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Dynamics of domain walls in curved antiferromagnetic wires
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The influence of the curvature on the dynamical properties of transversal domain walls in a thin antiferromag-
netic wire is studied theoretically. Equations of motion for an antiferromagnetic domain wall are obtained within
the collective variable approach (q-� model). It is shown that (i) for the case of a localized bend, curvature
results in a pinning potential for the domain wall. (ii) The gradient of the curvature results in a driving force on
the domain wall and it effectively moves without any external stimuli. Although we showcase our approach on
the specific parabola and Euler spiral geometries, the approach is general and valid for a wide class of geometries.
All analytical predictions are confirmed by numerical simulations.
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I. INTRODUCTION

Antiferromagnets are promising candidates for novel spin-
tronic devices [1–5]. One of the key elements in these devices
are domain walls (DWs). DWs are considered as carriers of
essential information on the magnetic microstructure of a
material [6,7] and logical bits in magnetic memory devices
[8]. Furthermore, and similarly to ferromagnet-based DW
logic [9], the understanding and control of antiferromagnetic
(AFM) DWs could inform future approaches to AFM spin-
tronics architectures.

Recent progress in the field of AFM spintronics has
been made on the deterministic manipulation of AFM DWs
using different external stimuli. AFM DWs can be effec-
tively moved by using spin-transfer torque [10–13], spin-orbit
torque [14–16], a rotating magnetic field [17], and by the
propagation of spin waves [18,19]. All these studies are con-
sidering the DW dynamics in rectilinear systems, while the
role of geometrical curvature remains unclear and a general
theory for AFM DW dynamics in curved systems is absent.
Nevertheless, one should note some progress in the theoretical
studies of curvature-induced effects on equilibrium states in
rings [20,21] and helices [22].

Here, we demonstrate that a gradient of curvature of the
AFM wire can be considered as a driving force for AFM DW,
i.e., AFM DW moves without any external stimuli. We show
that (i) a localized bend of a wire results in a pinning potential
for a DW, and (ii) DW performs a translational motion under
the action of the gradient of the curvature. The static proper-
ties of AFM DWs are similar to those of ferromagnetic (FM)
DW [23–25], while the dynamics is fundamentally different.
The proposed approach is general and valid for a wide class of
geometries. We applied our approach for the specific parabola
and Euler spiral geometries, which cover any local geometry
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that one wants to cover. The analytical results are confirmed
with numerical simulations.

II. MODEL

We consider a thin wire made from an intrinsically achiral
two-sublattice AFM material. The magnetic moments μi =
M i/M0 are arranged along the space curve γ (s) with s be-
ing an arc length coordinate, M0 is the length of magnetic
moment, and index i enumerates sublattices. The curved one-
dimensional (1D) wire γ (s) lies within the xy plane and can be
parametrized with curvature κ (s). The local reference frame
can be chosen as the Frenet-Serret frame with tangential eT =
∂sγ , normal eN = ∂seT/κ , and binormal vectors eB = eT × eN.
The order parameters of the antiferromagnet are given by the
Néel vector n = (μ1 − μ2)/2 and total magnetization m =
(μ1 + μ2)/2, where m · n = 0 and n2 + m2 = 1. The order
parameters are assumed to be functions of a single spatial co-
ordinate s. The model thus describes wires in the limit of very
thin but fully compensated AFM structures, therefore now
inhomogeneity is considered in the normal eN and binormal
eB directions.

In the following, we will consider the case of a strong
exchange field HX acting between the magnetic sublattices
[26]. It is large compared to the anisotropy field HA, i.e.,√

HA/HX = ζ � 1. In this case, the magnetization is small
(|m| � 1 and |n| ≈ 1), and the state of the AFM is determined
by the Néel vector. The magnetic properties of the system can
be modeled by means of the energy density

E = A(∂sn)2 + HAM0
[
1 − (n · eT)2

]
, (1)

which is valid for antiferromagnets if the external magnetic
field is absent. The first term in (1) describes the exchange
interaction with the exchange stiffness constant A, and the
second term is the easy-tangential anisotropy with the easy
axis eT being tangential to the wire.

The dynamics of the Néel vector can be described within
the Lagrange formalism [27–30]. The Lagrangian L and
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Rayleigh dissipation function R normalized by
√

AHAM0 are
given by

L =
∫ +∞

−∞
ṅ2dξ − E, R = η

ζ

∫ +∞

−∞
ṅ2dξ, (2a)

with total energy written in a curvilinear frame of reference
[22]

E =
∫ +∞

−∞

[
n′

αn′
α + Dαβ (n′

αnβ − nαn′
β ) + Kαβnαnβ

]
dξ .

(2b)
Here, the overdot indicates derivatives with respect to the
dimensionless time τ = ω0t with ω0 = γ0

√
HAHX being the

frequency of uniform AFM resonance and γ0 being the gy-
romagnetic ratio, and the prime denotes the derivative with
respect to the dimensionless arc length ξ = s/� with � =√

A/(HAM0) being the length scale of the system which de-
fines the width of DW in rectilinear system, η is a damping
coefficient, and nα is a curvilinear component of the Néel
vector. Here, greek indices run over the components of the
{T, N, B} frame. The first term in energy (2b) corresponds to
the common inhomogeneous exchange interaction in a rec-
tilinear system, and the second term is a curvature-induced
Dzyaloshinskii-Moriya interaction with Dαβ being the effec-
tive DMI tensor with two nonzero coefficients DTN = −DNT =
κ and κ = κ� is the dimensionless curvature. The last term
is an effective anisotropy Kαβ = DαγDβγ − δTαδTβ with δαβ

being the Kronecker delta. The specific form of Dαβ takes into
account that a plane wire has zero torsion.

A small magnetization arises due to the dynamics of the
Néel vector,

m = ζ [ṅ × n]. (3)

The derivation of Eq. (3) and the procedure of exclusion of
the magnetization from the AFM dynamics can be found in a
number of previous works (for details, see Refs. [27,31,32]).

In the following we will utilize the assumption that
the length of n is constant and we will use the angular
parametrization of the Néel order parameter n = eT cos θ +
sin θ (eN cos φ + eB sin φ).

III. COLLECTIVE VARIABLE APPROACH

In order to study the statics and dynamics of the DW in a
curved AFM system we will use a collective variable approach
[33,34] based on the simple q-� model [33,35],

cos θ = −p tanh
ξ − q(τ)

�
, φ = �(τ), (4)

which is widely used for different types of DWs [13,15,16,36–
40] including curved wires [23,41,42] and narrow stripes
[43,44]. For the case of wide stripes, i.e., thin stripes with
width ��, we should modify the ansatz (4) in order to study
DW deformations [45–47], which are beyond the scope of this
work and thus omitted.

Parameters q and � are time-dependent collective vari-
ables, which determine the DW position and phase (orienta-
tion of the transversal componenet of n), respectively; p is
a topological charge, which determines the DW type: head
to head (p = +1) or tail to tail (p = −1). The DW width �

FIG. 1. Transversal AFM DW at the parabolic wire bend with
κ0 = 0.05 for (a) p = +1 and cos �0 = −1, and (b) p = −1 and
cos �0 = +1. Symbols and lines in (a) and (b) correspond to the
data obtained by numerical simulations and ansatz (4), respectively.
Insets in (a) and (b) show the distribution of magnetic moments of
two sublattices for the stable DW structure in the parabolic wire.

is assumed to be a slaved variable [38,43,48], i.e., �(τ) =
�[q(τ),�(τ)]. The model (4) coincides with the exact DW
solution for wires with constant curvature (κ = const, cir-
cle; κ = 0, rectilinear wire). In the following, we restrict
ourselves to the case κ < 1 and consider κ

′ as a small pertur-
bation which results in a driving force, and does not modify
significantly the profile of the DW (4) and its width �.

A. Statics of AFM DW in curved wire

Substituting the ansatz (4) into (2b) and performing inte-
gration over the arc length ξ , we obtain the energy in the form

EDW = E0 + 2pπκ(q) cos � − 2κ
2(q)� sin2 �. (5)

The first term E0 = 2(1 + �2)/� in (5) corresponds to the
energy of the DW in a rectilinear system, and determines the
competition of the inhomogeneous exchange and anisotropy
contributions. Terms linear and quadratic with respect to
curvature correspond to the geometry-induced DMI and
anisotropy driven by the exchange [22,49], respectively. The
term linear with respect to κ in the energy (5) demonstrates
the coupling between the curvature, DW topological charge,
and phase, i.e., DW energy is minimized when cos �0 =
−sgn(pκ) and such a DW wall is referred as a stable. A
similar phase selectivity for AFM DWs with intrinsic DMI
was discussed in Refs. [50,51]. One should note that the Néel
vector is a director, and DWs with {p = +1, cos �0 = −1}
and {p = −1, cos �0 = +1} for κ > 0 are equivalent [52]
(for details, see Fig. 1). From (5) we conclude that the po-
sition of stable equilibrium q0 for DW is determined by the
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condition

κ
′(q0) = 0. (6)

Condition (6) means that the stable DW with p cos �0 = −1
(p cos �0 = +1) has minimal energy at the maximal (mini-
mal) value of curvature. We expect that deviations of the DW
position and phase from equilibrium values will result in the
curvature-induced dynamics for DW. The effect of curvature-
induced motion will be discussed further.

The minimization of the energy (5) with respect to the DW
width results in the equilibrium value �0 = 1, which is the
same as for rectilinear wire. However, if the values of the DW
position and phase deviate from equilibrium, the DW width is
defined as �(τ) = 1/

√
1 − κ

2(q) sin2 �. Here, the coefficient
κ

2(q) acts as an easy-binormal anisotropy constant.

B. Curvature-induced dynamics of the AFM DW

Let us now proceed to the dynamical properties of the AFM
DW. The Lagrangian and Rayleigh dissipation function (2a) in
terms of the collective variables can be written as

LDW = 2

�

[
q̇2 + (�̇�)2] − EDW,

RDW = 2

�

η

ζ

[
q̇2 + (�̇�)2]

. (7)

It is well known that for FM DWs the collective variables q
and � are conjugated variables [38], i.e., the dynamics of q
induces the dynamics of � and vice versa. Additionally, for
FM DW, the phase is a canonically conjugated momentum to
the DW position. This is not the case for AFM DW, where the
DW position and phase have their own momentum.

By substituting (7) into the Lagrange-Rayleigh equa-
tions one obtains

4

�

[
q̈ + η

ζ
q̇

]
= −∂EDW

∂q
,

4�

[
�̈ + η

ζ
�̇

]
= −∂EDW

∂�
. (8)

The second equation of the set (8) has a general solution
cos �0 = ±1. It means that during dynamics the transversal
part of DW remains within the wire plane. The constant
DW phase has an intuitive explanation: During the curvature-
induced drift DW moves to the area with bigger curvature.
In this case, the term linear with respect to curvature in the
energy (5) becomes dominant, which results in the fixing of
phase �0 = 0 or �0 = π .

First, we will consider the dynamics of the AFM DW in the
wire with localized curvature κ(±∞) = 0. Here, we are inter-
ested in the linear dynamics of the DW in the vicinity of the
equilibrium state. Therefore, we introduce small deviations
in the way q(τ) = q0 + q̃(τ) and �(τ) = �0 + �̃(τ). For the
limit of weak curvature (κ � 1) the equations of motion (8)
linearized with respect to the deviations read

¨̃q + η

ζ
˙̃q ≈ π

2
κ

′′(q0)q̃,

¨̃� + η

ζ
˙̃� ≈ −π

2
κ(q0)�̃. (9)

The solution of (9) results in the decaying oscilla-
tions q̃(τ) = Aq̃ cos(ωqτ + ψq̃)e−ητ/(2ζ ) and �̃(τ) =
A�̃ cos(ω�τ + ψ�̃)e−ητ/(2ζ ) with frequencies (for the case of
low damping η � 1)

ωq ≈
√

π |κ′′(q0)|/2, ω� ≈
√

π |κ(q0)|/2. (10)

The phases ψq̃ and ψ�̃ are determined by the initial condi-
tions. Remarkably, for the case of a circular wire segment
(κ = const), where curvature does not produce any ge-
ometrical pinning potential, the DW phase has nonzero
frequency ω� while the position evolves as q̃ − q̃0 = v0ζ (1 −
e−ητ/ζ )/η, where q̃0 and v0 are an initial DW position and
velocity, respectively.

In the more general case κ ∈ [0; 1] the ansatz (4) leads to
the following expressions for the eigenfrequencies (for details,
see Appendix A),

ωq ≈
√

|Iq|
2

, ω� ≈
√

|I�|
2

,

Iq =
∫ +∞

−∞

κ
′′(ξ )

cosh (ξ − q0)
dξ,

I� =
∫ +∞

−∞

[
κ(ξ )

cosh (ξ − q0)
− κ

2(ξ )

cosh2 (ξ − q0)

]
dξ . (11)

In this case the equilibrium position is defined by the
equation

∫ +∞
−∞ dξ κ

′(ξ )/ cosh(ξ − q0) = 0. The correspond-
ing frequencies are presented in Fig. 2.

In order to check the general results obtained above, we
performed a set of numerical simulations (for details, see
Appendix B), for the case of parabolic wires with geometry

γ (ξ ) = x(ξ )x̂ + κ0
x2(ξ )

2
ŷ. (12)

For the parabolic wire (12) the equilibrium position is q0 =
0, which corresponds to the extreme value of the curvature
κ0. In the limit of weak curvature the resulting frequencies of

oscillations for DW position and phase are ωq =
√

3π |κ3
0 |/2

and ω� = √
π |κ0|/2, respectively (see Fig. 2). One can see

that the frequency of the DW position oscillations is of a third
order of magnitude with respect to the curvature compared to
the DW phase oscillations.

In a second step, the general equations of motion (8) are
applied for the case of the Euler spiral geometry [54], also
known as a Cornu spiral or clothoid. The geometry of the
Euler spiral is defined as

γ (ξ ) =
√

π/χ
[
C(ξ

√
χ/π )x̂ + S(ξ

√
χ/π )ŷ

]
, (13)

where C(u) =∫ u
0 cos

[
πx2/2

]
dx and S(u)=∫ u

0 sin
[
πx2/2

]
dx

are Fresnel integrals. The curvature of this curve is a linear
function of the arc length κ = χξ with χ being a dimension-
less gradient of the curvature [55].

For the Euler spiral, the equations of motion (8) result in a
constant DW phase �(τ) = �0, while the DW position moves
with velocity

q̇(τ) = v + [v0 − v]e−ητ/ζ , v = χ
π

2

ζ

η
, (14)
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FIG. 2. Dynamics of the transversal DW in a parabolic wire bend. (a) and (b) show the time dependencies (with the corresponding Fourier
spectra) of position q̃ = q − q0 and phase �̃ = � − �0, respectively, for wire with κ0 = 0.05. (c) Eigenfrequencies of the DW position and
DW phase oscillations in the vicinity of the equilibrium. Dashed and solid lines in (c) correspond to the predictions (10) and (11), respectively.
Symbols show the results of numerical simulations. In all simulations we have η = 10−4 and ζ = 2 × 10−2 (for details, see Appendix B). The
corresponding DW dynamics is illustrated with a Supplemental movie [53].

where v0 is an initial DW velocity and v = q̇(τ → ∞) is an
asymptotic velocity for DW. In a short time limit τ � ζ/η

or vanishing damping (η → 0) we can approximate the DW
velocity as q̇ ≈ v0 + aτ with a = πχ/2 being a DW acceler-
ation. Here, we can see that the DW velocity increases linearly
with time. The resulting DW velocity (14) as a function of the
gradient of the curvature is plotted in Fig. 3. One should note
that for velocities close to magnon velocity the model should
be revised by considering deformations of the DW shape.

It is instructive to compare the curvature-induced effects
for FM and AFM DWs in curved wires. The curvature-
induced driving for DWs in FM and AFM wires originate
from an exchange-driven Dzyaloshinskii-Moriya interaction

FIG. 3. Asymptotic DW velocity v as a function of the gradient
of the curvature χ . The solid line gives the analytical prediction (14).
Symbols show the results of numerical simulations. In all simulations
we have η = 10−2 and ζ = 2.5 × 10−2.

[22,49]. For both cases of magnetic ordering, in wires with lo-
calized curvature the DWs are pinned at the maximal value of
curvature distribution, which also results in phase selectivity
for DWs [23,24,56]. While the statics for different order-
ing remain the same, the dynamics is essentially different.
(i) For FM DWs the eigenfrequency oscillations of position
and phase, in the vicinity of equilibrium, are the same, ωFM

q,� ∝√|κ(q0)κ′′(q0)| [23], while for AFM DWs they are different
[see Eq. (10)]. Remarkably, for the case of constant curva-
ture (the case of a circular wire segment) one can observe
oscillations of the phase for AFM DW with finite frequency
ω� ∝ √|κ(q0)|. (ii) For the AFM DW we obtained constant
asymptotic velocity v ∝ χ and phase � = const, while in
a uniaxial FM wire the DWs move with a velocity which
increases exponentially. The constant asymptotic velocity for
FM DWs is possible only in biaxial wires where the phase
behaves as �FM − �0 ∝ 1/qFM(τ) [43]. (iii) In a limit case
of zero damping (η = 0) AFM DWs move with a constant
acceleration a ∝ χ and � = const, while FM DWs move with
a velocity vFM ∝ χeχτ and �FM

τ→∞ → �0 − π/2 cos �0.

IV. CONCLUSIONS

In conclusion, we demonstrate the effect of curvature-
induced pinning and driving for the transversal DW in thin
planar AFM wires. The origin of the pinning/driving is an
exchange-driven effective DMI [22,49]. We obtain expres-
sions for eigenfrequencies (11) of DW oscillations in the
vicinity of the equilibrium state. For the case of weak cur-
vature the approximation (10) can be used [see Fig. 2(c)].
The curvature-induced motion of the DW is accompanied by a
constant DW phase (cos �0 = ±1), while the DW velocity is
defined by the gradient of the curvature v ∝ χ [see Eq. (14)].

In a linear approximation with respect to the curvature, the
presented approach can be applied for the arbitrary curved
nonplanar wires with small torsion. In this case torsion results
in negligibly small corrections of the second order of magni-
tude.

064407-4



DYNAMICS OF DOMAIN WALLS IN CURVED … PHYSICAL REVIEW B 105, 064407 (2022)

ACKNOWLEDGMENTS

The author is grateful to Dr. V. Kravchuk (Karlsruher Insti-
tut für Technologie) and Dr. U. Rößler (Leibniz IFW Dresden)
for fruitful discussions, and U. Nitzsche (Leibniz IFW Dres-
den) for technical support. In part this work was supported
by the National Research Foundation of Ukraine (Project No.
2020.02/0051).

APPENDIX A: DETAILS OF THE q-� MODEL FOR κ < 1

Substituting the ansatz (4) into the energy expression (2b)
and performing the integration one obtains (up to an additive
constant)

EDW

2
= E0

2
+ 1

�2

[
pW1 cos � − W2 sin2 �

]
,

Wk =
∫ +∞

−∞

wk (ξ )

k
dξ, w(ξ ) = κ�/ cosh

[
ξ − q

�

]
.

(A1)

In the limit case κ � 1 the expression (A1) is reduced to (5).
For the more general case 0 < κ < 1 one has w1 < 1 and
consequently W1 > W2. In this case the value of phase �

which minimizes the energy (A1) is determined as cos �0 =
−p and the corresponding value of the equilibrium domain
wall position q0 is determined as∫ +∞

−∞

κ
′(ξ )

cosh [ξ − q0]
dξ = 0. (A2)

The equations of motion linearized in the vicinity of the
equilibrium q0 and �0 read

¨̃q + η

ζ
˙̃q ≈ −q̃

Iq

2
,

¨̃� + η

ζ
˙̃� ≈ −�̃

I�

2
. (A3)

Constants Iq and I� are defined in (11).

APPENDIX B: DETAILS ON NUMERICAL SIMULATIONS

In order to verify our analytical calculations we perform a
set numerical simulations for AFM curved wires. We consider
a single chain with lattice constant a. Each node is charac-
terized by a magnetic moment mi(t ) which is located at the
position ri. Here, i ∈ N defines the magnetic moment and
its position on the chain with size i ∈ [1, N]. The dynamics
of a magnetic system is govern by discrete Landau-Lifshitz-
Gilbert equations

dmi

dt
= γ0

μs

[
mi × ∂H

∂mi

]
+ η

[
mi × dmi

dt

]
, (B1)

where μs is a magnetic moment of a magnetic site. The Hamil-
tonian of a magnetic system has the following form,

H = J

2

∑
mi · m j − K

2

∑
(mi · τ i )

2. (B2)

Here, J > 0 is an effective exchange integral which fa-
vors AFM ordering, K > 0 is an effective easy-tangential
anisotropy constant, j runs over nearest neighbors, and τ i =
τ(ai) is a tangent unit vector to the wire. Note that the normal

τ i introduces the information about the wire shape into the
model (B2).

The length scale in simulations is defined with the mag-
netic length as � = a

√
J /K , and the dimensionless time is

defined as τ = 2γ0t
√

J K /μs.
The magnetization dynamics is simulated by means of

numerical solution of the set of ordinary differential equations
(B1) for the initial conditions determined by the initial mag-
netization.

1. Simulations of parabola wire

We considered the parabola wire with geometry defined in
(12). In simulations we considered parabola wire with N =
1001, and magnetic length � = 20a. The extreme curvature κ0

was varied in the range κ0 ∈ [0, 0.2] with a step �κ0 = 0.01.
The numerical experiment consist of two steps. Initially we

relaxed the DW structure in an overdamped regime (η = 0.5)
with initial position q(0) = q0 + 2� and phase �(0) = �0 +
π/10. In the second step we simulate a free dynamics of the
system with low damping η = 10−4. The equilibrium states
of the DWs are presented in Figs. 1(a) and 1(b). To determine
the values of q and � we extract the curvilinear components
of the Néel vector nT = n · eT, nN = n · eN, and nB = n · eB

from simulation data, and apply fitting with ansatz (4). The
corresponding time evolution of DW position and phase is
presented in Figs. 2(a) and 2(b), respectively, where one can
see harmonic decaying oscillations with well pronounced fre-
quencies ωq and ω�.

2. Simulations of Euler spiral wire

We considered the Euler spiral wire with geometry defined
in (13). In simulations we considered a wire with N = 1001,
magnetic length � = 20a, and gradient of the curvature χ ∈
[1, 10] × 10−3 with step �χ = 1 × 10−3.

Similarly to the case of parabola geometry, here we also
performed simulations in two steps. First, we relaxed the
DW structure in an overdamped regime (η = 0.5) with initial
position q(0) = 0 and phase �(0) = �0. The initial position
for DW corresponds to the curvature with κ[q(0)] = 0. In the
second step we simulate a free dynamics of the system with
low damping η = 10−2. The analysis of the DW behavior was
performed in the same manner as for a parabola.

The velocity for DWs was obtained as the fitting parame-
ter of q(τ) obtained in simulations. For fitting we used trial
functions q(τ) = q0 + vτ.

3. Movies of the DW motion

For a better illustration of the DW motion induced by the
curvature gradients, we prepared movies of DW dynamics in
the Supplemental Material [53]. Movies are based on data
obtained by means of the numerical simulations.

AFM_DW_parabola_k_0.1_eta_10e-4.mp4 shows the
dynamics of the AFM DW in the parabolic wire with the
κ0 = 0.1 and Gilbert damping η = 10−4.

AFM_DW_euler_spiral_chi_5e-3_eta_10e-2.mp4
shows the dynamics of the AFM DW in the Euler spiral
with the gradient of the curvature χ = 5 × 10−3 and Gilbert
damping η = 10−2.
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