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Magnon-phonon scattering (MPS) has attracted widespread attention in quantum heat/spin transport across
the ferromagnetic/nonmagnetic (F/N) interfaces, with the rapid progress of experiments on spin caloritronics
in recent years. However, the lack of theoretical methods, accounting for the MPS rigorously, has seriously
hindered investigations on the quantum heat transport in magnetic nanostructures with broken translational
symmetry, such as F/N interfaces. In this paper, we propose a theoretical formalism of the nonequilibrium
Green function to incorporate the MPS into the quantum heat transport for three-dimensional ferromagnetic
nanostructures, rigorously, through a diagrammatic perturbation analysis. A computational scheme is developed
for the first-principles simulation of quantum heat transport in practical magnetic nanostructures, and a gener-
alized formalism of heat flow is presented for the analysis of the elastic and inelastic process of heat transport.
A thermal rectification driven by MPS is observed in the numerical simulation of heat transport across the F/N
interface based on the CrI3 monolayer, which is consistent with recent studies. In this paper, we open the gate
to first-principles investigations of quantum heat transport in magnetic nanostructures and pave the way for the
theoretical design of magnetic thermal nanodevices.

DOI: 10.1103/PhysRevB.105.064401

I. INTRODUCTION

The management and manipulation of heat transport in
nanostructures has been a significant issue in nanoelectronics
[1], thermoelectrics [2,3], and thermal devices [4,5]. In the
past several decades, investigations of heat transport have
mainly focused on the control of electrons and phonons [6–8]
since they are the main carriers dominating transport of en-
ergy (electricity and heat) in most materials. With the rapid
progress of spintronics [9,10] and spin caloritronics [11,12]
in recent years, the spin degree of freedom has played an
increasingly important role in the quantum heat transport of
magnets [13–15]. One of the most attractive phenomena is
the long-range spin transport in recent experiments of the
spin Seebeck effect (SSE) [16,17] and acoustic spin pumping
[18,19], which is attributed to the phonon drag effect [17]
and has inspired studies of magnonpolarons [20–22], ther-
mal Hall effect [23], and magnon-phonon scattering (MPS)
[14,24]. Moreover, the modulation of phonon temperature
through magnon-phonon interaction (MPI) has also been ex-
perimentally demonstrated in the spin Peltier effect, which
provides insights for nanoscale cooling techniques [25]. The
platforms of these studies are all around magnetic systems
or ferromagnetic/nonmagnetic (F/N) interfaces, where MPS
plays a critical role. Therefore, an in-depth understanding of
MPS in magnetic nanostructures, especially in F/N interfaces
[26], is momentous for both fundamental science and practical
applications [27].

*keqiuchen@hnu.edu.cn

A full quantum mechanical simulation of MPS heat trans-
port in practical magnetic nanostructures is still a huge
challenge. Benefitting from the improvement of comput-
ing performance and the power of density functional theory
(DFT) in the simulation of electronic structures and phonon
properties of crystals [28], first-principles methods accounting
for electron-phonon [29] and/or phonon-phonon scattering
[30–32] have been developed, based on the semiclassi-
cal Boltzmann transport equation (BTE), for the transport
simulation of crystals and bulk materials. The scattering-
matrix method [33,34] and the nonequilibrium Green function
(NEGF) method have also been introduced into the quantum
transport simulation for nanoscale devices [35–39], whereas
related research on MPS has gone at a slow pace. In recent
years, fruitful efforts have been made through solving the BTE
[40,41], as well as introducing spin degrees of freedom into
classical [42] or ab initio [43] molecular dynamics (MD). In
addition, methods based on first-principles [44,45] or random
displacement from MD [46], which have been introduced
into the electron-phonon scattering case [47], have also been
developed for the evaluation of MPI strength as well as tem-
perature dependence of magnon-phonon relaxation. However,
these investigations have mainly focused on the relaxation
time or energy modification of particles in bulk structures
with a classical or semiclassical consideration, whereas the
wave nature has been ignored, and these methods thus hardly
serve for heat transport in nanoscale junctions [48] or typical
F/N interfaces in SSE experiments [17]. Recently, several
theoretical studies have concentrated on the coherent tuning
of heat [49,50] or spin [51,52] transport across F/N junctions
under an external magnetic field, through the introduction
of the NEGF method into a one-dimensional (1D) model
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FIG. 1. Schematics of the physical model in the present three-dimensional (3D) nonequilibrium Green function (NEGF) formalism.
(a) Ferromagnetic devices with a transverse periodicity. (b) Ferromagnetic/nonmagnetic (F/N) interfaces with a transverse periodicity; the
magnetization (M) of the ferromagnetic region is assumed to point in the +z direction. An external magnetic field along the +z direction (hz)
is applied to all regions. The magnon-phonon scattering (MPS) is only considered in the central region (C). In the case of F/N interfaces, the
energy of magnons can only be transferred from the left contact (Contact L) to the right contact (Contact R) via MPS.

system [53,54], and the thermal rectification [55–57] as well
as negative differential thermal conductance (NDTC) [58,59]
are observed. These studies have made some attempts at the
quantum mechanical modeling of heat transport with MPS,
whereas the first-principles investigation of the MPS heat
transport in practical magnetic nanostructures is still challeng-
ing.

In this paper, based on the NEGF and the many-body
perturbation theory, we propose a rigorous theoretical method
as interfaced with first-principles calculations to accurately
account for the MPS-related heat transport in the practical
three-dimensional (3D) magnetic nanodevices, and we ap-
ply it to a two-dimensional (2D) F/N interface based on
CrI3 monolayer (ML) to investigate the phonon drag heat
transport properties of magnons. Our numerical result agrees
with the recent study [50] and thus provides valuable insights
for the magnetic manipulation of heat transport. This paper
is organized as follows: Firstly, we propose the theoretical
formulations of Green’s function and many-body self-energy,
through a diagrammatic perturbation analysis in Sec. II, and a
generalized formalism of heat flow is proposed for the sepa-
ration of elastic and inelastic part contributions of heat flow in
the multiparticle (and multiterminal) coupled system. To eval-
uate the degree of deviation from the equilibrium state in the
central region of magnons, we propose a general formalism
of the effective local temperature (ELT) for both phonons and
magnons. In Sec. III, the effectiveness of the present methods
are discussed and verified through applying the present NEGF
formalism into a F/N interface based on the CrI3 ML. More-
over, the computational details as interfaced with DFT are
discussed for further verification and investigation. Finally, a
summary is made in Sec. IV.

II. MODELS AND METHODOLOGY

In this section, we propose a NEGF formalism to incorpo-
rate the MPS into the quantum heat transport, in ferromagnetic
nanodevices with a transverse periodicity. Firstly, in Sec. II A,
we give the Hamiltonian of the magnon and phonon in re-
ciprocal space. Then the theoretical formulations of Green’s
functions and self-energies for both spin and phonon systems
are given in Sec. II B. Finally, in Sec. II C, the energy ex-
change in this magnon-phonon coupled system are discussed;

meanwhile, a generalized formalism of heat flow and the ELT
are suggested for further analysis.

A. Models and Hamiltonian

In this subsection, we build the quantum mechanical model
for 3D nanodevices with the MPS in the central region and
give the formalism of the Hamiltonian in reciprocal space. The
simplified physical model for 3D ferromagnetic nanodevices
with a transverse periodicity is shown in Fig. 1(a). We assume
the magnetization (M) of the ferromagnetic region to point
in the +z direction in the ferromagnetic ground state. An
external magnetic field along the +z direction hz is applied to
the whole device. In the transport direction, the whole device
connecting with two semi-infinite thermal contacts (L and R)
is treated as a large unit cell, regardless of whether it satisfies
translation symmetry. The MPS is assumed to only exist in
the central region (C), where the noninteracting magnons and
phonons from two semi-infinite contacts are scattered. Since
the magnons and phonons are considered as the only thermal
carriers in ferromagnetic insulators, the spin and vibration
properties of such a device system can be described by the
following Hamiltonian:

Ĥ = Ĥsp + Ĥph + Ĥsp−ph, (1)

where Ĥsp, Ĥph and Ĥsp−ph are the Hamiltonian for spin,
phonon, and spin-phonon coupling (SPC), respectively. For
the spin system, the Heisenberg ferromagnetic model is
adopted [cf. Eq. (A1) in Appendix A]. Applying the Holstein-
Primakoff transformation [60] yields the magnon Hamiltonian
in atomic representation as

Ĥsp =
∑
m,n

∑
i, j

Xi, j (m, n)â+
m,iân, j, (2)

where â+
i and âi are the bosonic creation and annihila-

tion operators of spin deviation (magnon), respectively, and
Xi, j (m, n) is the matrix element of the magnon Hamiltonian
[cf. Eq. (A3) in Appendix A]. Here, m and n run over all the
cells along the periodic direction, while i and j run over all the
spin degrees of freedom in each cell. On the other hand, the
phonon Hamiltonian is composed of the atomic kinetic energy
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as well as the interatomic potential energy as

Ĥph = 1

2

∑
m

∑
i

mi ˆ̇um,i ˆ̇um,i

+ 1

2!

∑
m,n

∑
i, j

Ki, j (m, n)ûm,iûn, j, (3)

where i and j, here, run over all the vibrational degrees of free-
dom in each cell. Also, mi is the atomic mass, and Ki, j (m, n)
is the second-order force constant. Further, ûm,i and ˆ̇um,i are
the displacement and velocity operators, respectively.

As for the MPS term, we assume the MPI to only originate
from the lowest perturbation of atomic vibration um,i to the
exchange coupling constant Ji, j (m, n) [50,61,62], and thus,
the MPS Hamiltonian in atomic representation reads

Ĥsp−ph =
∑
m,n,l

∑
i, j,k

Mi, j,k (m, n, l )â+
m,iân, j ûl,k, (4)

where Mi, j,k (m, n, l ) is the first-order SPC constant [cf.
Eq. (A12) in Appendix A]. Here, m, n, and l run over all
the cells along the transverse direction in the central region
since the MPS is only considered here. Also, i and j label the
spin degrees of freedom in each cell, while k labels the atomic
vibration degrees of freedom.

For a periodic system, it is more convenient to serve in
reciprocal space to avoid processing a large amount of atoms
in supercell, and we thus rewrite Eq. (1) in reciprocal space.
The k-decomposed Hamiltonian of magnons reads

Ĥsp =
∑

k

∑
i, j

Xi, j (k)â†
k,iâk, j, (5)

and the q-decomposed Hamiltonian of phonons is found to be

Ĥph =
∑

q

∑
i, j

Ki, j (q)û−q,iûq, j, (6)

where k = (0, ky, kz ) and q = (0, qy, qz ) are the transverse
wave vectors of magnons and phonons in the yz plane, respec-
tively. Here, Xi, j (k) and Ki, j (q) denote the matrix elements
of Ĥsp and Ĥph in reciprocal space [cf. Eqs. (A6) and (A10)
in Appendix A]. Also, â†

k,i and âk,i are the k-components of
â+

m,i and âm,i, respectively, while ûq,i is the q-component of the
displacement operator ûm,i. The transformation details can be
found in Appendix A. Following the above transformation, the
SPC term of the Hamiltonian [cf. Eq. (A11) in Appendix A]
can also be rewritten in reciprocal space as

Ĥsp−ph =
∑
k,q

∑
i, j,k

Mi, j,k (k, q)â†
k,iâk−q, j ûq,k, (7)

whereM(k, q) is the coupling matrix in reciprocal space [cf.
Eq. (A15) in Appendix A]. The conservation of momentum
is naturally satisfied since the summation of the wave vectors
of all annihilation operators in Eq. (7) is always equal to that
of the creation operators: k = (k − q) + q. In addition, the
above expressions of the Hamiltonian in reciprocal space also
work for 2D devices with a transverse periodicity along the y
direction, while the only change is to let kz = 0 and qz = 0.

The only input parameters for the present NEGF formalism
are X, K , and M. In this paper, they are obtained from the

numerical calculations based on first-principles calculations,
which will be discussed in Sec. III C. To facilitate the calcu-
lation of Green’s functions, we rewrite each k-component of
the magnon Hamiltonian matrix as the block representation:

X(k) =
⎛
⎝ XL ULC 0
UCL XC UCR

0 URC XR

⎞
⎠(k), (8)

and the one for the phonon reads

K (q) =
⎛
⎝ KL VLC 0
VCL KC VCR

0 VRC KR

⎞
⎠(q), (9)

where XL (KL), XC (KC), and XR (KR) denote the magnon
(phonon) Hamiltonian matrices of the left contact (L), cen-
tral region (C), and right contact (R), respectively. Here, U
(V) denotes the coupling matrix between the contact and the
central region of the magnon (phonon) system. It is notable
that, for a 3D F/N interface as shown in Fig. 1(b), there is no
magnon in the nonmagnetic region (contact R). In this case,
the block representation of the magnon Hamiltonian matrix
reads

X(k) =
(
XL ULC

UCL XC

)
(k), (10)

and the heat energy of magnons in the ferromagnetic region
(L and C) can only be transferred to the phonons in the
nonmagnetic region (contact R) through MPS.

B. Green’s functions and self-energies for MPS

In this subsection, we define the contour-ordered Green’s
functions of the magnon and phonon as well as yield the
theoretical formulation of self-energy for MPS through a di-
agrammatic perturbation expansion for 3D devices, as shown
in Fig. 1. For a periodic system, we define the contour-ordered
Green function of the magnon and phonon as

Gi, j (k; τ, τ ′) = − i

h̄
〈TC[âH ;k,i(τ )â†

H ;k, j (τ
′)]〉, (11)

Di, j (q; τ, τ ′) = − i

h̄
〈TC[ûH ;q,i(τ )ûH ;−q, j (τ

′)]〉, (12)

where k and q are the transverse wave vectors of magnons
and phonons, respectively. Here, τ and τ ′ are time on contour,
while TC is the contour-ordering operator. The contour-
ordered Green function is defined in the Heisenberg picture,
and 〈· · · 〉 denotes the grand canonical ensemble average [63].

For an unperturbed case, we assume the central region to be
in the equilibrium state where neither heat contacts nor MPS
are incorporated. In this way, the unperturbed retarded Green
function of the magnon in matrix notation is found to be [cf.
Eqs. (B21) and (B17) in Appendix B 1]

G(0),R(k, ε) = [(ε + iη)I − XC (k)]−1, (13)

and the one for the phonon reads

D(0),R(q, ω) = [(ω + iη)2I −KC (q)]−1, (14)

where ε and h̄ω are the energies for the magnon and phonon,
respectively, and η denotes a positive infinitesimal. Here, I
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and −1 denote the identity matrix and the matrix inversion, re-
spectively. The derivation details of the presented unperturbed
Green function can be found in Appendix B 1.

Once the perturbation from heat contacts or MPS is consid-
ered, the perturbed Green’s functions of the magnon are given
by Dyson’s equation based on the Keldysh formalism [64] as

GR(k, ε) = [G(0),R(k, ε)−1 − �R(k, ε)]−1, (15)

G>,<(k, ε) = GR(k, ε)�>,<(k, ε)GA(k, ε), (16)

where � = �T + �M is the total self-energy. Here, �T =
�L + �R is the self-energy from the semi-infinite thermal
contacts of magnons, while �M originates from MPS. The
surface self-energy of contact α (L or R) can be obtained
from �α = UCαgαUαC , where the surface Green function gα

can be computed rigorously via recursive iterations [65,66]
or the decimation technique [67]. By the way, for a F/N
interface as shown in Fig. 1(b), there is only one effective
thermal contact (Contact L) for the magnon system because of
the nonmagnetism of the right contact (Contact R), and thus,
�T = �L. For the phonon system, we also have

DR(q, ω) = [D(0),R(q, ω)−1 − �R(q, ω)]−1, (17)

D>,<(q, ω) = DR(q, ω)�>,<(q, ω)DA(q, ω), (18)

and � = �T + �M is the total self-energy of phonons. The
self-energy from contacts α can also be obtained from �α =
VCαdαVαC , where dα is the phonon surface Green function of
contact α. For ballistic transport problems, only the retarded
Green function and self-energy from contacts are necessary
to obtain the transmission through the system via the Caroli
formula [66,68] since the many-body terms of the self-energy
(�M and �M) vanish.

The crucial point of solving transport problems with MPS
is to determine the scattering terms of self-energy �M and
�M . Although the expressions of MPS self-energies for the
1D system have been proposed in a recent study [50], a rig-
orous expression for the 3D case in the literature is lacking,
which is also the primary motivation for this paper. In this
paper, through a diagrammatic perturbation expansion [cf.
Eqs. (B25)–(B29) in Appendix B 2], we obtain the rigorous
formulation of the greater/lesser scattering self-energy for
magnons as

�>,<
i,m (k, ε) = ih̄

∑
q

Mi, j,k (k, q)Ml,m,n(k − q,−q)

×
∫ +∞

−∞

dω

2π
G>,<

j,l (k − q, ε − h̄ω)D>,<
k,n (q, ω),

(19)

and the retarded term reads

�R
i,m(k, ε) = ih̄

∑
q

Mi,m,k (k, q)Ml,m,n(k − q,−q)

×
∫ +∞

−∞

dω

2π

[
GR

j,l (k − q, ε − h̄ω)D>
k,n(q, ω)

+ G<
j,l (k − q, ε − h̄ω)DR

k,n(q, ω)
]
. (20)

FIG. 2. Feynman diagrams for the magnon-phonon scattering
self-energies in energy-momentum space of (a) magnons and
(b) phonons under the self-consistent Born approximation (SCBA).
The straight and wavy lines represent the full Green’s functions of
magnons and phonons, respectively.

A clear derivation process for the presented MPS self-energies
is detailed in Appendix B 2. The relevant diagrammatic
representation for scattering self-energy of magnons in
energy-momentum space is shown in Fig. 2(a). Unlike
with the recent study in 1D spin-phonon junction [50], we
ignore the Hartree term here since it donates a static poten-
tial from the lattice [69] and usually contributes nothing to
transport in the periodic system [70]. Figure. 2(b) shows the
diagrammatic representation of the scattering self-energy for
phonons, and the greater/lesser self-energy is written as

	>,<
k,n (q, ω) = i

∑
k

Mi, j,k (k − q,−q)Ml,m,n(k, q)

×
∫ +∞

−∞

dε

2π
G>,<

j,l (k, ε)G<,>
m,i (k − q, ε − h̄ω),

(21)

and the retarted term reads

	R
k,n(q, ω) = i

∑
k

Mi, j,k (k − q,−q)Ml,m,n(k, q)

×
∫ +∞

−∞

dε

2π

[
GR

j,l (k, ε)G<
m,i(k − q, ε − h̄ω)

+ G<
j,l (k, ε)GA

m,i(k − q, ε − h̄ω)
]
. (22)

Note that the diagrams suggested here are like that in the
previous study of electron-phonon scattering [71] except with
a sign difference since the electron is fermionic while the
magnon is bosonic. It is inappropriate to apply a lowest-order
expansion adopted in the electron-phonon case [72] since
the energy scales of magnons and phonons are close, and
the scattering self-energies of both sides are not negligible.
Since the self-consistent Born approximation (SCBA) [53,73]
is adopted in the derivation of the scattering self-energies,
Eqs. (15)–(22) constitute a set of self-consistent equations,
which has to be solved iteratively. The present NEGF for-
malism for 3D nanostructures can also be obtained through
applying the lattice Fourier transform, which has been adopted
in recent works about the 3D anharmonic phonon NEGF
formalism [38,39], to the 1D NEGF formalism [50]. Nev-
ertheless, the present derivation starting from the definition
of the contour-ordered Green function in reciprocal space
provides a more concise and physical perspective, while it can
be further introduced into the building of 3D NEGF formalism
for other kinds of scattering without the dependence on the
formalism of the 1D case. Moreover, both the energy and
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momentum conservation are naturally satisfied in the expres-
sions of the scattering self-energies.

C. Energy exchange and ELT

In this subsection, we first discuss the energy exchange
in the magnon-phonon coupled system. Once the greater and
lesser Green’s functions, as introduced in Sec. II B, are deter-
mined, the heat flow density of the magnon system flowing
out of contact α is then given by the Meir-Wingreen formula
[68,74] as

Jm
α (k, ε) = − ε

2π
Tr[G>(k, ε)�<

α (k, ε)

− G<(k, ε)�>
α (k, ε)], (23)

where Tr denotes the matrix trace and the one for the phonon
reads

J p
α (q, ω) = − h̄ω

2π
Tr[D>(q, ω)�<

α (q, ω)

− D<(q, ω)�>
α (q, ω)], (24)

and the integral of the heat flow density to the energy yields
the heat flow:

Im
α = 1

N

∑
k

∫ +∞

0

dε

h̄
Jm
α (k, ε), (25)

I p
α = 1

N

∑
q

∫ +∞

0
dωJ p

α (q, ω), (26)

where N is the number of k points.
The heat flow from one physical contact (Contact L or

R) in the magnon (or phonon) system can be separated into
two parts: one part is flowing to the other contacts directly,
which is called the elastic process, while another is injected
into (or released from) the phonon (or magnon) system via
the MPS, which is called the inelastic process in the field
of electron-phonon coupled transport [70]. To clarify the en-
ergy exchange relation in the present magnon-phonon coupled
system, we present a generalized formalism of energy flow
density:

Jx
α→β (k,E) = − E

2π
Tr[G>

β (k,E)S<
α (k,E)

− G<
β (k,E)S>

α (k,E)], (27)

and the corresponding heat flow reads

Ix
α→β = 1

Nh̄

∑
k

∫ ∞

0
Jx

α→β (k,E)dE, (28)

where E, G, and S are the energy, Green’s function, and
self-energy for each system, respectively, while x labels the
magnon (m) or phonon (p) system. Here, α and β label
the self-energy as contributed by thermal contact (L or R)
or MPS (M). The generalized greater/lesser Green function
G>,<

β (k,E) is defined as

G>,<
β (k,E) = GR(k,E)S>,<

β (k,E)GA(k,E). (29)

In this way, the self-energy for MPS looks like a virtual con-
tact which connects the magnon and phonon system. Figure 3

FIG. 3. Schematic of the energy exchange in the present
magnon-phonon scattering (MPS) devices. The solid and dashed
lines represent elastic and inelastic heat flow, respectively. The wavy
line represents the energy exchange between magnons and phonons
through MPS. The MPS acts as a virtual contact (Contact M) to
exchange the heat energy between magnons and phonons.

shows the energy exchange net in the present magnon-phonon
coupled system.

In addition, according to Eq. (27), the heat flow density
satisfies the following antisymmetric relation:

Jx
α→β (k,E) = −Jx

β→α (k,E), (30)

where the antisymmetry implies the directionality of energy
flow. We can also further obtain Jx

α→α = 0 since there is no
contact supplying energy flow to itself. The total energy flow
density from contact α is given by

Jx
α (k,E) =

∑
β

Jx
α→β (k,E), (31)

which precisely gives the same results with Eqs. (23) and (24)
for the physical contacts (L and R). The energy exchange
between magnons and phonons is given by the heat flow
densities from virtual contactsJm

M andJ p
M . It should be noted

that heat flows injected from virtual contact (M) into two
systems are equal and opposite Im

M = −Ip
M , while the heat

flow densities are not Jm
M �= −J p

M . According to Eq. (30), we
can further obtain the heat flow conservation relation:

∑
α

Ix
α =

∑
α

Jx
α (k,E) = 0. (32)

For a F/N interface device as shown in Fig. 1(b), there is
only one effective physical contact (Contact L) in the magnon
system, and we thus haveJm

L = Jm
L→M according to Eq. (31).

This indicates that the heat energy of magnons from the
ferromagnetic region can only be transferred to the nonmag-
netic region via MPS. Moreover, to evaluate the degree of
deviation from the equilibrium state in the central region of
magnons, we introduce the ELT [75,76] and propose a general
formalism of the ELT for both phonons and magnons. For
heat transport problems, the ELT can be determined via the
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equation of local energy conservation:∫ ∞

0
P(E)EdE =

∫ ∞

0
fB(E, Te)D(E)EdE, (33)

where P and D are the local density of population (LDOP)
and local density of states (LDOS), respectively. Here, fB

is the Bose-Einstein distribution, and Te is the ELT to be
determined. The LDOS is given by

D(E) = −E
n−1

π

1

N

∑
k

Tr{Im[GR(k,E)]}, (34)

while the LDOP reads

P(E) = −E
n−1

2π

1

N

∑
k

Tr{Im[G<(k,E)]}, (35)

where n = 1, 2 are for magnons and phonons, respectively,
and Im means the imaginary part. The ELT Te is the solution of
Eq. (33). Once the ELT of the magnon in the central region T m

C
is determined, the temperature deviation of magnons between
the left contact and the central region is defined as

�T m
drag = T m

L − T m
C , (36)

which is shown to be a significant index to evaluate the
strength of the phonon drag effect in the numerical analysis
of Sec. III.

III. RESULTS AND DISCUSSIONS

In this section, we will focus on the inelastic heat transport
behaviors of magnons and phonons across the F/N inter-
face, under the tuning of external conditions (temperature
and magnetic field), and some perspectives and applications
of the present NEGF formalism will be discussed. Firstly, in
Sec. III A, the relation between the spin frozen phenomenon
and the thermal rectification is discussed, and the temperature
deviation of magnons is proposed to evaluate the strength
of the phonon drag effect. To further reveal the microscopic
mechanism of phonon drag magnon heat transport, Sec. III B
shows the magnetic-field-dependent LDOS and heat flow den-
sity, and the energy transfer on a spectrum level is discussed.
Finally, in Sec. III C, the input setting and numerical details
based on first-principles calculations are shown for further
verification, and some perspectives of the present NEGF for-
malism are discussed for further studies.

A. Spin frozen phenomenon, thermal rectification, and NDTC

In this subsection, we apply the present method to a F/N
interface based on CrI3 ML, which has been reported as a 2D
magnetic material with strong spin-lattice coupling in recent
studies [77]. The schematic of the numerical model for this
device is shown in Fig. 4(a), where the device is periodic along
the y axis, and the entire device is placed under an external
magnetic field along the +z direction (hz). To simulate the heat
transport property of a practical F/N interface corresponding
to the physical model as shown in Fig. 1(b), we assume the
right contact region (Contact R) is nonmagnetic but keep the
same site configuration with CrI3, which saves computational
cost by avoiding the DFT step of the practical F/N interface,
and this has almost no impact on the presentation of this

FIG. 4. Heat transport through the present
ferromagnetic/nonmagnetic (F/N) interface based on CrI3

monolayer (ML). (a) Schematic of the numerical model; the
transverse direction (y direction) of this device is periodic, and an
external magnetic field pointing in the +z direction is applied to
the whole device; the nonmagnetic region (Contact R) is assumed
to have the same site configuration as CrI3 but to be nonmagnetic.
(b) Schematic of the heat flow across the present F/N interface
device; the dashed (or solid) straight line with arrow and the dashed
(or solid) wavy line with arrow denote the inelastic (or elastic)
heat flow of magnons and phonons, respectively. (c) Schematic
of the temperature deviation of the magnons as induced by the
nonequilibrium phonons; the dashed and dotted lines denote the
effective local temperature (ELT) of magnons without and with
magnon-phonon scattering, respectively, and the solid line denotes
the ELT of phonons.

paper. In such a F/N interfacial device, no energy can be
exchanged via magnons between the left contact (Contact L)
and the right contact (Contact R) without the assistance of
a phonon. Similar cases of electron-phonon scattering have
been studied in a 1D model system [78]. The heat transport
of magnons across such a F/N interface originates from the
nonequilibrium potential as dragged by phonons, and such an
interfacial heat transport behavior of magnons is important to
understand some experiments in spin caloritronics [16–19].
Figure 4(b) shows the schematic of heat flow across this
magnon-phonon coupled F/N interface. According to the con-
servation relations as introduced in Sec. II C, the total inelastic
heat flow injected from the left contact is always equal to
that flowing out of the right contact Im

L→M + Ip
L→M = Ip

M→R,
which indicates that some heat energies are transferred from
magnons to phonons via the MPS process. To evaluate the
degree to which magnons deviate from the equilibrium state
as induced by nonequilibrium phonons, we also employ the
temperature deviation of magnons as introduced in Sec. II C.
The schematic of the ELT distribution is shown in Fig. 4(c). In
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FIG. 5. The temperature, temperature difference, and external magnetic field dependence of (a)–(c) inelastic heat flow and (d)–(f) phonon
drag temperature deviation of magnons. A temperature difference of 1 K is used in (a), (c), (d), and (f). A magnetic field of 0.0 meV is adopted
in (a) and (d). A central temperature of 50 K is used in (b), (c), (e), and (f).

the ballistic case (dashed line), the magnon system is actually
in an equilibrium state, and the ELT of magnons in the central
region (T m

C ) is the same as that in the left contact (T m
L ). Once

MPS is considered (dotted line), the magnons in the central
region will transfer energy to phonons and will be dragged
into a nonequilibrium state. Meanwhile, a temperature devi-
ation (�T m

drag) between the central region and the left contact
will arise in the magnon system. By the way, in this paper, we
mainly focus on the phonon-mediated magnon heat transport
(inelastic heat transport) across the F/N interfaces since it
intuitively shows the nonlinear energy exchange behaviors of
magnons and phonons at the F/N interfaces.

First, we show the spin frozen phenomenon in the
magnon-related heat transport. The temperature dependence
of inelastic heat flow is shown in Fig. 5(a). It is obvious that
the inelastic heat flow of both magnons and phonons is ∼0
under 10 K, which is consistent with the recent theoretical
study [50] of heat transport across a 1D spin-phonon junc-
tion model and is attributed to the exponential dispersion and
weak scattering of magnons in low temperature. To further
demonstrate this point of view, we show the temperature de-
viation of magnons (�T m

drag) in Fig. 5(d). Here, �T m
drag is close

to zero in the low-temperature region (<10 K). This result
means that the state of magnons between the central region
and the left contact is close, with an equilibrium distribution
of magnons, and this indicates a weak MPS in the central
region at low temperature. In addition, as the temperature
rises, �T m

drag shows a similar dependence with the heat flow
of magnons, which demonstrates the effectiveness of temper-
ature deviation on the evaluation of the phonon drag effect.
To clarify the relation between spin frozen and nonreciprocal
heat transport, we further show the dependence of magnon
heat flow on temperature difference under different external
magnetic fields in Fig. 5(b). Due to the asymmetric setting of

the magnon system, the thermal rectification effect and NDTC
arise. To be more specific, the appearance of NDTC is the
result of competition between the temperature difference of
the device and the temperature of the left contact: T m

L reduces
as �T decreases. Different from the ballistic case, inelas-
tic heat flows reduce sharply as the temperature decreases,
which results in the reduction of Im

L→M after �T < −50 K.
Furthermore, the turning point of Im

L→M shifts to zero as hz in-
creases, which also confirms that the spin frozen phenomenon
strengthens the thermal rectification and NDTC. Incidentally,
the decrease of central temperature [50] exhibits a similar
effect as the increase of hz since both means aim to let TL in
the spin frozen temperature region under a smaller �T . The
temperature deviation of magnons, as shown in Fig. 5(e), is
also consistent with Fig. 5(b).

Moreover, the spin frozen phenomenon via the external
magnetic field has been adopted in heat conductance experi-
ments of magnetic materials to distinguish the contributions
of magnons and phonons [14]. Figures 5(c) and 5(f) show
the hz dependence of heat flow and temperature deviation
of magnons, respectively. It is notable that the inelastic heat
flow reduces about six times as hz increases from 0.0 to
5.0 meV, which demonstrates the application potential in mag-
netic thermal switching [79]. The present �T m

drag is expected
to be experimentally demonstrated in magnon thermometry
experiments [80].

B. LDOS and heat flow density manipulated
by an external magnetic field

To further reveal the microscopic mechanism of phonon
drag magnon heat transport and explain the results discussed
in Sec. III A, in this subsection, we discuss the features of the
LDOS and heat flow density under an external magnetic field.
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FIG. 6. The local density of states (LDOS) of magnons (a) at different central temperatures with hz = 0 meV; (b) under different magnetic
field hz at 50 K. (c) shows the hz-dependent heat flow density of magnons at 50 K. (d)–(f) show the LDOS of phonons donated by (e) Cr and
(f) I atoms, respectively, at different temperature with hz = 0 meV.

It should be noted that the inelastic heat flow of phonons is
far smaller than the elastic one [see Fig. 10(b) in Appendix C].
To explain this, we show the LDOS of magnons and phonons
in Figs. 6(a) and 6(d), respectively. Firstly, it is seen that the
maximum energy of phonons is ∼32 meV, which is consistent
with recent studies [46,81] and is approximately twice that of
magnons [see also Fig. 10(a) in Appendix C]. However, due
to the conservation of energy in the process of MPS as shown
in Fig. 2 of Sec. II B, phonons with energy >15 meV cannot
be absorbed or emitted by any magnon, which implies that the
impact of MPS to magnons is stronger than that to phonons.
Moreover, the low-frequency vibration is mainly contributed
by the I atoms, while the magnetic atoms (Cr) mainly donate
to high-frequency vibration. The above two factors determine
that the MPS in CrI3 ML is weak and impacts magnons
stronger than phonons. In addition, the temperature-dependent
LDOS of magnons and phonons as shown in Figs. 6(a), 6(e),
and 6(f) demonstrate it. As the central temperature rises,
the magnons with high energy (ε > 10 meV) are scattered
strongly since the LDOS decreases obviously. Meanwhile, for
phonons, the LDOS in the low-energy region (h̄ω < 15 meV)
only decreases a little, while the LDOS of the high-energy
phonon hardly changes.

To further reveal the nature of the hz dependence of thermal
rectification and NDTC as shown in Fig. 5, the LDOS and heat
flow density of magnons under different external magnetic
fields are shown in Figs. 6(b) and 6(c), respectively. The whole
energy of the magnons increases with the increase of hz, which
results in less excitation of magnons at the same temperature.
As a matter of fact, the energy shift originates from the on-
site contribution of hz to X [cf. Eq. (A3) in Appendix A],
while the increase of the LDOS in the high-energy region
indicates an attenuation of scattering strength. These results
also demonstrate that the increase of hz plays a similar role
with the decrease of central temperature, in both the thermal

rectification and the NDTC. As a result, the magnitude of heat
flow density as shown in Fig. 6(c) decreases with the increase
of external magnetic field. Moreover, it is attractive that the
magnons with low energy (ε < 6 meV when hz = 0.0 meV)
donate a negative heat flow density, while the magnons in the
high-energy region (ε > 6 meV when hz = 0.0 meV) con-
tribute a positive one. This result indicates the conservation
magnon number, and there is no magnon passing through the
present F/N interface. Consequently, the microprocess of the
phonon drag heat transport in a F/N interface is as follows: As
the temperature rises, magnons and phonons interact without
an observable energy exchange, as well as both magnons and
phonons are in an equilibrium state when �T = 0. When
�T �= 0, the magnons and phonons in each contact are still in
equilibrium state, while magnons and phonons in the central
region are not due to the energy exchange between magnons
and phonons via MPS. The higher temperature of magnons
determines that magnons in the central region only have to
transfer energy to phonons. Owing to the conservation of
magnon number in the present MPS process, the magnon
with higher energy emits a phonon and turns into another
lower-energy magnon. The schematic for the microprocess of
energy transfer from magnons to phonons is shown in Fig. 7.
In this way, the MPS vertex plays the role of a converter,
which absorbs the energy of magnons from the left contact
and releases more phonons to the right contact. The thick lines
in the diagrammatic representation of MPS mean the accumu-
lation of both low-energy magnons and phonons in the central
region of the device. Moreover, the present results show that
MPS actually contributes little to the total heat transport, even
though the SPC is reported to be strong in CrI3 ML. There
are two principal reasons for this difference. On the one hand,
static modification of SPC to the dispersion of phonons has
been considered in the step of finite displacements based on
the spin-polarized DFT calculations. A detailed discussion
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FIG. 7. Schematic for the micro-process of energy transfer from
magnons to phonons in ferromagnetic/nonmagnetic (F/N) inter-
faces. A central temperature (T ) of 50 K, a temperature difference
(�T ) of 1 K, and an external magnetic field (hz) of 0.0 meV are
adopted here. The thick lines in the diagrammatic representation
of magnon-phonon scattering mean the accumulation of particles in
the central region of the device, where magnons with higher energy
(ε > 6 meV) transfer energy to phonons, and turn to be magnons
with lower energy (ε < 6 meV).

on this point is held in Sec. III C. On the other hand, the
magnetic atoms (Cr3) mainly contribute to the high-frequency
vibrations of phonons, while the low-frequency vibrations are
mainly donated by the I atoms. However, the phonons with
high energy are not involved in the MPS process, which fur-
ther determines the weakness of the inelastic process. These
results reveal the microprocess of energy exchange in the F/N
interfaceand provide theoretical references for the selection of
magnetic thermal functional materials.

C. Computational details and perspectives

In this subsection, we show the details of numerical com-
putation as interfaced with first-principles calculations for
further verification and study. Firstly, we talk about the com-
putation of input parameters based on DFT. There are three
essential parameters in the present NEGF formalism: the ma-
trix elements of the Hamiltonian for magnons (X), phonons
(K), and MPS (M), which have been introduced in Sec. II A.
More specifically, these three matrices are obtained from
the Fourier transformation of X , K , and M, respectively [cf.
Eqs. (A6), (A10), and (A15) in Appendix A], and all of them
can be obtained from DFT calculations. The spin-polarized

DFT calculation was implemented in the open-source package
OPENMX [82,83] using the generalized gradient approximation
and Perdew-Burke-Ernzehof exchange-correlation functional
[84]. An energy cutoff of 200 Ry was used, and a convergence
threshold of 10−8 Hartree was adopted for each self-consistent
step. First, a relaxation process of the primitive cell (8 atoms)
ran with a k mesh of 8 × 8 × 1 to obtain an optimized lattice
constant of 6.985 Å until the interatomic forces were <10−6

Hartree/Bohr. For the second-order force constants K , the
finite displacement method as implemented in the PHONOPY

[85] package was adopted on a supercell of 3 × 3 × 1 unit
cells (144 atoms). A k mesh of 2 × 2 × 1 was used in the
spin-polarized DFT calculation. For the matrix elements of the
magnon Hamiltonian X , the evaluation of both the exchange
coupling constants between each pair (Ji, j) and the magnetic
moment of the atoms (Si) are essential. In the present spin-
polarized DFT calculations, the magnetic moments of Cr and
I atoms are 3.4658 μB and −0.1575 μB, respectively, which
agrees with previous studies. The Liechtenstein method [86]
as implemented in our in-house code was adopted to evalu-
ate the isotropic exchange coupling constants, and one can
also use the built-in software in OPENMX. For the first-order
magnon-phonon coupling matrix M, the finite displacement
method based on Eq. (A13) in Appendix A was used. To
reduce the cost of computing and improve the credibility of
our data, a crystal symmetry correction was applied to these
three matrix elements using the open-source package SPGLIB

[87].
Once the three matrices X, K , and M were obtained,

first, the initial Green’s functions of magnons and phonons
were computed via Eqs. (13) and (14). Afterwards, the
self-consistent loop ran as based on Eqs. (15)–(22), un-
til the average relative error of self-energies was <10−9.
A k (or q) mesh of 1 × 47 × 1 and an energy sampling
number of 959 were adopted to ensure the convergence of
observables. In addition, it should be noted that the static
modification contributed by first- and second-order SPC [77]
to the dispersion of phonons was considered in our scheme
since the spin-polarized DFT was adopted in the calcula-
tion of the second-order force constants K . The static part
of first-order SPC contributes a static force to the magnetic
atoms, while second-order SPC donates an additional mod-
ification to K directly, both of which were incorporated in
the step of finite displacements. A similar treatment has
been adopted in the case of electron-phonon scattering [70],
where the static modification of the first- and second-order
electron-phonon coupling to phonons was incorporated in the
finite-displacement step. The consideration of MPS in our
scheme is on the foundation of these modifications; thus,
only the fluctuating part of the spin (magnons) needs to be
considered.

The present NEGF formalism is mainly proposed to rig-
orously incorporate MPS into the quantum transport of a
nanostructure with broken translation symmetry in the trans-
port direction. In this way, it is possible to investigate
transport behaviors of both magnons and phonons in magnetic
nanostructures, especially in F/N interfaces, from a first-
principles perspective. Moreover, the heat generation [69,75]
of magnons in spin-wave devices is also an essential topic we
need to further discuss, which has been glimpsed roughly in
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Sec. III A. The tuning of heat/spin transport in strong MPS
magnetic nanostructures across various means, such as gating
[88] and twisting [89,90], also needs further investigation
since strong scattering leads to strong nonlinear transport
behaviors, and it is attractive for nanoscale magnetic thermal
logic devices, such as magnetic heat/spin switches [79,91].
As this paper is mainly focused on the formalism determina-
tion and methodology development, further discussion of the
above perspectives is pending in our future work.

IV. CONCLUSIONS

In summary, we propose a NEGF formalism and develop
a method with first-principles input to rigorously incorporate
MPS into the quantum heat transport of magnetic nanode-
vices. The theoretical formulation of self-energy of MPS
is suggested through a diagrammatic perturbation analysis.
Without the dependence on the 1D formalism, the present
formalism naturally satisfies both the energy and momentum
conservation in nanodevices with transverse periodicity. A
generalized formalism of heat flow is proposed to distinguish
the elastic and inelastic parts of energy exchange, which is
also applicative for nanodevices with other kinds of scattering,
such as electron-phonon and phonon-phonon scattering. The
heat transport of magnons as dragged by phonons is evalu-
ated in a magnetic nanodevice, based on CrI3 ML, with an
asymmetric spin configuration. The enhancement of thermal
rectification and NDTC of magnons through the spin frozen
phenomenon as manipulated by an external magnetic field is
demonstrated, where the reduction of inelastic heat flow by
six times is observed as the external magnetic field rises from
0 to 5 meV. The temperature deviation of magnons proposed
in this paper is shown to be significant to evaluate the strength
of the phonon drag effect. The present NEGF formalism paves
the way for first-principles investigation of heat generation of
magnons in spintronic devices and is expected to provide ab
initio insights for the design of magnetic thermal nanodevices
as well as spin-dependent thermoelectric nanodevices. In this
paper, we thus open the gate to first-principles investigations
of quantum heat transport in magnetic nanostructures and
pave the way for the theoretical design of nanoscale magnetic
thermal devices.

ACKNOWLEDGMENTS

This paper was supported by the National Natural Science
Foundation of China (No. 11974106 and No. 11674092) and
the National Key Research and Development Program of
China (Grant No. 2017YFB0701602). Numerical computa-
tions were performed at the National Supercomputer Center
in Changsha.

APPENDIX A: FORMALISM TRANSFORMATION
OF THE HAMILTONIAN

The simplified model of a ferromagnetic insulator with a
transverse periodicity on the yz plane is shown in Fig. 8. We
assume both the spin-quantization axis and the external mag-
netic field hz point along the +z direction. The spin properties
of such a system can be described by the Heisenberg spin

FIG. 8. Schematic of the simplified physical model for a three-
dimensional (3D) ferromagnetic nanostructure with a transverse (yz
plane) periodicity. An external magnetic (hz) along the +z direction
is applied to the entire system. The straight lines connecting two
atoms denote the force constants K , the curves with double-arrow
between two spins denote exchange coupling constants J , and the
wavy lines between J and K denote the magnon-phonon coupling
constants M.

Hamiltonian as

Ĥsp= − 1

2

∑
m,n

∑
i, j

Ji, j (m, n)Ŝm,i · Ŝn, j − hz

∑
m,i

Ŝz
m,i, (A1)

where m and n run over all the transverse cells along the
yz plane, and i and j run over the spin-localized atoms in
one cell. Here, Ji, j (m, n) is the isotropic exchange coupling
constant between two spins localized at the atoms labeled by
(m, i) and (n, j). Also, Ŝm,i and Ŝz

m,i are the total and the z
component of the spin operator, respectively. Applying the
Holstein-Primakoff transformation to Eq. (A1) and retaining
only the linear-order terms yields

Ĥsp =
∑
m,n

∑
i, j

Xi, j (m, n)â+
m,iân, j, (A2)

and the matrix element Xi, j (m, n) reads

Xi, j (m, n)|m,i �=n, j = −Ji, j (m, n)
√

SiS j,

Xi,i(m, m) = hz +
∑

n, j �=m,i

Ji, j (m, n)S j, (A3)

where â+
i and âi are the bosonic creation and annihilation

operators of spin deviation (magnon), respectively, and Si is
the length of spin localized at the ith magnetic atom.

To serve in reciprocal space, we rewrite the magnon Hamil-
tonian through the following Fourier transformation:

âm,i = 1√
N

∑
k

âk,i exp (ik · Rm), (A4)

where k = (0, ky, kz ) is the transverse wave vector of
magnons. Here, Rm = (0, Ry

m, Rz
m) is the position vector of the

mth cell on the yz plane, and thus, Eq. (A3) can be rewritten
as

Ĥsp =
∑

k

∑
i, j

Xi, j (k)â†
k,iâk, j, (A5)

where the matrix element Xi, j (k) reads

Xi, j (k) =
∑

m

Xi, j (m, 0) exp [−ik · (Rm − R0)]. (A6)
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The phonon Hamiltonian in atomic representation reads

Ĥph = 1

2

∑
m

∑
i

mi ˆ̇um,i ˆ̇um,i

+ 1

2!

∑
m,n

∑
i, j

Ki, j (m, n)ûm,iûn, j, (A7)

where i and j run over all the vibrational degrees of freedom
in one cell. Here, mi is the atomic mass, and Ki, j (m, n) =

∂2E
∂rm,i∂rn, j

|0 is the second-order force constant. Also, ûm,i and
ˆ̇um,i are the displacement and velocity operators, respectively.
For the same motivation with the spin system, we rewrite the
phonon Hamiltonian through the following transformation:

ûm,i = 1√
Nmi

∑
q

ûq,i exp (iq · Rm), (A8)

where q = (0, qy, qz ) is the transverse wave vector of
phonons, and thus, Eq. (A7) is rewritten as

Ĥph =
∑

q

∑
i, j

Ki, j (q)û−q,iûq, j, (A9)

where ûq,i is the q component of ûm,i, and the dynamical
matrix Ki, j (q) reads

Ki, j (q) = 1√
mimj

∑
m

Ki, j (m, 0) exp [−iq · (Rm − R0)].

(A10)
To incorporate MPS into the present NEGF framework, we

assume the MPI to only originate from the lowest perturbation
of atomic vibration um,i to the exchange coupling constant
Ji, j (m, n), and thus, the MPS Hamiltonian in atomic repre-
sentation reads

Ĥsp−ph =
∑
m,n,l

∑
i, j,k

Mi, j,k (m, n, l )â+
m,iân, j ûl,k, (A11)

where Mi, j,k (m, n, l ) is the first-order SPC constant and is
defined as

Mi, j,k (m, n, l ) = ∂Xi, j (m, n)

∂rl,k

∣∣∣∣
0

. (A12)

To serve for the numerical calculation based on first-
principles, we rewrite Eq. (A12) into a finite difference
representation as

Mi, j,k (m, n, l ) =
Xi, j (m, n)|rl,k+δ

− Xi, j (m, n)|rl,k−δ

2δ
, (A13)

which is the so-called finite-displacement method since δ is
the finite displacement of atom. Applying the transformation
like the spin (or phonon) Hamiltonian in Eq. (A11) yields

Ĥsp−ph =
∑
k,q

∑
i, j,k

Mi, j,k (k, q)â†
k,iâk−q, j ûq,k, (A14)

where the conservation of momentum has been naturally satis-
fied since the summation of wave vectors of creation operators
in Eq. (A14) is always equal to that of annihilation operators.
The momentum-decomposed SPC constantMi, j,k (k, q) reads

Mi, j,k (k, q) = 1√
Nmk

∑
m,n

Mi, j,k (m, n, 0)

× exp [−ik · (Rm − R0)]

× exp [i(k − q) · (Rn − R0)]. (A15)

APPENDIX B: DERIVATION OF GREEN’S FUNCTIONS
AND SELF-ENERGIES

We start from the definition of the contour-ordered Green’s
functions for magnons and phonons in 3D nanostructures.
Transforming Eqs. (11) and (12) into the interaction picture
yields

Gi, j (k; τ, τ ′) = − i

h̄

〈TC[SCâk,i(τ )â†
k, j (τ

′)]〉
0

〈TCSC〉0
, (B1)

Di, j (q; τ, τ ′) = − i

h̄

〈TC[SCûq,i(τ )û−q, j (τ ′)]〉0

〈TCSC〉0
, (B2)

where 〈· · · 〉0 denotes the expected value of the operator in the
noninteracting ground state, and the time evolution operator
SC is defined as [92]

SC = exp

[
− i

h̄

∫
C

dτĤ ′(τ )

]

=
∞∑

n=0

(−i / h̄)n

n!

∫
C

dτ1Ĥ ′(τ1) · · ·
∫

C
dτnĤ ′(τn), (B3)

where Ĥ ′ is composed of the hopping term between the con-
tacts and the central region, as well as the many-body term
contributed by MPS. We only focus on the latter here since
the former can be considered rigorously through Dyson’s
equation.

1. Unperturbed Green’s functions

In the unperturbed case, both the MPS term of the Hamil-
tonian Ĥsp−ph and the nonequilibrium potential from contacts
are equal to 0̂, and thus, the system is actually in an equilib-
rium state. In this way, the unperturbed Green’s functions of
magnons and phonons can be produced from Eqs. (B1) and
(B2) as

G(0)
i, j (k; τ, τ ′) = − i

h̄
〈TC[âk,i(τ )â†

k, j (τ
′)]〉0, (B4)

D(0)
i, j (q; τ, τ ′) = − i

h̄
〈TC[ûq,i(τ )û−q, j (τ

′)]〉0, (B5)

respectively. To relate the unperturbed Green’s functions with
the noninteracting Hamiltonian matrix elements, for instance,
the contour-ordered Green function of the phonon can be de-
composed into four-interrelated real-time Green’s functions:

D(0),>
i, j (q; t, t ′) = − i

h̄
〈ûq,i(t )û−q, j (t

′)〉0, (B6)

D(0),<
i, j (q; t, t ′) = − i

h̄
〈û−q, j (t

′)ûq,i(t )〉0, (B7)

D(0),R
i, j (q; t, t ′) = − i

h̄
θ (t − t ′)〈[ûq,i(t ), û−q, j (t

′)]〉0, (B8)

D(0),A
i, j (q; t, t ′) = + i

h̄
θ (t ′ − t )〈[ûq,i(t ), û−q, j (t

′)]〉0. (B9)
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Since in the equilibrium state the physical quantity only de-
pends on the time difference, we transform Eqs. (B6)–(B9)
into the frequency domain as

D(0),>
i, j (q, ω)

= −2π i
∑

λ

φq,λ;iφ
∗
q,λ; j

2ωq,λ

[(1 + nq,λ)δ(ω − ωq,λ)

+ nq,λδ(ω + ωq,λ)], (B10)

D(0),<
i, j (q, ω)

= −2π i
∑

λ

φq,λ;iφ
∗
q,λ; j

2ωq,λ

[(1 + nq,λ)δ(ω + ωq,λ)

+ nq,λδ(ω − ωq,λ)], (B11)

D(0),R
i, j (q, ω)

=
∑

λ

φq,λ;iφ
∗
q,λ; j

2ωq,λ

(
1

ω − ωq,λ + iη
− 1

ω + ωq,λ + iη

)
,

(B12)

D(0),A
i, j (q, ω)

=
∑

λ

φq,λ;iφ
∗
q,λ; j

2ωq,λ

(
1

ω − ωq,λ − iη
− 1

ω + ωq,λ − iη

)
,

(B13)

where * denotes the complex conjugate, and nq,λ is the oc-
cupation number of phonons with wave vector q at mode λ.
Here, θ (t ) and δ(ω) are the Heaviside step function and Dirac
delta function, respectively, while η is a positive infinitesimal.
These four Green’s functions, among which only one is inde-
pendent, are interrelated via the following relations:

D(0),A
i, j (q, ω) = [

D(0),R
j,i (q, ω)

]∗
, (B14)

D(0),<
i, j (q, ω) = fB(ω)

[
D(0),R

i, j (q, ω) − D(0),A
i, j (q, ω)

]
, (B15)

D(0),>
i, j (q, ω) = [1 + fB(ω)]

[
D(0),R

i, j (q, ω) − D(0),A
i, j (q, ω)

]
,

(B16)

while the retarded Green function D(0),R
i, j (q, ω) is related with

the dynamical matrix K (q) via the following:

D(0),R(q, ω) = [(ω + iη)2I −K (q)]−1, (B17)

where fB(ω) is the Bose-Einstein distribution function. The
other three unperturbed Green’s functions thus can also be
rewritten as

D(0),A(q, ω) = [D(0),R(q, ω)]†, (B18)

D(0),<(q, ω) = fB(ω)[D(0),R(q, ω) − D(0),A(q, ω)], (B19)

D(0),>(q, ω) = [1 + fB(ω)][D(0),R(q, ω) − D(0),A(q, ω)],
(B20)

where † means conjugate transpose. Analogous to the deriva-
tion of the phonon Green’s functions, the unperturbed Green’s
functions of magnons in matrix representation are given by

G(0),R(k, ε) = [(ε + iη)I − X(k)]−1, (B21)

G(0),A(k, ε) = [G(0),R(k, ε)]†, (B22)

G(0),<(k, ε) = fB(ε)[G(0),R(k, ε) − G(0),A(k, ε)], (B23)

G(0),>(k, ε) = [1 + fB(ε)][G(0),R(k, ε) − G(0),A(k, ε)].
(B24)

2. Perturbed Green’s functions and self-energies for MPS

To produce the perturbed Green’s functions, the high-order
terms of SC need to be concerned. Since the odd terms of
Eq. (B3) are vanishing due to containing an odd number of
displacement operators, the perturbed Green function keeping
only the lowest two nonzero terms of the magnon system reads

Gi, j (k; τ, τ ′) = G(0)
i, j (k; τ, τ ′) + G(2)

i, j (k; τ, τ ′), (B25)

which is the so-called Born approximation (BA), and the
second-order term is defined as

G(2)
i, j (k; τ, τ ′) = 1

2!

(−i

h̄

)3 ∫
C

dτ1

×
∫

C
dτ2〈TC[Ĥ ′(τ1)Ĥ ′(τ2)âk,i(τ )â†

k, j (τ
′)]〉

0
.

(B26)

Only the connected diagrams are considered because of the
exact canceling of disconnected diagrams in the expansion
of Gi, j (k; τ, τ ′) by the vacuum polarization diagrams from
〈TCSC〉0. Substituting Eq. (A14) into Eq. (B26) and applying
Wick’s theorem [93] yields two topologically unequal connec-
tions:

G(2)
i, j (k; τ, τ ′) = G(2),H

i, j (k; τ, τ ′) + G(2),F
i, j (k; τ, τ ′), (B27)

where the first term is the so-called Hartree term and reads

G(2),H
i, j (k; τ, τ ′)

= ih̄
∫

C
dτ1

∫
C

dτ2G(0)
i,i1

(k; τ, τ1)G(0)
j1, j (k; τ1, τ

′)

×
∑

k′
Mi1, j1,k1 (k, 0)Mi2, j2,k2 (k′, 0)

× G(0)
j2,i2

(k′; τ2, τ2)D(0)
k1,k2

(0; τ1, τ2), (B28)

while the Forck term G(2),F
i, j reads

G(2),F
i, j (k; τ, τ ′)

= ih̄
∫

C
dτ1

∫
C

dτ2G(0)
i,i1

(k; τ, τ1)G(0)
j2, j (k; τ2, τ

′)

×
∑

q

Mi1, j1,k1 (k, q)Mi2, j2,k2 (k − q,−q)

×G(0)
j1,i2

(k − q; τ1, τ2)D(0)
k1,k2

(q; τ1, τ2), (B29)

where the Einstein summation convention is adopted, and the
expansion coefficient 1

2! in Eq. (B26) is canceled by the swap
equivalence of τ1 and τ2, as shown in Fig. 9. Since the Hartree
term in Eq. (B28) is ignored, we only focus on the Forck term.
Comparing the second-order Green function of the Forck term
in Eq. (B29) with Dyson’s equation [92,93] and adopting the
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FIG. 9. The equivalent connections for the magnon-phonon scat-
tering self-energy of (a) magnons and (b) phonons. The exchange of
τ1 and τ2 produces two equivalent connected diagrams and cancels
the second-order expansion coefficient ( 1

2! ) of time evolution opera-
tor SC .

SCBA [53,73] yields the MPS self-energy of magnons as

�i1, j2 (k; τ1, τ2)

= ih̄
∑

q

Mi1, j1,k1 (k, q)Mi2, j2,k2 (k − q,−q)

× Gj1,i2 (k − q; τ1, τ2)Dk1,k2 (q; τ1, τ2). (B30)

Due to the convenience of serving on the real-time domain,
we apply the analytical continuation technology based on
the Langreth theorem [92] to Eq. (B30), and the real-time
expression of the greater/lesser self-energy is found to be

�>,<
i1, j2

(k; t1, t2)

= ih̄
∑

q

Mi1, j1,k1 (k, q)Mi2, j2,k2 (k − q,−q)

× G>,<
j1,i2

(k − q; t1, t2)D>,<
k1,k2

(q; t1, t2), (B31)

where t1 and t2 are real time from −∞ to +∞, and the
retarded one reads

�R
i1, j2 (k; t1, t2)

= ih̄
∑

q

Mi1, j1,k1 (k, q)Mi2, j2,k2 (k − q,−q)

× [
GR

j1,i2 (k − q; t1, t2)D>
k1,k2

(q; t1, t2)

+ G<
j1,i2 (k − q; t1, t2)DR

k1,k2
(q; t1, t2)

]
. (B32)

For steady state transport problems, we transform the
double-time physical quantity to the frequency domain since
it only relates to the time difference t1 − t2. The frequency-
dependent self-energy of magnons reads

�>,<
i1, j2

(k, ε)

= ih̄
∑

q

Mi1, j1,k1 (k, q)Mi2, j2,k2 (k − q,−q)

×
∫ +∞

−∞

dω

2π
G>,<

j1,i2
(k − q, ε − h̄ω)D>,<

k1,k2
(q, ω), (B33)

�R
i1, j2 (k, ε) = ih̄

∑
q

Mi1, j1,k1 (k, q)Mi2, j2,k2 (k − q,−q)

×
∫ +∞

−∞

dω

2π

[
GR

j1,i2 (k − q, ε − h̄ω)D>
k1,k2

(q, ω)

+ G<
j1,i2 (k − q, ε − h̄ω)DR

k1,k2
(q, ω)

]
, (B34)

and the full Green’s functions of magnons in the frequency
domain are given by Dyson’s equation and the Keldysh for-
mulation [64] as

GR(k, ε) = [G(0),R(k, ε)−1 − �R(k, ε)]−1, (B35)

G>,<(k, ε) = GR(k, ε)�>,<(k, ε)GA(k, ε), (B36)

where � = �T + �M is the total self-energy, and �T is the
self-energy donated by the semi-infinite thermal contacts,
while �M is the matrix notation of the MPS self-energy.
Unlike the case in recent studies [38,39] about anharmonic
phonon transport, Eqs. (B33)–(B36) cannot build a set of
self-consistent equations since the undetermined full Green
function of phonons Di, j (q, ω) is contained in the many-body
self-energy of magnons.

We follow the above derivation process of the many-body
Green’s functions of magnons, and the many-body self-energy
of phonons under SCBA is found to be

	k1,k2 (q; τ1, τ2)

= ih̄
∑

k

Mi1, j1,k1 (k − q,−q)Mi2, j2,k2 (k, q)

× Gj1,i2 (k; τ1, τ2)Gj2,i1 (k − q; τ2, τ1). (B37)

It should be noted that, as distinguished from the magnon
system, there is only one irreducible connected diagram con-
tributing the lowest-order scattering to the phonon system.
Apply the analytical continuation to Eq. (B37), and the final
expressions of the self-energies of phonons in the frequency
domain are

	>,<
k1,k2

(q, ω) = i
∑

k

Mi1, j1,k1 (k − q,−q)Mi2, j2,k2 (k, q)

×
∫ +∞

−∞

dε

2π
G>,<

j1,i2
(k, ε)G<,>

j2,i1
(k − q, ε − h̄ω),

(B38)

	R
k1,k2

(q, ω) = i
∑

k

Mi1, j1,k1 (k − q,−q)Mi2, j2,k2 (k, q)

×
∫ +∞

−∞

dε

2π

[
GR

j1,i2 (k, ε)G<
j2,i1 (k − q, ε − h̄ω)

+G<
j1,i2 (k, ε)GA

j2,i1 (k − q, ε − h̄ω)
]
, (B39)

and the matrix notation of the full phonon Green function in
the frequency domain reads

DR(q, ω) = [D(0),R(q, ω)−1 − �R(q, ω)]−1, (B40)

D>,<(q, ω) = DR(q, ω)�>,<(q, ω)DA(q, ω). (B41)

The full Green’s functions of magnons as well as phonons
can be calculated iteratively through Eqs. (B33)–(B36) and
(B38)–(B41). Once the numerical values of scattering self-
energies are converged, the observables, such as heat flow and
LDOS, can be obtained.
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APPENDIX C: DISPERSION RELATIONS
AND HEAT FLOWS

The dispersion relations of the magnon and phonon along
the transverse direction are shown in Fig. 10(a). It is seen that
the maximum energy of phonons (∼30 meV) is about twice
the maximum energy of magnons (∼15 meV). Due to the
energy conservation in the MPS process, the phonons with
higher energy (h̄ω > 15 meV) are forbidden to participate in
the MPS process. Figure 10(b) shows the temperature depen-
dence of (elastic and inelastic) heat flows with and without
MPS. The parameter settings are the same as that in Fig. 5(a).
It is seen that the elastic heat flow (Ip

L→R) of phonons is far
greater than the inelastic one (Ip

L→M), which indicates that
MPS in the present F/N interface based on CrI3 ML is weak
but still cannot be ignored at high temperature (T > 100 K).
These results suggest that a great thermal rectification or
NDTC could be observed in magnetic nanostructures with
weak bounding, such as van der Waals interfaces, where the
contribution of phonons to elastic heat transport is quite small.

FIG. 10. (a) The dispersion relations of magnon (thin solid lines)
and phonon (bold solid lines) along the transverse direction (y-axis);
phonons with higher energy (h̄ω > 15 meV) are forbidden to par-
ticipate in the MPS process; (b) the temperature dependence of heat
flow without (hollow circle) and with MPS (others); a temperature
difference of 1 K is adopted and an external magnetic field of
0.0 meV is used; MPS impedes phonon transport obviously at high
temperature.
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