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It is evidenced that effective lattice-gas models of hard-core monomers and dimers afford a proper description
of low-temperature features of spin-% Heisenberg diamond and octahedral chains. In addition to monomeric
particles assigned within the localized-magnon theory to bound one- and two-magnon eigenstates, the effective
monomer-dimer lattice-gas model includes dimeric particles assigned to a singlet-tetramer (singlet-hexamer)
state as a cornerstone of dimer-tetramer (tetramer-hexamer) ground state of a spin—% Heisenberg diamond
(octahedral) chain. The feasibility of the effective description is confirmed through the exact diagonalization
and finite-temperature Lanczos methods. Both quantum spin chains display rich ground-state phase diagrams
including discontinuous as well as continuous field-driven phase transitions, whereby the specific heat shows in
vicinity of the former phase transitions an extraordinary low-temperature peak coming from a highly degenerate

manifold of low-lying excitations.
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I. INTRODUCTION

Frustrated quantum Heisenberg spin systems have re-
mained for a long time at the forefront of research interest
because they often exhibit intriguing ordered or disordered
quantum ground states in addition to unconventional magnetic
properties emergent at sufficiently low temperatures [1,2].
From this perspective, it is quite bizarre that a more complex
nature of exchange pathways initiating geometric spin frus-
tration simultaneously offers a genuine possibility of finding
quantum ground states of frustrated Heisenberg spin mod-
els by the use of rigorous methods. Among a few highly
celebrated examples of frustrated quantum Heisenberg spin
models with exactly known ground states, one could, for in-
stance, mention the zigzag ladder [3], the Shastry-Sutherland
lattice [4], the delta chain [5], and the one-dimensional chain
of linked tetrahedra [6].

Compared with this, it is generally much more difficult to
cope with magnetic and thermodynamic properties of frus-
trated quantum Heisenberg spin models at low but nonzero
temperatures. The unbiased exact diagonalization (ED) [7,8]
or finite-temperature Lanczos method (FTLM) [9-14] are re-
grettably limited to relatively small finite-sized Heisenberg
spin systems involving at most a few dozen quantum spins.
On the other hand, the large-scale simulations of frustrated
Heisenberg spin models based on quantum Monte Carlo
(QMC) methods suffer from a serious negative-sign problem
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when performed in a standard basis, and one should ac-
cordingly resort to more challenging sign-problem-free QMC
computations performed in a dimer [15-19] or trimer [20]
basis.

A flat band emergent in the one-magnon spectrum of frus-
trated Heisenberg spin systems bears evidence of a magnon,
which is bound to a small portion of the frustrated spin lattice
due to a destructive quantum interference. Owing to this fact,
the many-magnon eigenstates of frustrated Heisenberg spin
models can be simply designed from a bound one-magnon
eigenstate within the concept of localized magnons establish-
ing an effective lattice-gas model [21], which consists of an
independent arrangement of bound magnons on trapping cells
of frustrated spin lattices [22-24].

It should be pointed out, however, that the effective lattice-
gas models developed within the standard formulation of
the localized-magnon theory are usually eligible for a de-
scription of frustrated quantum Heisenberg spin systems only
in a high-field region sufficiently close to the saturation
field [22-24]. One may fortunately avoid this shortcoming
in a special subclass of the frustrated quantum Heisenberg
spin models satisfying local spin-conservation laws. It has
been verified that an additional counting of the lowest-energy
bound two-magnon eigenstate paves the way toward a com-
plete description of low-temperature magnetization curves
and thermodynamics of highly frustrated Heisenberg octahe-
dral chains from zero up to the saturation field [25-28].

In this paper, we generalize the localized-magnon theories
established previously for the spin-1 Heisenberg diamond

2
and octahedral chains by extending their validity to a less
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FIG. 1. A schematic illustration of the spin-% Heisenberg dia-
mond chain including the notation for the lattice sites and assumed
coupling constants.

frustrated parameter space including dimer-tetramer [29] and
tetramer-hexamer (TH) [25] ground states, respectively. It is
worthwhile to remark that the spin—% Heisenberg diamond
chain bears a close relation to several copper-based magnetic
compounds such as azurite Cu3(CO;),(OH), [30,31],
A3CU.3A102(SO4)4 (A = K, Rb, and CS) [32—34],
[Cu3(OH),(CH3COO)(H,0)4](RSO3)2 (RSO3 = organic sul-
fonate anions) [35], and Cuz (CH3COO)4(OH), - 5H,O [36].
Although we do not have at present any knowledge
about a possible experimental realization of the spin—%
Heisenberg octahedral chain, a relatively numerous family of
hexanuclear complexes with the magnetic core of a discrete
copper-based octahedron {Cug} [37—40] could be used for
a brick-and-mortar synthesis of a one-dimensional copper
polymeric chain of corner-sharing octahedra. A closely
related extended magnetic structure with the architecture of a
three-dimensional network of corner-sharing octahedra {Cug }
is, for instance, realized in the copper-based metal-organic
framework [Cus(tpt)4](ClO4)s [41]. Last but not least, an

J

artificial design of the spin-% Heisenberg octahedral chain
achieved through magnetic atom-trap lattices is also feasible
with regard to a recent successful realization of several
related one-dimensional magnetic structures such as ladders
and diamond spin chains [42].

The outline of this paper is as follows. The overall ground-
state phase diagrams of the spin—% Heisenberg diamond and
octahedral chains will be presented in Secs. II and IV to-
gether with a few basic steps elucidating its construction from
exact and density-matrix renormalization group (DMRG)
calculations of the effective mixed-spin Heisenberg chains.
The spin-% Heisenberg diamond and octahedral chains are
reformulated within the modified localized-magnon theory,
establishing their connection to a one-dimensional lattice-gas
model of hard-core monomers and dimers, in Secs. IIl and V,
where an eligibility of the effective description is also cor-
roborated through a detailed comparison with numerical data
obtained from the full ED and FTLM. The paper ends with
a brief summary of the most important findings in Sec. VI,
where a few future outlooks are also presented.

II. GROUND STATES OF A SPIN-% HEISENBERG
DIAMOND CHAIN

First, let us consider the spin-% Heisenberg diamond chain,
which is schematically illustrated in Fig. 1 and mathemati-
cally defined through the Hamiltonian:

3
= Z |:J1(S1,j + Sl,j+1) . (Sz,j + S3,j) +JZSZ,j : S3,j - hzﬁf,], e))

Jj=1

where S,-,j (i=1,2,3;j=1,...,N) denotes the spin—% op-
erator assigned to a lattice site unambiguously given by two
subscripts; the first subscript specifies spins from a given unit
cell, and the second subscript determines the unit cell itself.
The coupling constant J; > O stands for the antiferromagnetic
interaction between nearest-neighbor monomeric (S, ;) and
dimeric (S,j, S3,;) spins, while the coupling constant J, > 0
accounts for the antiferromagnetic intradimer interaction be-
ing responsible for a geometric spin frustration. The Zeeman
term h > 0 accounts for an effect of the external magnetic

J

i=1

(

field, and finally, the periodic boundary condition is imposed
for simplicity S; v = S1.1.

The ground-state phase diagram of the spin-% Heisenberg
diamond chain given by the Hamiltonian in Eq. (1) can be
obtained by combining three complementary techniques. One
may adapt variational arguments (see Appendix in Ref. [43])
to rigorously prove, in the highly frustrated parameter region
Jo > 2J; and low enough magnetic fields & < J; + J», the
monomer-dimer (MD) ground state schematically illustrated
in Fig. 2 and mathematically given by the eigenvector:

T2 181 ® Z5( 12 ida) = [ 2 ta),  h=0,

IMD) =

]_[1};1 | 11,) ® %@(l T2 3 — 1 d213.)), h >0,

where |S ;) denotes any out of two available states | 1, ;) and
[ 1,;) of the monomeric spins. It is worthwhile to remark that
the MD ground state in Eq. (2) is macroscopically degenerate
at zero magnetic field due to the frustrated (paramagnetic)
character of all monomeric spins Sy ;, which are consequently
perfectly aligned into the magnetic-field direction once the
external field is turned on. Another independent confirma-

@)

(

tion of the MD ground state in Eq. (2) is provided by the
localized-magnon approach, which restricts its presence in
the highly frustrated parameter space J, > 2J; to sufficiently
low magnetic fields & < hg not exceeding the saturation field
hg = J1 + J, associated with a field-driven phase transition to
the fully saturated ferromagnetic phase [23,44,45]. It could
be thus concluded that the variational and localized-magnon
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FIG. 2. A schematic illustration of the monomer-dimer ground
state given in Eq. (2), which is responsible for occurrence of interme-
diate 1 3 plateau in a zero-temperature magnetization curve. An oval
denotes a singlet-dimer state.

theories give evidence of the MD ground state in Eq. (2)
from zero up to the saturation field in the highly frustrated
parameter region J, > 2J;.

In the rest of the parameter space J, < 2J;, the ground
states of the spin—% Heisenberg diamond chain cannot be
simply found on the grounds of exact analytical calculations.
To this end, it is convenient to rewrite the zero-field part of the
Hamiltonian in Eq. (1) into the following equivalent form:

J: A 3
H JIZ(S11+S11+I) S¢]+ ZZ(S31_5>5 (3)

j=1

which directly implies a local conservation of the comp051te
spin S, = =S, g+ S; _j on vertical dimers of a spm-— Heisen-
berg diamond chain. The composite spin on vertical dlmers is
accordingly a conserved quantity with well-defined quantum
spin numbers S. ; = 0 or 1. Hence, it follows that all ground
states of the spin—% Heisenberg diamond chain can be derived
from the lowest-energy eigenstates of effective mixed spin-
(%, S, ;) Heisenberg chains schematically illustrated in Fig. 3
when performing an appropriate shift of their eigenenergies
according to the second term of the Hamiltonian in Eq. (3).
Note furthermore that the z component of the total spin op-
erator 85 = ZI;]:] S8 ; commutes with the Hamiltonian
in Eq. (1), which means that most preferable energy eigen-
values of the spin-% Heisenberg diamond chain in a nonzero
magnetic field directly follow from their zero-field counter-
parts when performing only a trivial shift by the respective
Zeeman’s term:

E(S:, h#0) =

Although one should generally find out lowest-energy
eigenstates of effective mixed spin—(%, S.,;) Heisenberg chains
in Eq. (3) with all possible combinations of the composite
spins (Vj S¢ ; = 0 or 1), it is often sufficient to consider only
a few particular cases with quantum spin numbers that do not
break translational symmetry or at most limit the spontaneous
breaking of translational symmetry to a few unit cells.

A comprehensive analysis of the ground-state phase dia-
gram of the spin-% Heisenberg diamond chain in zero field

E(S%, h=0) — hS5. )

S\]

J cj 1j
A

S,

—P—r—

awr(/w&/'lfe

FIG. 3. A schematic illustration of the effective mixed spin—(%,
S..;) Heisenberg chains, in which the composite spins may acquire
the values S, ; = 0 or 1 for a diamond chain and S, ; = 0, 1, or 2 for
an octahedral chain.

was performed in Ref. [29]. It was proven that all its ground
states stem from the effective mixed spin-(%, 0) or mixed

spin-(%, 1) Heisenberg chains without translationally broken
symmetry or the effective mixed spin-(%, , 2, 0) Heisenberg
chain with a period doubling. In Appendix A, we prove that
this property is preserved also in nonzero fields.

The lowest-energy eigenstate of the effective mixed spin-
(%, 0) Heisenberg chain with the unique choice of zero
composite spin Vj S ; = 0 naturally corresponds to the MD
ground state in Eq. (2) with the exact energy:
=)= RS
Eipo (N, Sp = 3) =—3NJ2 = 3N, (5)

because the singlet-dimer state at vertical bonds assigned to
zero composite spin decouples all correlations between the
dimeric and monomeric spins. It is worthwhile to remark,
moreover, that the effective mixed-spin Heisenberg chains
with regularly alternating zero composite spins are always
fragmented into smaller quantum spin clusters, for which the
lowest-energy eigenstates can be rather easily calculated by
the ED method. On the other hand, the fragmentation does
not occur for the other unique choice of the composite spins
Vj Sc,j =1, which contrarily gives rise to highly correlated
collective eigenstates with the energy eigenvalues governed
by the formula:
El/z_](N, S;) =NJ1S]/2_1(N, SZT)+%NJ2—hS§~, (6)
where €;/,_1(N, S%) denotes the energy per unit cell of the ef-
fective mixed spin-(%, 1) Heisenberg chain with unit coupling
constant, the number of unit cells N, and z component of the
total spin S7.. The mixed spin—(%, 1) Heisenberg chain exhibits
at low enough magnetic fields the gapped ferrimagnetic phase
with a z component of the total spin §%. = (1 — %) XN =N/2
due to ordering of energy levels imposed by the Lieb-Mattis
theorem [46], whereby the eigenstates with higher values of
the total spin momentum S% > N/2 form a continuous band
pertinent to the gapless Tomonaga-Luttinger quantum spin
liquid emergent at higher magnetic fields when an energy gap
above the Lieb-Mattis ferrimagnetic phase closes [47-51]. To
gain the respective eigenenergies €1,,—1(N, $5) of the effec-
tive mixed spin—(%, 1) Heisenberg chain, one has to resort to
state-of-the-art numerical calculations. To this end, we have
implemented DMRG simulations of the effective mixed spin-
5. 1) Heisenberg chain with up to 120 spins (N = 60 unit
cells, which correspond to the diamond chain of 180 spins)
within the open-source software Algorithms and Libraries
for Physics Simulation (ALPS) project [52]. Finally, another
available ground state relates to the lowest -energy eigenstate
of the effective mixed spin—(%, , 2, 0) Heisenberg chain,
where singlet and polarized triplet states regularly alternate
on vertical dimers. The singlet-dimer states break the effective
mixed spin-(%, s 2, 0) Heisenberg chain into noninteracting
three-spin clusters, which also turn out to be in the singlet state
within the lowest-energy eigenstate with the energy:

Eijp-1-1-0(N, S5 = 0) = —INJ, — NJ,. (7
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This lowest-energy eigenstate thus corresponds to the singlet
tetramer-dimer (TD) phase of the spin-% Heisenberg diamond

J

N/2

chain, which is schematically depicted in Fig. 4 and mathe-
matically given by the eigenvector:

1
|TD) = l_[ —[l M2j—1d2.2j-113,2j-141,2)) + [ d12j-112.2j-143,2j-111,2))

V3

j=1

1
- §(| Maj—1T22j-1d32j-1d1.2)) 1M 12j—1d22j-143,2-111,2)) + [ d12j-112.2j—113.2j-141,2))

1
+ |~L1,2j1»l«2,2j1T3,2j1T1,2j))j| ® —2(| P22i43.25) — [12.2j13,.2))). (8)

%

Note that the singlet TD phase is twofold degenerate because
another linearly independent eigenstate with the same energy
can be obtained from the eigenvector in Eq. (8) by interchang-
ing singlet-tetramer and singlet-dimer states on odd and even
unit cells. The TD phase emerges only if the interaction ratio is
from the interval 0.91 < J,/J; < 2.0 and the magnetic field is
sufficiently small i/J; < 0.55, whereby the highest possible
field value for existence of the TD ground state is achieved
for J,/J; = 1.45, see Fig. 5.

The ground-state phase diagram constructed from all pre-
viously described lowest-energy eigenstates of the spin-%
Heisenberg diamond chain is depicted in Fig. 5 in the interac-
tion ratio vs magnetic field plane. In total, the displayed phase
diagram involves five different ground states: the gapped Lieb-
Mattis ferrimagnetic phase, the gapless Tomonaga-Luttinger
quantum spin liquid, the fully polarized ferromagnetic phase,
the MD phase, and the TD phase. Two horizontal phase
boundaries delimiting the Tomonaga-Luttinger quantum spin
liquid mark continuous field-driven quantum phase transi-
tions, while all other phase boundaries denote discontinuous
field-driven phase transitions accompanied with discontinu-
ous magnetization jumps. The magnetization corresponding
to the ferrimagnetic phase and the MD phase equals % of
the saturation magnetization, while the TD phase has zero
magnetization owing to the singlet character of regularly alter-
nating singlet tetramers and singlet dimers. Contrary to this,
the magnetization of the Tomonaga-Luttinger quantum spin
liquid continuously rises upon increasing of the magnetic field
due to the gapless character of this quantum ground state. The
overall ground-state phase diagram of the symmetric spin-%
Heisenberg diamond chain is lacking in the literature, while
the zero-field phase boundaries between the ferrimagnetic,
TD, and MD phases are in perfect agreement with the former
results reported by Takano et al. [29].

FIG. 4. A schematic illustration of the singlet tetramer-dimer
phase given by the eigenvector in Eq. (8). Large and small ovals rep-
resent regularly alternating singlet-tetramer and singlet-dimer states.

[
II1. HEISENBERG DIAMOND CHAIN AS MD PROBLEM

In this section, we will turn our attention to a description of
low-temperature magnetization curves and thermodynamics
of the spin—% Heisenberg diamond chain. It is noteworthy that
the standard localized-magnon theory based on a classical
lattice-gas model of hard-core monomers offers a satisfac-
tory description of low-temperature magnetothermodynamics
of the spin—% Heisenberg diamond chain only in the highly
frustrated parameter region J,/J; > 2 [23,44,45], whereas our
aim is to proceed beyond this simple theory. The low-energy
features of the spin—% Heisenberg diamond chain will be ef-
fectively described by the one-dimensional lattice-gas model
of hard-core monomers and dimers, which will allow us to
extend the range of validity of the localized-magnon approach
to a less frustrated parameter space involving the singlet TD
phase in Eq. (8). The MD lattice-gas model defined on an aux-
iliary one-dimensional lattice includes hard-core monomeric
particles assigned to the singlet-dimer states on vertical
bonds:

1
lm); = E(I 12,43, = 213,70, )
4 T T T T T T T T T T
saturation (1/2-1)_,
—3 ]
Q spin liquid
=
(1/2-1)
2r monomer-dimer
1/3-plateau
ferrimagnetic (1/2-0)
1+ 1/3-plateau = 1
(1/2-1)
0 . 1 1
0.0 0.5 2.5 3.0

FIG. 5. The ground-state phase diagram of the spin—% Heisen-
berg diamond chain in the J,/J; — h/J plane. The numbers in
parentheses determine spin values within the effective mixed spin-(%,
S.) Heisenberg chain.
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FIG. 6. One typical permissible state of the spin-% Heisenberg
diamond chain and its equivalent representation within the two-
component lattice-gas model of hard-core monomers and dimers.
Small red spheres of the auxiliary lattice correspond to the
monomeric spins Sy, ;, while large blue spheres of the auxiliary lattice
correspond to the composite spins S ; assigned to the vertical dimers
Sz, i S3_ je

as well as hard-core dimeric particles assigned to the singlet-
tetramer states of diamond (four-spin) clusters being a
cornerstone of the TD ground state in Eq. (8):

1
— (b2t b 1t s M)

ld); = 7

1
—ﬁ(l it gdgen) H It idads )

+ it s b)) H 2 it ).
(10

One typical permissible state of the spin-% Heisenberg di-
amond chain and its equivalent representation within the
developed MD lattice-gas model is displayed in Fig. 6. Small
red circles of the auxiliary lattice correspond to lattice sites of
the monomeric spins S ;, and large blue circles of the aux-
iliary lattice correspond to lattice positions of the composite
spins S¢ ; = S, ; + S3,; of the vertical dimers. The composite
spins corresponding to the vertical dimers are accessible to
the fully polarized ferromagnetic state acting as a reference
vacuum state, the singlet-dimer state in Eq. (9), represented
by a monomeric particle schematically shown by a large green
circle, and the singlet-tetramer state in Eq. (10), represented
by a dimeric particle (large violet rectangle) incorporating
two enclosing monomeric spins Sy, ; and Sy ;4 as well. If the
energy is defined relative to the fully polarized ferromagnetic
state serving as a reference state, then one should assign the
chemical potential u; = J; +J, — h to the monomeric par-
ticles connected with the singlet-dimer state in Eq. (9) and
the chemical potential p, = 3J; — h to the dimeric particles
associated with the singlet-tetramer state in Eq. (10). The ef-
fective Hamiltonian of the one-dimensional lattice-gas model
of hard-core monomers and dimers consequently reads

N
Herr = Edy —h Y _[1+85 (1 —d;_1)(1 —d))]

J=1

N N
_Mlzmj—mZd-, (11)
j=1 j=1

where Efy; = NJi + NJ»/4 refers to the zero-field energy of
the fully polarized ferromagnetic state, the second term is

the respective Zeeman’s energy, and m; = 0,1 and d; =0, 1
are occupation numbers of the hard-core monomeric and
dimeric particles, respectively. The partition function of the
MD lattice-gas model defined through the Hamiltonian in
Eq. (11) can be written in the compact form:

— BES) ZZZ]‘[4d (I=d;_1d;)(A—m;d;)

i} mj) {dj} j=1

= exp

x exp { Blpimj+padi+hS; ;(1—d;_1)(1=dp]}. (12)

Here, 8 = 1/(k,T), where kg is the Boltzmann constant, T
is absolute temperature, the summation 55) runs over spin
states of all monomeric spins S ;, and the summations }°,,
and ) d) are carried out over all possible values of the respec-
tive occupation numbers. The factor (1 — d;_1d;)(1 —m;d;)
ensures a hard-core constraint forbidding overlap and/or dou-
ble occupancy of auxiliary lattice sites by the monomeric
and dimeric particles, while the factor 4%/_ is the correction
term for the singlet-tetramer state in Eq. (10) that would be
accounted four times without this factor when one performs
the summation over spin states of two monomeric spins S ;
and Sy j41. The important feature of the partition function
in Eq. (12) is the possibility to sum over all the states of
the monomeric spins Sy ; and hard-core monomer particles
m; independently. In fact, the complete hard-core conditions
between the quasiparticles should also include the projection
operator [1 — (1 — m;)di+1][1 — d;(1 — m;11)], which ensures
that the singlet-plaquette state (d; particle) cannot be followed
by the fully polarized state on the adjacent dimer. The energy
of the latter state is much larger than the energy scale of
allowed states present in the effective Hamiltonian in Eq. (11),
and for simplicity, it can be completely left out from consider-
ation. After performing the summations ), 5; ) and 2_(m;)> the

expression behind the product symbol can be expressed solely
in terms of the occupation numbers of the dimeric particles:

1
T, djy1) = 4_dj(1_dj—1dj)2 exp (Bh + Buad;)

X [1+ (1 —d;)exp (Bu1)]
x cosh [%h(l —d;—)(1 — dj)]. (13)

The expression in Eq. (13) can be in turn identified as
the transfer matrix, which allows a simple calculation of
the partition function in Eq. (12) within the transfer-matrix
method [53] exploiting a consecutive summation over the
occupation numbers of the dimeric particles:

(—BEd) Z]‘[T(d, 1.d))

{d;} j=1
= exp (—,BEQM)TrTN
= exp (—BEQ) (A + V). (14)

= exp

The final expression for the partition function in Eq. (14) is
given through two eigenvalues AL obtained after a straight-
forward diagonalization of the two-by-two transfer matrix in

064420-5



JOZEF STRECKA et al. PHYSICAL REVIEW B 105, 064420 (2022)
ol . - YTy . . . VARAS Y
ED full (18 spins) 0.20 ED-full (18 spins
08— MDM (18 spins) — MDM (18 S 1ns)
. _0.15 1
< 0.6f TN
©0.10 = ;
0.470.01 i
oal | 0.05 .
k,T/J =02 Jy1J,=2.1
00 L L L L 1 L 000 h L f . . h .
00 05 1.020 25 3.0 35 40 0.0 0.4 08 25 30 35 4.0
h /J1 h /Jl
A ——h YTy ; . ; . TRNASN
1.0 Jy/J =21 0.20 FTLM (30 spinsj ' )
08l —— MDM (30 spins)
< FTLM (30 spins) L0.15 ]
J 0.6 —— MDM (30 spins) =
g ©0.10 - ]
0.410.01 T
02l | 0.05 '; 1
k,T/J =02 \|
0.0 : /- : : s 0.00 : . A )
00 05 1.020 25 30 35 4.0 0.0 0.4 08 25 3.0 35 40
hlJ hilJ

1

FIG. 7. (Left panel) Magnetization curves of the spin—% Heisenberg diamond chain with J,/J; = 2.1 obtained from the effective monomer-
dimer model (MDM) vs the exact diagonalization (ED) data for 18 spins (upper panel) and the finite-temperature Lanczos method (FTLM)
data for 30 spins (lower panel) of the original model in Eq. (1). (Right panel) The same as in the left panel but for the specific heat. Thin black
lines show analytical results derived from the effective MDM in Eq. (11), while colored symbols refer to the ED (upper panel) or FTLM (lower
panel). Note that there is an axis break in the middle of the intermediate %-plateau.

Eq. (13):
o B\ B\ T -

A+ = e {cosh > Eq% ./ |cosh — B + ePra@,

Bq =1+, (15)

The free-energy density of the finite-sized spin-% Heisenberg
diamond chain normalized per spin consequently reads

1 1 by 1 v N
=—kgT—InZ=—(J1+ —)— —kgT In(X AD).
fan BT o In 3< 1+ 4) VYA n(Ay + ,;
(16)

The simpler expression can be acquired for the free-energy
density of the infinite spin—% Heisenberg diamond chain,
which depends in the thermodynamic limit N — oo solely on
the larger eigenvalue of the transfer-matrix:

fro = —keT lim %mz - %<J1+%>—%kBTlnk+. (17)
It is noteworthy that the final formulas in Eqgs. (16) and (17)
for the free-energy density allow a straightforward calculation
of the magnetization, susceptibility, entropy, and specific heat
for finite and infinite spin-% Heisenberg diamond chains, re-
spectively. To verify the reliability of the effective description
based on the MD lattice-gas model in Eq. (11), we will com-
pare as-obtained magnetization and specific-heat data with

the extensive numerical calculations employing the ED and

FTLM implemented within the open-source ALPS [52] and
SPINPACK [54,55] software.

First, let us comment on the most interesting results for
the highly frustrated spin-% Heisenberg diamond chain with
J>/J1 > 2. For illustrative purposes, magnetization curves of
the spin—% Heisenberg diamond chain are displayed in the left
panel of Fig. 7 for the fixed value of the interaction ratio
J>/J; = 2.1 and four different temperatures. The magnetiza-
tion data derived from the finite-sized formula in Eq. (16)
for the free-energy density of the effective MD model in
Eq. (11) are compared in this figure with the full ED data for
18 spins (N = 6 unit cells, upper panel) and FTLM results
for 30 spins (N = 10 unit cells, lower panel) of the spin-
% Heisenberg diamond chain in Eq. (1). The magnetization
curves acquired from the MD model in Eq. (11) perfectly
coincide at sufficiently low temperatures kg7 /J; < 0.2 with
accurate numerical results for the magnetization curves of the
Spin—% Heisenberg diamond chain. Generally, the intermediate
%-plateau resembling the MD ground state gradually shrinks
upon increasing of temperature, and the magnetization curve
becomes smoother. To gain a more complete understanding,
the magnetic-field variations of the specific heat of the spin-%
Heisenberg diamond chain are depicted in the right panel of
Fig. 7 for the same fixed value of the interaction ratio J, /J; =
2.1 and three different temperatures. From this figure, the per-
fect agreement between the specific-heat data stemming from
the effective MD model in Eq. (11) and the precise numerical
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FIG. 8. (Left panel) Magnetization curves of the spin-% Heisenberg diamond chain with J,/J; = 1.8 obtained from the effective monomer-
dimer model (MDM) vs the exact diagonalization (ED) data for 18 spins (upper panel) and the finite-temperature Lanczos method (FTLM)
data for 30 spins (lower panel) of the original model in Eq. (1). (Right panel) The same as in the left panel but for the specific heat. Thin black
lines show analytical results derived from the effective MDM in Eq. (11), while colored symbols refer to the ED (upper panel) or FTLM (lower

panel).

data acquired for the spin-% Heisenberg diamond chain in
Eq. (1) is limited to much lower temperatures kg7 /J; < 0.05,
while the discrepancy becomes more pronounced at higher
temperatures even if the effective description still at least
qualitatively reproduces the most essential features of the
accurate numerical data. It should also be pointed out that the
magnetization and specific heat of the spin-% Heisenberg di-
amond chain do not show at low enough temperatures almost
any finite-sized dependence (confront data for the diamond
chain with 18 and 30 spins) because most thermally populated
excited states are from the monomeric universality class.

The magnetization process and specific heat are displayed
in Fig. 8 for the spin—% Heisenberg diamond chain with
a relative strength of the interaction constants J,/J; = 1.8
promoting a moderately strong spin frustration. Under this
condition, the spin—% Heisenberg diamond chain exhibits in
a low-field region zero and % magnetization plateaus, which
can be ascribed to the TD and MD ground states, respectively.
The magnetization curves extracted from the effective lattice-
gas model of hard-core monomers and dimers in Eq. (11)
are in excellent agreement with the precise numerical data
obtained from the full ED (upper panel) or FTLM (lower
panel) up to moderate temperatures kg7 /J; < 0.2, see the
left panel in Fig. 8. The magnetic-field dependences of the
specific heat of the spin-% Heisenberg diamond chain are
plotted on the right panel of Fig. 8 for the same value of the
interaction ratio J,/J; = 1.8 and three different temperatures.

The specific heat displays in a low-field region a pronounced
double-peak dependence, which appears in the vicinity of the
field-driven phase transition between the TD and MD ground
states emergent at 4/J; = 0.2. Unlike the previous case, the
peak heights of the specific heat above and below the relevant
field-induced phase transition are not the same due to differ-
ence in the relative degeneracy of the TD and MD ground
states. It turns out that the low-temperature dependences of
the specific heat stemming from the effective MD model in
Eq. (11) satisfactorily reproduce the accurate numerical data
gained for the spin-% Heisenberg diamond chain in Eq. (1)
with the help of ED and FTLM only at low enough tempera-
tures kg T /J; < 0.05, whereas there is only qualitative rather
than quantitative agreement at higher temperatures kg7 /J; 2,
0.1. Another interesting observation is that the less frustrated
spin-% Heisenberg diamond chain with J,/J; = 1.8 shows a
marked finite-sized effect of the specific heat when both peak
heights are at sufficiently low temperatures somewhat higher
for the diamond chain with 30 spins than for 18 spins.

To bring insight into the reliability of the developed ef-
fective description as well as finite-sized effects, we depict
in Fig. 9 temperature variations of the magnetization and
specific heat of the spin—% Heisenberg diamond chain for the
fixed value of the interaction ratio J,/J; = 1.8 and two dif-
ferent magnetic fields 4/J; = 0.15 and 0.25 selected slightly
below and above the relevant transition field. Temperature
dependencies of the magnetization generally exhibit a perfect
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FIG. 9. (Left panel) Temperature dependencies of the magnetization of the spin—% Heisenberg diamond chain for J,/J; = 1.8 and two
different magnetic fields &/J; = 0.15 (upper panel) and h/J; = 0.25 (lower panel). (Right panel) The same as in the left panel but for
temperature dependencies of the specific heat per spin. Colored symbols display numerical data derived with the help of exact diagonalization
(ED) or finite-temperature Lanczos method (FTLM) for the finite-sized diamond-chain model in Eq. (1), while thin black lines (not shown for
the lower panel) depict the respective analytical results derived from the effective monomer-dimer model (MDM) in Eq. (11). A black broken
line shows a theoretical prediction gained from the effective MDM in Eq. (11) in the thermodynamic limit N — oo.

agreement between analytical results derived from the ef-
fective model (solid lines) and numerical data acquired by
ED and FTLM methods (colored symbols) up to moderate
temperatures kg7 /J; < 0.2. While the magnetization data
recorded at higher magnetic fields supporting the MD ground
state do not show any marked finite-sized corrections, the
magnetization data at lower magnetic fields preferring the TD
ground state are subject to a gentle finite-sized effect when
the magnetization gradually rises with increasing of the sys-
tem size. A black broken line displays a valuable theoretical
prediction of the effective MD model in Eq. (11) in the ther-
modynamic limit N — oo, which is otherwise inaccessible
to unperturbed numerical approaches gradually converging
to this limit. The same statements hold true also for tem-
perature dependencies of the specific heat with a few small
differences. First, the excellent quantitative accordance be-
tween the analytical and numerical results can be observed
only up to much lower temperature kg7 /J; < 0.05, and sec-
ond, the height of the low-temperature peak of the specific
heat does not show the monotonous dependence on a system
size at lower magnetic fields when it at first increases and
then decreases upon increasing of the number of spins (unit
cells). From this perspective, the relevant prediction of the
effective MD lattice-gas model in Eq. (11) for the specific
heat is especially valuable because it would be otherwise
difficult, if not impossible, to estimate the specific-heat data
in the thermodynamic limit (black broken line) from a finite-

sized analysis of precise numerical methods such as ED or
FTLM. The developed localized-magnon theory thus pro-
vides a useful alternative to other sophisticated calculation
methods, which also allow a precise estimate of thermody-
namic properties of diamond spin chain from a full energy
spectrum of its smaller fragments [56,57], and that is why
the validity of these theories holds up to slightly higher
temperatures.

IV. GROUND STATES OF A SPIN-% HEISENBERG
OCTAHEDRAL CHAIN

Another paradigmatic example to be considered here-
after is the spin-% Heisenberg octahedral chain schematically

FIG. 10. A schematic illustration of the spin—% Heisenberg oc-
tahedral chain including notation for the lattice sites and assumed
coupling constants.
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shown in Fig. 10 and defined via the Hamiltonian:

N
=3 |:Jl S +8000) - S +85+84; 485 )

Jj=1

+12(S2’j'S3,j+S3!j'S4’j+S4’j'SSJ"’SSJ'SZJ)

5
—hZSi{]}. (18)

Here, the coupling constant J, denotes antiferromagnetic
exchange interaction between nearest-neighbor spins from
square plaquettes, and the coupling constant J; accounts for
the nearest-neighbor interaction between monomeric spins
and square-plaquette spins. The parameter & stands for the
external magnetic field, NV is the total number of unit cells,
and the periodic boundary condition is assumed S; y = S} ;
for simplicity. A full ground-state phase diagram of the spin-
% Heisenberg octahedral chain in Eq. (18) was established
using the variational technique, localized-magnon approach,
Lanczos method, and DMRG calculations in our previous
paper [25], to which readers interested in further calculation

J

FIG. 11. A schematic illustration of the monomer-tetramer
ground state in Eq. (19), which is responsible for occurrence of the
intermediate % plateau in a zero-temperature magnetization curve.
An oval denotes a singlet-tetramer state.

details are referred to. To make our subsequent discussion
self-contained, we will merely quote only the main outcomes
of this calculation procedure, which was accomplished in a
similar fashion as thoroughly described for the spin—% Heisen-
berg diamond chain in the preceding part.

The variational method provides for the spin-% Heisenberg
octahedral chain in Eq. (18) exact evidence of the monomer-
tetramer (MT) ground state in the highly frustrated parameter
region J, > 2J; and low enough magnetic fields & < J; + J,.
The MT ground state is for better illustration schematically
drawn in Fig. 11 and can be defined through the eigenvector
with the character of a tensor-product state of uncorrelated
monomeric spins and singlet tetramers on square plaquettes:

Hiid&,j)@\%[%(l a3 dagds ) + 112dada s ) + 1o tatagds) + 142 ds1415.))

=243 ads,) — 142,13 44,15.0]

IMT) =

h=0,
19)

Hy=1|Tl,.j>®\/L§[%(| ot dagds ) 1243 da s ) + 14213 ds,) + 14243, 14,15.5))

=2 b3 ads) — 142 tadats.0],

where S ;) denotes any out of two available states |1 ;)
and || ;) of the monomeric spins. It is noteworthy that
the monomeric spins are within the MT phase in Eq. (19)
completely free to flip at zero magnetic field due to a spin
frustration invoked by a singlet-tetramer state, which can be
alternatively viewed as a bound two-magnon eigenstate of a
square plaquette. Owing to this fact, the monomeric spins
become fully polarized by any nonzero external magnetic
field, and the MT ground state in Eq. (19) will consequently
manifest itself in a zero-temperature magnetization curve as
the intermediate é plateau.

On the other hand, the localized-magnon theory developed
for the spin-% Heisenberg octahedral chain furnishes a rigor-
ous proof for the magnon-crystal (MC) ground state, which is
schematically shown in Fig. 12 and mathematically given by
the eigenvector:

N
1
MC) = [T1115)® 5 bastsitaits))
Jj=1
= P23 i ta s ) 1 121344, 15,5

=1 12,13, Tad5.))- (20)

The MC phase in Eq. (20) has the character of a tensor-
product state of the fully polarized monomeric spins and the

h>0,

(

bound one-magnon eigenstates, which trap a single magnon
within each square plaquette due to the destructive quantum
interference ensured by alternating signs of the probabil-
ity amplitudes. Note furthermore that the MC ground state
emerges in the highly frustrated parameter region J, > 2J,
and sufficiently high magnetic fields that, however, do not
exceed the saturation field & < hy = J; + 2J5.

In the rest of the parameter space J, < 2J;, the ground
states of the spin-% Heisenberg octahedral chain can be found
by rewriting the zero-field part of the Hamiltonian in Eq. (18)
using the composite spin operator of the square plaquette
Se; =5:,+8S5,+8S4,+8Ss, and two composite operators

FIG. 12. A schematic illustration of the magnon-crystal ground
state in Eq. (20), which is responsible for occurrence of the interme-
diate % plateau in a zero-temperature magnetization curve. An oval
denotes a magnon bound to a square plaquette due to a destructive
quantum interference caused by alternating signs of the probability
amplitudes.
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for spin pairs from opposite corners of the square plaquette
So4 ;=85 +84;and S35 ; =83 ; + S5 ;:

N
H=J Z(Sl,j + Sl,j+1)’sc',j

j=1

N
5 Z S8

J:l

N [ S

-85)). 2D

The composite spin operators S. j, S»4.;, and S35.; commute
with the Hamiltonian in Eq. (21), and thus, they correspond to
conserved quantities with well-defined spin quantum numbers
Sej=0,1,0r2; S ; =0or1;and S35 ; = 0 or 1. The spin-1
Heisenberg octahedral chain becomes equivalent to the effec-
tive mixed spin-(%, S.) Heisenberg chains (see Fig. 3) whose
eigenenergies are only trivially shifted due to the second term

J

N/2

of the Hamiltonian in Eq. (21) depending on the quantum spin
numbers S, ;, S24,j, and S35 ;.

The lowest-energy eigenstates of the effective mixed
spin—(%, S.) Heisenberg chains were previously obtained by
extensive DMRG simulations [25] implemented within the
open-source ALPS software [52]. If the four spins forming
a square plaquette are in the singlet-tetramer state, i.e., the
composite spin of a square plaquette becomes zero S, ; =
0, then the spin-% Heisenberg octahedral chain is broken
into smaller fragments due to a lack of spin-spin correla-
tions across this square plaquette. A few exact fragmented
ground states can be found using this procedure. In this way,
one recovers, for instance, the MT ground state in Eq. (19)
by considering Vj S.; =0 and the MC ground state in
Eq. (20) when assuming Vj S, ; = 1. In addition, the regu-
lar alternation of the composite spin values S.»;_1 = 1 and
S¢.2; = 0 within the effective mixed spin-(%,l,%,O) Heisen-
berg chain results in the singlet TH phase given by the
eigenvector:

1
|TH) = l_[\/—|:|1\22j 1d32j—1ta2j-1ds52j-1) + [ d22j-1132j-1d4.2j-115.2j-1) — |T2,2j71T3,2j71\l«4,2j71\l«5,2j71>

1
- E(l Pooj—1ds2j-1da2j-1152j-1) + [{2.2j-1132j-1142j-1452j-1) + |¢2,2j1¢3,2j1T4,2j1T5,211))]

1
X ® ﬁﬂ T2jt2.2j43.2j 42 s 25 1,2j41) + [ d1,2i12,2j43,2j 142 5.2; T12j41) + 1 T12j42,2 13,2442 452 T1,2j41)

+It2ido0jd3.2jda2i 50 M 12j41) + [ 12j12.2i 13,2442 15.2j 4 1,2j41) + 11,2422 13.2j14.2j 15,24 1,241)

—112j42.2j132jda2i 15254 1.2j+1) —

— | M2id2.2id32i a2id5.2i T 12j41) —

The singlet TH phase schematically shown in Fig. 13 is in
fact twofold degenerate because another linearly independent
eigenstate with the same energy can be obtained from the
eigenvector in Eq. (22) by interchanging singlet-tetramer and
singlet-hexamer states on odd and even unit cells. The TH
phase emerges only if the interaction ratio is from the interval
0.91 < J,/J; < 2.0 and the magnetic field is sufficiently small
h/J; < 0.55, whereby the highest possible field value for ex-
istence of the TH ground state is achieved for J,/J; = 1.45,
see Fig. 14.

As can be seen in Fig. 14, the overall ground-state phase
diagram of the spm— Heisenberg octahedral chain reveals a

FIG. 13. A schematic illustration of the singlet tetramer-hexamer
phase in Eq. (22), which leads to occurrence of zero plateau in a zero-
temperature magnetization curve. Small and large ovals correspond
to the singlet-tetramer and singlet-hexamer state, respectively.

[V12j42.2i13,2j442i152;11,2j+1) —

[V1,2j12,2j13,2j14.2j45.2j41,2j41) —

[TM12j12,.2j43,2j442jd5.2j T 1,2j+1)
[L12j12,2432jT42j15.2j41.2j+1))-  (22)

(

great diversity of remarkable quantum ground states including
two ferrimagnetic Lieb-Mattis phases originating from the
mixed spin-(%, 1) and mixed spin-(%, 2) Heisenberg chains,
respectively, two quantum spin-liquid phases derived from

6 T T T T \
i saturation (1/2-2) / 5
5 sat (\00 |
66\%% a0
r spin liquid (1/2-2) oo &\{&@
4t ”—)\ \(La\\ S
\” L
~ 3L ferrimagnetic
= 3/5-plateau
2+ (1/2-2) (172-1)
3 . . monomer-tetramer
ferrimagnetic
1t 1/5-plateau 1/5-plateau .
0 (1/2-1 (1/2-0),
0.0 0.5 1.0 1.5 2.0 2.5 3.0
g1,

FIG. 14. The ground-state phase diagram of the spin-% Heisen-
berg octahedral chain in the J,/J; — h/J; plane.
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FIG. 15. A schematic illustration of one paradigmatic eigenstate
of the spin—% Heisenberg octahedral chain and its equivalent repre-
sentation within the three-component lattice-gas model of hard-core
monomers and dimers. Small red spheres of the auxiliary lattice
correspond to the monomeric spins S ;, while large blue spheres of
the auxiliary lattice correspond to the composite spins S, ; assigned
to the square plaquettes occupied by one of two monomeric particles
or a dimeric particle.

the same couple of mixed-spin Heisenberg chains closing
an energy gap above the Lieb-Mattis ferrimagnetic phases,
the gapful ferrimagnetic phase with a translationally broken
symmetry, the fully polarized ferromagnetic phase, and three
additional fragmented ground states denoted as the MT phase
[see Eq. (19) and Fig. 11], the bound MC phase [see Eq. (20)
and Fig. 12)], and the singlet TH phase [see Eq. (22) and
Fig. 13].

V. HEISENBERG OCTAHEDRAL CHAIN AS MD PROBLEM

In the following part, we investigate in detail low-
temperature magnetization curves and thermodynamics of the
spin-% Heisenberg octahedral chain as extracted from the
anticipated one-dimensional lattice-gas model of hard-core
monomers and dimers. Recently, we have convincingly ev-
idenced that the simpler version of the localized-magnon
theory based on an effective one-dimensional lattice gas in-

J

cluding two types of hard-core monomeric particles ascribed
to bound one- and two-magnon eigenstates of square plaque-
ttes provides within the highly frustrated parameter region
J2/J1 > 2 a proper description of low-temperature magneti-
zation curves and thermodynamics of the spin-% Heisenberg
octahedral chain from zero up to the saturation field [25,26].
The main goal of this paper is to extend the validity of
the localized-magnon theory to a less frustrated parame-
ter space additionally involving the singlet TH phase in
Eq. (22). The idea and calculation procedure is quite similar
as previously elucidated for the spin—% Heisenberg diamond
chain.

The low-energy physics of the spin—% Heisenberg oc-
tahedral chain are effectively described by the lattice-gas
model of hard-core monomers and dimers defined on auxiliary
one-dimensional lattice, which may include the monomeric
particle assigned to the singlet-tetramer (i.e., bound two-
magnon) eigenstate of a square plaquette:

|m); =

1
ﬁ[|¢2,j¢3,j¢4,j»l/5,j> + 142,j13,j44,j1s5,7)
1
- §(| T2, it3dads i) + 112,43, 44,155))

1
- §(| $2,i13,i 4,45, + |¢2,j¢3,jT4,jT5,j))],

(23)

the monomeric particle assigned to the bound one-magnon
eigenstate of a square plaquette:

In); = 201 Lo jta M ts) — | 12da e ts,))
1 P23 da s ) — | tota ta ds ), (24

as well as, the dimeric particle assigned to the singlet-hexamer
state of a octahedron (six-spin) cluster being a cornerstone of
the TH ground states in Eq. (22)

1
|d); = ﬁ(l M2jt2.2j43.2iT42jd52541,0541) F 112 12,2j43,2)T42j45.2j 1 1.2j+1) + 111254225 13,254 42452 T1,2j+1)

+ 1 M2jd2.2543,2544,2i 152 T 1,2j41) + [d1,2j12,2i 1325442 15254 1,2j41) + [ L1,2j42,2i 13,2 14,215,254 1,2j41)

= P12j42.2i 132442524 1.2j41) —
— [ P12jd2.2j43.2j 14252 T1,2j41) —

One paradigmatic example of the feasible eigenstate of the
spin-% Heisenberg octahedral chain and its equivalent rep-
resentation within the designed MD lattice-gas model is
illustrated in Fig. 15. Small red spheres of the auxiliary lat-
tice correspond to lattice sites of the monomeric spins S ;,
and large blue spheres of the auxiliary lattice correspond to
lattice positions of the composite spins S ; = S ; + 83 ; +
S4,j + S5, of the square plaquettes, which are available to
the fully polarized ferromagnetic state acting as a reference
vacuum state, the singlet-tetramer state in Eq. (23) represented
by the monomeric particle shown as a large green sphere,
the bound one-magnon state in Eq. (24) represented by the
monomeric particle depicted as a large brown sphere, and the

[V1,2j42.2j13,2442i152; M 1,2j41) —

[V12j122i 132 M 4245254 1.2j41) —

[11,2j12.2j43,2j 44252 11,2j+1)
[V1,2j12.2j43,2j 14215254 1,2j41))  (25)

(

singlet-hexamer state in Eq. (25) represented by the dimeric
particle displayed as a large violet rectangle involving two
neighboring monomeric spins Sy ; and S ;1 as well. In what
follows, the energy of the square plaquettes is determined
relative to the fully polarized ferromagnetic state serving as
a reference state, and consequently, one should assign the
chemical potential ,uﬁz) = 2J; + 3J, — 2h to the monomeric
particles assigned to the bound two-magnon state in Eq. (23),
the chemical potential ,uﬁl) = Ji + 2J, — h to the monomeric
particles connected to the bound one-magnon state in Eq. (24),
and the chemical potential u, = 3J; — h to the dimeric par-
ticles ascribed to the singlet-hexamer state in Eq. (25). The
effective MD lattice-gas model can then be defined through
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the Hamiltonian: where EQ,=2NJ,+NJ, is zero-field energy of the fully po-
larized ferromagnetic state, the second term is the Zeeman’s
term, and m; =0, 1, n;=0, 1, and d;=0, 1 label occupation
numbers for three kinds of particles additionally obeying
hard-core constraint since each square plaquette of the spin—%
Heisenberg octahedral chain may be at most in one out of
three considered eigenstates in Eqs. (23)—(25). The partition
function of the effective MD lattice-gas model given by the
Hamiltonian in Eq. (26) can be calculated from the formula:

N
H=Ep—h) [2458,0-

j=1

_Ml)ZmJ

di-)(1 —d))]

N N
W'Y nj—pm2 Y d;, (26)
j=1 j=1

1

N
Z=exp(-BEn) DD 2 D 11 74 (1~ did)( —mdp)(A —njd;)(1 —mjn;) exp (B m; + u"n; + nad)])
{S|/} {m;} {n;} {d;} j=1
x exp [BhS; ;(1 — d;)(1 —d))], 27)
which already includes the factor (1 — d;_1d;)(1 —m;d;)(1 — n;d;)(1 — m;n;), ensuring a hard-core rule that prevents overlap

and/or double occupancy of auxiliary lattice sites by the monomeric and dimeric particles. The other factor —- 4 entering into
the partition function in Eq. (27) is the correction term for the singlet-hexamer state in Eq. (25), which avoids fourfold counting
of this eigenstate when performing the summation over spin states of two monomeric spins S; ; and S; ;1. As in Sec. III, we
note that the partition function above contains the forbidden configurations when the singlet-plaquette state is followed by the
fully polarized or bound one-magnon state on the neighboring dimer. However, since the energies of these two configurations are
rather high, they have no effect on the low-temperature thermodynamic properties studied here. After performing the summations

Z{s;j}’ Z{m‘,}’

and )" {n;) OVer sets of the monomeric spins and monomeric hard-core particles, one gets the expression behind

the product symbol depending exclusively on the occupation numbers of the dimeric particles:

1
T(dj,djt1) = E(l -

h
dj_1d;)cosh [%(1 —d;i_)(1 — dj)i|26xp QBh+ Brad))(1+ (1 — dp)fexp[Bu"] +exp[Bu]}).

(28)

which can be repeatedly identified with the transfer matrix [cf. Eq. (13)], further simplifying the exact calculation of the partition

function according to the standard procedure:

N
Z =exp (—BEM) D [[T(@j-1.d)) = exp (—BER)TITY = exp (—BERy,) 3 + 7). (29)

{d) j=1

The final formula for the partition function in Eq. (29) is expressed in terms of eigenvalues A1 of a two-by-two transfer matrix

in Eq. (28) easily accessible through a direct diagonalization:

h h :
hi = €] cosh (%)Eoi\/[cosh (%):} +exp(Bu2)Bo s Eo=1+exp[Bu’]+exp[Bn”],  (30)

which have quite analogous form to the one previously re-
ported for the spin-% Heisenberg diamond chain, cf. Eq. (15).

The free-energy density of the finite-sized spin-% Heisen-
berg octahedral chain normalized per spin takes the following

form:

1 1 1
= —kgT—1InZ = =21+ Jr)— —kgT In(WY + AM),
fsn Bl oy In 5( 1+ ) sy n(Ay +A%)

€1y
which can be further simplified in the thermodynamic limit
N — oo when the free-energy density of the infinite spin-%

Heisenberg octahedral chain per spin is solely expressed in
terms of the larger transfer-matrix eigenvalue:

1
foo = —kgT lim — InZ =

N—oo SN

1
(2.]1 +J) — ngT InAg.
(32)

(

The final formulas in Egs. (31) and (32) for the free-energy
density may be subsequently employed for a straightforward
calculation of the magnetization, susceptibility, entropy, and
specific heat of finite and infinite spin-% Heisenberg octa-
hedral chains, respectively. The correctness of the effective
description based on the MD lattice-gas model in Eq. (26)
is exemplified through a comparison of the as-obtained mag-
netization and specific-heat data with extensive numerical
calculations employing the full ED and FTLM implemented
within the open-source ALPS [52] and SPINPACK [54,55]
software.

First, the magnetization and specific heat of the spin—%
Heisenberg octahedral chain are plotted in Fig. 16 as a func-
tion of the magnetic field for the interaction ratio J,/J; = 2.1.
The spin-% Heisenberg octahedral chain apparently exhibits

two intermediate magnetization plateaus at % and % of the
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FIG. 16. (Left panel) Magnetization curves of the spin—% Heisenberg octahedral chain with J,/J; = 2.1 obtained from the effective
monomer-dimer model (MDM) vs the exact diagonalization (ED) data for 20 spins (upper panel) and the finite-temperature Lanczos method
(FTLM) data for 30 spins (lower panel) of the original model in Eq. (18). (Right panel) The same as in the left panel but for the specific heat.
Thin black lines show analytical results derived from the effective MDM in Eq. (26), while colored symbols refer to the ED (upper panel) or

FTLM (lower panel) data.

saturation magnetization, which can be attributed to the MT
and MC ground states unambiguously given by the eigen-
vectors in Egs. (19) and (20), respectively. It directly follows
from Fig. 16 that the magnetization curves descended from the
effective MD lattice-gas model are in perfect agreement with
the full ED data for 20 spins and FTLM data for 30 spins up
to moderate temperature kg7 /J; = 0.5. The perfect concor-
dance is a direct consequence of a proper counting of localized
many-magnon eigenstates (including among others two real-
ized MT and MC ground states), which form a low-lying part
of the energy spectrum being most relevant at low enough
temperatures. On the other hand, the magnetic-field variations
of the specific heat display more pronounced discrepancies al-
ready at much lower temperatures kg7 /J; 2 0.1, above which
collective quantum states not accounted in the anticipated
MD lattice-gas model are sufficiently thermally populated to
cause conspicuous uprise with respect to the specific-heat
value originating entirely from the many-magnon eigenstates.
Despite this shortcoming, the MD lattice-gas model at least
qualitatively reproduces a double-peak feature of the specific
heat observable in the vicinity of all field-driven phase transi-
tions at low and moderate temperatures.

Last but not least, the low-field part of the magnetization
curves of the spin-% Heisenberg octahedral chain is depicted
in the left panel of Fig. 17 for the less frustrated parame-
ter region J,/J; = 1.8, where the investigated quantum spin
chain undergoes a field-driven phase transition from the TH

state in Eq. (22) to the MT state in Eq. (19). It can be under-
stood from Fig. 17 that the effective MD model in Eq. (26)
not only properly reproduces the zero magnetization plateau
attributable to the TH phase in Eq. (22), but it also features
the field-driven phase transition to the é plateau pertinent to
the MT phase in Eq. (19) and a gradual smoothing of the
magnetization curves achieved upon raising the temperature.
The numerical ED and FTLM data indeed bear evidence to
the legitimacy of this effective description up to moderate
temperature kg7 /J; =~ 0.2, which is, however, nearly half of
the temperature set as the upper bound for a reasonable de-
scription of the magnetization curves in the highly frustrated
parameter space J,/J; > 2. Furthermore, the specific heat of
the spin—% Heisenberg octahedral chain with the interaction
ratio J»/J; = 1.8 also displays an intriguing double-peak de-
pendence on the magnetic field as exemplified in the right
panel of Fig. 17. The validity of the effective description of
the specific heat of the spin-% Heisenberg octahedral chain
is again limited to relatively low temperatures kg7 /J; < 0.1,
above which the effective MD model fails to reproduce the
precise numerical ED and FTLM data at a quantitative level
and provides qualitative insight only. Nevertheless, it should
be mentioned that the difference in the height of two round
maxima of the specific heat around the field-induced phase
transition can be simply interpreted in terms of the effec-
tive MD lattice-gas model in Eq. (26). The height of the
specific-heat maximum is lower below the respective field-
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FIG. 17. (Left panel) Magnetization curves of the spin-% Heisenberg octahedral chain with J,/J; = 1.8 obtained from the effective
monomer-dimer model (MDM) vs the exact diagonalization (ED) data for 20 spins (upper panel) and the finite-temperature Lanczos method
(FTLM) data for 30 spins (lower panel) of the original model in Eq. (18). (Right panel) The same as in the left panel but for the specific heat.
Thin black lines show analytical results derived from the effective MDM in Eq. (26), while colored symbols refer to the ED (upper panel) or

FTLM (lower panel) data.

driven phase transition because thermal excitations from the
twofold degenerate TH state in Eq. (22) are less intense than
the ones from the nondegenerate MT state in Eq. (19).

Our discussion ends with a detailed analysis of temperature
variations of the magnetization and specific heat of the spin-%
Heisenberg octahedral chain, which are plotted in Fig. 18
for the fixed value of the interaction ratio J,/J; = 1.8 and
two different magnetic fields #/J; = 0.15 and 0.25. From this
figure, there is a reasonable quantitative accordance between
analytical results derived for temperature dependencies of the
magnetization from the effective MD lattice-gas model (solid
lines) and numerical data calculated for the original model by
employing ED and FTLM methods (colored symbols), which
persists up to moderate temperatures kg7 /J; < 0.2. Any ob-
vious traces of finite-sized corrections are repeatedly missing
in the magnetization data calculated at higher magnetic fields
promoting the MT ground state, whereas small finite-sized
effects can be detected in the magnetization data at lower
magnetic fields being responsible for the TH ground state for
which the magnetization gradually rises with increasing of the
system size. A theoretical prediction for the magnetization in
the thermodynamic limit N — oo as obtained from the effec-
tive MD model in Eq. (26) is also displayed in Fig. 18 (left
panel) by a black broken line. Next, temperature variations
of the specific heat are depicted in Fig. 18 (right panel). As
far as the quantitative agreement between the analytical and
numerical results is concerned, the specific heat is well cap-
tured by the effective MD model in Eq. (11) only at relatively

low temperatures kg7 /J; < 0.05 regardless of a strength of
the magnetic field. The specific heat at higher magnetic fields
is repeatedly free of any finite-sized corrections, which be-
come relevant at lower magnetic fields where a nontrivial shift
of the height and position of the low-temperature maximum
can be observed. It is worth mentioning that a small quan-
titative discrepancy observable around the low-temperature
peak between analytical results derived from the effective MD
lattice-gas model in Eq. (11) and numerical data obtained for
the octahedral chain with 30 spins within FTLM gradually
diminish upon increasing the number of random vectors.

VI. CONCLUSIONS

This paper is devoted to magnetic properties of the spin-%
Heisenberg diamond and octahedral chains, which are in-
ferred from one-dimensional lattice-gas models of hard-core
monomers and dimers deduced by means of the modified
localized-magnon theory. An eligibility of the MD lattice-
gas models for elucidation of low-temperature magnetization
curves and thermodynamic quantities of the spin—% Heisen-
berg diamond and octahedral chains was decisively confirmed
by state-of-the-art numerical calculations based on the ED and
FTLM. In addition to this, the ground-state phase diagrams of
the spin—% Heisenberg diamond and octahedral chains were
established by making use of exact and DMRG calculations.

It has been evidenced that the anticipated MD lattice-gas
model provides a proper description of the spin-% Heisenberg
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FIG. 18. (Left panel) Temperature dependencies of the magnetization of the spin—% Heisenberg octahedral chain for J,/J; = 1.8 and
two different magnetic fields k/J; = 0.15 (upper panel) and i/J; = 0.25 (lower panel). (Right panel) The same as in the left panel but for
temperature dependencies of the specific heat per spin. Colored symbols display numerical data derived with the help of exact diagonalization
(ED) or finite-temperature Lanczos method (FTLM) for the finite-sized octahedral-chain model in Eq. (18), while thin black lines (not shown
for the lower panel) depict the respective analytical results derived from the effective monomer-dimer model (MDM) in Eq. (26). A black
broken line shows a theoretical prediction gained from the effective MDM in Eq. (26) in the thermodynamic limit N — oo.

diamond chain when it is driven by the interaction parameters
either to the singlet TD phase, the MD phase, or the saturated
ferromagnetic phase. Similarly, the MD lattice-gas model
captures low-temperature features of the spin-% Heisenberg
octahedral chain provided that it is driven to the singlet TH
phase, the MT phase, the bound MC phase, or the saturated
ferromagnetic phase. The developed localized-magnon the-
ory also brings insight into a remarkable behavior of the
specific heat, which shows a marked minimum at magnetic
fields inherent to discontinuous field-driven phase transitions
that is surrounded by two generally asymmetric round peaks
originating from vigorous thermal excitations to low-lying
localized many-magnon eigenstates. Note furthermore that the
previous localized-magnon theories [23,25] valid only in a
highly frustrated parameter region J,/J; > 2 can be recovered
from Egs. (15) and (30) after neglecting the second term under
the square root in the limit of sufficiently low temperatures
and positive magnetic fields.

Let us conclude our study by presenting a few future
outlooks. We are convinced that the proposed calculation
scheme has opened the route to a low-temperature magnetic
behavior of several frustrated Heisenberg spin models, which
have at least two tensor-product ground states with a mag-
netic unit spread over one and two unit cells, respectively.
The mixed spin—(l,%) Heisenberg octahedral chain affords a
suitable platform for implementation of the lattice-gas model
of hard-core monomers and dimers, which would extend a

legitimacy of the previous calculations based on the lattice-
gas model of hard-core monomers [27]. Note furthermore
that the suggested calculation procedure is also compatible
with recent extension enabling a straightforward compu-
tation of entanglement measures [28]. Most importantly,
the low-temperature physics of two-dimensional frustrated
Heisenberg spin models with two tensor-product ground
states, which have magnetic unit spread over one and two
unit cells, would be captured by a two-dimensional lattice-gas
model of hard-core monomers and dimers. Finally, the spin—%
Heisenberg orthogonal-dimer chain [58] and the mixed-spin
Heisenberg diamond chain [59] with an infinite series of
fragmented quantum ground states provide another intriguing
platform for further extension of the present approach, which
would, however, require consideration of one-dimensional
lattice-gas models of hard-core monomers, dimers, trimers,
tetramers, etc.
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APPENDIX: ANALYSIS OF THE FRAGMENTED GROUND
STATES OF THE DIAMOND CHAIN

It is evident that the singlet state on a dimer breaks the
chain into noninteracting parts, leading to the fragmented
ground state. This aspect has been considered accurately for
the diamond chain in zero field [29]. We will follow a similar
argument here. Let us consider the energy of the fragment of
the diamond chain where n subsequent dimers are in spin-1
state surrounded by the singlet dimers. Then the ground-state
energy per unit cell of such a (n+ 1) periodic state can be
presented as

n 3
n+ lJ2 B ZJZ’
where é,(h) is the minimal energy of the corresponding mixed
spin-(4, 1) chain with (n 4 1) spins 1 alternating by n spins 1.
The case n = 0 with the energy eg(h) = g - %Jz corresponds
to the MD phase in Eq. (2), while n» = 1 matches the TD phase
composed of alternating singlet tetramers and dimers with the

energy:

en(h) = én(h) +

(A)

ex(h)=—J +1h = 3. (A2)

For the states of longer periods, one needs to perform the
numerical ED, which shows that the ground state of the frag-
mented cluster has, according to the Lieb-Mattis theorem [46],
the total spin Sy = % In this case, the contribution of the
Zeeman term in Eq. (A1) can be singled out explicitly:

n—1 n

3
h+ Jy— -

e,(h) = e,(h=0) — 2n+1) n+1 4

(A3)

The gapped Lieb-Mattis ferrimagnetic phase, which corre-
sponds to the case of all triplet dimers (i.e., n — 00), has the
following energy:

eoc(h) = 8os(h=0) — sh+Jo — 315, (A4)

where é,,(h = 0) denotes the ground-state energy of the
mixed spin-(%, 1) Heisenberg chain in zero field. The num-
ber n for which e, (k) attains the minimal value defines the
period of the ground state for a particular set of parameters.
It was proven that the MD phase set up the ground state for
J, > 2J; [29]. For lower J,, the TD state becomes favorable,
and the boundary between both phases mentioned above is as
follows:

Jo=2J1 —h. (AS)
The boundaries between the TD phase with period 2 and
other high-periodic phases can be found by comparing their
energies e (h) and e, (h):
2 1
Jén)(l’l) — ]’l _ (I’l + )
n—1

[en(h =0) = J1]. (A6)

In Ref. [29], by the numerical ED of n coupled diamonds,
it was found that Jz(")(h =0) < JZ("H)(h =0)forn<7. It
was imposed that Jz(") monotonically increases with n up to
infinity, which means that no other fragmented phases are
possible in between the Lieb-Mattis and TD phases. Since all
Jé")(h) depend identically on the field in Eq. (A6), the above
arguments are also valid for the ground states in nonzero
fields.
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