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Exact solutions of few-magnon problems in the spin-S periodic XXZ chain
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We solve few-magnon problems for a finite-size spin-S periodic Heisenberg XXZ chain with single-ion
anisotropy through constructing sets of exact Bloch states achieving block diagonalization of the system.
Concretely, the two-magnon (three-magnon) problem is converted to a single-particle one on a one-dimensional
(two-dimensional) effective lattice whose size depends linearly (quadratically) on the total number of sites.
For parameters lying within certain ranges, various types of multimagnon bound states are manifested and
shown to correspond to edge states on the effective lattices. In the absence of the single-ion anisotropy, we reveal
the condition under which exact zero-energy states emerge. As applications of the formalism, we calculate the
transverse dynamic structure factor for a higher-spin chain near saturation magnetization and find signatures of
the multimagnon bound states. We also calculate the real-time three-magnon dynamics from certain localized
states, which are relevant to cold-atom quantum simulations, by simulating single-particle quantum walks on
the effective lattices. This provides a physically transparent interpretation of the observed dynamics in terms
of propagation of bound state excitations. Our method can be directly applied to more general spin or itinerant
particle systems possessing translational symmetry.

DOI: 10.1103/PhysRevB.105.064419

I. INTRODUCTION

The Heisenberg XXZ model is a paradigmatic model
exhibiting strong correlations. On one hand, dynamical prop-
erties of the spin-1/2 XXZ chain continue to attract the
attention of the solid-state- and mathematical-physics com-
munities [1–4]. On the other hand, recent experimental
advances in cold-atom systems enable realizations of the
XXZ chain and preparation of certain initial states [5,6], even
with higher spins [7], providing an ideal setting for studying
nonequilibrium quantum dynamics. Recently, few-magnon
dynamics in the spin-1/2 and spin-1 XXZ chains has also
attracted great theoretical interest [8–10]. Magnons (or spin
waves) are elementary excitations in the saturated regime of
quantum magnetic systems and play an important role in un-
derstanding magnetism, magnetic order, and spin dynamics,
etc. In particular, multimagnon bound states, which were first
predicted by Bethe in studying the spin-1/2 Heisenberg chain,
are believed to be difficult to detect experimentally, though
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evidence of few-magnon bound states has been revealed in
spin-ladder systems through spectroscopic studies [11,12]. It
was theoretically proposed [8], and later experimentally veri-
fied [5], that these magnon bound states can be observed using
multimagnon quantum walks. It was shown recently that the
appearance of multimagnon bound states in an antiferromag-
netic spin-1/2 chain can also be uncovered in the transverse
dynamic structure factor [1].

As a theoretical problem, the few-magnon physics in
higher-spin Heisenberg-like models has long been stud-
ied by a variety of approaches, including Green’s function
[13–15], the Dyson-Maleev transformation [16–19], Bethe
ansatz [20,21], continuous unitary transformations [22], and
center-of-mass analysis [23–31], etc. Among these, the center-
of-mass method provides a physically intuitive way to convert
the few-magnon problem into a single-particle one [24,27,30].
In an early work, Southern, Lee, and Lavis studied the nature
of three-magnon excitations in general infinite-size spin-S
chains by constructing a set of Bloch states forming a semi-
infinite triangle-shape effective lattice [27]. Kecke, Momoi,
and Furusaki used similar ideas to study the emergence of
multimagnon bound states in infinite-size frustrated ferromag-
netic chains [30]. Nevertheless, in experimentally relevant
cases the spin system of interest always has a finite number
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of sites. It is therefore important and demanding to find out an
exact set of Bloch basis states (for finite chains) that can form
a finite-size effective lattice. To the best of our knowledge,
such a mathematically rigorous treatment of the three-
magnon problem for a finite-size higher-spin XXZ chain is
still missing.

In this paper, we construct exact Bloch states achieving a
block diagonalization of the two- and three-magnon sectors
in a finite-size spin-S XXZ chain with single-ion anisotropy.
This converts the two-magnon (three-magnon) problem into
a single-particle one on a one-dimensional (two-dimensional)
effective lattice whose size scales linearly (quadratically) with
the total number of sites. Our method provides an exact,
intuitive, and convenient way to understand the few-magnon
physics.

We employ our formalism to study several aspects of the
model. We first reveal the condition under which the few-
magnon excitation energy with respect to the ferromagnetic
state exactly vanishes and obtain explicit forms of these
zero-energy states as certain Bloch states. These states are
intimately related to the spin helix states, which have recently
attracted much theoretical [32,33] and experimental [6,7] at-
tention. In certain parameter regimes, we reveal various types
of multimagnon bound states, which turn out to be localized
edge states on the effective lattice.

We then turn to study the dynamical properties of the
system. We extend the analysis of the transverse dynamic
structure factors in Ref. [1] for spin-1/2 chains in the high
magnetization regime to the case of higher spins. In an early
work, Silberglitt and Torrance showed that [16] for S > 1/2
the so-called single-ion two-magnon bound states, which cor-
respond to two spin derivations on the same site, might emerge
besides the usual exchange two-magnon bound states (corre-
sponding to two spin derivations on two nearest-neighboring
sites). We show that for higher spins the appearance of
both the usual exchange and the single-ion (unique for S >

1/2) two-magnon bound states can be uncovered in the
experimentally accessible transverse dynamic structure fac-
tor. Similarly, the appearance of three-magnon bound states
can also be uncovered in the transverse dynamic struc-
ture factor for two-magnon eigenstates, which involves the
transition between the two- and three-magnon sectors. As
another dynamical application of our formalism, we calcu-
late the three-magnon dynamics from localized spin states
via simulating single-particle quantum walks on the effective
lattices. We use several perturbative approaches, including the
degenerate many-body perturbation and the time-dependent
perturbation theory, to interpret the obtained three-magnon
spectra and three-magnon dynamics and to demonstrate the
essential role played by the three-magnon bound states in the
magnetization diffusions.

The rest of the paper is organized as follows. In Sec. II, we
introduce the one-dimensional spin-S XXZ model with single-
ion anisotropy and present in detail the construction of exact
Bloch states in the two- and three-magnon sectors. In Sec. III,
we study the emergence of zero-energy states and find out the
relationship between these states and certain eigenstates in the
Bloch space. In Sec. IV, we present detailed numerical results
for the two-magnon sector, including the two-magnon excita-
tion spectrum, the two-magnon bound states and their wave

functions in the Bloch space, and the dynamic structure factor
near saturation magnetization. In Sec. V, we study in detail
the three-magnon bound states and three-magnon dynamics.
Conclusions are drawn in Sec. VI.

II. MODEL AND METHODOLOGY

A. Model

The spin-S XXZ chain with N spins is described by the
Hamiltonian

H = −JxyHXY − JzHZ − DHD,

HXY =
N∑

j=1

(
Sx

j S
x
j+1 + Sy

j S
y
j+1

)
,

HZ =
N∑

j=1

Sz
jS

z
j+1, HD =

N∑
j=1

(
Sz

j

)2
, (1)

where �S j = (Sx
j , Sy

j , Sz
j ) is the spin operator on site j with

quantum number S � 1/2, Jxy and Jz are the exchange in-
teractions between nearest-neighboring spins, and D is the
single-ion anisotropy strength. It is easy to see that the total
magnetization M = ∑

j Sz
j is conserved.

We assume that N is even and impose the periodic bound-
ary condition �S j = �SN+ j , which guarantees the translational
invariance of the chain. Unless otherwise specified, we fo-
cus on the case of Jz > 0 and take the ferromagnetic state
|F 〉 = |S, S, . . . , S〉 as a reference state possessing eigenen-
ergy EF = −NS2(Jz + D), though our formalism is valid for
both a ferromagnetic chain and an antiferromagnetic chain
(with Jz < 0) near saturation magnetization [1] (see Sec. IV B
below).

The n-magnon sector is defined as the subspace spanned
by all the spin configurations having magnetization NS − n,

| j1, j2, . . . , jn〉 ≡ CS−
j1

S−
j2

. . . S−
jn
|F 〉, (2)

where C is a suitable normalization coefficient and the site in-
dices 1 � j1 � j2 � . . . � jn � N are not necessarily distinct
for S > 1/2. We define the translation operator T by

T | j1, j2, . . . , jn〉 = | j1 + 1, j2 + 1, . . . , jn + 1〉. (3)

The N one-magnon states are simply

|ψ (k)〉 = 1√
N

N−1∑
n=0

eiknT n|1〉, k ∈ K0, (4)

where the wave number k lives in the set

K0 =
{
−π,−π + 2π

N
, . . . , 0, . . . , π − 2π

N

}
, (5)

which ensures the translational invariance of |ψ (k)〉, i.e.,
T |ψ (k)〉 = e−ik|ψ (k)〉. The one-magnon state |ψ (k)〉 is it-
self an eigenstate of H with eigenenergy EF + E1(k), where
E1(k) = 2S(Jz − Jxy cos k) + D(2S − 1).

B. Two-magnon sector

In this subsection, we assume S � 1 since the case of
S = 1/2 can be obtained as a limiting case of the formalism
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developed below. In the two-magnon sector, two types of
real-space basis states,

|i, j〉 = 1
2S S−

i S−
j |F 〉, i < j (6)

and

|i, i〉 = 1

2
√

S(2S − 1)
(S−

i )2|F 〉, (7)

are allowed for S > 1/2 [20]. These N (N + 1)/2 ba-
sis states can be obtained by successively applying the
translation operator T to the N/2 + 1 parent states,
|1, 1〉, |1, 2〉, . . . , |1, N/2〉, and |1, N/2 + 1〉. Among these,
|1, j〉 ( j = 1, 2, . . . , N/2) generates N − 1 additional states
under the action of T , while the special state |1, N/2 + 1〉
generates only N/2 − 1 additional states.

These observations suggest that we need to construct two
different types of Bloch states,

|ψr (k)〉 = ei rk
2√
N

N−1∑
n=0

eiknT n|1, 1 + r〉, r = 0, . . . ,
N

2
− 1, (8)

and

∣∣ψ N
2

(k)
〉 = ei Nk

4

√
2

N

N/2−1∑
n=0

eiknT n

∣∣∣∣1, 1 + N

2

〉
, (9)

where r measures the relative distance between the two down
spins in a parent state and the factors ei rk

2 and ei Nk
4 are intro-

duced for later convenience [30].

It is easy to check that for any k ∈ K0 we have T |ψr (k)〉 =
e−ik|ψr (k)〉 (r = 0, 1, . . . , N/2 − 1). However, the property
T |ψ N

2
(k)〉 = e−ik|ψ N

2
(k)〉 holds only if eikN/2 = 1, which re-

stricts the allowed wave numbers to a subset K1 of K0, i.e.,

K1 =
{
−π,−π + 4π

N
, . . . , 0, . . . , π − 4π

N

}
(10)

for even N
2 or

K1 =
{
−π + 2π

N
,−π + 6π

N
, . . . , 0, . . . , π − 2π

N

}
(11)

for odd N
2 . Conversely, the local state |φn

r 〉 ≡ T n|1, 1 + r〉 can
be expanded in terms of the Bloch states as∣∣φn

r

〉 = 1√
N

∑
k∈K0

e−ikn−i kr
2 |ψr (k)〉 (12)

for r = 0, 1, . . . , N
2 − 1 and

∣∣φn
N
2

〉 =
√

2

N

∑
k∈K1

e−ikn−i kN
4
∣∣ψ N

2
(k)

〉
(13)

for r = N/2.
We denote the complement of K1 as K ′

1, so that K0 =
K1

⋃
K ′

1. For each k ∈ K1, we find after some straight-
forward calculation that the N

2 + 1 ordered Bloch states
{|ψ0(k)〉, |ψ1(k)〉, . . . , |ψ N

2
(k)〉} form a closed basis and result

in the tridiagonal block Bloch Hamiltonian,

H2(k) = EF +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�0
√

S(2S − 1)Ak√
S(2S − 1)Ak �1 SAk

SAk �2 SAk

SAk �2
. . .

�2 SAk

SAk �2

√
2SAk√

2SAk �2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, k ∈ K1, (14)

where

Ak ≡ −2Jxy cos
k

2
,

�0 ≡ 4SJz + 4(S − 1)D,

�1 ≡ (4S − 1)Jz + 2(2S − 1)D,

�2 ≡ 4SJz + 2(2S − 1)D. (15)

It is worth noting that �2 � �0,�1 for Jz, D � 0. For k ∈ K ′
1,

the Bloch state |ψ N
2

(k)〉 is not properly defined. The Bloch
Hamiltonian H2(k ∈ K ′

1) can therefore be obtained by elimi-
nating the last row and the last column from H2(k ∈ K1).

Physically, we can view H2(k ∈ K1) [H2(k ∈ K ′
1)] as a

single-particle problem on an effective one-dimensional lat-
tice with N/2 + 1 (N/2) sites, with the nearest-neighboring
hopping proportional to Ak and the on-site energies being �i

(see Fig. 1). The completeness of the Bloch basis can be
verified by noting that N

2 ( N
2 + 1) + N

2
N
2 = 1

2 N (N + 1).

C. Three-magnon sector

We now turn to discuss the more subtle three-magnon
sector. In this subsection, we assume S � 3/2 and N = 3m
(hence m = even). As we will see, the cases of N = 3l ±
1 (l ∈ Z) can be analyzed in a similar but simpler way. It is
obvious that all the real-space basis states can be classified
into the following three types:

(i) | j1, j1, j1〉, 1 � j1 � N,

(ii) | j1, j1, j2〉 and | j1, j2, j2〉, 1 � j1 < j2 � N,

(iii) | j1, j2, j3〉, 1 � j1 < j2 < j3 � N. (16)

These states form a complete basis of the D-dimensional
three-magnon sector, where D = (N

1

) + 2
(N

2

) + (N
3

) =
1
6 N (N + 1)(N + 2).

To construct the Bloch states from the typical parent
states |φ0

r1,r2
〉 ≡ |1, 1 + r1, 1 + r1 + r2〉 and their translations

{|φn
r1,r2

〉 ≡ T n|φ0
r1,r2

〉}, we need to further classify the D states
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FIG. 1. The effective one-dimensional lattice formed by the
Bloch states {|ψr (k)〉} in the two-magnon sector with wave numbers
drawn from (a) k ∈ K1 and (b) k ∈ K ′

1.

given by Eq. (16) into groups having fixed r1 and r2. For exam-
ple, the N type (i) states are simply |φ0

0,0〉, |φ1
0,0〉, . . . , |φN−1

0,0 〉
(Fig. 2; left column, first row). The N (N − 1) type (ii) states
can be written as |φ0

0,r2
〉, |φ1

0,r2
〉, . . . , |φN−1

0,r2
〉 with 1 � r2 �

N − 1 (Fig. 2; left column, row 2 to row N).
However, the

(N
3

)
type (iii) states need to be treated more

carefully. As realized in an early work by Torrance and Tin-
kham [24], there exist “complicated restrictions” on the r1 and
r2 appearing in the parent state |1, 1 + r1, 1 + r1 + r2〉. The
three excited sites in the state | j1, j2, j3〉 divide the ring into
three successive segments (ordered clockwise, see Fig. 2 for
examples) having lengths j2 − j1, j3 − j2, and N − ( j3 − j1).
To avoid double counting, we choose r1 in |1, 1 + r1, 1 + r1 +
r2〉 as

r1 = min{ j2 − j1, j3 − j2, N − ( j3 − j1)},

so that r1 � r2 and r1 � N − (r1 + r2), giving r1 � N
3 = m

and r1 � r2 � N − 2r1 for fixed r1. Unless r1 = m, the two
states with r2 = r1 and r2 = N − 2r1 are connected by transla-
tions, and by choosing r2 = r1 we have r1 � r2 � N − (2r1 +
1) for any 0 � r1 < m. For r1 = m we must have r2 = m,
giving the unique parent state |φ0

m,m〉, which is a three-magnon
counterpart of the two-magnon parent state |φ0

N
2
〉. Note that no

such special states exist for N = 3l ± 1, l ∈ Z. We now obtain
all the D̄ + 1 parent states, where D̄ = ∑m−1

r1=0(N − 3r1) =
1
6 N (N + 3).

Since for r1 < m (r1 = m) the allowed parent state |φ0
r1,r2

〉
generates N − 1 (m − 1) additional translated states, the total
number of such obtained basis states is N · D̄ + m · 1 = D,
yielding a consistency. We thus complete the classification of
the desired parent states and their translations that will be used
to construct the Bloch states.

For k ∈ K0 and for each pair of (r1, r2) with r1 < m, we
define the translationally invariant state [30]

|ψr1,r2 (k)〉 = er1i k
3 e(r1+r2 )i k

3√
N

N−1∑
n=0

eikn
∣∣φn

r1,r2

〉
. (17)

However, for the m states {|φn
m,m〉|0 � n � m − 1} with C3

symmetry, we have to construct the Bloch state as

|ψm,m(k)〉 = eikm

√
m

m−1∑
n=0

eikn
∣∣φn

m,m

〉
. (18)

To ensure the translational invariance of |ψm,m(k)〉, the wave
number k in the above equation must take value from the
subset

K2 =
{

2π l

m

∣∣∣∣l = −m

2
,−m

2
+ 1, . . . ,

m

2
− 1

}
. (19)

FIG. 2. The 364 real-space basis states in the three-magnon sector for N = 12 and S � 3
2 . The leftmost dashed circles indicate the 31

parent states: |1, 1 + r1, 1 + r1 + r2〉 with r1 = 0, 1, 2, 3 and r2 = r1, r1 + 1, . . . , 11 − 2r1, as well as a special one, |1, 5, 9〉. Note that |1, 5, 9〉
generates only three new states and no such special state exists for N = 3l ± 1, l ∈ Z.
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FIG. 3. Representation of HXY on an effective lattice in the r1 − r2 plane formed by the Bloch basis states {|ψr1,r2 (k)〉} for (a) k ∈ K2

and (b) k ∈ K ′
2 (N = 12 as an example). The colors of the circles indicate different eigenenergies of H3(k)|Jxy=0 − EF [shown in panel (a)].

Nonvanishing complex hopping between two Bloch states is represented by an arrowed line, with the color and arrow indicating its magnitude
[shown in panel (b)] and phase factor, respectively. The action of HXY on a certain Bloch state can directly be read off. For example, for k ∈ K ′

2

we have HXY |ψ1,1(k)〉 = tpz|ψ0,1(k)〉 + tpz∗|ψ0,2(k)〉 + tpzN−1|ψ0,11(k)〉 + tpz1+N |ψ0,10(k)〉 + tbzN−1|ψ1,9(k)〉 + tbz|ψ1,2(k)〉. (c) Evolution of
the on-site energies with respect to varying Jz and D.

Since there are N (m) elements in K0 (K2), the total number of
the Bloch states given by Eqs. (17) and (18) is still ND̄ + m =
D. We define the complement of K2 as K ′

2 = K0 \ K2, so that
eikm = 1 (eikm 	= 1) for k ∈ K2 (k ∈ K ′

2).
A local state |φn

r1,r2
〉 can be expanded in terms of the Bloch

states as

∣∣φn
r1,r2

〉 =
∑
k∈K0

e−ikne−i k
3 (2r1+r2 )

√
N

∣∣ψr1,r2 (k)
〉

(20)

for (r1, r2) 	= (m, m), and

∣∣φn
m,m

〉 =
∑
k∈K2

e−ikne−ikm

√
m

|ψm,m(k)〉. (21)

In Sec. V, we will use Eqs. (20) and (21) to calculate the three-
magnon quantum walks in the Bloch space.

After a lengthy but straightforward calculation, we find
that for each k ∈ K2 the D̄ + 1 Bloch states {|ψr1,r2 	=(m,m)(k)〉}
and |ψm,m(k)〉 form a closed set under the action of the
Hamiltonian H . This results in a (D̄ + 1)-dimensional Bloch
Hamiltonian H3(k ∈ K2), which describes a single-particle
problem on a triangle-shape effective lattice in the r1 − r2

plane. It is apparent that the term −JzHZ − DHD is diagonal
in the Bloch basis and serves as on-site energy for the effec-
tive lattice, while the spin-flipping term −JxyHXY contributes
to the hopping among the lattice sites; see Fig. 3(a) for a
detailed structure of the effective lattice (with N = 12). For
k ∈ K ′

2, it can be similarly shown that the D̄ Bloch states
{|ψr1,r2 	=(m,m)(k)〉} form a closed set and yield a D̄-dimensional
Bloch Hamiltonian H3(k ∈ K ′

2). The effective lattice corre-
sponding to H3(k ∈ K ′

2) is shown in Fig. 3(b), where the site
(m, m) has been removed.

We now turn to some remarks regarding the three-magnon
effective lattice. (i) The effective lattices for S = 1/2 (S = 1)
can simply be obtained by removing the leftmost column
[the (0,0) site] of the original lattices. (ii) Compared to the
two-magnon effective lattice where the nearest-neighbor hop-
ping is real, in the three-magnon effective lattice there exist
complicated long-range hopping terms and the hopping am-
plitudes are generally complex. (iii) Similar ideas have been
developed in Refs. [27] and [30] for infinite chains. However,
to the best of our knowledge, the exact Bloch states given by
Eqs. (17) and (18) provide the first mathematically rigorous
construction of the Bloch basis in the three-magnon sector
for a finite-size higher-spin XXZ chain. (iv) The obtained
exact block Bloch Hamiltonians provide a convenient way to
calculate dynamical properties of the system in momentum
space.

III. EXACT ZERO-ENERGY STATES FOR D = 0

As the first application of our formalism, let us study
the emergence of exact zero-energy (with respect to the fer-
romagnetic state) multimagnon states. We will demonstrate
the relationship between these zero-energy states and certain
eigenstates in the Bloch space. In this section we focus on the
case of D = 0.

For D = 0, the one-magnon excitation energy E1(k) van-
ishes when the following condition is satisfied,

Jz = Jxy cos k, k ∈ K0. (22)

The corresponding (unnormalized) one-magnon state is given
by Lk|F 〉, where Lk ≡ ∑N

j=1 eik jS−
j is a collective lowering

operator.
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It can be shown that (see Appendix A) (Lk )n|F 〉 is indeed
a zero-energy state in the n-magnon sector once Eq. (22) is
fulfilled, i.e.,

(H − EF )(Lk )n|F 〉 = 0, n � 2NS + 1. (23)

Note that for n > 2NS + 1 we always have (Lk )n|F 〉 = 0. A
direct corollary of Eq. (23) is

(Lk )2NS+1|F 〉 ∝ | − S,−S, . . . ,−S〉. (24)

These zero-energy states are interesting since linear combi-
nations of them are relevant to the so-called spin helix state
[32,33], which has recently been experimentally prepared for
S = 1/2 [6,34].

As an eigenstate of H , (Lk )n|F 〉 under the condition given
by Eq. (22) must also be a zero-energy eigenstate of a certain

Bloch Hamiltonian Hn(p) − EF , with p = p(k) a function of
k to be determined. From the relation T S−

j T −1 = S−
j+1 we

have T (Lk )n|F 〉 = e−ink (Lk )n|F 〉, which means that (Lk )n|F 〉
possesses momentum nk. We therefore expect that (Lk )n|F 〉 is
also the zero-energy eigenstate of Hn(p(k)) − EF , where p(k)
is given by

p(k) = nk (mod 2π ), (25)

with the understanding that p(k) ∈ [−π, π ).
For n = 1 it is easy to see that p(k) = k. For n = 2, we

can explicitly show that p(k) = 2k (mod 2π ). Let us focus
on the left half of the Brillouin zone, i.e., k ∈ [−π, 0] since
the condition given by Eq. (22) is symmetric under k → −k.
For simplicity, we also consider the case of N = 4l , l ∈ Z. A
straightforward calculation gives

L2
k |F 〉 = 4S

√
Nei2k

[√
2S − 1

2
√

S
|ψ0(2k + 2π )〉 +

N/2−1∑
r=1

(−1)r |ψr (2k + 2π )〉 + (−1)N/2 1√
2

∣∣ψ N
2

(2k + 2π )
〉]

(26)

for k ∈ {−π,−π + 2π
N , . . . ,−π

2 − 2π
N } and

L2
k |F 〉 = 4S

√
Nei2k

[√
2S − 1

2
√

S
|ψ0(2k)〉 +

N/2−1∑
r=1

|ψr (2k)〉 + 1√
2

∣∣ψ N
2

(2k)
〉]

(27)

for k ∈ {−π
2 ,−π

2 + 2π
N , . . . , 0}.

On the other hand, the relation p(k) = 2k (mod 2π ) gives p ∈ K1 and cos k = ± cos p
2 , resulting in the following Bloch

Hamiltonian under the condition given by Eq. (22),

H2(p) = EF + Jxy cos
p

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

±4S −2
√

S(2S − 1)
−2

√
S(2S − 1) ±(4S − 1) −2S

−2S ±4S −2S
−2S ±4S

. . .

±4S −2S

−2S ±4S −2
√

2S

−2
√

2S ±4S

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (28)

It is easy to check that

∣∣� (±)
ZES

〉 = 2

√
S

2SN − 1

(
±

√
2S − 1

2
√

S
, 1,±1, . . . ,±1, 1,±

√
2

2

)T

(29)

gives two normalized zero-energy Bloch states satisfy-
ing [H2(p(k)) − EF ]|� (±)

ZES〉 = 0. The consistency between
Eqs. (27), (26), and (29) indicates that Eq. (25) does hold for
n = 2.

For n = 3, it is too tedious to write down the explicit ex-
pression for (Lk )3|F 〉. Nevertheless, we numerically confirm
that the relation p(k) = 3k (mod 2π ) holds, so that p(k) ∈ K2.
Explicitly

p =
{

3k, k ∈ [ − π
3 , 0

]
,

3k + 2π, k ∈ [ − π,−π
3

)
.

(30)

For k ∈ [−π,− 2
3π ] and k ∈ [−π

3 , 0], we find that the zero-
energy state (Lk )3|F 〉 is also the ground state of H3(p(k)) −
EF . However, for the middle region k ∈ (− 2

3π,−π
3 ) the state

(Lk )3|F 〉 is found to be an excited state. We believe some of
these properties persist in the n-magnon sector with n > 3.
For example, the zero-energy state (Lk )n|F 〉 with k ∈ [−π

n , 0]
(suppose N is divisible by n) should be the ground state of
Hn(nk) − EF .

IV. TWO-MAGNON SECTOR

In this section, we use our formalism to study the emer-
gence of two-magnon bound states. We also calculate the
transverse dynamic structure factor near the saturation mag-
netization in a higher-spin antiferromagnetic chain, where the
ground state is approximated by the subground state in the
one-magnon sector.
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FIG. 4. Two-magnon excitation spectra for various values of
D/Jz. The red and blue curves indicate the single-ion and exchange
two-magnon bound states, respectively. Parameters: N = 1000, S =
2, and Jxy/Jz = 0.1.

A. Two-magnon bound states

In the limiting case of Jxy = 0 and for Jz, D > 0, all the
H2(k)′s become diagonal and the Bloch states |ψ0(k)〉′s and
|ψ1(k)〉′s form two N-fold degenerate manifolds with excita-
tion energies �0 and �1, respectively. As can be seen from
Fig. 1, these states (the red and blue solid circles) corre-
spond to edge states on the effective free-end lattice. When
a finite but small Jxy/Jz is introduced, two distinct types of
two-magnon bound states, the so-called single-ion (corre-
sponding to r = 0) and the exchange (corresponding to r = 1)
bound states, will emerge, as revealed by different meth-
ods in previous studies [16,20]. By noting that �1 − �0 =
2D − Jz, the single-ion bound states should be dominated for
D/Jz > 1/2.

Figure 4 shows the two-magnon excitation spectra E2(k)/Jz

for Jxy/Jz = 0.1 and several values of D/Jz. In the absence
of the single-ion anisotropy [Fig. 4(a)], we only observe the
exchange bound state |�exc(k)〉 due to the large gap �1 − �0.
The corresponding wave function 〈ψr (k)|�exc(k)〉 (note that
it is real) is localized around site r = 1 on the effective
lattice. Increasing D/Jz to 0.25 decreases the gap �1 − �0,
and both the exchange bound state |�exc(k)〉 and single-ion
two-magnon bound state |�s−ion(k)〉 emerge at the edge of the
Brillouin zone [Fig. 4(b)]. For D/Jz = 0.5, we have �1 = �0,
so that the two separated branches of the spectra touch each
other at k = −π and the two wave functions are approxi-
mately equally distributed between the two sites (r = 0 and
1) within the zone [Fig. 4(c)]. When D/Jz increases to 0.75,
the lowest energy level is occupied by the single-ion bound
states [Fig. 4(d)].

B. Transverse dynamic structure factor near
saturation magnetization

Recently, it was shown in Ref. [1] that two-magnon bound
states in an antiferromagnetic spin-1/2 chain appear as a

FIG. 5. Minimal excitation energies in the one- (solid red), two-
(dashed blue), and three-magnon (dash-dotted green) sectors as func-
tions of D/|Jz|. We considered an antiferromagnetic XXX chain
with Jxy = Jz < 0 and choose B = 3.98|Jz|, which is just below the
saturation magnetic field Bsat = 4S|Jz| at D = 0. The inset shows the
magnification of the crossover range around D/|Jz| = 1.33.

higher energy branch in the transverse dynamic structure fac-
tor. In this section, we use our formalism to calculate the
transverse dynamic structure factor near saturation magneti-
zation for an antiferromagnetic XXZ chain with higher spins.
As we will see, the usual exchange and the single-ion two-
magnon bound states appear, respectively, as high and low
energy branches in the transverse dynamic structure factor. To
this end, we add a Zeeman term to the original Hamiltonian
and allow for negative values of Jxy and Jz,

H → H − B
N∑

j=1

Sz
j, (31)

so that the one-magnon excitation energy becomes

E1(k) = 2S(Jz − Jxy cos k) + D(2S − 1) + B. (32)

For large enough B, the ground state is the polarized
state |F 〉. Below we consider an antiferromagnetic chain
with Jxy, Jz < 0, then the lowest-energy one-magnon state is
achieved for k = −π . The minimal excitation energy Emin

1 =
E1(−π ) = 2S(Jz + Jxy) + D(2S − 1) + B depends linearly on
both B and D. The saturation magnetic field is defined by

Bsat = 2S|Jz + Jxy| − D(2S − 1). (33)

However, the minimal excitation energies in the two- and
three-magnon sectors, Emin

2 and Emin
3 , depend linearly only on

B, see Fig. 5 for an illustration. For a magnetic field just below
the saturation value Bsat = 4S|Jz| (for D = 0), we find that
there exists a narrow range of D/|Jz| ∈ (1.331, 1.339) within
which the one-magnon excitation energy is not only negative
but also the smallest among {Emin

1 , Emin
2 , Emin

3 } (inset of Fig. 5).
This indicates that the lowest one-magnon state is the most
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FIG. 6. (a) Two-magnon excitation spectra for a spin-3/2 XXX chain (Jxy = Jz < 0) with N = 500, D/|Jz| = 0.84999, and B/|Jz| = 4.3.
The two separated branches correspond to the single-ion (lower red) and exchange (upper blue) bound states. The solid green and dashed
horizontal lines represent the one-magnon excitation spectra and zero-excitation-energy point, respectively. The lowest one-magnon (two-
magnon) excitation energy is −2 × 10−5|Jz| (7.704 × 10−5|Jz|). (b) Dynamic structure factor S+−(q, ω) calculated by Eq. (35) for the lowest
one-magnon state |ψ (−π )〉. The highlighted curve shows the usual contribution [1]. (c) The three-dimensional plot of S+−(q, ω) contributed
by the two bound states and part of the continuum (on a different color scale). The inset shows that as q increases, S+−(q, ω) for the exchange
bound state (dashed blue) shows a nonmonotonic behavior, while the one for the single-ion bound state (solid cyan) decreases monotonically.

energetically favorable in the above parameter range, which,
however, becomes narrower as N increases.

As an example, in Fig. 6(a) we plot both the one-
and two-magnon excitation spectra for a spin-3/2 antifer-
romagnetic XXX chain (Jxy = Jz < 0) with N = 500 sites.
The parameter region within which Emin

1 < min(0, Emin
2 )

is fulfilled becomes so narrow that we have to finely
tune the value of D/|Jz| for a fixed B/|Jz|. In our ex-
ample, we set D/|Jz| = 0.84999 and B/|Jz| = 4.3, yield-
ing (Emin

1 , Emin
2 )/|Jz| = (−2 × 10−5, 7.704 × 10−5) (we have

checked that they are not numerical errors). It is easy to
see that the upper (lower) separated branch corresponds to
the exchange (single-ion) bound state since �0 ≈ 4.3|Jz| and
�1 ≈ 7|Jz|.

For a general eigenstate |�〉 of H with eigenenergy E�, the
transverse dynamic structure factor is defined as [1]

S+−(q, ω) ≡ 1

N

∫ ∞

−∞
dtei(ω+E� )t 〈�|L†

qe−iHt Lq|�〉

= 2π

N

∑
E

δ(ω + E� − E )|〈E |Lq|�〉|2, (34)

where Lq = ∑N
j=1 eiq jS−

j and H |E〉 = E |E〉. We now assume
that the ground state is well approximated by the one-magnon
eigenstate |�〉 = |ψ (Q)〉 given by Eq. (4) [1]. Since the
operator Lq carries momentum q, only two-magnon states
with momentum q + Q contribute to the summation over
the eigenstates {|E〉} in Eq. (34). If we let |�2,α (k)〉 (α =
1, 2, . . . , N/2 for k ∈ K ′

1 and α = 1, 2, . . . , N/2 + 1 for k ∈
K1) be the eigenstate of the Bloch Hamiltonian H2(k) −
EF with eigenenergy E2,α (k), a direct calculation leads to

(for q + Q ∈ K1)

S+−(q, ω) = 2π

N

∑
α

δ[ω + E1(Q) − E2,α (Q + q)]

×
∣∣∣∣√2(2S − 1)〈ψ0(Q + q)|�2,α (Q + q)〉

+ 2
√

Se−i(Q−q) N
4
〈
ψ N

2
(Q + q)

∣∣�2,α (Q + q)
〉

+ 2
√

2S
∑

0<r< N
2

cos
(Q − q)r

2
〈ψr (Q

+ q)|�2,α (Q + q)〉
∣∣∣∣
2

. (35)

A similar expression holds for Q + q ∈ K ′
1 (with the term

2
√

Se−i(Q−q) N
4 〈ψ N

2
(Q + q)|�2,α (Q + q)〉 being removed).

Figure 6(b) shows the dynamic structure factor S+−(q, ω)
calculated by the above equation using Q = −π . The
dominant branch is the usual contribution [1]. To see the
contribution of the two bound states, we plot in Fig. 6(c) a
three-dimensional plot of the S+−(q, ω) near the edges of the
band on a different color scale. For the exchange bound states
(rightmost curve), we observe a finite S+−(q, ω) exhibiting
a nonmonotonic behavior as q increases. This is similar to
the case of a spin-1/2 XXX chain at high magnetization [1].
Interestingly, we also observe a slightly larger contribution
from the single-ion bound states (leftmost curve), which
shows a monotonic decay with increasing q. These behaviors
can be more clearly seen from the inset of Fig. 6(c), where we
plot S+−(q, ω) as a function of q. It is thus possible to uncover
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FIG. 7. Three-magnon excitation spectra for N = 60 and S = 2.
The separated branches corresponding to three-magnon bound states
are highlighted in cyan. The red dashed curves in (a) show the three
eigenenergies of the effective Hamiltonian H(eff )

3,D=0(k) − EF given by
Eq. (B1), and the ones in (c) and (f) show the approximate energy
given by Eq. (37).

the appearance of both types of two-magnon bound states
from investigating the experimentally relevant transverse
dynamic structure factor S+−(q, ω).

V. THREE-MAGNON SECTOR

We now turn to study the three-magnon sector in detail
with the help of the Bloch Hamiltonians shown in Fig. 3. In
this section, we will set Jz, Jxy > 0.

A. Three-magnon bound states

The structures of three-magnon bound states are much
richer than the two-magnon ones due to the variety of the
on-site energies, as can be seen from Fig. 3. It is intuitive to
first look at the case of vanishing Jxy for which all the hoppings
in Figs. 3(a) and 3(b) are turned off. According to the level
diagram shown in Fig. 3(c), the ground state of H3(k)|Jxy=0

for D/Jz > 1/2 (D/Jz < 1/2) is |ψ0,0(k)〉 (are |ψ0,1(k)〉 and
|ψ0,N−1(k)〉), which will be referred to as the p state (purple)
[b states (blue)] according to the colors of the circles.

Turning on the xy coupling generally mixes these states to
form quasicontinuous bands. However, bound states separated
from the continua can emerge in certain parameter regimes.
Figure 7 shows the three-magnon excitation spectra calculated
by diagonalizing the Bloch Hamiltonians {H3(k)} for N = 60
and S = 2. We observe several separated branches that indi-
cate the emergence of three-magnon bound states.

Let us first discuss the case of vanishing D [Fig. 7(a)]. For
Jxy/Jz = 0, the two b states are degenerate with the g state

[green, |ψ1,1(k)〉, see Fig. 3(c)]. To analyze the properties of
the system for small Jxy/Jz, we need to resort to degenerate
perturbation theory. Here, we employ Takahashi’s many-body
perturbation theory [35] to derive an effective Bloch Hamil-
tonian H(eff )

3,D=0(k) − EF up to the third order in Jxy/Jz in this
three-dimensional degenerate manifold. Explicitly, consider a
generic Hamiltonian h = h0 + λV , where λV can be viewed
as a perturbation. Let P0 be the projector on the degenerate
manifold associated with eigenvalue E0 of h0, then the Taka-
hashi effective Hamiltonian up to the third order in λ reads
[35]

heff = E0P0 + λP0V P0 + λ2P0V S1V P0

+ λ3
(
P0V S1V S1V P0 − 1

2 P0V S2V P0V P0

− 1
2 P0V P0V S2V P0

)
, (36)

where Sk = ( 1−P0
E0−h0

)k, k � 1.
We now apply the above theory to the Bloch Hamiltonian

H3(k) − EF in the case of D = 0. The nonperturbative
ground-state manifold is spanned by {|ψ0,1〉, |ψ0,N−1〉, |ψ1,1〉}
with a common energy E0 = (6S − 2)Jz, so that
P0 = |ψ0,1〉〈ψ0,1| + |ψ0,N−1〉〈ψ0,N−1| + |ψ1,1〉〈ψ1,1|. After
a straightforward calculation we obtain a 3 × 3 effective
Hamiltonian H(eff )

3,D=0(k) − EF (see Appendix B for its explicit
form).

The red dashed curves in Fig. 7(a) represent the three
eigenenergies of H(eff )

3,D=0(k) − EF for Jxy/Jz = 0.1, which are
in good agreement with the exact results. As D/Jz increases to
0.4 [Fig. 7(b)], the p, g, and b states are responsible for the four
separated levels. In the large anisotropy limit with D/Jz = 1
[Fig. 7(c)], the lowest branch of the spectrum is dominated by
the nondegenerate p state. Using standard nondegenerate per-
turbation theory, we derive the ground-state energy correction
up to the fourth order in Jxy/(Jz − 2D),

E3(k) ≈ 6SJz + D(6S − 9) + 3S(S − 1)J2
xy

Jz − 2D

− 3S(S − 1)(2S − 1)J3
xy cos k

2(Jz − 2D)2
+ 3S(S − 1)J4

xy

4(Jz − 2D)2

×
[

2S(2S − 1)

Jz − 3D
− S2

2D
− 2S2 − 2S − 1

Jz − 2D

]
. (37)

Note that the dispersion arises from the third order, and the
second- and fourth-order corrections only give an energy shift.
The red dashed curve in Fig. 7(c) shows the result given
by Eq. (37), which agrees well with the exact result. The
middle quasicontinuous band around E3(k)/Jz = 19 is due to
the mixing of the N − 3 edge r states (red) and the g state.

The lower panels of Fig. 7 show the spectrum for Jxy/Jz =
1. Compared with the case of small Jxy/Jz, a larger D is needed
to observe the bound states. Nevertheless, the lowest branches
in Figs. 7(e) and 7(f) are still dominated by the p states. The
fourth-order perturbation still gives accurate results for the
spectrum at the edges of the momentum space [red dashed
curve in Fig. 7(f)].
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B. Transverse dynamic structure factor for
the two-magnon states

In Sec. IV B we calculated the transverse dynamic structure
factor for the lowest one-magnon state |ψ (−π )〉 using the
Bloch states. In this subsection we will calculate the trans-
verse dynamic structure factor for a state in the two-magnon
sector. We assume that the two-magnon state of interest is
some eigenstate |�2,ξ (Q)〉 of H2(Q) − EF with excitation
energy E2,ξ (Q), where ξ labels this particular eigenstate and
we take it as the lowest one in the Q subspace. By setting
|�〉 = |�2,ξ (Q)〉 in Eq. (34), we have

S+−(q, ω) = 2π

N

∑
α

δ[ω + E2,ξ (Q) − E3,α (q + Q)]

× |〈�3,α (q + Q)|Lq|�2,ξ (Q)〉|2, (38)

where |�3,α (q + Q)〉 is the eigenstate of H3(q + Q) − EF

with eigenenergy E3,α (q + Q). The explicit form of the ma-
trix element 〈�3,α (q + Q)|Lq|�2,ξ (Q)〉 is lengthy and not
illuminating but can be easily handled in the numerical
simulation.

To be specific, we consider a ferromagnetic S =
3/2 XXZ chain with Jz > 0 and N = 90. The pa-
rameters are chosen as Jxy/Jz = 0.5, D/Jz = 1.5, and
B/Jz = 1, for which the lowest two-magnon eigenstate
lies in the Q = 0 subspace, giving E2,ξ (0)/Jz = 9.8209
and |�2,ξ (0)〉 = ∑N/2

r=0 cr |ψr (0)〉 with c0 = −0.7995, c1 =
−0.5443, c2 = −0.2303, c3 = −0.0975, . . .. Here, we only
show the first few components since the amplitude of |ψr (0)〉
decays rapidly as r increases. As a good approximation, we
take into account only the amplitudes up to r = 2, yielding

〈�3,α (q)|Lq|�2,ξ (0)〉 = c0

√
6(S − 1)〈�3,α (q)|ψ0,0(q)〉

+
∑

r=1,2

[√
2Sc0ei 2

3 rq +
√

2(2S − 1)cre−i r
3 q

]
〈�3,α (q)|ψ0,r (q)〉

+
∑

r=1,2

[√
2Sc0ei 2

3 (N−r)q +
√

2(2S − 1)cre−i N−r
3 q

]
〈�3,α (q)|ψ0,N−r (q)〉

+ c0

√
2S

N−3∑
n=3

ei 2
3 nq〈�3,α (q)|ψ0,n(q)〉

+
√

2S
∑

r=1,2

cr

N−2r−1∑
l=r+1

e
i
3 (r+2l )q〈�3,α (q)|ψr,l (q)〉 + 2

√
2S

∑
r=1,2

cr cos qr〈�3,α (q)|ψr,r (q)〉

+ c2

√
2S〈�3,α (q)|[|ψ1,1(q)〉 + e−i N−4

3 q|ψ1,N−3(q)〉 + e−i 4
3 q|ψ1,2(q)〉] + . . . (39)

There also exist two branches of low-lying three-magnon
bound states, |�3,1(q)〉 and |�3,2(q)〉, which are dominated by
the p states (around E3(k)/Jz ∼ 11.5) and the b states (around
E3(k)/Jz ∼ 14.5), respectively. For these two branches, the
matrix element given by Eq. (39) is mainly contributed by
the terms proportional to 〈�3,1(q)|ψ0,0(q)〉, 〈�3,2(q)|ψ0,1(q)〉,
and 〈�3,2(q)|ψ0,N−1(q)〉 [the first three lines of Eq. (39)],
giving rise to the evidence of three-magnon bound states in
S+−(q, ω).

Figure 8(a) shows the dynamic structure factor calculated
by using the full expression of 〈�3,α (q)|Lq|�2,ξ (0)〉. We ob-
serve a dominant single branch within the continuum, along
with two separated branches (with smaller magnitudes) aris-
ing from the two types of three-magnon bound states. To
see how the three-magnon states contribute to the dominant
branch, we plot in Fig. 8(b) the numerical density of states
ρ(ω) for several q′s (we choose the frequency interval as
�ω(q) = [ωmax(q) − ωmin(q)]/2000 and count the number of
states in each interval). It can be seen that the peak of ρ(ω(q))
moves to the low-energy regime as q increases, indicating
that the dominant branch in S+−(q, ω) seems irrelevant to the
density of states.

A detailed numerical analysis shows that the dominant
branch is mainly contributed by the fourth and fifth lines
of Eq. (39), where a constructive interference of the am-
plitudes 〈�3,α (q)|ψr1,r2 (q)〉 occurs. Actually, the fourth line
of Eq. (39) is mainly contributed by three-magnon eigen-
states that have significant overlap with the Bloch states
{|ψ0,n(q)} with n = 3, . . . , N − 3 [red circles in Fig. 3(a)].
These eigenstates therefore can be thought of as a mixture of
a single-ion two-magnon bound state and a one-magnon state.
Similarly, the terms with r = 1 in the fifth line of Eq. (39)
are contributed by eigenstates that are mixtures of an ex-
change two-magnon bound state and a single magnon [orange
circles in Fig. 3(b)]. Of course, there are also partial contri-
butions from the three-magnon scattering states to the matrix
element.

The magnitudes of the two lower energy branches in
Fig. 8(a) are much smaller than the dominant branch. How-
ever, they are much larger than S+−(q, ω) in the continuous
region with the dominant branch excluded. The two separated
branches are shown in Fig. 8(c) on a different color scale.
From Fig. 8(d) we see that S+−(q, ω) is significantly different
from zero for small q. These results indicate that signatures
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FIG. 8. (a) Transverse dynamic structure factor S+−(q, ω) for the
lowest two-magnon state |ψ2,ξ (0)〉 for a spin-3/2 ferromagnetic XXZ
chain. (b) Density of states ρ(ω) for the ω(q) shown in (a). (c) The
two separated branches contributed by the two three-magnon bound
states. The inset shows that S+−(q, ω) is significantly different from
zero for small q, indicating the presence of three-magnon bound
states. Parameters: N = 90, Jxy/Jz = 0.5, D/Jz = 1.5, and B/Jz = 1.

of the three-magnon bound states can also be detected in the
transverse dynamic structure factor.

C. Three-magnon quantum walks

Besides calculating the transverse dynamic structure fac-
tor, our formalism also allows us to evaluate the real-time
dynamics of local spin excitations by simulating independent
quantum walks on the effective lattices. The foregoing iden-
tification of magnon bound states provides an intuitive way
to look at the multimagnon dynamics. Suppose the system is
initially prepared in a general localized state with (r1, r2) 	=
(m, m),

|�(0)〉 = ∣∣φn
r1,r2

〉
. (40)

We are interested in the local magnetization dynamics
〈Sz

j (t )〉 = 〈�(0)|eiHt Sz
je

−iHt |�(0)〉. By expanding |φn
r1,r2

〉 in
terms of the Bloch states using Eq. (20), we are able to derive
the following expression for 〈Sz

j (t )〉,

〈
Sz

j (t )
〉 = S −

3∑
a=1

(m−1,m+1)∑
s1,s2=(0,0)

∣∣X (a), j,n
r1r2;s1s2

(t )
∣∣2 − ∣∣Y j,n

r1r2
(t )

∣∣2
. (41)

Here,

X (1), j,n
r1r2;s1s2

(t ) ≡ 1

N

∑
k∈K0

ei k
3 [3( j−n−1)+2s1+s2−r1−r2]

Fr1r2;s1s2 (k, t ),

X (2), j,n
r1r2;s1s2

(t ) ≡ 1

N

∑
k∈K0

ei k
3 [3( j−n−1)−s1+s2−2r1−r2]

Fr1r2;s1s2 (k, t ),

FIG. 9. (a) Magnetization dynamics 〈Sz
j (t )〉 from an initial state

|φ N
2 −1

1,1 〉 = | N
2 , N

2 + 1, N
2 + 2〉 for N = 60 and Jxy/Jz = 0.1. (b) The

corresponding approximated dynamics using the effective Hamilto-
nian H(eff )

3,D=0(k).

X (3), j,n
r1r2;s1s2

(t ) ≡ 1

N

∑
k∈K0

ei k
3 [3( j−n−1)−s1−2s2−2r1−r2]

Fr1r2;s1s2 (k, t ), (42)

and

Y j,n
r1r2

(t ) ≡ 1√
Nm

∑
k∈K2

eik( j−n−1)ei k
3 (3m−2r1−r2 )

Fr1r2;mm(k, t ), (43)

with

Fr1r2;s1s2 (k, t ) ≡
∑

α

e−iE3,α (k)t 〈�3,α (k)|ψr1,r2 (k)〉

〈ψs1s2 (k)|�3,α (k)〉. (44)

The initial condition for Fr1r2;s1s2 (k, t ) is given by

Fr1r2;s1s2 (k, t = 0) = δr1s1δr2s2 . (45)

We see that the F ′s given by Eq. (44) are mainly contributed
by eigenstates having significant overlap with the initial com-
ponent state |ψr1,r2 (k)〉. In particular, if the initial state is some
real-space bound state, e.g., the local state |N

2 , N
2 + 1, N

2 + 2〉
with three successive spin excitations, it is then reasonable
to expect that the corresponding three-magnon bound states
(the eigenstates) will mainly contribute to the magnetization
dynamics, provided these bound states are well separated from
the continuum.

Figure 9(a) shows the evolution of 〈Sz
j (t )〉 starting with

|�(0)〉 = |N
2 , N

2 + 1, N
2 + 2〉 for D = 0 and Jxy/Jz = 0.1 [cor-

responding to Fig. 7(a)]. The situation here is similar to a
three-boson quantum walk recently studied in Ref. [36]. We
expect that the three-magnon bound states shown in Fig. 7(a)
can accurately capture the magnetization dynamics since
|�(0)〉 is a linear combination of the g states. To this end,
we use the 3 × 3 effective Hamiltonian H(eff )

3,D=0(k) given by
Eq. (B1) to approximately calculate 〈Sz

j (t )〉 [Fig. 9(b)], which
is found to agree well with the result obtained by full quantum
simulation. However, deviation from the exact dynamics is
observed for a larger Jxy/Jz, due to the fact that the highest
effective level starts merging into the continuous band (data
not shown).
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FIG. 10. Magnetization dynamics 〈Sz
j (t )〉 from an initial state

| N
2 , N

2 , N
2 〉 for Jxy/Jz = 1, N = 60, and S = 3. (a) D/Jz = 0, (b)

D/Jz = 2, (c) D/Jz = 3, (d) D/Jz = 10. The corresponding excita-
tion spectra as a function of the wave number k are shown in the
upper-right corner of each panel.

Figure 10 shows 〈Sz
j (t )〉 starting with |�(0)〉 = |φ

N
2 −1

0,0 〉 =
|N

2 , N
2 , N

2 〉 for Jxy/Jz = 1, S = 3 and several values of D/Jz.
In the upper-right corner of each panel we also plot the
corresponding three-magnon excitation spectrum. It can be
seen that the propagation of the magnetization profile narrows
down as D/Jz increases. In the absence of the single-ion
anisotropy, the large XX interaction destroys the formation of
bound states, so that the dynamics is mainly contributed by the
scattering states [Fig. 10(a)]. For D/Jz = 2, we observe two
new wave fronts due to the appearance of the two bound states
[Fig. 10(b)]. The dynamics in the case of D/Jz = 3 behaves
similarly but with a slower propagating velocity due to the
slightly flattened dispersion [Fig. 10(c)]. In the large-D limit,
both the continuum band and the bound states dispersions
become nearly flat, leading to a confined propagation around
the center of the chain [Fig. 10(d)].

To understand the short-time dynamics in the small and
large D limits, we perform a time-dependent perturbative

analysis, which gives the following initial Gaussian evolution,〈
Sz

N
2

(t )
〉 ≈ S − 1 − 2e−(Jxytg)2t2

,〈
Sz

N
2 ±1

(t )
〉 ≈ S − 1 + e−(Jxytg)2t2

. (46)

The spin flips therefore mainly spread to nearest neighbors at
short times.

VI. CONCLUSIONS AND DISCUSSIONS

In this work, we provide the construction of exact Bloch
states for the three-magnon sector in a finite-size higher-
spin periodic XXZ chain. Each Bloch Hamiltonian defines
a single-particle problem on a triangle-shape lattice. Several
types of magnon bound states are identified as edge states on
the lattice. We reveal the condition under which zero-energy
states upon the ferromagnetic state emerge. The two-magnon
sector is also studied using similar ideas. By computing the
transverse dynamic structure factor, we find signatures of the
multimagnon bound states for a chain with higher spins. With
the help of our formalism, we also calculate the three-magnon
dynamics by simulating single-particle quantum walks on the
effective lattices. The spread of local spin excitations over the
chain is explained in terms of propagations of three-magnon
bound states in certain parameter regimes.

We finally mention some possible applications of our exact
formalism. Our method can be directly applied to higher-
spin chains with higher order terms or next-nearest-neighbor
couplings, which provides an opportunity to rigorously study
multimagnon bound states in finite-size frustrated ferromag-
netic chains. It is also straightforward to extend our formalism
to more general translationally invariant systems, such as
itinerant particle systems described by the Fermi- or Bose-
Hubbard models.
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APPENDIX A: PROOF OF EQ. (23)

We start with calculating the commutator

[H, Lk] = (Jze
ik − Jxy)

N∑
n=1

eiknS−
n+1Sz

n + (Jz − Jxyeik )
N∑

n=1

eiknS−
n Sz

n+1. (A1)

By applying [H, Lk] to |F 〉, we obtain

[H, Lk]|F 〉 = S(Jze
ik − Jxy)

N∑
n=1

eiknS−
n+1|F 〉 + S(Jz − Jxyeik )

N∑
n=1

eiknS−
n |F 〉 = 2S(Jz − Jxy cos k)Lk|F 〉 = 0, (A2)
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which proves Eq. (23) for n = 1. We now observe that the commutator [Lk, [H, Lk]] = −2eik (Jz − Jxy cos k)
∑

n ei2knS−
n+1S−

n
vanishes under the condition given by (22), so that

0 = [Lk, [H, Lk]]|F 〉 = LkHLk|F 〉 − L2
k H |F 〉 − HL2

k |F 〉 + LkHLk|F 〉 = −HL2
k |F 〉 + EF L2

k |F 〉, (A3)

which proves Eq. (23) for n = 2. Following Refs. [37,38], we assume Eq. (23) holds for l and l + 1, i.e., H (Lk )l |F 〉 = EF (Lk )l |F 〉
and H (Lk )l+1|F 〉 = EF (Lk )l+1|F 〉. Then,

0 = [Lk, [H, Lk]](Lk )l |F 〉 = −HL2
k (Lk )l |F 〉 + LkHLk (Lk )l |F 〉 = −(H − EF )(Lk )l+2|F 〉. (A4)

By mathematical induction, we therefore proved Eq. (23) for all n � 2NS + 1.

APPENDIX B: EXPLICIT FORM OF THE EFFECTIVE HAMILTONIAN H(eff )
3,D=0(k) − EF

The 3 × 3 effective Hamiltonian H(eff )
3,D=0(k) − EF can be directly obtained by using Eq. (36):

[
H(eff )

3,D=0(k) − EF
]

1,1 = [
H(eff )

3,D=0(k) − EF
]

2,2 = S(4S − 3)J2
xy

4Jz

(2S − 1)Jxy cos k − 2Jz

Jz
,

[
H(eff )

3,D=0(k) − EF
]

1,1 = −SJ2
xy

2Jz

2Jz(4S − 1) + JxyS(10S − 3) cos k

Jz
,

[
H(eff )

3,D=0(k) − EF
]

1,2 = z−(N+1)Jxy

[
−(2S − 1) − Jxy3S(S − 1)z3

2Jz
+ J2

xyS(2S − 1)(5S − 3)

4J2
z

]
,

[
H(eff )

3,D=0(k) − EF
]

1,3 =
√

S(2S − 1)Jxy

[
−z − JxySz−2

2Jz
+ J2

xyzS(17S − 9)

8J2
z

]
,

[
H(eff )

3,D=0(k) − EF
]

2,3 = zN
√

S(2S − 1)Jxy

[
−z−1 − JxySz2

2Jz
+ J2

xyS(17S − 9)

8J2
z z

]
, (B1)

where z = e−ik/3.
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