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Zeeman-ladder analysis of the Raman magnon energies in the quasi-one-dimensional
antiferromagnet RbCoCl3
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Interest in the spin- 1
2 hexagonal perovskites, typified by CsCoCl3 and including RbCoCl3, has persisted over

several decades due to their unusual Ising-chain-like antiferromagnetic ordering. Despite considerable theoretical
and experimental work, evidence of the origin of the magnetic excitations of these materials has been limited
by an incomplete knowledge of their magnetic ordering and exchange interactions. Now, with the availability
of detailed measurements of such information obtained by neutron scattering [M. Mena et al., Phys. Rev. Lett.
124, 257201 (2020)], we are motivated to report a study for RbCoCl3. We employ the concept of a Zeeman
ladder of magnetic excitations below the antiferromagnetic transition temperature at 28 K, as well as showing
the existence of a bound magnetic state, to accurately predict the energies of five magnetic excitations observed
by Raman scattering. Such a remarkable match of theory to experiment with just one adjustable parameter augers
well for theoretical applications in other such perovskites.

DOI: 10.1103/PhysRevB.105.064411

I. INTRODUCTION

There has been strong interest in recent years regard-
ing the novel properties of hexagonal perovskite compounds
such as CsCoCl3, which have been found to exhibit a
quasi-one-dimensional antiferromagnetic ordering at low tem-
peratures as a result of Ising model exchange interactions
occurring along the chains of magnetic ions. Features of in-
terest include spin-wave energy continua and the possibility
of bound magnon states and their potential applications in
spin- 1

2 quantum-wire transport devices. Most of these transi-
tion metal perovskites exhibit two magnetic phase transitions
denoted by TN1 and TN2. The higher of these transition tem-
peratures TN1 represents the temperature below which there is
antiferromagnetic ordering in one dimension (1D) along the
chains, whereas the lower temperature TN2 signifies the onset
of an additional 3D interchain ordering.

A large quantity of neutron scattering work, as well as op-
tical measurements such as Raman scattering and far-infrared
spectroscopy, for these compounds has been used to determine
their structural and dynamic properties. These experimen-
tal studies include, for example, CsCoCl3 (see, e.g., [1–5]),
RbCoCl3 [6–9], TlCoCl3 [10], and CsCoBr3 [2–4,11–13].
Often, because of a lack of sufficient resolution, the elastic and
inelastic neutron scattering measurements failed to provide
sufficient details of the nature of the magnetic ordering, espe-
cially for temperatures below TN2. On the other hand, although
the optical work often had sufficient resolution to determine
the energies of magnetic excitations for small wave vectors,
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the lack of detailed information on the spin alignments hand-
icapped the interpretation of the optical results. The case of
RbCoCl3 affords a classic example of this conduct [7] and is
the focus of our present work.

The first significant theoretical work on these compounds
was due to Villain [14], who proposed a model of an antifer-
romagnetic chain of spins with a nearest-neighbor exchange
acting along the Co chains. The interactions were taken
as Heisenberg with an Ising-like anisotropy, and there was
no interchain coupling included. Rather than conventional
spin-wave theory being employed (because of the low dimen-
sionality and the low spin S = 1

2 ), he considered spin-reversal
processes, which are equivalent to domain wall production,
from which wavelike states were then formed. These de-
velopments led to the prediction of a continuum band of
magnons [14,15] with the possibility of a bound magnon [16]
arising from effects of the next-nearest-neighbor chain in-
teractions. Another important finding [4,17] was that the
inclusion of the small exchange interactions between the
chains (conventionally described in terms of a staggered field
h) led to a discretization of the magnon continuum through a
so-called Zeeman “ladder” of energy levels.

Recently, some high-resolution neutron scattering studies
of both the magnetic structure [18] and the spin dynamics [19]
of RbCoCl3 have been reported. These results are of sufficient
quality to motivate a reassessment of the optical observations
in this hexagonal perovskite. Accordingly, we reexamine the
detailed optical observations [7–9] of magnetic excitations
in this material for temperatures ranging from below TN2

(�12 K) and ranging up to TN1 (�28 K) and interpret them
with the aid of a revised theory based on the foundations
established in the earlier work reviewed above. By contrast
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with previous Raman studies, we find that a suitably modi-
fied theory now provides an excellent account for the origins
of all five magnetic excitations observed by Raman scatter-
ing [7] for low wave vectors. The modified theory makes
use of the Zeeman ladder and the bound magnon state in an
analytic formulation. The mechanism giving rise to the one-
magnon inelastic light scattering in these antiferromagnetic
compounds is taken to be the usual magneto-optical coupling
(see, e.g., [20]); the novelty is regarding the magnetization
dynamics in these low-dimensional structures.

This paper is organized as follows. In Sec. I we present an
account of the relevant Raman spectroscopy results, based on
experiments by Lockwood et al. [7]. This is followed in Sec. II
by an account of the analytic theory, and then in Sec. III an
analysis of the magnon modes is presented showing excellent
results of a comparison between theory and experiment. The
conclusions and some future directions are given in Sec. IV.

II. MAGNON RAMAN RESULTS

The Raman measurements were performed on a sin-
gle crystal of dark-blue colored RbCoCl3. The sample was
mounted in a Thor S500 continuous-flow cryostat, where
the crystal temperature could be controlled to within 0.1 K.
The Raman scattering spectra were excited with 50 mW of
476.5 nm argon laser light, analyzed with a Spex 14018 dou-
ble monochromator at a spectral resolution of 1.4 cm−1, and
detected with a cooled RCA 31034A photomultiplier. The
Raman signal was recorded at right angles to the incident light
in a X (. . .)Y scattering geometry, where the Y axis was chosen
to be normal to the crystal (112̄0) cleavage plane and the Z
axis was along the crystal c axis.

From symmetry considerations, the magnetic excitations
in RbCoCl3 can be expected to be observed in (ZX) polar-
ization [7,21]. Three vibrational modes of E2g symmetry can
also be observed in this polarization [7,22]. These Raman
selection rules need to be considered when implementing the
Raman measurements. Although the original Raman study of
RbCoCl3 was very comprehensive [7], we need only consider
here a subset of results possessing the appropriate polariza-
tion. We chose the X (ZX )Y scattering geometry, but also
used the X (ZX + ZZ )Y scattering configuration to record
weaker Raman scattering from the magnetic excitations at
temperatures below TN1. The latter case was achieved by
removing the polarization analyzer for those measurements.
The inclusion of the X (ZZ )Y spectrum in this case is not
a concern, as this spectrum is very weak in the 100 cm−1

region. The results obtained for the mode strengths shown
later have been corrected by an intensity difference factor of
0.82 to allow for this difference in scattering geometries. The
sample temperatures reported here, by comparison with those
reported in Ref. [7], have been corrected for a laser heating
of 8 K, which was determined from a preliminary analysis of
the temperature dependencies of the magnon peak parameters,
where the nominal values of TN1 and TN2 were recorded as
20 K and 4 K, respectively.

To enable a more detailed analysis of the variation in the
spectrum with temperature, the magnon peak parameters were
obtained by curve-resolving the spectrum with a number of

FIG. 1. Raman scattering spectrum (solid line) of intensity ver-
sus frequency shift in the region of one-magnon excitation, measured
at T = 10.3 K and in X (ZX + ZZ )Y polarization. The fitted magnon
peaks (see the text) are labeled {M1, M2, ..., M5} and a partially
overlapping phonon peak is labeled P. The individual fits and the
combined fits are shown by the dashed and dotted lines, respectively.

damped harmonic oscillators of the form

I (ω) = {n̄(ω) + 1} Sω2
0γ

2ω(
ω2 − ω2

0

)2 + ω2γ 2
, (1)

where S , ω0, and γ are the oscillator strength, frequency, and
damping, respectively, and n̄(ω) is the Bose population factor
at frequency ω.

Results obtained at low temperature for the form of the
expected magnetic Raman spectrum and its resolution into
individual Raman peaks are shown in Fig. 1. The complicated
Raman line shape can be resolved into six peaks arising from
five peaks of magnetic origin and a phonon of E1g symmetry.
For the magnetic excitations of interest here (the quasi-1D
ordered phase), we quote the experimental values obtained at
temperatures between 12 and 25 K in Table I for reference.

III. THEORETICAL FORMALISM

As in the earlier work on RbCoCl3 and similar quasi-
1D antiferromagnets by Shiba [15,17] and Matsubara [4,16],
among others, we may express the spin Hamiltonian in the
form

H =
∑

j

{
2J1
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j S
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j+1 + Sy

j S
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)] + (−1) jhSz
j

}
.

(2)
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TABLE I. Frequencies of the magnetic excitations near zero wave vector observed using Raman spectroscopy for the quasi-1D phase in
RbCoCl3. The average value (and standard deviation) for each excitation over the 12 < T < 25 K temperature range is also given.

Magnon mode Frequencies (cm−1) for 12 < T < 25 K Average value (cm−1) Standard deviation (cm−1)

1 90.0, 89.9, 90.3, 89.7, 90.0, 89.9 0.2
90.0, 90.3, 89.8, 89.7, 89.8

2 95.6, 95.7, 95.9, 95.6, 95.8, 95.8 0.2
96.0, 96.1, 95.7, 95.9, 95.9

3 98.9, 99.0, 99.3, 98.8, 99.1, 99.0 0.2
99.1, 99.2, 98.7, 99.0, 98.9

4 101.3, 101.5, 101.8, 101.2, 101.8, 101.4 0.3
101.4, 101.3, 100.9, 101.2, 101.2

5 110.2, 110.2, 110.5, 110.0, 110.4, 110.5 0.3
110.5, 110.8, 110.4, 110.7, 110.8

Here J1 and J2 are nearest-neighbor and next-nearest-neighbor
Ising exchange interactions along a chain of Co++ ions, while
j labels the sites along the chain. The constants α1 and α2

specify the small degree of admixture of XY-type exchange in
each case. The term h represents the magnitude of a staggered
effective field (alternating in sign) acting at each site on a
chain; it is attributed to the small interchain exchange. There
is no single-ion anisotropy because the effective spin S = 1

2 in
this material. There could also be dipole-dipole contributions
to the anisotropy. Values for these effective Hamiltonian pa-
rameters are fairly well known, with the possible exception of
h, from the recent INS studies [18,19].

The theoretical background is briefly as follows. States
with a single reversal (extendible to multiple reversals) of
spins in an otherwise Néel-aligned antiferromagnetic chain
may be considered, following [14,15,17]. We take N (→ ∞)
as the number of spins along the chain, so there are N/2
on each sublattice. We can form a �Sz = ±1 excitation by
(for example) reversing one down-spin, or generally any odd
number of adjacent spins starting from a down-spin. In effect,
the hierarchy of such states is like creating a pair of domain
walls (or soliton-like features). There are two Néel states,
which we can denote as ψN1 and ψN2 according to whether
site j is initially down or up, respectively. A single reversal is
described by S+

j ψN1, which generalizes to

ψ1(k) =
√

2

N

∑
k

exp(ikz j )S
+
j ψN1, (3)

where k denotes the wave vector along the chain. Reversals
of three adjacent spins, starting from any site, also represent a
�Sz = ±1 excitation and can be treated similarly, as can spin
reversals from ψN2.

The magnon state will be a linear combination of the
|k, ν〉 ≡ ψ2ν−1(k) states for integer ν = 1, 2, . . .. It follows,
therefore, that the eigenvalues of the matrix 〈k, ν ′|H|k, ν〉 will
yield the energy spectrum. The expressions obtained for the
matrix elements of the Hamiltonian, when effects of the ex-
change terms J1 and J2 and the staggered field h are included
(as in [4,17]), are approximately

〈k, ν|H|k, ν〉 =
{

2J1 − 2(1 − α2)J2 + 2h (ν = 1),
2J1 − 4J2 + 2(2ν − 1)h (ν > 1),

(4)

for the diagonal (ν ′ = ν) matrix elements. Also
〈k, ν|H|k, ν ′〉 = 2α1J1 with ν ′ = ν ± 1 for the dominant
off-diagonal elements. Here we have put k ≈ 0 appropriate to
the long wavelengths in Raman scattering, and we neglected
terms of order (α1)2 because |α1| 
 1 in RbCoCl3.

It is known generally that the Raman intensity I (ω) for
scattering from a magnon of frequency ω is proportional
to a dynamic spin-spin correlation function [20], or equiv-
alently to the imaginary part of a Green’s function of the
form G(S+

k ; S−
k ; ω) at wave vector k ≈ 0. In principle, this

quantity, along with its poles at the magnon frequencies, can
be found from the above Hamiltonian matrix, which takes a
tridiagonal form when the above approximations are made.
The interchain interactions (occurring when h �= 0) enter only
into the diagonal elements, exhibiting the so-called Zeeman
ladder of values that increase with the index ν.

First, it is of interest to examine the results for the eigenval-
ues in the special case when h = 0; then the diagonal matrix
elements, with the exception of the (1,1) element, take a fixed
value. We can write

ωI − H=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

d + � −2α1J1 0 0 · · ·
−2α1J1 d −2α1J1 0 · · ·

0 −2α1J1 d −2α1J1 · · ·
0 0 −2α1J1 d · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(5)
where I is the unit matrix, d = 2J1 − 4J2, and the difference
term � = 2(1 + α2)J2. The combination (ωI − H) is useful
because, following [15], the spectral intensity I (ω) appropri-
ate to RbCoF3 at k ≈ 0 can be found from

I (ω) = f Im[(1 − 2α1)G(1, 1) − 2α1G(1, 2)] + O
(
α2

1

)
. (6)

Here f is a proportionality factor and the Green’s functions
G(i, j), with i and j denoting positive integers, are just the
(i, j) matrix elements of the inverse (ωI − H)−1. To proceed,
we note that perturbed tridiagonal matrices having the same
general form of Eq. (5) occur for magnons in other systems,
e.g., in the evaluation of the spin-spin Green’s functions for
semi-infinite Heisenberg ferromagnets [23], or in the lattice
dynamics of phonons [24]. By analogy, the Green’s functions
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are [23]

G(ν, ν ′) = 1

x − x−1

{
xν+ν ′

(
1 + x−1�

1 + x�

)
− xν−nu′ |

}
, (7)

where x is a complex parameter defined by x + x−1 = d − ω

with |x| � 1. Using this result with Eq. (6) we find

I (ω) = − 1

2α1J1
f Im

[
(1 − 2α1)x − 2α1x2

1 + x�

]
. (8)

This expression can have two types of imaginary parts. One
arises when x lies on the unit circle (|x| = 1) in the complex
plane. In this case, putting x = eiφ where φ is a phase angle,
we obtain the contribution

IC (ω) = 1

2J1α1(1 + d� + �2)
{[(1 − 2α1) sin φ−2α1 sin 2φ]

× (1 + � cos φ)

−� sin φ[(1 − 2α1) cos φ − 2α1 cos 2φ]}, (9)

provided the frequency ω lies in the range from ωC− (when
φ = π ) to ωC+ (when φ = 0), denoting ωC± = 2J1(1 ±
2α1) − 4J2. This can be identified with the expected contin-
uum region of scattering, by analogy with [4,15]. The second
way in which an imaginary part on the right-hand side of
Eq. (8) can be obtained is if the denominator term (1 +
x�) vanishes. Then we can use the identity 1/(z + i0+) =
P(1/z) − iπδ(z), where 0+ is a positive infinitesimal and P
indicates a principal value. After some lengthy algebra, we
find there is a delta-function contribution given by

IB(ω) = π (�2 − 1)

�3
[(1 − 2α1)� + 2α1]δ(ω − ωB). (10)

This occurs when x = −1/�, which gives a necessary
existence condition (from the definition of x) that � >

1, or equivalently |J2| > α1J1/(1 + α2). The corresponding
bound magnon frequency ωB is split off below the magnon
continuum, where

ωC− − ωB = 2J1α1[(� − 1)2/�]. (11)

We note that both the intensity contribution and the split-
off frequency tend to zero as � → 1 from above, so it is
a consequence of |J2| being sufficiently large. The intensity
contribution we have obtained here analytically was previ-
ously discussed by numerical methods in [16]. We will show
in the next section that the delta-function spike identifies well
with an observed feature in the magnon Raman spectrum of
RbCoCl3.

Next the inclusion of the staggered field h into the anal-
ysis is considered. It follows from Eq. (4) and our earlier
discussion that the diagonal elements in the (ωI − H) matrix
quoted in Eq. (5) become stepwise incremented (the Zeeman
ladder studied in [4,17]) by an amount 2(2ν − 1)h for the
νth term. An analytic solution is no longer feasible when
h �= 0, but the lowest several discrete eigenvalues of this dy-
namical matrix can be found numerically by truncating that
dimension of the matrix to a large finite value M such that
M � 2J1/h. In practice, taking M = 100 is satisfactory for
the parameter values of RbCoCl3, although we also employed
larger values as a check. The discrete magnon modes occur for

(a)

(b)

FIG. 2. (a) Temperature dependence of the frequencies of the
magnon modes, M1 to M5, as obtained from the Raman scattering
data with T < TN1. (b) The corresponding temperature dependence
of the strength factors S of the magnons, where we use the same
symbols for the data points.

ω > ωC− and extend above ωC+. The results applied to the
Raman data for RbCoCl3 are presented in the next section.

IV. ANALYSIS OF THE MAGNON MODES

We already showed in Fig. 1 the overall form of the
magnon Raman spectrum, where five magnon peaks were
observed at low temperatures. More details for the measured
temperature dependence of their frequencies and strength fac-
tors, as defined in Eq. (1), are given in Figs. 2(a) and 2(b),
respectively. The data, which extend from just below the lower
critical temperature TN2 up to the higher critical tempera-
ture TN1, show little temperature variation for the magnon
frequencies in these ordered regimes. The magnetic exci-
tation energies are essentially independent of temperature
between TN1 and TN2, as can be seen in Fig. 2(a) and in
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FIG. 3. The predicted Raman intensity plotted versus frequency
in the case where the effects of the staggered field are neglected (h =
0), showing the bound magnon (represented by a Lorentzian) and the
magnon continuum. See the text for further explanation.

Table I. By contrast, the magnon strengths show a signif-
icant overall decrease as TN1 is approached. There are no
data shown above TN1 because the strength factors decrease
sharply and/or the damping becomes too large, as would be
expected for the magnons. For the purposes of comparing
theory with experiment, we shall take ωM1 � 90.5 cm−1,
ωM2 � 96.0 cm−1, ωM3 � 99.0 cm−1, ωM4 � 102.0 cm−1,
and ωM5 � 110.5 cm−1 as the approximate average values ap-
plicable below TN2. For the magnetic parameters of RbCoCl3,
it was estimated in the recent INS data [18,19] that J1 =
5.89 meV ≡ 47.51 cm−1, J2 = −0.518 meV ≡ −4.18 cm−1,
α1 = 0.112, and α2 = 0.605. The staggered field can take
the possible values 2JNN , 4JNN , and 6JNN , where JNN ∼
1.0 cm−1 is a single nearest-neighbor interchain exchange
interaction [18,19]; this parameter value is probably more
uncertain than the others.

First we discuss the predicted results when the weak in-
terchain interactions are neglected. From the previous section
we expect a delta-function spike (the bound magnon) split
off from a magnon continuum region. Note that the deduced
criterion for the existence of a bound magnon is satisfied,
yielding a frequency ωB � 90.0 cm−1. This is a close match
to the observed magnon M1. Also we have ωC− � 90.5 cm−1

and ωC+ � 133.0 cm−1 for the limits of the continuum. The
intensity spectrum obtained using Eqs. (9) and (10) is shown
in Fig. 3, where the delta-function contribution of the bound
magnon has been represented by a Lorentzian line shape with
a width chosen as 4.8 cm−1 (matching that found for the M1
peak in Fig. 1). We see that |J2| is sufficiently large in this case
that the bound magnon is a strong feature overall.

When the weak staggered field is taken into account, the
continuum part of the spectrum becomes discretized. We
have calculated the modified eigenvalues for the magnon fre-
quencies as a function of h, following the description in the
previous section. The results are shown in Fig. 4 (see the red
curves), where we also show the Raman magnon frequencies
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FIG. 4. Fits for the magnon modes {M1, M2, ..., M5} (red lines)
to the predicted magnon bound state and the Zeeman ladder of the
frequencies plotted versus the staggered field h. The horizontal solid
lines (green in the online version) show the Raman frequencies at
temperatures below T (see the text). The horizontal dotted lines
indicate the boundaries of the magnon continuum region.

(horizontal green lines). This type of plot can be used to test
the consistency of the Zeeman ladder theory and to make an
estimate for the interchain exchange JNN : we show by the blue
circles the points of intersection between the horizontal lines
representing the experimental frequencies and the red curves
from theory. These points occur for h ∼ 1.4 cm−1 (for M2
and M5), for h ∼ 2.8 cm−1 (for M3), and for h ∼ 4 cm−1 (for
M4). Remarkably, the h values are seen to be in the correct
approximate ratio 1 : 2 : 3 to represent 2JNN , 4JNN , and 6JNN ,
giving us an estimate of JNN ∼ 0.7 cm−1. We note that this
has a similar magnitude to the approximate value of 1.0 cm−1

quoted on the basis of the INS data [18,19]. We have therefore
successfully accounted for the five observed Raman magnons
in RbCoCl3, with one as a bound magnon state and the other
four as Zeeman-ladder magnons. Very similar fits are obtained
if the average magnon frequencies measured in the range from
TN2 to TN1 are employed for the analysis.

V. CONCLUSIONS

In conclusion, by utilizing the latest structural and dynam-
ical information obtained from the recent neutron scattering
study of RbCoCl3 [18,19] we have been able to formulate a
fresh approach to interpreting the magnetic excitations ob-
served at near-zero wave vector using Raman spectroscopy.
Our approach is based broadly on the previous theoretical
models that were developed to describe the characteristics of
the magnon continuum, but we have presented an analytic
extension to estimate the frequency and relative intensity as-
sociated with a bound magnon mode split off at a frequency
just below the continuum region. This expected magnon
bound state together with the underlying continuum of states
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provided an excellent fit between the theory and one of the
observed Raman magnons. With our model and the extension
based on the Zeeman ladder approach, we found that the other
magnetic features in the experimental data could be fitted with
just one adjustable parameter (h) that proved to lie within
the expected range. Hence the bound magnon and all of the
other four magnons observed in the low-temperature phases
of RbCoCl3 are well predicted.

Finally, we note that the far-infrared spectroscopy mea-
surements at high magnetic fields [9] in RbCoCl3 led to
magnon frequencies that are consistent (when extrapolated to
zero field) with the Raman data, and thus can be accounted for
theoretically. In fact, it can be inferred from [9] that there is
another higher-frequency magnon at about 123 cm−1. A fairly
good fit for this extra mode is provided by the next curve

(or rung) on the Zeeman ladder when h ∼ 1.4 cm−1. Such
remarkable theoretical results are encouraging for the applica-
tion of this theory to other analogous quasi-one-dimensional
compounds as well as a basis for the development of a model
for explaining the three-dimensional ferromagnetic ordering
that occurs for RbCoCl3 at temperatures below TN2.
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