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Dimer models arise as effective descriptions in a variety of physical contexts, and provide paradigmatic
examples of systems subject to strong local constraints. Here we present a quantum version of the venerable
Kasteleyn model, which has an unusual phase transition from a dimer solid to a U(1) liquid. We show how the
phase structure of the quantum model can be understood in terms of the quantum mechanics of one-dimensional
strings and determine the exact value of the critical coupling. By constructing effective models to describe
the properties of these strings, we calculate properties such as the dimer–dimer correlation function in the
neighborhood of the transition. We also discuss the full phase structure of the model, in the ground state and
at nonzero temperature.
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I. INTRODUCTION

Dimer models, in which the elementary degrees of freedom
are hard-core objects on the links of a lattice, are examples
of strongly constrained systems showing interesting collective
phenomena. Both classical [1] and quantum [2] dimer models
provide simple examples of systems exhibiting phenomena
such as topological order, fractionalization, and unconven-
tional phase transitions.

The statistical mechanics of classical dimers was studied
by Kasteleyn [3] and by Temperley and Fisher [4], who
found exact results for two-dimensional (2D) lattices. Inter-
est in quantum dimer models was initiated by Anderson’s
suggestion [5], in the context of high-temperature super-
conductivity, that frustrated quantum antiferromagnets could
exhibit phases in which nearby pairs of spins form resonating
singlets. Rokhsar and Kivelson [6] subsequently introduced
the quantum dimer model as an effective description, treating
the dimers as the elementary degrees of freedom and writing
down the simplest possible quantum Hamiltonian in terms of
them.

Dimer models can exhibit a wide array of different ordered
phases, sometimes referred to as “valence bond solids” [2],
which can be characterized using conventional order param-
eters. They are also known to exhibit more unconventional
“dimer liquid” phases, which arise due to the strong cor-
relations inherent in close-packed dimer configurations (see
Sec. I A) and are closely related to classical and quantum
spin liquids in spin models [7]. They include classical dimer
models on bipartite lattices, which host Coulomb phases [1],
described by effective gauge theories and with monomers,
defects in the close-packing constraint, acting as deconfined
charges.

Transitions between these two types of phases differ in
various ways from conventional phase transitions between
ordered and disordered phases. They include cases where
symmetry is spontaneously broken at the transition [8,9],
which do not fit into the standard Landau classification, be-
cause of the strong correlations on the liquid side. They

also include transitions where no symmetry is spontaneously
broken [10–12], and the transition is instead characterized
through the loss of topological order, or, more concretely, by
confinement of monomers.

The (classical) Kasteleyn transition [13] is an example of
the latter class, with the unusual property that the model is
exactly solvable. The transition occurs in the classical dimer
model on the honeycomb lattice with a potential-energy term
favoring dimers occupying a particular subset of the links.
A direct realization of the Kasteleyn transition has been pro-
posed in spin ice subject to a field tilted away from the [111]
direction [14] and subsequently studied using neutron scat-
tering [15,16]. A related “3/2-order” transition has also been
observed in lipid bilayers [17,18].

In this paper, we introduce a quantum analog of the Kaste-
leyn model and show that it has a similar transition, but at
zero temperature, driven by quantum fluctuations. Although
we cannot solve the model exactly, we can precisely deter-
mine the location of the transition, because of the particular
nature of the “ordered” phase. This therefore provides a rare
of example of a quantum phase transition where the critical
coupling can be calculated exactly.

Previous extensions to Kasteleyn’s work include a study
by Bhattacharjee et al. [19] of a related model on a three-
dimensional (3D) analog of the brick lattice, formed by
deleting alternate vertical bonds of the cubic lattice. A 3D
variant of the Kasteleyn problem has been studied in spin ice
[20,21], where the constraints on the dimer configurations are
replaced by the “ice rule”. Closely related quantum models
have also been studied, in the context of dimers [22] and quan-
tum spin ice [23], while the possibility of a quantum Kasteleyn
transition in quantum spin ice was noted in Ref. [24].

In the remainder of this section, we define the classical
and quantum models. In Sec. II, we then review the relevant
aspects of the classical Kasteleyn problem, including the ar-
gument that determines its exact critical temperature. Most of
our main results are presented in Sec. III, where we discuss
the quantum Kasteleyn transition. We briefly discuss the full
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FIG. 1. Honeycomb lattice with horizontal links highlighted
(thick-black lines). In the Kasteleyn problem, each occupied horizon-
tal link contributes energy −u. The x axis is horizontal and the three
nearest-neighbor vectors are ±a(x̂ cos θ + ŷ sin θ ) for the two sublat-
tices (±), where a is the nearest-neighbor distance and θ = 0, 2π

3 , 4π

3 .
The arrow shows the vector 3

2 ax̂, the horizontal projection of the
displacement between two adjacent columns of horizontal links.

phase structure of the model in Sec. IV before concluding in
Sec. V.

A. Classical dimer model

In the models we consider, the elementary degrees of free-
dom are dimers on the links of a lattice, with the number of
dimers on each link � restricted to d� = 0, 1. A close-packed
dimer configuration is one where every site of the lattice has
exactly one dimer, i.e., where the number of dimers on links �

connected to site i,

ni =
∑
�∈i

d� , (1)

is fixed to ni = 1 for each i. For a classical dimer model, the
partition function is given by

Z =
∑

c

e−V/T , (2)

where the sum is over all close-packed configurations and
V is the energy assigned to configuration c. (We set kB = 1
throughout.) The classical Kasteleyn problem [13] concerns
dimers on the honeycomb lattice with

V = −uNh , (3)

where Nh is the number of dimers on horizontal links; see
Fig. 1. One can instead think of Nh as the overlap (i.e., number
of coinciding dimers) between each configuration and a fixed
reference configuration, shown in Fig. 2, with all horizontal
links occupied. This is a valid close-packed configuration,
and is hence clearly the unique ground state of V , with the
maximal value Nh = N , equal to the total number of dimers.

The unusual properties of the Kasteleyn transition result
from the fact that, starting from this reference configuration,
there are no possible local rearrangements that maintain close

FIG. 2. Classical ground state of the potential illustrated in
Fig. 1, where all horizontal links (and only those links) are occu-
pied. There are no possible local rearrangements compatible with the
close-packing constraint on the dimers. The dashed-vertical line Sx

is used to define the horizontal component of the flux �x .

packing. Instead, as we describe in Sec. II, the minimal excita-
tions involve shifting dimers along paths spanning the system,
and hence cost unbounded energy in the thermodynamic limit.
The problem can be generalized to other lattices, including in
higher dimensions, by similarly choosing reference configu-
rations on each, with this same property. For concreteness,
we focus here on the honeycomb lattice along with the 3D
diamond lattice, illustrated in Fig. 3, with the potential again
applied on horizontal links.

FIG. 3. Diamond lattice, with horizontal links, i.e., those parallel
to the x axis, highlighted (thick-black lines). The four nearest-
neighbor vectors are ∓ax̂ and ±a( 1

3 x̂ +
√

8
3 ŷ cos θ +

√
8

3 ẑ cos θ ) for
the two sublattices (±), where a is the nearest-neighbor distance
and θ = 0, 2π

3 , 4π

3 . The arrow shows the vector 4
3 ax̂, the horizontal

projection of the displacement between two adjacent planes of hori-
zontal links (compare Fig. 1).
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The detailed properties of the model are clearly sensitive
to the boundary conditions, which must be chosen to be com-
patible both with the close-packing constraint and with the
reference configuration. To simplify the analysis, we choose
one of the periodic lattice vectors along the horizontal direc-
tion x̂ and the others in the plane perpendicular to this. For
honeycomb (resp. diamond), this can be achieved by choosing
Rh = 3

2 aLx̂ (Rh = 4
3 aLx̂) as one of the periodic lattice vectors,

where a is the nearest-neighbor distance and L is divisible by
2 (3). Consider a codimension-1 surface Sx perpendicular to x̂
that spans the system and passes through a layer of horizontal
links, such as the dashed line in Fig. 2 or a yz plane in the dia-
mond lattice. With these definitions, the number of horizontal
links through which Sx passes is given by W⊥ = N/L.

We note in passing that Nh is related to the horizontal
component �x of the flux [25] (or “winding number” [2]). On
both the honeycomb and diamond lattices, this can be defined
as

�x =
∑
�∈Sx

(
d� − 1

z

)
(4)

where the sum is over links passing through the surface Sx

and z is the coordination number (3 for honeycomb, 4 for
diamond). For close-packed dimer configurations, the value
of �x is the same for any choice of the horizontal position of
the surface [25]; averaging Eq. (4) over all L such positions
gives �x = 1

L (Nh − N
z

). The reference configuration, which
maximizes the number of dimers on horizontal links, there-
fore also has maximal �x = �max ≡ W⊥(1 − 1

z
). A state that

preserves rotational symmetry, such as when u = 0 (assuming
no spontaneous symmetry breaking), has Nh = N

z
and hence

�x = 0.

B. Quantum Kasteleyn model

To construct a quantum dimer model, one defines or-
thogonal basis vectors |c〉 corresponding to each dimer
configuration c, and a Hilbert space spanned by the full set.
We also define (hard-core bosonic) operators b� and b†

� that,
respectively, annihilate and create a dimer on link �, as well
as the dimer number operator d� = b†

�b�. One can restrict to
close-packed configurations by projecting into the subspace
with eigenvalue 1 for the operator ni, defined by Eq. (1),
for each site i. The operators b(†)

� do not commute with this
projection, but combinations can be constructed that relate
different close-packed configurations and hence do commute
with it.

Any such kinetic term involves shifting dimers along
closed paths of even length. The simplest is of the type intro-
duced by Rokhsar and Kivelson [6], which flips dimers around
a plaquette p of the lattice. We denote this Tp and write the
Hamiltonian as

H = −uNh − t
∑

p

Tp , (5)

where the sum is over plaquettes of a certain type, typically
chosen as the smallest plaquettes of even length. For both the
honeycomb and diamond lattices, these are hexagons (non-
planar in the case of diamond), and so the operator Tp can be

FIG. 4. Action of the plaquette-flip operator Tp for the honey-
comb (top) and diamond (bottom) lattices. In both cases, the effect
is to shift three dimers around a hexagonal plaquette (which is non-
planar in the case of diamond). Note that the number of occupied
horizontal bonds (thick-black lines) is equal to 1 before and after the
flip, and hence that Tp commutes with Nh. The light-gray background
in both panels illustrates the path of a string excitation (see Sec. II),
representing the difference from a reference configuration with all
dimers on horizontal links. Flipping the plaquette causes the string
to move, by exchanging the direction taken by the string on two
adjacent steps.

written as

Tp = b�1
b†

�2
b�3

b†
�4

b�5
b†

�6
+ H.c. , (6)

where �1···6 are the six links comprising the plaquette. These
operations are illustrated in Fig. 4. Our main focus will be the
ground-state phase structure of this model, as a function of the
dimensionless parameter t/u.

By inspection of Fig. 4, it is clear that flipping dimers
around a plaquette conserves the number of occupied hori-
zontal links, and hence that Tp commutes with Nh. The same
is therefore true when moving dimers around any closed loop
that can be constructed by combining plaquettes, but not
for topologically nontrivial loops, i.e., those that span the
boundaries. Shifting dimers around such loops can change
Nh, as illustrated in Fig. 5. (Since Nh is related to �x, the
conservation of the number of horizontal dimers under local
rearrangements is in fact a particular instance of the general
conservation of flux in dimer models [2].)

II. CLASSICAL KASTELEYN PROBLEM

We first review the phase structure of the classical Kaste-
leyn problem. While Kasteleyn [13] solved the classical
model exactly, by expressing the partition function Eq. (2) in
terms of a determinant, it is more instructive for our purposes
to argue from the high- and low-temperature limits.

We start with the high-temperature limit T/u = ∞, where
all close-packed dimer configurations have equal weight.
Even in this case, the thermal state is nontrivial, because of
the correlations inherent in this set of configurations. The
resulting state, which survives to finite T/u, is referred to as a
Coulomb phase [1] and is a “dimer liquid”, in the sense that
there is no spontaneous symmetry breaking but the positions
of the dimers are strongly correlated.

In the opposite limit, T/u = 0, the system enters its ground
state, equal to the reference configuration with all dimers
horizontal (and hence maximal flux �x). To determine the
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FIG. 5. Example of a string on the honeycomb lattice, where a
set of dimers (indicated with a light-gray background) have been
shifted compared to the reference configuration shown in Fig. 2.
Such strings, which span the system in the horizontal direction,
are the minimal rearrangements compatible with the close-packing
constraint. Note that plaquettes are flippable (marked with a star �)
when two adjacent steps of the string are in opposite directions.

effect of small nonzero temperature, we consider the exci-
tations of the system. Since, by design, there are no local
rearrangements of the reference configuration that preserve
the close-packing constraint, any excitation that does so must
span the boundaries. It is easily verified that the minimal
excitation in fact involves shifting dimers along a path that
spans the system once in the horizontal direction, moving the
dimers from horizontal links to links in other directions, as
illustrated in Figs. 5 and 6. We refer to such an object as a
string.

Each step in the path of a string, from one horizontal
link to the next, involves a horizontal displacement 3

2 a for
honeycomb (see Fig. 1) and 4

3 a for diamond (see Fig. 3). A

FIG. 6. Left: Classical ground state of the potential shown in
Fig. 3, with all horizontal links occupied. As in Fig. 2, there are
no local rearrangements of dimers consistent with the close-packing
constraint. Right: Example of a string on the diamond lattice, where a
set of dimers have been shifted that spans the system in the horizontal
direction, as on the honeycomb lattice, Fig. 5. Two consecutive steps
that are in different directions again produce a flippable plaquette,
marked with a star (�).

string that spans the system once in the horizontal direction
therefore reduces Nh by L. We denote the number of strings
by ns, and so we have Nh = N − nsL.

From Eq. (3), introducing a string increases the configu-
ration energy V by +uL. It may nonetheless reduce the free
energy, and hence be thermodynamically favorable, since it
also makes a positive contribution to the entropy. This entropy
arises from the multiple possible choices for the direction
taken at each step on the path, of which there are q = z − 1,
i.e., q = 2 (up or down) on the honeycomb lattice and q = 3
on the diamond lattice. In both cases, the entropy is ln q
per unit length, giving a change in the free energy of �F =
(u − T ln q)L. An inserted string reduces the free energy, and
is hence thermodynamically favorable, when T > TK, where
TK = u/ ln q gives the exact transition temperature for the
classical Kasteleyn model on the honeycomb and diamond
lattices. (The same logic can be applied starting from similar
reference configurations on other lattices [19], although in
most cases the different possible choices at each step are not
equivalent, and so the calculation is more involved [22,26].)

For finite L, only strings returning to the same position,
i.e., with zero net displacement in the transverse directions,
are allowed. This restriction reduces the entropy only by an
amount of order ln L, and hence does not affect TK. On the
honeycomb lattice, for example, the vertical displacement fol-
lows a binomial distribution, and so the proportion of strings
with zero net displacement is ∝ L−1/2, giving a reduction of
the entropy of order ln L.

As the temperature increases above TK, string excitations
become thermodynamically favorable, and ns increases from
zero. For ns 
 W⊥, the total entropy is given by a sum of
single-string contributions, S(ns) ≈ nsL ln q, while for larger
ns steric interactions (i.e., the fact that strings cannot overlap)
reduce the entropy per string.

The energy with ns strings is exactly V = −u(N − nsL) =
−uL(W⊥ − ns), and so the free energy in an ensemble with
fixed string number ns is

F (ns) = −uLW⊥ + uLns − T S(ns) . (7)

In the thermodynamic limit, L,W⊥ → ∞, the string density
ρs = ns/W⊥ takes the value that minimizes F (ns), which is
zero for T < TK and nonzero for T > TK. The value of ρs

at the minimum for T > TK is determined by the (positive)
higher-order terms in F (ns) resulting from the entropy reduc-
tion due to interactions.

With a nonzero density of strings, the system is a fluc-
tuating dimer liquid, continuously connected to the point
at T/u = +∞, and forming a Coulomb phase in the entire
region T > TK. There is a one-to-one mapping from any con-
figuration of dimers to a collection of (nonoverlapping) strings
superimposed on the reference configuration, as illustrated in
Fig. 7, and so, far from the transition, one can view the system
as containing a dense set of strings, with ρs = 1 − Nh/N of
order unity. The mean density of strings increases contin-
uously with T/u in the Coulomb phase until the proportion
of horizontal dimers reaches Nh/N = 1/z (and hence the flux
�x ∝ Nh − N/z reaches zero), by symmetry, at T/u = +∞.

For large but finite L, one can distinguish the two phases at
T ≷ TK by how the distribution of Nh (or equivalently of ns)
scales with L. Strings are exponentially suppressed with L for
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FIG. 7. Example configuration of dimers on the honeycomb lat-
tice, mapped to a set of strings superimposed on the reference
configuration. Given a fixed reference configuration, in this case the
one with all dimers horizontal, there is a one-to-one mapping from
close-packed dimer configurations to configurations of zero or more
nonoverlapping strings.

T < TK, where they cost positive free energy scaling linearly
with L. In the Coulomb phase for T > TK, the variance of
Nh scales as Ld [1], as for a typical extensive quantity in the
thermodynamic limit. In the thermodynamic limit, there is a
phase transition between these two asymptotic behaviors, but
there is no spontaneous symmetry breaking on either side of
the transition.

A critical theory for the Kasteleyn transition can be found
by mapping the d-dimensional classical system to a (d − 1)-
dimensional quantum system, with the strings becoming the
world lines for bosons [20,21]. Note that the resulting theory
is not the standard proliferation transition in the inverted-XY
universality class [27,28], because the strings are directed and
no local closed loops are possible.

III. QUANTUM KASTELEYN PROBLEM

We now turn to the quantum Kasteleyn model at zero tem-
perature. The Hamiltonian H defined in Eq. (5), and indeed
any local Hamiltonian, cannot change the number of strings
ns, because creating or annihilating a string involves shifting
dimers along a path that spans the system. (The string number
is a quantity conserved by a topological constraint, rather than
by a symmetry.) The Hilbert space therefore splits into sectors
of fixed ns, and the ground-state energy Egs(ns) in each will
play the same role as F (ns) in the classical case.

The limit t/u = 0 coincides with the low-temperature limit
of the classical model; the ground state is given by the refer-
ence configuration with all dimers on horizontal links. This
state has no flippable hexagons, and so the plaquette-flip op-
erator has no effect on this configuration, which remains an
exact eigenstate, with energy Egs(0) = −uLW⊥, for any t .

As in the classical case, introducing a single string into
the system costs potential energy +uL. For nonzero t , it also
causes plaquettes along the length of the string to become
flippable, as illustrated in Fig. 5. Flipping these causes the

string to move, deforming along its length; see Fig. 4. The
string therefore delocalizes, giving a negative contribution to
the kinetic energy. Since the Hamiltonian is local, the kinetic
energy of an isolated string will generally also be proportional
to L in the thermodynamic limit.

It is therefore possible for the net energy change of intro-
ducing a string into the system to be negative, as long as the
kinetic energy overcomes the potential energy associated with
the string. As in the classical case, the criterion for prolifer-
ation of strings, i.e., whether the global ground state of H
occurs for ns = 0 or ns > 0, can be determined by considering
the asymptotic behavior at small ns. We therefore begin by
considering the properties of a single string.

A. Effective single-string Hamiltonian

Because H conserves the number of strings, one can write
an effective Hamiltonian Hstring in the single-string Hilbert
space. For both the honeycomb and diamond lattices, the
degrees of freedom describing a string are the q possible
directions that it takes at each step, with q = 2 for honeycomb
and q = 3 for diamond. We define |α〉i, for α = 1, 2, . . . , q,
as a basis state representing a step in direction α at position i
along the string (with periodic boundary conditions).

The kinetic term in H produces a term that allows the
direction on adjacent steps to be swapped provided that they
are different (see Figs. 4 and 5). The single-string Hamiltonian
is therefore

Hstring =
L∑

i=1

(
u − tT string

i,i+1

)
, (8)

where

T string
i, j =

q∑
α,β=1
α 
=β

|α〉i|β〉 j〈β|i〈α| j (9)

is an operator that permutes the flavors at sites i and j, or gives
zero if they are the same.

This model has permutation symmetry under exchange of
any two directions, corresponding to real-space reflections,
as well as U(1)q symmetry under diagonal unitary transfor-
mations, but not full SU(q) symmetry (because α = β is not
included in the sum).

To apply periodic boundary conditions along the direction
of the string, one should also enforce the constraint that the
total number of steps in each direction is equal, so that the
net transverse displacement is zero. This constraint commutes
with Hstring, which conserves the total number of each type
of step, and so, provided the ground state does not break
permutation symmetry, this constraint has no effect.

1. Honeycomb lattice

For the honeycomb lattice, q = 2, and the single-string
Hamiltonian can be rewritten in terms of Pauli operators σ±

i =
1
2 (σ x

i ± σ
y
i ), as

Hstring
q=2 =

∑
i

[u − t (σ+
i σ−

i+1 + σ−
i σ+

i+1)] , (10)
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where σ+
i = (σ−

i )† = |2〉i〈1|i. This is the Hamiltonian for
a spin- 1

2 XX chain, which can trivially be solved using a
Jordan–Wigner transformation. (An identical effective model
was in fact found to describe strings in quantum spin ice on
the checkerboard lattice [23].)

Defining fermionic operators ci by

σ+
i = ci

∏
j<i

(1 − 2c†
j c j )

σ z
i = 2c†

i ci − 1 ,

(11)

the Hamiltonian becomes

Hstring
q=2 =

∑
i

[u − t (c†
i+1ci + c†

i ci+1)] . (12)

Transforming to momentum space gives free fermions with
dispersion εk = −2t cos k, where −π < k � π and kL/π

should be even (odd) when the fermion number is odd (even)
[29].

In the ground state, all L/2 single-particle states with εk <

0 are occupied, giving total energy

E string
q=2 = uL − 2t

nF∑
n=−nF

cos
2πn

L

= uL − 2t

sin π
L

,

(13)

where nF = L
4 − 1

2 . The net vertical displacement of the string
is

∑
i σ

z
i = ∑

i(2c†
i ci − 1) = 0 in this state, and so the peri-

odic boundary conditions are satisfied.
Taking the thermodynamic limit gives ground-state energy

per site of

E string
q=2

L
= u − 2

π
t . (14)

The energetic contribution of a single string is therefore posi-
tive for u > 2

π
t , which implies that the vacuum of strings is the

ground state for t/u < (t/u)c = π
2 on the honeycomb lattice.

2. Diamond lattice

For diamond, where q = 3, it is no longer possible to
express the string degrees of freedom in terms of spin- 1

2 oper-
ators, and hence the Jordan–Wigner transformation cannot be
used to diagonalize the Hamiltonian.

Instead, one can estimate the ground-state energy using
mean-field theory, by taking as the trial state an equal-weight
superposition of all permutations p,

|mf〉 ∝
∑

p

|p〉 . (15)

For any p, T string
i,i+1 |p〉 gives another permutation appearing in

the sum, unless the two directions at i and i + 1 are the
same, in which case it gives zero. The expectation value
〈mf|T string

i,i+1 |mf〉 is therefore given by the fraction of permu-
tations where the two are different, which is (q − 1)/q in the
thermodynamic limit. The expectation value is therefore

〈mf|H|mf〉
L

= u − q − 1

q
t , (16)

−0.86

−0.84

−0.82

−0.80

−0.78

FIG. 8. Exact-diagonalization results for the ground-state energy
per site of a single string on the diamond lattice, for t = 1 and u = 0,
plotted vs inverse system size 1/L. The solid and dashed lines show
cubic and quadratic fits extrapolated to L = ∞, giving an estimate of
E string

q=3 /L = −0.805(5).

which gives an upper bound on the true ground-state energy
per site. For q = 2, E string

q=2 /L � u − 1
2 t , which is consistent

with and gives a reasonable variational estimate to Eq. (14).
For q = 3, the upper bound is

E string
q=3

L
� u − 2

3
t . (17)

Results from exact diagonalization and an extrapolation to
large L are shown in Fig. 8. Expressing the ground-state
energy per site as

E string
q=3

L
= u − γ t , (18)

these results give an estimate of γ = 0.805(5). The vacuum
of strings is the ground state on the diamond lattice for t/u <

(t/u)c = γ −1.

B. Quantum Kasteleyn transition

The ground-state energy E string of the single-string Hamil-
tonian gives the difference between the ground-state energies
in the one-string and zero-string sectors, Egs(1) − Egs(0). For
t/u > (t/u)c, where this difference is negative, the overall
ground state of H must be in a sector with nonzero string
number ns. Since the ground state for t/u = 0 certainly has
ns = 0, this implies a phase transition at some value of t/u,
between the string vacuum and a phase with nonzero string
density.

If we assume that the effective interactions between strings
are repulsive, at least in the low-density limit, then the terms
in Egs(ns) that are of higher order in ns are positive. (Such
an assumption is at least highly plausible, because of the
hard-core repulsion between strings, as in the classical case.)
The global minimum of Egs(ns) then increases continuously
from zero as t/u increases above (t/u)c, giving a continuous
quantum phase transition at critical value (t/u)c.

1. Statistics of string width

For t/u just above (t/u)c, we expect the physics to be
described, at least over certain length scales, by a set of
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independent strings, each in the ground state of Hstring. To
determine the properties of the system, we first use the micro-
scopic model for the honeycomb lattice, where it is solvable,
before addressing the general case using an effective long-
wavelength description.

In terms of the Pauli operators defined for the honeycomb
lattice in Sec. III A 1, the net vertical displacement between
horizontal positions i and j (with j > i) is

Yi, j =
j−1∑
r=i

σ z
r , (19)

in units of
√

3
2 a. Applying the Jordan–Wigner transformation,

Eq. (11), this is given by Yi, j = j − i − 2Ni, j , where

Ni, j =
j−1∑
r=i

c†
r cr (20)

is the total occupation number on sites r with i � r < j. In the
ground state of Hstring

q=2 , all single-fermion states with εk < 0

are occupied, giving a mean density of 1
2 , and so 〈Yi, j〉 = 0, as

expected by symmetry.
The variance of Yi, j can be calculated using Wick’s the-

orem, since Hstring
q=2 is quadratic in fermion operators. A

standard calculation gives number–number correlations ex-
hibiting Friedel oscillations (with 2kF = π ),

〈c†
r+xcr+xc†

r cr〉 − 〈c†
r+xcr+x〉〈c†

r cr〉

=
⎧⎨
⎩

1
4 for x = 0
0 for even x 
= 0
−π−2x−2 for odd x,

(21)

for x 
 L. Summing over x then gives the result

〈
Y 2

i, j

〉 ≈ 2

π2
ln( j − i) (22)

for 1 
 j − i 
 L. This contrasts with the classical case,
where a string behaves as a random walk and the variance
is instead proportional to j − i. (Note that we have ignored
boundary conditions in the transverse direction in this calcula-
tion. This is clearly justified, in both the quantum and classical
cases, for an isotropic system with large L.)

Instead of using the microscopic model, it is possible to
write down an effective continuum field theory of a single
string. In 2D, we consider a coarse-grained picture in which
the vertical displacement of the string is given by a real func-
tion ϕ of the horizontal position x, taken as continuous. This
picture can be generalized to d spatial dimensions by describ-
ing the displacement transverse to the horizontal direction by
a (d − 1)-component vector ϕμ.

Let πμ(x) be the conjugate momentum operator, with
canonical commutation relations

[ϕμ(x), πν (x′)] = iδμνδ(x − x′) , (23)

where μ and ν run over the d − 1 directions transverse to the
string. The effective Hamiltonian can then be expressed as

Hstring,eff =
∫

dx

{
1

2
κ|π(x)|2 + 1

2
λ|ϕ′(x)|2

}
, (24)

plus higher-order terms, where κ and λ are real parameters.

No mass term (i.e., |ϕ(x)|2) is allowed in the string
Hamiltonian because of translation symmetry in the trans-
verse directions. Similarly, the higher-order terms must be
expressed only in terms of the derivative ϕ′ and the mo-
mentum π. This implies, by power counting, that they are
RG-irrelevant at the Gaussian fixed point represented by
Eq. (24), and hence that the field theory is quadratic in the
long-wavelength limit. The irrelevance of higher-order terms
has the effect that there is no coupling between the different
components of ϕ for d > 2.

In principle, a periodic function of ϕμ(x) could also be
added to Hstring,eff, since the transverse position of the string
takes discrete values in the microscopic model. If such a term
were relevant, which would require sufficiently small κ/λ, this
would describe a phase where the string was “flat”. Stabilising
such a phase would require additional terms in the original
dimer Hamiltonian and would preclude the possibility of a
Kasteleyn transition driven by string kinetic energy.

We therefore work with the free field theory of Eq. (24),
which can be solved by expressing ϕ and π in terms of
creation and annihilation operators for the modes of the string.
This gives for the variance of the displacement

〈
[ϕμ(x) − ϕμ(x′)]2〉 ≈

√
κ

λ

1

π
ln |x − x′| , (25)

which is consistent with the microscopic result for d = 2,
Eq. (22). Both expressions are valid only when much smaller
than square of the typical separation between strings, given by
(W⊥/ns)2/(d−1), and hence constitute intermediate asymptotics
[20].

2. Dimer correlations in the single-string limit

At low string density, the properties of the original dimer
model can be expressed in terms of observables for a single
string. As an example, we consider the dimer–dimer equal-
time correlation function.

For simplicity, consider two horizontal links � and �′ on the
honeycomb lattice, separated by displacement 3axx̂ +

√
3

2 ayŷ,
where x and y are integers with the same parity. Assuming the
string passes through �, it will pass through �′ if and only if
Yx,0 = y. A horizontal link is occupied unless a string passes
through it, and so the dimer–dimer correlation function obeys

G(x, y) ≡ 〈(1 − d�)(1 − d�′ )〉 = 1

W⊥
〈δy−Yx,0〉 , (26)

where δ is the Kronecker delta. On the right-hand side, 1/W⊥
is the probability that the string passes through �, while the
expectation value is the conditional probability that it also
passes through �′. (Correlation functions of d� for links of
other orientations can be expressed similarly.)

Taking the Fourier transform with respect to y gives

G̃(x, ky) ≡
∑

y

e−ikyyG(x, y) = 1

W⊥
〈e−ikyY0,x 〉 . (27)

Again using Wick’s theorem, the expectation value can be
evaluated to give

G̃(x, ky) = 1

W⊥
e− 1

2 k2
y 〈Y 2

0,x〉 ≈ 1

W⊥
x−k2

y /π2
, (28)
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using Eq. (22), so that (again ignoring transverse boundary
conditions) the real-space correlation function is given by

G(x, y) ≈ 1

W⊥

√
π

4 ln x
exp

(
− π2

4 ln x
y2

)
, (29)

a Gaussian in y, of width ∝ √
ln x.

For nonzero but small string number ns 
 W⊥, one expects
that multiple strings will add incoherently to this correlation
function, replacing the factor 1/W⊥ by the string density ρs =
ns/W⊥.

IV. DENSE-STRING PHASE

For t/u > (t/u)c, the ground state of H is in a sector with
nonzero string density ρs. In this case, the properties of the
system (on length scales larger than the typical string sepa-
ration) are dependent on interactions between strings, and so
cannot be inferred directly from the single-string picture of the
previous section. To determine the full phase structure in this
region would require numerical simulations and is beyond the
scope of this paper. Instead, we sketch the likely possibilities.

Phases at nonzero string density can be divided into
solids (or “valence bond crystals”), where the dimers form a
crystalline arrangement, spontaneously breaking spatial sym-
metries, and liquids, where they do not. Quantum dimer
liquids, as well as their classical analogues [1], can also
be characterized by phenomena such as deconfinement of
monomers and topological order [2].

In the classical case, the Kasteleyn model has a liquid
(Coulomb) phase for all T > TK [13] and interactions between
dimers are required to produce a solid. In quantum dimer
models, by contrast, quantum fluctuations can, and often do,
select particular ordered structures, leading to dimer solids.
To connect this discussion to more conventional language for
dimer models, note (see Sec. I A) that the string density ρs

is related to the horizontal flux by �x = �max − ρsW⊥, and
hence that increasing the string density from zero corresponds
to reducing the flux from its maximum. In the limit t/u =
∞ the model is rotationally symmetric and so �x = 0. For
(t/u)c < t/u < ∞, we are therefore interested in states with
intermediate flux, 0 < �x < �max.

We first consider the 3D diamond lattice. In this case, we
can derive some insight from quantum Monte Carlo (QMC)
studies of the standard Rokhsar–Kivelson (RK) QDM [6]
on the same lattice by Sikora et al. [30,31]. Instead of the
u term in the Kasteleyn model, this model has a potential
term, with coefficient μ, which counts the number of flippable
plaquettes. For μ less than a critical value μc, the ground state
was shown to be a dimer solid, referred to as the “R” state,
while for μc < μ < t , it was found to be a quantum dimer
liquid. (Here, t is the coefficient of the kinetic term, and so
the solvable “RK point” is at μ = t .)

Significantly, the QMC results give μc/t = 0.75 ± 0.02
[31], indicating that at μ = 0, where the RK QDM coincides
with the point u = 0 of our model, the system is in a dimer
solid phase. This implies that the quantum Kasteleyn model
on the diamond lattice has a dimer solid phase at t/u = ∞,
and perhaps also for large finite t/u. The R state has fixed zero
flux, and so reducing t/u might be expected to favor other

FIG. 9. Example of the height h for a configuration of the dimer
model on the honeycomb lattice. An integer value h is assigned
to each plaquette such that h increases by 1 when crossing, in the
positive y direction, a horizontal link that is unoccupied or any other
link that is occupied. Strings (see Fig. 7) therefore act as contours for
the height.

states, possibly leading to a transition into an intermediate
phase (or phases), before the Kasteleyn transition into the
string vacuum at t/u = (t/u)c. These might include a quan-
tum dimer liquid with continuously varying flux (and string
density).

Such a phase would be a deconfined U(1) quantum dimer
liquid, as in the RK QDM at μc < μ < t , described by
a gauge field A and exhibiting emergent electrodynamics
[30–32]. While no symmetries are spontaneously broken, the
potential term in our original Hamiltonian reduces the spatial
symmetry of the model (for u 
= 0), leading to an effective
action S , in continuous space r and imaginary time τ ,

S = 1

2

∫
d2r

∫
dτ

(|∂τ A|2 + c2
xB2

x + c2
⊥|B⊥|2), (30)

where B = ∇ × A, with different “speeds of light” cx 
= c⊥
parallel and perpendicular to the x axis. The “flux density” B
is effectively the string density (with a direction assigned arbi-
trarily along ±x̂) but with the mean string density subtracted
to remove a term linear in Bx.

The possibilities are more limited in 2D because, accord-
ing to an argument by Polyakov [33], U(1) quantum liquids
cannot exist as extended phases. Phases of the 2D RK QDM
with intermediate flux have previously been considered by
Refs. [34,35], in the case where a nonzero flux occurs sponta-
neously as a result of symmetric interactions between dimers.
(Their analyses focus on the region near the RK point, μ = t ,
whereas our model is effectively far from this point, with
μ = 0.) Here, we briefly sketch the results as they apply to the
Kasteleyn model. A similar coarse-grained action to Eq. (30)
can be written in 2D, but with the vector field A replaced by
a scalar “height” h [2]. For our purposes, the simplest way to
define the height is to treat each string as a unit step, so that
h is defined on plaquettes and monotonically nondecreasing
with y, as illustrated in Fig. 9. (This construction is equivalent
to the standard mapping from dimers to heights [2], but with
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the heights in the fully staggered configuration, Fig. 2, sub-
tracted.) The overall “tilt” of the height, i.e., the discontinuity
when going around the periodic boundaries in the vertical
direction, is given by the string number ns.

The local gauge redundancy of A is replaced in 2D by
a global redundancy under uniform shifts of h. Besides the
derivative terms analogous to those in Eq. (30), locking terms
of the form cos(2πnh), with integer n, are therefore also
allowed in the action. These terms always lock the height to
certain (tilted) configurations, each corresponding to a par-
ticular dimer solid. A quantum dimer liquid therefore cannot
exist except possibly at isolated points in the phase diagram,
where the tilt is incommensurate with the lattice [34,35].

V. CONCLUSIONS

This paper has introduced a quantum analog of the Kaste-
leyn transition in the classical dimer model. As in the classical
case, on the “ordered” side of the transition, the system is
fluctuationless (in the thermodynamic limit) as a consequence
of the strong constraints on fluctuations within the set of close-
packed dimer configurations. Quantum fluctuations, which
play an analogous role to thermal fluctuations in the classical
model, can drive a transition to a state with a nonzero density
of string excitations. The critical value (t/u)c of the ratio of
kinetic and potential terms can be calculated exactly on the
honeycomb lattice, providing a rare example of a quantum

phase transition whose critical coupling can be determined
exactly [36]. On the diamond lattice, (t/u)c can be expressed
in terms of the ground-state energy of a particular 1D quantum
model.

The analysis here has focused on the ground state of the
quantum Kasteleyn model. At nonzero temperature T , one
expects quantum and thermal fluctuations to act in the same
direction, and so (t/u)c should decrease with T , reaching zero
at the transition temperature TK of the classical Kasteleyn
model. A (classical) dimer liquid is in principle possible at
any T > 0 in the quantum model in 2D and 3D, though the
quantum dimer solids that likely exist at T = 0 would survive
up to T of order of their energy gaps.

While the honeycomb and diamond lattices have been used
here for simplicity, the model can be extended to other bi-
partite lattices by appropriate choice of the potential term,
or, equivalently, of the reference configuration. On the square
lattice, for example, an appropriate reference configuration
has dimers in a staggered arrangement, which maximizes the
horizontal component of the flux and hosts analogous string
excitations [22,26].
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