTE
[31,72,73] and has a first-order (discontinuous) character,
which provides a giant barocaloric effect with great potential
in the field of caloric refrigeration [32,34,81].

We have recently made an analysis of Mn3AN materials
based on the exploration of free energy coefficients in Eq. (30)
that reproduce experimental data describing the change of the
magnetic phase transition under applied hydrostatic pressure.
Such an experimentally guided study has shown that the first-
order character of Mn3AN arises from the combined effect of
the magnetovolume coupling and multisite magnetic interac-
tions, and that the choice of atom A selects which one of these
sources is the predominant mechanism [33]. Here we use
our supercell DLM approach to provide a full first-principles
demonstration of this phenomenon.

We focus on the study of Mn3GaN and Mn3NiN, whose
first-order character should be mainly driven by a magneto-
volume coupling and multisite interactions, respectively [33].

FIG. 7. Dependence on the amount of triangular antiferromag-
netic order, mtri, of the mean local moment magnitude in Mn atoms
[panels (a) and (b)] and of the internal magnetic energy [pan-
els (c) and (d)] computed for Mn3GaN and Mn3NiN at different
volumes. The vertical bars in panels (a) and (b) correspond to the
standard deviation, which is shown only for one curve for clarity.
Bars associated to the standard error of the internal energy average
in panels (c) and (d) are also shown, as well as curves corresponding
to their regressions.

The triangular antiferromagnetic state that stabilizes in these
materials is a nonmodulated (q = 0) magnetic structure. Here
the three Mn magnetic local moments lie within the same
plane and form relative angles of 120◦ at T = 0 K when
magnetic anisotropy is not considered. If the cubic crys-
tal structure is not distorted, such a triangular state is fully
compensated, i.e., there is no overall magnetization. This sym-
metry also means that the thermal fluctuations of the local
moment orientations at the three sites can be described by tri-
angular local order parameters that have the same magnitude
mtri. Since we do not consider spin-orbit effects we simply
choose an arbitrary plane and apply Eqs. (25) and (26) to find
the polar and azimuthal angles for each moment in a supercell.
The local axis frames are rotated accordingly to the triangu-
lar antiferromagnetic state such that {hn} (or {mn}) correctly
form angles of 120◦ between the three nonequivalent magnetic
sublattices.

In Fig. 7 we show the dependence of 〈μn〉 and the internal
magnetic energy on mtri for different volumes. One can see
in panels (a) and (b) that the local moment sizes in Mn atoms
are statistically smaller and have a larger standard deviation in
Mn3GaN than those computed in Mn3NiN. However, robust
local moments emerge in both cases for larger volumes. We
note that some of our calculations presented difficulties to
converge for Mn3GaN at a = 3.78 Å and mtri < 0.2, for which
the local moment magnitudes are relatively small. Contrary
to the ferromagnetic state of bcc Fe in Sec. II F, here 〈μn〉
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FIG. 8. Dependence on the relative volume change ω of the
free energy coefficients describing the internal magnetic energy of
Mn3GaN and Mn3NiN. Data points and associated error bars cor-
respond to the values obtained from a least-squares regression of
Eq. (40), and continuous lines are the outcome given by another
regression of Eq. (41).

follows a full monotonic behavior with m at all studied
volumes. Very different outcomes have been obtained regard-
ing the calculation of Umag = 〈Eint〉tr: Its curvature found in
Mn3NiN is fairly insensitive to the volume, which is in sharp
contrast to Mn3GaN. This means that Mn3GaN and Mn3NiN
contain comparatively large and small magnetovolume cou-
pling, respectively, as observed experimentally [33].

The dependence of 〈Eint〉tr on the order parameter can be
described rather well by an expansion up to a fourth order,

〈Eint〉tr − U (0)(VPM) = 1
2VPMγω2 − U (2)m2

tri − U (4)m4
tri.

(40)

We can carry out again two consecutive least-squares regres-
sions: the first for Eq. (40) to obtain the corresponding internal
energy coefficients, and the second to fit these against the
different volumes studied.

We show the results obtained from the first regression in
Fig. 8 as data points. An inspection of the figure reveals that
in both materials U (0) and U (4) follow parabolic behaviors.
However, we have found a distinctive feature regarding U (2),
which is fairly constant in Mn3NiN while in Mn3GaN it shows

TABLE III. Internal energy coefficients describing the depen-
dence on the relative volume change ω given in Eq. (41) computed
for Mn3GaN and Mn3NiN. These include the bulk modulus in
the paramagnetic limit (γ ) and other free energy parameters
({U (2)

0 α(2),U (4)
0 , α(4), β (4)}), obtained by performing a regression of

Eq. (41). Errors associated to the regression are provided.

Mn3GaN Mn3NiN

VPM (Å3) 55 ± 7 56 ± 3
γ (GPa) 84 ± 14 117 ± 7
U (2)

0 (meV/f.u.) 13 ± 4 87 ± 3
α(2) (meV/f.u.) 1250 ± 60 45 ±50 (≈0)
U (4)

0 (meV/f.u.) 68 ± 4 93 ± 3
α(4) (meV/f.u.) 793 ± 150 388 ± 70
β (4) (meV/f.u.) −5950 ± 1400 −4070 ± 1100
(α(2) )2

2VPMγ
(meV/f.u.) 27 0.02 (≈0)

a substantial linear dependence. We thus write

U (0) = U (0)(VPM) + 1
2γVPMω2,

U (2) = U (2)
0 + α(2)ω,

U (4) = U (4)
0 + α(4)ω + β (4)ω2,

(41)

which contains an additional term for a quadratic magneto-
volume coupling described by β (4), in comparison to Eq. (32).
In Table III we show the coefficients of Eq. (41) obtained by
performing the second regression with respect to ω. We use
continuous lines in Fig. 8 to plot the corresponding results.
The bulk moduli that we have computed in the paramag-
netic limit are 84 and 117 GPa for Mn3GaN and Mn3NiN,
respectively. These values are somewhat smaller compared
with DFT calculations made at zero temperature [74], i.e.,
magnetic thermal fluctuations reduce the bulk modulus. Most
importantly, the leading second-order magnetovolume term,
α(2), is very large for Mn3GaN but negligible for Mn3NiN,
as already seen in Figs. 7(c) and 7(d) and reported in
experiment [33].

The free energy per formula unit of both materials is

1

Nsc
Gtot = − 3T Smag + U (0)(VPM) + 1

2
VPMγω2

− U (2)(ω)m2
tri − U (4)(ω)m4

tri, (42)

where Nsc is the number of Mn3AN cells with volume VPM

(containing five atoms) forming the supercell, and so here
{U (0),U (2),U (4)} are also given per formula unit. The factor
of 3 accompanying the entropy term comes from the fact
that one crystallographic unit cell contains three Mn atoms.
Minimizing Eq. (42) provides the total magnetization, 〈μn〉,
and ω as functions of T . An analytical expression for the latter
is directly given by

ω = 1

VPMγ − 2β (4)m4
tri

(
α(2)m2

tri + α(4)m4
tri

)
. (43)

In Fig. 9 we show the results obtained after performing
this minimization. The figure demonstrates that first-order
magnetic phase transitions from the paramagnetic state to
the triangular antiferromagnetic state are directly described
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FIG. 9. Temperature dependence of (a),(b) the net magnetic mo-
ment per site, (c),(d) mean value of the local moment magnitudes
(〈μn〉), and of (e),(f) the relative volume change ω. The net magnetic
moment per site is given by mtri (T )〈μn〉(T ).

by our theory and that a NTE at the transition is correctly
captured. The application of Eq. (38), which requires the
calculation of [α(2)]2/2VPMγ (given in Table III), shows that
the origin of the first-order character in Mn3NiN is the purely
electronic term U (4), as found experimentally [33]. On the
other hand, in Mn3GaN both U (4) and the magnetovolume
coupling α(2) are important factors behind the discontinuous
character of the transition (see also Fig. 3).

Values computed for both the transition temperature, Ttr,
and the spontaneous volume change at the transition, �ω, pro-
vided in Table IV, agree well with experiment for Mn3NiN.
However, we underestimate the former and overestimate the
latter for Mn3GaN [33,79]. We point out that Ttr strongly
increases with U (2)

0 . Hence, according to the results given in
Fig. 8(b) a lattice thermal expansion, not considered so far
but always present in materials, should substantially enhance
Ttr in Mn3GaN while having a little impact in Mn3NiN. This
is indeed what we have found when we model this effect by

TABLE IV. The transition temperature and spontaneous
volume change calculated at the first-order transition of Mn3GaN
and Mn3NiN and their comparison with experiment.

Ttr (K) �ω (%)

Mn3GaN Experiment [33] 290 1
Theory without lattice thermal expansion 170 4

Theory with lattice thermal expansion 315 3

Mn3NiN Experiment [32] 262 0.4
Theory without lattice thermal expansion 282 0.35

Theory with lattice thermal expansion 290 0.35

modifying the third term in the right-hand side of Eq. (42) as

1
2VPMγω2 → 1

2VPMγ (ω − CTET )2, (44)

where CTE > 0 drives an increment of ω when T in-
creases. Note that now Eq. (43) becomes ω = ω|CTE=0 +
CTET . Dashed curves in Fig. 9 show how the magnetic
properties change when CTE = 40 × 10−4 meV/K and CTE =
35 × 10−4 meV/K are used for Mn3GaN and Mn3NiN,
respectively. These estimations are chosen to yield a lat-
tice parameter that approximately matches the experimental
values in the paramagnetic state [31]. We have found that
such an effect enhances the transition temperature of Mn3GaN
up to 315 K. This value is now higher than the transition
temperature obtained for Mn3NiN, which correctly captures
the experimental trend (Ttr,Mn3GaN > Ttr,Mn3NiN; see Table IV).
We conclude that accounting for the lattice thermal expansion
is crucial for Mn3GaN owing to its very large magnetovolume
coupling.

A major part of our results above agree qualitatively, and
sometimes quantitatively, with experiment. However, our the-
ory seems to substantially overestimate U (4) in Mn3GaN [33].
Several factors can be behind this significant discrepancy.
It is well known that Mn3AN materials usually present a
deficiency of nitrogen occupation [31,73] that potentially im-
pacts the magnetic properties. Furthermore, minor chemical
or positional disorder at the Mn sites can greatly modify the
geometrical frustration of the magnetic interactions. We also
expect, therefore, that a magnetophonon coupling is another
important component to accurately describe the magnetism
of Mn3AN. All these are aspects that we have not included
in our calculations and that could explain the disagreement.
Nevertheless, our approach distinguishes between electronic
and magnetovolume mechanisms, describes how these depend
on chemical composition, and correctly captures a major part
of complicated features, such as the first-order character and
the NTE.

As a final remark, we highlight that we have described
the dependence of the internal magnetic energy in Eq. (40)
by considering the lowest possible orders of the expansion
coefficients. However, we observed that such a dependence
can be also described numerically well by taking a sixth-order
coefficient, U (6), instead of the fourth-order, U (4); considering
U (6) provides the same qualitative and quantitative behavior
for the paramagnetic-triangular antiferromagnetic phase tran-
sition in Mn3GaN, with only tiny numerical differences. On
the other hand, for Mn3NiN the transition becomes continuous
and falls right below a tricritical point separating first- and
second-order behaviors, i.e., it becomes nearly discontinuous.

IV. CONCLUSIONS AND OUTLOOK

The development of new ab initio theories describing
the temperature evolution of magnetic materials is a major
challenge greatly demanded by and strongly impacting the
research of solid-state magnetism. It broadly includes the in-
vestigation of functional magnetic phase transitions between
complex magnetic structures that are exploited in a wide
range of technological applications. In this work we address
this challenge by developing an approach that provides the
ab initio magnetic Gibbs free energy of a material from
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magnetically constrained supercell calculations. Its basis is
the description of the statistical mechanics of local mag-
netic moments, assumed to evolve very slowly following the
DLM picture [21]. We compute the internal magnetic energy
of the material by performing averages of a density func-
tional theory–based first-principles magnetic energy over a
large but affordable number of noncollinear local moment
configurations.

We have applied our supercell approach to study the ferro-
magnetic state of bcc iron and the triangular antiferromagnetic
state present in the geometrically frustrated antiperovskite
systems Mn3AN (A = Ga, Ni). Our results are in good qualita-
tive, and sometimes quantitative, agreement with experiment.
Most importantly, we describe correctly the character of the
magnetic phase transitions from the paramagnetic state, either
continuous or discontinuous, and quantify its origin in terms
of purely electronic and/or magnetostructural sources. We
have found that the mechanism giving rise to the first-order
character of Mn3NiN arises purely from multisite magnetic
interactions while this effect as well as a magnetovolume
coupling play a major role in Mn3GaN. Potential explanations
for disagreements with experiment have been discussed.

Magnetically constrained supercell calculations are the
principal computational component of our approach. This
enables the application of our DLM theory using density
functional theory codes based on a plane-wave basis (VASP in
this work), i.e., beyond the Korringa-Kohn-Rostoker formal-
ism and the coherent potential approximation. Our approach
is computationally expensive but it is already affordable by
existing supercomputers. Furthermore, satisfactory qualitative
results are obtained using relatively small supercells.

An important advantage of this DLM theory is that the
trial, mean-field Hamiltonian prescribing the local moment
averages [see Eq. (9)] can be naturally extended beyond
the simplest single-site Weiss field parameters [21]. In other
words, magnetically constrained supercell calculations can
be directly used to account for nonlocal magnetic correla-
tions akin to the nonlocal coherent potential approximation
[65,66,82]. Along these lines, spin-cluster expansions, which
also follow an adiabatic approximation for the local mo-
ments, can be used to efficiently construct complex magnetic
Hamiltonians [83]. Furthermore, magnetically constrained
calculations directly output the magnetic torques added to sus-
tain the transient orientational magnetic configurations. Our
approach, therefore, also offers opportunities to be combined
with spin-dynamics and related finite-temperature methods
[84,85]. Finally, additional averages of the internal DFT en-
ergy can be performed over other degrees of freedom, such
as the local moment magnitudes and the atom vibrations
[86–88]. Pertinent timescale separations for the lattice dy-
namics could then be considered [28,89] to account for a
magnetophonon coupling [90].
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APPENDIX: CALCULATIONS FOR SMALLER
SUPERCELLS

Figure 10 shows the second- and fourth-order internal
energy coefficients computed for ferromagnetic bcc Fe and
for the triangular antiferromagnetic state of Mn3NiN with
smaller supercells. These calculations have been carried out
for lattice parameters equal to a = 2.925 Å and a = 3.86 Å,
respectively. In Table V we provide the number of supercell
snapshots used to carry out the average of the magnetic energy
for every value of the magnetic order parameter. This number
becomes larger for smaller supercells if similar statistical ac-
curacy for the energy average is required. The table also shows

TABLE V. Number of supercell snapshots and k mesh used to
carry out the average of the magnetic energy for the different choices
of supercell sizes in Fig. 10. The higher the number of atoms in the
supercell, the higher the number of necessary snapshots to achieve
satisfactory accuracy for the average.

Atoms in the Number of
Material supercell snapshots, NMC k mesh

bcc Fe 16 50 6 × 6 × 6
54 30 4 × 4 × 4

128 30 3 × 3 × 3
250 25 2 × 2 × 2
432 10 2 × 2 × 2

Mn3NiN 40 80 3 × 3 × 3
135 25 2 × 2 × 2
320 10 2 × 2 × 2
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the number of k points used within the Monkhorst-Pack grid
sampling.

The same qualitative results are obtained even after reduc-
ing the supercell size to contain only a few tenths of atoms. For
example, the ratio U (4)/U (2) remains approximately zero and
close to 1 for bcc Fe and Mn3NiN, respectively. These values
are below and above the critical condition U (4)/U (2) = 3

10 ,
which directly implies that the corresponding character of
the magnetic phase transition from the paramagnetic state is
second order and first order, respectively [see Eq. (38) and

Fig. 3]. On the other hand, we observe a non-negligible quan-
titative change of U (2) for bcc Fe, i.e., there is a dependence
of the computed transition temperature, Ttr, on the size of
the supercell [see Eq. (36)]. In this case, Ttr decreases when
the supercell becomes larger. We conclude that qualitatively
correct results can be already obtained for relatively small
supercells, but that very accurate quantitative calculations re-
quire a large number of atoms. However, careful reassessment
in this regard should be made for the evaluation of other
magnetic materials.
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