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Modern ferromagnetism theory is based on the Landau-Lifshitz-Gilbert equation that governs the dynamics
of magnetic moment in a ferromagnet. As a deep-rooted notion, the Gilbert damping parameter must be
positive because it describes the (energy and angular momentum) dissipation. In this paper, we report a negative
Gilbert damping via the magneto-optical interaction of three orthogonal circularly-polarized laser beams with
a submicron magnet placed in an optical cavity. We show that the off-resonant coupling between the driving
laser and cavity photon in the far-blue detuning can induce a magnetic torque exactly of the Gilbert type with
negative damping coefficient. A hyperbolic-tangent function ansatz is found to well describe the time-resolved
spin switching as the intrinsic dissipation is overcome. Feasible experiments and materials are discussed to test
our theory.
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I. INTRODUCTION

The Landau-Lifshitz-Gilbert (LLG) equation is the cor-
nerstone of the phenomenological theory of magnetism [1].
It successfully describes multiscale magnetization dynamics,
ranging from biocompasses that sense the geomagnetic field
[2], to magnetic hard disks that store binary information [3],
and to solitons that are robust against external frustrations [4].
The standard LLG equation takes the following form:

∂M
∂t

= −γ M × Heff + α

|M|M × ∂M
∂t

, (1)

where M = −γ S is the local magnetization with spin mo-
mentum S, γ > 0 is the gyromagnetic ratio, and Heff is the
effective field around which the local magnetization pre-
cesses. α is the Gilbert damping parameter describing the
dissipation of energy and angular momentum, and it thus must
be positive, as a well-established notion. A smaller Gilbert
damping corresponds to a higher quality of magnetic solids
[5]. Yttrium iron garnet (YIG) is the known material with
the lowest magnetic damping (α ∼ 10−5) [6,7], but the qual-
ity factor (Q factor) is still far less than its optical and/or
superconducting counterparts [8,9]. Pursuing materials with
even smaller Gilbert damping is of vital importance to both
fundamental magnetism and applied spintronics. For example,
a very high magnon Q factor would enable the magnonic
frequency comb [10] to eventually compete with the optical
comb. However, there exist several intrinsic mechanisms, such
as the relativistic spin-orbit coupling [11], spin-lattice inter-
action [12,13], and two-magnon scattering at surfaces [14],
that hinder the success to further reduce the Gilbert damping.
How to realize a Gilbert damping arbitrarily close to zero or
even across the border (negative damping) is an interesting
and challenging problem.
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The past decade has witnessed the flourish of cavity
spintronics that focuses on the resonant coupling between mi-
crowave cavity photons and magnons (quanta of spin waves)
[15–21]. Thorough reviews on cavity magnonics and quantum
magnonics can be found in Ref. [22] and Ref. [23], respec-
tively. One recent trend beyond microwave is the parametric
coupling of optical lasers with magnons, that generates inter-
esting new opportunities, such as the nonreciprocal Brillouin
light scattering [24], the microwave-to-optical converting
[25,26], the optical cooling of magnons [27], etc. In these
studies, considerable interests have been drawn to the scalar
properties of magnons, e.g., magnon population, temperature,
and chemical potential, which is successful to describe the
small-angle spin precession enabling the Holstein-Primakoff
transformation to quantize the spin dynamics in terms of
magnons [28]. In contrast, their vectorial behavior, i.e., the
full time-evolution of the magnetic moment in optical cavities
driven by lasers, remains largely unexplored, with only few
exceptions [29]. It has been shown that a ferromagnetic-to-
antiferromangetic phase transition may emerge in the vicinity
of the magnonic exceptional point [30,31]. In such case, the
magnetic moment would significantly deviate from its equilib-
rium direction, and a vectorial field description becomes more
relevant than a scalar one.

In this paper, we propose an optomagnonic approach to
realize the negative Gilbert damping. We consider the off reso-
nant interaction between three orthogonal circularly-polarized
laser beams and a submicron magnet placed in an optical
cavity [see Fig. 1(a)]. By solving the coupled equations of
motion and integrating out the photon’s degree of freedom,
we derive the analytical formula of the optical torque act-
ing on the macrospin. In the far-blue detuning, we find that
the optical torque exactly takes the Gilbert form − αopt

S Ṡ × S
with αopt > 0 (see below). The total Gilbert damping be-
comes negative when the intrinsic dissipation is overcome. A
hyperbolic-tangent function ansatz is found to well describe
the time-resolved spin switching.
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FIG. 1. (a) Schematic illustration of a macrospin S interacting
with three orthogonally propagating circularly-polarized lasers (red
beams) in an optical cavity. Off-resonant coupling between the driv-
ing laser (ωlas) and the cavity photon (ωcav) mediated by magnons
(ωm � ωcav) in the blue (b) and red (c) detuning regimes.

The paper is organized as follows. We present the general
model in Sec. II. Main results are given in Sec. III, in which
we derive the negative Gilbert damping torque and rationalize
materials and experiments to test our theory. In Sec. IV, we
discuss the indications and prospects of our proposal. The
conclusion is drawn in Sec. V.

II. MODEL

The proposed setup is schematically plotted in Fig. 1(a).
Three circularly-polarized laser beams propagating respec-
tively along x, y, z directions drive the parametric coupling
with a macrospin S = (Ŝx, Ŝy, Ŝz ) inside the optical cavity.
The external magnetic field is applied along z axis. The total
Hamiltonian in the rotating frame of reference at the pump
laser frequency is expressed as (see Appendix A)

H = −h̄ωmŜz − h̄
∑

j=x,y,z

(� j − g jŜ j )ĉ
†
j ĉ j +Hdr, (2)

where the first term is the Zeeman energy, the second
term is the magneto-optical interaction, � j = ωlas, j − ωcav

is the frequency detuning between the cavity photon ωcav

and the driving laser ωlas, j , j = x, y, z denotes the three
orthogonally-propagating laser beams, and ĉ†

j (ĉ j ) is the cre-
ation (annihilation) operator of the optical cavity photons.
The coupling strength g j = cθF

S
√

εr
between the spin and optical

photon originates from the Faraday-induced modification of
the electromagnetic energy in ferromagnets [32], with S the
total spin number, c being the speed of light in vacuum,
θF = f Msωlas

2c
√

εr
being the Faraday rotation per unit length, and Ms

being the saturated magnetization. In the following calcula-
tions, we assume a (driving) frequency-independent coupling
by replacing ωlas, j with ωcav in θF , which is justified since
|ωlas, j − ωcav|/ωcav � 1. The last driving term describes the
interaction between the driving laser and the cavity photon
Hdr = ih̄

∑
j (Ajĉ

†
j − H.c.), where Aj = (2κ jPj/h̄ωlas, j )1/2 is

the field amplitude, with κ j the laser external loss rate
and Pj being the driving power. The Heisenberg-Langevin

equations of motion for coupled photons and spins are ex-
pressed as (o ≡ 〈ô〉),

ċ j = (i� j − κ j )c j − ig jS jc j + Aj, (3a)

Ṡx = ωmSy + gynySz − gznzSy, (3b)

Ṡy = −ωmSx − gxnxSz + gznzSx, (3c)

Ṡz = −gynySx + gxnxSy, (3d)

where n j = 〈ĉ†
j ĉ j〉 is the average photon number in the cav-

ity. Because the spin dynamics usually is much slower than
optical photons, one can expand the cavity photon operator as
c j (t ) ≈ c j0(t ) + c j1(t ) + · · · , in orders of Ṡ j . Equation (3a)
then can be recast in series (see Appendix B)

0 = (i� j − κ j )c j0 − ig jS jc j0 + Aj, (4a)

ċ j0 = (i� j − κ j )c j1 − ig jS jc j1, (4b)

by keeping up to the first-order terms. We can therefore
derive the formula of photon number in the cavity nj (t ) ≈
|c j0|2 + 2Re[c∗

j0c j1]. Substituting it into Eqs. (3b)–(3d) and
considering the intrinsic Gilbert damping [33], we obtain

Ṡ = −γ S × Beff + α

S
(Ṡ × S) − βopt × S, (5)

where the effective magnetic field Beff = −B0ez + Bopt in-
cludes both the external magnetic field −B0ez and the
optically induced one

Bopt =
∑

j

γ −1g jA2
j

(� j − g jS j )2 + κ2
j

e j, (6)

which is the zeroth-order of Ṡ j . The second term in the right-
hand side of (5) is the intrinsic Gilbert damping torque with
α > 0 [34]. The last term in (5) represents the optical torque
with the anisotropic effective field

βopt =
∑

j

4κ jA2
j g

2
j (� j − g jS j )

[(� j − g jS j )2 + κ2
j ]3

Ṡ je j, (7)

which is linear with the first-order time-derivative of Sj . Be-
low, we show that the anisotropic nature of (7) can be smeared
out under proper conditions.

III. RESULTS

A. Negative Gilbert damping

To obtain the optical torque of exactly the Gilbert form,
we make two assumptions: (i) the three laser beams are
identical, i.e., Aj = A, g j = g, κ j = κ, and � j = �; (ii) the
optomagnonic coupling works in the far-detuning regime, i.e.,
|η| 
 1 with η = �/(gS), which allows us to drop the gjS j

terms in Eq. (7). The optically induced effective fields then
take the simple form

Bopt = γ −1gA2

�2 + κ2

∑
j

e j, (8)

and

βopt = αopt

S
Ṡ, with αopt = 4κA2g2S�

(�2 + κ2)3
(9)
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TABLE I. Parameters for optical cavity and YIG.

cavity mode cavity loss Zeeman energy MO coupling Gilbert damping Spin density Faraday rotation

ωcav/2π κ/2π ωm/2π gS/2π α ρs θF

100 THz 1 GHz 10 GHz 1 GHz 10−4 1028m−3 188◦/cm

being the laser-induced magnetic gain or loss that depends the
sign of the detuning �. Based on the above results, we finally
obtain the optically modulated spin dynamics

Ṡ = −γ S × Beff + αeff

S
(Ṡ × S), (10)

with αeff = −αopt + α. One can observe that a negative ef-
fective Gilbert constant (αeff < 0) emerges in the far-blue
detuning regime, i.e., 1 < η < ηc. In case of the red detuning
(η < 0), we have αopt < 0, which indicates the enhancement
of the magnetic attenuation. In the deep-blue detuning regime
(η > ηc), driving lasers can still generate the magnetic gain
(αopt > 0) but cannot compensate the intrinsic dissipation, i.e.,
0 < αopt < α. Here ηc is the critical detuning parameter at
which the effective Gilbert damping vanishes. The physics
can be understood from the diagram plotted in Figs. 1(b) and
1(c): In the blue detuning regime (ωlas > ωcav), microwave
magnons are emitted in the off-resonant interaction between
the driving laser and the cavity photon, representing a mag-
netic gain. On the contrary, they are absorbed in the red
detuning (ωlas < ωcav), manifesting a magnon cooling. Below
we discuss practical materials and parameters to realize this
proposal.

B. Materials and experiments

For a ferromagnetic insulator like yttrium ion garnet (YIG),
the intrinsic Gilbert constant α typically ranges 10−3 ∼ 10−5

[6,7]. We take α = 10−4 in the following calculations and
estimations. The magneto-optical coupling strength is deter-
mined by the Faraday rotation coefficient θF of the materials
gS � cθF /

√
εr (for YIG, we choose εr = 15 [35] and θF =

188◦/cm [36]). Unlike the resonant case that the individ-
ual coupling keeps a constant and the total coupling is
proportional to the square root of spin number [19], the
magneto-optical coupling strength g here is inversely propor-
tional to the total spin number S [28], because their product
gS is fixed by the Faraday rotation coefficient.

We thus have gS/2π ≈ 1 GHz. The optical cavity is set at
the resonant frequency ωcav/2π = 100 THz with the loss rate
κ/2π = 1 GHz. For a YIG sphere of radius r = 10 nm and
spin density ρs ≈ 1028 m−3, we estimate the total spin number
S = ρsr3 ≈ 104 and the coupling strength g/2π ≈ 0.1 MHz.
Materials parameters are summarized in Table I. Because
g � κ , all interesting physics occurs in the weak-coupling
regime. Considering the driving laser with a fixed power P =
1 μW, the effective Gilbert-type magnetic gain is αeff = −α

at ηPT � 6.16, and the critical gain-loss point αeff = 0 occurs
at ηC � 7.11, indeed satisfying the large-detuning condition
|η| 
 1 in deriving (9). Figure 2(a) shows the monotonically
decreasing dependence of the optically induced magnetic gain
αopt on the detuning parameter η. The η dependence of the op-
tical field is plotted in Fig. 2(b), showing that it monotonically

decreases with the increase of the detuning. Enhancing the
laser power will push the two critical points ηC and ηPT into
the deep detuning region, as demonstrated in Fig. 2(c). For a
magnetic sphere of larger volume 1 μm3 ∼ 1 mm3 that con-
tains a total spin number S = 1010 ∼ 1019 with the reduced
magneto-optical coupling strength g/2π = 10−1 ∼ 10−10 Hz,
the required laser power then should be 6 ∼ 15 orders of
magnitude higher than that for nm-scale spheres, as shown
in Fig. 2(d).

C. Time-resolved spin flipping

To justify the approximation adopted in deriving the neg-
ative Gilbert damping torque, we directly simulate the time
evolution of the unit spin components (s j ≡ S j/S) based on
both Eq. (5) and Eq. (10). Numerical results are, respec-
tively, plotted in Figs. 3(a) and 3(b) for the same detuning
parameter η = 1.8 (corresponding to an effective damping
αeff = −0.0453) and ωm/2π = 10 GHz. Both figures show
that the very presence of the negative Gilbert damping can
flip the spin in a precessional manner, with similar switching
curves. The fast Fourier transformation (FFT) analysis of the
temporal oscillation of sx also confirms this point (see the
insets). Although the analytical form of sz(t ) by solving (5)
generally is unknown [37,38], we find an ansatz that can well
describe the time-resolved spin switching

sz(τ ) � tanh

(
−τ − τ0

τp

)
, (11)

FIG. 2. Optically induced magnetic gain (a) and magnetic field
(b) vs the optical detuning parameter η. (c) ηPT (orange) and ηC

(green) as a function of the driving laser power. (d) Radius depen-
dence of the laser power at the compensation point ηC = 7.11.
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FIG. 3. Time evolution of unit spin components (sx, sy, sz ) at
detuning η = 1.8 based on Eq. (5) (a) and Eq. (10) (b). Insets
show the FFT spectrum of sx . (c) Theoretical fittings of sz using
the hyperbolic-tangent ansatz (11) (dashed curves). The solid-green
curve is the analytical formula without any fitting. (d) Numeri-
cal results of the η dependence of the two characteristic times
τ0 and τp, comparing with formula (12) (solid curves). Time is
normalized by ω−1

m .

which is reminiscent of the Walker solution for modeling
the profile of 180◦ magnetic domain wall [39] by replacing
the time coordinate τ with the space coordinate x. Here τ0

is the switching time, τp represents the life-time of uniform
magnons, and τ = ωmt . From perturbation theory, we derive
the analytical form of these two parameters

τp = −1 + α2
eff

αeff
, and τ0 = τp tanh−1

√
1 − 4B2

opt

B2
eff

. (12)

Figure 3(c) shows the time evolution of sz. Symbols repre-
sent the numerical results, dashed curves label the theoretical
fittings of ansatz (11), and the solid curve is the analytical
formula without fitting. The fitted switching time τ ′

0 = 100.4
(τ ′′

0 = 107.8) and magnon life-time τ ′
p = 14.9 (τ ′′

p = 22.4)
from Eq. (5) [Eq. (10)] compare well with the analytical
formula (12) which gives τ0 = 98.9 and τp = 22.1. We fur-
ther show that the analytical ansatz agrees excellently with
numerical results in a broad range of detuning parameters, as
plotted in Fig. 3(d).

Usually, the magnetization reversal is due to the effective
field, not the damping. The underlying physics of the negative
damping induced magnetization switching can be understood
as follows: We use W to denote the total energy of the spin
system. According to the effective LLG equation (10), we
obtain its time derivative

dW

dt
= − γαeff

1 + α2
eff

|S × Beff |2, (13)

where Beff is the time-independent effective field. For the
case of a negative Gilbert damping, i.e., αeff < 0, the energy
change rate of the spin system is always positive. The parallel
state between S and Beff is thus unstable, and the system

seeks the energy maximum. i.e., S antiparallel with Beff. We
therefore conclude that the flipped spin will not go back to
the original direction, and it will stay in the reversed state.
Numerical simulations confirm this point.

IV. DISCUSSION

In the above derivation, we focus on the case that the
intrinsic Gilbert damping is isotropic. Our approach can also
be generalized to treat the anisotropic intrinsic damping [40].
The laser beams then should match the tensor form of the
damping parameter, by modulating the driving powers. The
red-detuning region is appealing to cool magnons to the sub-
tle quantum domain. Other methods, e.g., parametric driving
[41], spin transfer torque [42], and antidamping spin-orbit
torque [43], may generate an effective magnetic gain, but
not of the Gilbert form for large-angle spin precessions. In
our estimation, the optical cavity frequency is chosen around
100 THz (wavelength ∼3μm, close to the laser wavelength
for observing the Faraday rotation in YIG) with linewidth
about 1 GHz. It requires a micrometer-size cavity with a
Q factor ∼105. Promising condidates include crystalline mi-
croresonators [44] and silicon nanoscale resonators [45].

Inspired by parity-time-symmetric optics [46–50], we en-
vision a giant enhancement of the magnonic gain and an
ultralow-threshold magnon lasing in a two-cavity system with
balanced optical gain and loss, which is an open question
for future study. While the passive parity-time symmetry has
been observed by Liu et al. [51], the exact and imbalanced
parity-time-symmetric phases are still waiting for the experi-
mental discovery. The realization of negative Gilbert damping
is helpful to resolve these issues [see Appendix C].

V. CONCLUSIONS

To summarize, we have proposed an optomagnonic method
to generate the negative Gilbert damping in ferromagnets,
by studying the parametric dynamics of a macrospin cou-
pled with three orthogonally propagating circularly-polarized
lasers in an optical cavity. We analytically derived the formula
of the optical torque on the spin and identified the far-detuning
condition for the torque exactly of the Gilbert form. We
found a hyperbolic-tangent function reminiscent of the Walker
ansatz to well describe the time-resolved spin switching when
the intrinsic damping is overcome. Our findings suggest an
experimentally feasible way to achieve negative Gilbert damp-
ing that is essential for substantially improving the quality
factor of magnets and for exploring the non-Hermitian physics
in magnonic systems.
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APPENDIX A: HAMILTONIAN

Considering a macrospin interacting with the external mag-
netic field, the Zeeman energy is Hmag = −M · B, where the
local magnetization M = −γ S, with γ = geμB/h̄ the gyro-
magnetic ratio, ge the electron g factor, and μB being the
Bohr magneton. Usually the electron g factor ge � 2 and
γ = 28GHz/T. For any right-handed coordinate system, the
components of the spin operator satisfy the commutations
[Ŝx, Ŝy] = ih̄Ŝz and its cyclic permutations. We assume that
the external magnetic field is applied along z axis, i.e., B =
−B0ez, so that the Zeeman energy can be expressed as

Hmag = −h̄ωmŜz, (A1)

with ωm = γ B0 the Larmor frequency.
In the microwave regime, magnons couple resonantly with

cavity photons, i.e., one magnon is converted to a photon with
the same frequency and vice versa. However, the coupling be-
tween magnon and optical photon is typically a three-particle
process, which accounts for the frequency mismatch and is
generally parametric [28,29]. The magneto-optical interac-
tion is essentially due to an effective permittivity tensor that
depends on the magnetization of the materials. The gener-
alized principle of symmetry of kinetic coefficients requires
the off-diagonal elements satisfying ε jk (M) = εk j (−M), and
the energy lossless assumption of the sample asks for a
Hermitian tensor ε jk = ε∗

k j . Both conditions imply that the
real and imaginary parts of ε jk have to be symmetry and
antisymmetry, respectively, as functions of M [32]. We con-
sider the linear form of the Faraday effect in an isotropic and
nondispersive medium

ε jk = ε0εrδ jk + iε0 f ε jklMl , (A2)

where ε jkl is the third-order Levi-Civita symbols, f is a scalar
constant, ε0 and εr are the vacuum and relative permittivities,
and subscripts j, k, l represent three directions (x, y, z). We
now focus on the optical fields with frequency close to the
optical cavity mode E = E0(t )e−iωcavt (the same as for mag-
netic component H), where E0(t ) varies slowly in comparison
with the factor e−iωcavt . Time-average energy density that the
electromagnetic field contains in a period is

ū = 1

4

∑
jk

E∗
0 j (t )ε jkE0k (t ). (A3)

Substituting the tensor permittivity and integrating the vol-
ume, we obtain the expression of the total energy

U = 1

4
ε0εr

∫
E∗ · EdV + i

4
ε0 f

∫
M · (E∗ × E)dV, (A4)

since E∗ · E = E∗
0 · E0. In the above equation, the first term

on the right side is the steady-state photon energy, and the
second one is the magneto-optical (MO) interaction. Here V
is the volume of the magnet. Now, considering a plane wave
propagating along x direction, one can quantize the electric
fields as

E(t ) = i

√
2h̄ωlas

ε0εrV
[ĉL(t )eikxêL + ĉR(t )eikxêR], (A5)

where êL,R = 1√
2
(ŷ ± iẑ) denotes the polarization direction,

ωlas and k are the frequency and wave vector of the laser beam,
respectively. The MO Hamiltonian then becomes

HMO = i

4
ε0 f

∫
V

i
2h̄ωlas

ε0εrV
(ĉ†

RĉR − ĉ†
LĉL )MxdV

= − f h̄ωlas

2εr
(ĉ†

RĉR − ĉ†
LĉL )Mx. (A6)

If we consider only the left-polarized driving laser, and note
that Mx/Ms = Ŝx/S, the MO Hamiltonian becomes

HMO = h̄gŜxĉ†ĉ, with g = f Msωlas

2Sεr
, (A7)

where we have dropped the suffix L. The coefficient f can
be obtained via the Faraday rotation per unit length θF =
f Msωlas

2c
√

εr
[32,36]. In the main text, we consider three identical

laser beams propagating along x, y, z directions, respec-
tively. In the rotating frame of laser frequency, correspond-
ing to a unitary transformation T̂ (t ) = exp(−iωlast ĉ†ĉ), the
Hamiltonian includes the cavity photon and the off-resonant
coupling becomes

H0 = −h̄
∑

j=x,y,z

(� j − g jŜ j )ĉ
†
j ĉ j, (A8)

where � j = ωlas, j − ωcav is the frequency detuning between
the driving laser ωlas, j and the cavity photon ωcav, and ĉ†

j (ĉ j )
is the creation (annihilation) operator of the optical cavity
photons. By including the Zeeman energy and the external
driving, we finally obtain the total Hamiltonian (2) in the
main text.

APPENDIX B: PHOTON NUMBER

The time evolution of an operator can be obtained via
the Heisenberg equation ˙̂o = i

h̄ [H, ô]. When performing the
average of operator products, we assume 〈ô1〉〈ô2〉 = 〈ô1ô2〉,
and thus obtain Eq. (3) in the main text. To solve Eq. (3), we
first solve the cavity photons by expanding the cavity photon
operator as c j (t ) ≈ c j0(t ) + c j1(t ) + · · · , in orders of Ṡ j . This
approach can be well justified that the cavity photon dynamics
is much faster than spin dynamics [29]. Similar treatments
have been adopted in optomechanical systems to derive the
mechanical gain [52–54]. To the first order of c j0(t ) ∼ S j ,
Eq. (3a) gives

0 = (i� j − κ j )c j0(t ) − ig jS jc j0(t ) + Aj . (B1)

To the second order of c j1(t ) ∼ Ṡ j , we have

ċ j0 = (i� j − κ j )c j1 − ig jS jc j1. (B2)

One therefore obtains Eq. (4) in the main text. It is noted
that the three spin components are not independent when we
discuss the spin dynamics. However, the photon dynamics is
purely linear, as seen in Eq. (3a) in the main text. According
to the Faraday interaction form, photons propagating along
different directions couple with different spin components.
For example, photons propagating along x direction, i.e., cx,
depends only on component Sx. Similarly, cy only couples
with Sy and cz only couples with Sz. Our derivations from
Eq. (A4) to Eq. (A7) have demonstrated this point (taking the
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FIG. 4. (a) Spin dimmer consisting of an optically pumped spin
s and a purely lossy one s′. Evolution of eigenfrequencies vs the ex-
change coupling (b,c) at the detuning ηPT = 6.16, and vs the detuning
parameter (d,e) at the exchange coupling ωex/2π = 1.5 MHz.

x component as an example). This also explains why we adopt
three orthogonal laser beams to drive the spin in our proposal.
By keeping up to the first-order terms, we can finally derive
the formula of photon number in the cavity

n j (t ) = |c j (t )|2 ≈ |c j0|2 + 2Re[c∗
j0c j1]

= A2
j

(� j − g jS j )2 + κ2
j

− 4κ jA2
j g j (� j − g jS j )[

(� j − g jS j )2 + κ2
j

]3 Ṡ j .

(B3)

APPENDIX C: PT SYMMETRY IN SPIN DIMERS

We have shown that under proper conditions, one can re-
alize the Gilbert-type magnetic gain, which is essential for
observing PT symmetry in purely magnetic structures. Next,
we consider the optically pumped spin S interacting with a
lossy one S′, as shown in Fig. 4(a). The coupled spin dynamics
is described by the LLG equation

ṡ = −γ s × Beff + ωexs × s′ + αeff ṡ × s, (C1a)

ṡ′ = −γ s′ × B′
eff + ωexs′ × s + αṡ′ × s′, (C1b)

where s(′ ) ≡ S(′ )/S is the unit spin vector. Since the optically
induced magnetic field is the same order of magnitude with
the geomagnetic field (much smaller than B0), it can be safely
ignored. Spin s′ is exchange coupled to the optically pumped
spin s, and suffers an intrinsic Gilbert damping. If αeff = −α,
the two-spin system satisfies the PT symmetry: Eqs. (C1) are
invariant in the combined operation of the parity P (s ↔ s′
and Beff ↔ B′

eff) and the time reversal T (t → −t , s → −s,
s′ → −s′, Beff → −Beff, and B′

eff → −B′
eff).

Assuming a harmonic time-dependence for the small-
angle spin precession sx,y(t ) = sx,yeiωt with |sx,y| � 1, one
can solve the eigenspectrum of Eqs. (C1). By tuning the
spin-spin coupling strength ωex, we observe a transition
from exact PT phase to the broken PT phase, sepa-
rated by the EP at ωc

ex/2π = 1 MHz for η = ηPT = 6.16,
as shown in Figs. 4(b) and 4(c). Interestingly, the un-
equal gain and loss, i.e., αeff < 0 and αeff �= −α, leads to
an imbalanced parity-time (IPT )-symmetry. In this region
(η > ηIPT = 5.66), the eigenfrequencies have different real
parts but share the identical imaginary one, as plotted in
Fig. 4(d). Although the gain and loss are not equal for
IPT , one can still observe the exceptional point where
the magnetic sensitivity can be significantly enhanced [21].
A passive parity-time (PPT )-symmetry is further identified
when αeff > 0. In such case (η > ηPPT = 7.11), the imaginary
part of both branches is smaller than their intrinsic damping
[see Fig. 4(e)].
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