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Measurement-induced criticality in Z2-symmetric quantum automaton circuits
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We study entanglement dynamics in hybrid Z2-symmetric quantum automaton circuits subject to local
composite measurements. We show that there exists an entanglement phase transition from a volume-law phase
to a critical phase by varying the measurement rate p. By analyzing the underlying classical bit-string dynamics,
we demonstrate that the critical point belongs to parity-conserving universality class. We further show that the
critical phase with p > pc is related to the diffusion-annihilation process and is protected by the Z2-symmetric
measurement. We give an interpretation of the entanglement entropy in terms of a two-species particle model and
identify the coefficient in front of the critical logarithmic entanglement scaling as the local persistent coefficient.
The critical behavior observed at p � pc and the associated dynamical exponents are also confirmed in the
purification dynamics.
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I. INTRODUCTION

Precisely manipulating qubits and mitigating noise have
become key tasks in the noisy intermediate-scale quantum
(NISQ) era. Recently, it has been shown that monitoring
many-body quantum systems with active measurements can
induce a quantum information phase transition [1–3]. When
the monitoring frequency is small, the information of the
system is protected by the unitary evolution and the wave
function is still a highly entangled volume-law state. As
the monitoring frequency is increased, the unitary evolution
cannot effectively protect the quantum information, and the
system undergoes a phase transition to a disentangled area-law
state.

This phase transition was first observed in Haar random
and Clifford random circuits composed of local two-qubit
unitary gates and single-qubit projective measurement gates
[1–7]. In these quantum circuits, increasing the measure-
ment rate leads to an entanglement phase transition from
a volume-law phase to an area-law phase if we follow the
quantum trajectories. In particular, at the phase transition
point aspects of critical phenomena come into play, with, e.g.,
emergent two-dimensional conformal symmetry emerging in
certain (1 + 1)-dimensional [(1 + 1)D] circuits [4,8]. Since
its discovery, this phase transition has been generalized to
other monitored open quantum dynamics [9,10]. It has an
interesting interpretation in terms of quantum error correction
[5,6] and can be understood as a symmetry-breaking phase
transition in the enlarged replica space [11–14], where the
entanglement entropy corresponds to the domain wall free
energy. Recently, it was shown in Ref. [15] that the quantum
automaton (QA) circuit subject to composite measurement
can also exhibit an entanglement phase transition. This model
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provides a new physical picture for interpreting the phase tran-
sition in terms of bit-string dynamics and the entanglement
transition within this model belongs to the directed percola-
tion (DP) universality class [16].

Monitoring quantum systems can also stabilize interest-
ing phases which cannot exist in equilibrium. One example
is nonunitary free-fermion dynamics. In this system, there
is an emergent critical phase protected by continuous weak
measurement [17,18]. Another class of examples are given by
monitored quantum systems with additional discrete symme-
tries, which can possess highly entangled volume-law phases
with conventional or topological order [14,19,20]. In addition,
the area-law phase can also have a richer phase diagram char-
acterized by different orders [19–21].

Motivated by the above works, in this paper we construct a
hybrid QA circuit with Z2 symmetry and study its entangle-
ment dynamics. We show that if we impose this Z2 symmetry,
there exists an entanglement phase transition from a highly
entangled volume-law phase to a critical phase with logarith-
mic entanglement scaling, with the transition occurring by
varying the measurement rate p (see Fig. 1). We generalize
the classical bit string picture developed in Ref. [15] and
demonstrate that the entanglement phase transition belongs to
the parity-conserving (PC) universality class with dynamical
exponent z = 1.744 [16,22,23]. Due to the Z2 symmetry, this
universality class is distinct from the aforementioned DP uni-
versality class. We further derive a two-species particle model
based on the bit-string picture to calculate the entanglement
dynamics from a short-range entangled state. The particles in
this model can diffuse, branch, and annihilate in pairs, and the
purity for a subsystem is equivalent to the fraction of config-
urations where particles of different species never encounter
one another. In particular, the prefactor of the logarithmic
scaling of the second Rényi entropy at the transition point pc

is related to the local persistence coefficient of the two-species
particle model and is a universal constant for PC universality
class.
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FIG. 1. A cartoon picture for the phase diagram of the hybrid QA
circuit in the presence of Z2 symmetry. The dynamical exponents
of the quantum phase transition at p = pc and the quantum critical
phase p > pc are inherited from the associated classical bit-string
dynamics, respectively.

Unlike the conventional measurement-induced phase tran-
sition in which there is an area-law entangled phase when the
measurement rate p is larger than some critical threshold pc,
here we observe a critical phase, characterized by logarithmic
entanglement scaling when p > pc. Specifically, this phase
has dynamical exponent z = 2 and is protected by the combi-
nation of the Z2 symmetry and the special features of the QA
circuit. We show that the underlying bit strings have diffusive
dynamics, and provide an interpretation of the critical entan-
glement scaling in terms of the two-species particle model.
We further analyze the purification dynamics starting from a
mixed density matrix with extensive entropy [6]. We find that
when p > pc, the entropy decays diffusively in time, which is
consistent with the entanglement dynamics results.

The rest of the paper is organized as follows. In Sec. II,
we construct a hybrid QA circuit with Z2 symmetry. We
numerically compute the entanglement entropy for this circuit
in Sec. III in terms of a Clifford stabilizer representation.
In addition, we provide an interpretation of second Rényi
entropy in terms of classical particle model. In Sec. IV, we
analyze the purification dynamics and find that the results
for critical point and critical phase are consistent with that in
Sec. III. We summarize our results in Sec. V.

II. QA MODEL WITH Z2 SYMMETRY

In this section, we construct a hybrid QA circuit with Z2

symmetry. We aim to study how the information encoded
in the quantum state evolves under the competition between
quantum automaton unitary operators and nonunitary mea-
surements, which will be specified later in this section. Given
a subregion A, a particularly useful quantity to measure this is
the nth Rényi entropy:

S(n)
A = 1

1 − n
ln

[
Tr

(
ρn

A

)]
,

ρA = TrB|ψ〉〈ψ |,
(1)

where B is the complement of A. In this paper, we will focus
on the second Rényi entropy with n = 2 and take the base to
be the natural logarithm base.

The QA circuit is built up of unitary operators that permute
a set of vectors in a specific orthonormal basis (namely, the
computational basis) up to some random phase, i.e.,

U |n〉 = eiθn |π (n)〉, (2)

where π ∈ SN is an element of the permutation group on the
product states |n〉 in the computational basis with cardinality
N . Throughout this paper, we build the computational basis
from the Pauli Z basis. The Z2 symmetry is imposed by
requiring that the parity of the computational basis remains
fixed under the unitary evolution. From the previous defi-
nition it is clear that the automaton unitary evolution does
not create entanglement when acting on product states in the
computational basis. However, it can generate entanglement
in a wave function which involves a superposition of the
basis states: for example, we can apply the measurement
(1 + Z1Z2 . . . ZL )/

√
2 to a product state polarized in +x di-

rection with an even number of qubits L to make it Z2 even.
When the automaton unitary operator acts on such an initial
state,

|ψI〉 = U |ψ0〉 = U ◦ 1 + Z1Z2 . . . ZL√
2

⊗
i

1√
2

(|0〉 + |1〉)

= 1√
2L−1

∑
n

eiθn |π (n)〉, (3)

we can obtain a highly entangled state for sufficiently generic
θn. In the above equation, each |n〉 contains an even number
of 1’s and 0’s, and together they form a Z2-symmetric com-
putational basis {|n〉} with cardinality N = 2L−1. In this paper,
we consider unitaries U composed of local unitary QA gates.
With this construction, the entanglement can grow linearly in
time, and saturates to volume-law scaling at late times.

Aside from the QA unitary operators, nonunitary local
measurements are also introduced into the QA circuit. Since
the QA unitary evolution does not enlarge the number of basis
states involved in the wave function, repeated local projective
measurements in the Z direction will continually reduce the
number of available basis states, and will ultimately lead to
a product state with no entanglement. Therefore, there is no
entanglement phase transition when the measurement rate is
finite.

To resolve this issue, Ref. [15] introduced a composite
measurement which applies a rotation to the spin into |±x〉
following the projection in the Z direction so as to preserve
the basis states. In such a hybrid QA circuit model, the wave
function at any time is an equal weight superposition of all the
basis states, and there exists an entanglement phase transition
belonging to DP universality class at finite measurement rate.
In our system, we need to modify this composite measurement
slightly to preserve the Z2 symmetry. We therefore define the
composite measurement as

Mσ
L/R = R ◦ Pσ

L/R, (4)

which acts on two qubits. This measurement is a combination
of the projection operator Pσ

L/R on the left/right qubit into the
spin σ = {0, 1}, together with a two-site rotation operation

R = 1√
2

⎛
⎜⎝

1 0 0 1
0 1 1 0
0 1 −1 0
1 0 0 −1

⎞
⎟⎠ (5)

that maps |00〉 to (|00〉 + |11〉)/
√

2, |11〉 to (|00〉 − |11〉)/
√

2,
and |01〉 to (|01〉 + |10〉)/

√
2, |10〉 to (|01〉 − |10〉)/

√
2.
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For instance, when M0
L is applied to a two-site wave function

with even parity defined as follows,

M0
L|ψ〉 = R ◦ P0

L

[
1√
2

(eiθ0 |00〉 + eiθ1 |11〉)

]

= 1√
2

eiθ0 (R|00〉)

= 1√
2

eiθ0 (|00〉 + |11〉). (6)

After imposing the composite measurement, the wave
function is still an equal-weight superposition of all the ba-
sis states with the same parity: the only thing that changes
is the information stored in |ψ〉, among which only half
of the phases are preserved after each application of Mσ

L/R.
Therefore, we anticipate that measurements will act to disen-
tangle the many-qubit system, while still preserving the Z2

symmetry.

III. ENTANGLEMENT TRANSITION

A. Clifford QA circuit and entanglement dynamics

We choose a subset of Clifford gates to construct a QA
circuit with Z2 symmetry (an example is illustrated in Fig. 2),
and explore the entanglement dynamics by varying the com-
posite measurement rate p. First we prepare a product state
with L qubits polarized in the +x direction and measure the
Pauli string Z1Z2 . . . ZL to implement Z2 symmetry. We take
this as the initial state |ψI〉, and then apply the hybrid cir-
cuit, consisting of Z2-symmetric QA unitaries and composite
measurements, to |ψI〉. We then compute the entanglement
entropy of a consecutive subsystem A.

Notably, the entanglement dynamics of a Clifford circuit
can be efficiently simulated by applying the stabilizer formal-
ism from the Gottesman-Knill theorem [24]. A stabilizer of a
pure state |ψ〉 is a Pauli string operator g that acts trivially on
|ψ〉, i.e., g|ψ〉 = |ψ〉. Such state with L qubits can be uniquely
specified by a stabilizer group G generated by L independent
and mutually commuting stabilizers,

G = 〈G〉 = 〈g1, . . . , gL〉

=
{

L∏
i=1

gpi
i |pi ∈ {0, 1}, gi|ψ〉 = |ψ〉, [gi, g j] = 0

}
, (7)

where G = {g1, . . . , gL} is the generating set of G. By def-
inition, a Clifford unitary gate maps a Pauli string operator
to another one, i.e., UgU † = g′, ∀ g ∈ G. On the other hand,
any Pauli measurement Oi acting on the ith site becomes a
generator of the stabilizer group, with the rest of the genera-
tors rearranged so that Oi commutes with all elements in G.
Consequently, instead of tracing the trajectory of |ψ〉 with 2L

degrees of freedom, we can keep track of the generating set
of its stabilizer group whose information can be conveniently
stored in a L × 2L binary matrix. Hence, we are able to per-
form the simulation on a large system with hundreds of qubits.

The unitary evolution is composed of two types of gates,
both of which preserve the Z2 symmetry. The first type are

CZ gate
CNN(R) gate

CNN(L) gate

Z measurement Rotation gate

(a)

(b)

FIG. 2. (a) A schematic for the gates appearing in our circuit.
(b) The arrangement of gates in a single time step of our Z2-
symmetric hybrid QA circuit. Each time step involves three layers of
CNN gates and two layers of CZ gates, interspersed with three mea-
sured layers. The dashed box represents a measured layer enclosing
two rows of composite measurements, with the first (second) row
containing randomly distributed Mσ

L/R applied on sites (2i − 1, 2i)
[(2i, 2i + 1)] for i ∈ [1, L/2]. As with the CNN gates, the projection
of Mσ

L/R is chosen to be applied on the left/right qubit with equal
probability. In general, the composite measurement appears in a
measured layer with probability p.

CNOTNOT (CNN) gates, which are three-qubit gates that flip
two qubits according to the value of the third (control) qubit.
If the control qubit is on the left we denote the corresponding
gate as CNNL; it acts as

CNNL|1σ1σ2〉 = |1(1 − σ1)(1 − σ2)〉,
CNNL|0σ1σ2〉 = |0σ1σ2〉,

(8)

with the leftmost qubit acting as the control. The case when
the rightmost qubit acts as the control analogously defines a
right CNN gate CNNR. In the circuit under consideration, we
choose CNNL and CNNR gates randomly, with equal proba-
bility. Notice that in each time step, we apply three layers of
random CNN gates as shown in Fig. 2(b).
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(a) (b)

(c) (d)

FIG. 3. (a) The steady state S(2)
A vs ln (x) for L = 480, where x ≡ sin (πLA/L)L/π . (b) The entanglement dynamics for half of the system

S(2)
A vs t on the semilogarithm scale for L = 480. (c) An example of the data collapse of the steady state S(2)

A vs ln x for different system sizes

at p = 0.9. The slope for L = 600 is λ2(0.9) = 0.605. We also plot S(2)
A vs 1

2 ln (t ) for comparison and we can see that it is roughly parallel
to the steady-state curves. Numerically, λ1(0.9) = 0.291. The ratio between these two slopes is 2.079. On average, λ2/λ1 = 2.009 for p > pc.
Similarly, for p = pc, λ2 = 1.947 and λ1 = 1.12, leading to a ratio λ2/λ1 = 1.738. (d) The entanglement dynamics of the QA circuit with

no CNN gates for L = 240 plotted on the semilogarithm scale. We find that S(2)
A (t ) = 0.283 ln (t ) for all p. All of the numerical data for

entanglement entropy are calculated with periodic boundary conditions, and in the natural logarithm base.

The second type of gate that appears in the unitary evolu-
tion part of the circuit is the CZ gate. This gate is diagonal
in the computational basis, and assigns a π phase to |11〉.
Explicitly,

CZ =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎞
⎟⎟⎟⎠. (9)

In the circuit, we apply two layers of CZ gate in each time
step.

The randomly applied composite measurements can be
constructed by Clifford gates defined as Mσ

L/R in Sec. II. We
introduce the composite measurements into the circuit and
define the measurement rate p as the density of Mσ

L/R in each
measured layer. As we increase p from 0, the entanglement
entropy decreases. Numerically, we observe an entanglement
transition at pc ≈ 0.335. The value of the critical point is
consistent with that observed in the purification dynamics in
Sec. IV and the classical bit-string dynamics in Appendix A.
As shown in Fig. 3(a), when p < pc, the entanglement en-
tropy has volume-law scaling. The volume-law coefficient
decreases as we increase p. When p � pc, Fig. 3(a) indicates
that the steady-state entanglement scales logarithmically in
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the subsystem size. In our numerical simulations, we impose
periodic boundary conditions and observe that

S(2)
A (LA, p) = λ2(p) ln

[
L

π
sin

(
πLA

L

)]
, (10)

where the overbar represents an ensemble average. This is
interesting and is distinct from conventional measurement-
induced phase transitions in interacting systems, where an
area-law entangled phase appears for p > pc. In our model,
the area-law phase is replaced by a critical phase with λ2(p)
changing continuously with p. This critical phase is a special
feature of the QA circuit with Z2 symmetry. As we will ex-
plain later, this is related to the underlying classical bit-string
dynamics with Z2 symmetry.

Aside from the steady state, we also study the entan-
glement dynamics starting from an initial state |ψ0〉. When
p < pc, SA(t ) grows linearly at early times and saturates to
a volume-law entangled steady state, while for p � pc we
observe a logarithmic entanglement growth before saturation,

S(2)
A (t, p) = λ1(p) ln(t ), (11)

as shown in Fig. 3(b). Similar to λ2(p), λ1(p) also depends
on p. We find that when p = pc, λ2/λ1 = 1.738, while when
p > pc and the circuit is measurement dominated, the ratio is
independent of p, with λ2/λ1 = 2.009.

We also simulate the entanglement dynamics for the QA
circuit in the absence of CNN gates. The numerics in Fig. 3(d)
shows that in such a circuit, the system is critical and has loga-

rithmic entanglement scaling. In particular, S(2)
A (t ) = λ1 ln(t )

where λ1 = 0.283 for all p. On the other hand, the steady-state

entanglement entropy S(2)
A = λ2 ln(x) with λ2 = 0.591 for all

p. Hence the ratio is λ2/λ1 = 2.088 which is close to that in
the critical phase of the circuit with CNN gates. In the follow-
ing sections, we will give an interpretation for λ1 and λ2 and
show that the ratios between them are related to the dynamical
exponents of the underlying classical bit-string model.

B. Bit-string dynamics with Z2 symmetry

For the second Rényi entropy, the purity Tr(ρ2
A) is equiv-

alent to the expectation value of the SWAPA operator which
acts on the tensor product of two identical copies of the state
[25,26],

Tr
(
ρ2

A

) = 〈ψ |2 ⊗ 〈ψ |1SWAPA|ψ〉1 ⊗ |ψ〉2. (12)

For the wave function |ψ〉 expanded in the basis in subregions
A and B,

|ψ〉 = 1√
N

∑
i, j

eiθi j |αi〉A|β j〉B, (13)

the SWAPA operator then exchanges the spin configurations
|α〉 within the A region of the copies of the system (here N =
2L−1 is the total number of basis states).

To understand the entanglement dynamics in the nonuni-
tary evolution described by Ũt , we insert two complete sets of
basis states in Eq. (14) and find [15]

Tr
(
ρ2

A

) =
∑
n1,n2

〈ψ |2〈ψ |1SWAPA|n1〉|n2〉〈n2|〈n1|ψ〉1|ψ〉2

=
∑
n1,n2

〈ψ0|2〈ψ0|1Ũ †
t ⊗ Ũ †

t |n′
1〉|n′

2〉

× 〈n2|〈n1|Ũt ⊗ Ũt |ψ0〉1|ψ0〉2

= 1

N2

∑
n1,n2

e
−i
n′

1 e
−i
n′

2 ei
n1 ei
n2 , (14)

where

|n′
1〉|n′

2〉 = SWAPA|n1〉|n2〉
= SWAPA|α1β1〉|α2β2〉
= |α2β1〉|α1β2〉 (15)

and

ei
n =
√

N〈n|Ũt |ψ0〉, e−i
n =
√

N〈ψ0|Ũ †
t |n〉. (16)

The problem of computing Tr(ρ2
A) can therefore be converted

into evaluating the phases in (16).
When estimating the overlap of Ũt |ψ0〉 with any basis

state 〈n|, we can deduce the effective action of Ũt on 〈n|
and compute its overlap with |ψ0〉 even though the composite
measurement is nonunitary. Consider applying a composite
measurement Mσ

L/R on |ψ〉 which is the equal-weight super-
position of all the allowed states:

〈n|Mσ
L/R|ψ〉 = 〈n|R ◦ Pσ

L/R|ψ〉

= 〈
T σ

L/R(n)
∣∣ψ 〉 = 1√

N
e

iθT σ
L/R (n)

. (17)

Here |T σ
L/R(n)〉 refers to the state |n〉 with the spin at site

L/R forced to be in the σ state, while its neighboring spin at
site R/L is chosen to preserve the parity. Suppose the hybrid
QA circuit has the nonunitary dynamics of the form Ũt =
MtUt Mt−1Ut−1 . . . , the overlap can be evaluated by applying
Ũ from left to right on 〈n|,

〈n|Ũt |ψ0〉 = 〈n|MtUt Mt−1Ut−1 . . . |ψ0〉
= 〈Tt (n)|Ut Mt−1Ut−1 . . . |ψ0〉

= · · · = 1√
N

ei
n , (18)

where 
n is the accumulated phase under time evolution

ei
n = eiθn(t=1) eiθn(t=2) . . . eiθn(t=T ) . (19)

To compute the dynamics of the purity, we investigate the
evolution of bit strings and the associated phases. We define
the difference between bit-string pairs as

h(x, t ) = |n1(x, t ) − n′
1(x, t )|. (20)

At each site, h(x) can only be either 0 or 1, and can be
conveniently described in terms of the particle representation
illustrated in Fig. 4(b) where ◦ denotes empty site and ◦
denotes occupied site. For instance, under the CNNL gate, we
have • ◦ ◦ ↔ • • • and • ◦ • ↔ • • ◦. Under time evolution
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t = 0

(a)

(b)

t > 0

A B

FIG. 4. (a) The spreading of the bit-string difference h(x, t )
under the hybrid QA circuit with Z2 symmetry. Without the inter-
vention of measurements, the front of h(x, t ) moves to the right at
constant velocity with possible broadening. (b) The particle repre-
sentation of h(x, t ). Initially, all the particles are distributed randomly
in region A. Under the CNN gates and measurements, the particles
perform branching-annihilating random walks and can intrude into
region B.

governed by CNNL/R gates, the particles can diffuse, branch,
and annihilate on the lattice. Even if the initial configuration
only has one particle, the particle number grows linearly in
time and the steady state has roughly L/2 particles. On the
other hand, under the composite measurement, we have pair
annihilation •• → ◦◦ and diffusion •◦ ↔ ◦•. The particles
diffuse on the lattice and annihilate in pairs with probabil-
ity p when they encounter one another. Combining unitary
dynamics and measurement together, the particles perform
branching-annihilating random walks (BAW) with an even
number of offsprings

W ↔ 3W, W + W
p−→ ∅. (21)

The competition between the unitary evolution and the com-
posite measurement leads to a continuous phase transition
which can be characterized by the total particle number
D(t ) ≡ ∑

x h(x, t ) (the numerical details for this can found
in Appendix A). When p < pc, D(t → ∞)/L in the steady
state saturates to a finite constant. When p � pc, if the initial
state has an even number of particles, the steady state has
D(t → ∞) = 0. At pc, D(t ) exhibits interesting and universal
power-law scaling behavior and this critical point belongs to
the parity-conserving (PC) universality class with dynamical
exponent z = 1.744 [16,22,23]. When p > pc, the dynamics
is dominated by the annihilation process W + W → ∅. Since
annihilation only occurs when a pair of particles encounter
one another, D(t ) decays diffusively in time and the p > pc

phase has dynamical exponent z = 2. This is different from

the DP universality class, where a single particle can annihi-
late directly with probability p, which leads to an exponential
decay of D(t ) with a finite rate at p > pc. The Z2 symmetry
protects the slow diffusive dynamics and is also responsible
for the quantum critical phase when we take into account the
phase gate.

Keeping the above classical bit-string dynamics in mind,
we now introduce the phase gate and investigate the entangle-
ment dynamics. We first consider entanglement entropy for a
random phase state defined as

|ψ〉 = 1√
2L−1

∑
n

eiθn |n〉, (22)

where θn is a random phase that takes the value in {0, π}.1
This wave function can be generated under random unitary
QA evolution and has maximally entangled volume-law scal-
ing. This can be understood as follows: from Eq. (14), we
can see that when |n1〉 = |α1β1〉 and |n2〉 = |α2β2〉 share the
same spin configuration in region A, they are invariant under
the swap operator, which means that the random phases al-
ways cancel, i.e., θn1 − θn′

1
= 0 and θn2 − θn′

2
= 0. There are

2LA × (2L−LA−1)2 such pairs that each contributes 1/22L−2 to
the purity. For other bit strings that are different in region A,
the random phase terms will in general add up to zero and
make no contribution to Tr(ρ2

A).2 Hence, the wave function
has the volume-law scaling

S(2)
A ≈ − ln

2LA × 4L−LA−1

4L−1
= LA ln 2. (23)

In the above example, only the bit-string pairs without
phase difference contribute to the purity. This is also true when
we consider the entanglement dynamics starting from |ψI〉.
Notice that in Eq. (14), there are four accumulated phases for
each bit-string configuration {|n1〉, |n2〉, |n′

1〉, |n′
2〉}. We need

to find out how these phases evolve in time and how they
contribute to the purity. For simplicity, here we first consider
the phase difference for |n1〉 and |n′

1〉 only in regime B and
define the quantity

Q(t ) ≡ 1

M

∑
n1,n′

1

e
−i
B

n′
1
+i
B

n1 , (24)

where M is the total number of bit-string pairs. The complete
analysis of the time evolution of all these phase terms in the
purity will be deferred to Sec. III D.

Initially, |n1〉 and |n′
1〉 are identical in B and are only

different in A. The relative phase −
B
n′

1
+ 
B

n1
caused by

CZ gates is zero and we have Q(t = 0) = 1. The nonzero
relative phase can be generated when particles enter into B.

1In the Clifford dynamics, θn can only take a discrete value nπ/2
with n randomly chosen in 0, 1, 2, and 3.

2In fact, the pairs that are the same in region B also
contribute to the purity. If we take them into account, the
purity becomes Tr(ρ2

A) = (2LA × 4L−LA−1 + 4LA × 2L−LA−1 − 2LA ×
2L−LA−1)/4L−1 = 2−LA + 2−L+LA − 2−L+1, therefore, the actual
steady-state entanglement S(2)

A < LA ln 2. But now we care about
the leading nonconstant term, so the last two terms are discarded
temporarily.
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Specifically, if we apply CZ gate on •◦ with the en-
semble of possible bit-string configurations {{|n1〉, |n′

1〉}} =
{{|10〉, |00〉}, {|11〉, |01〉}, {|01〉, |11〉}, {|00〉, |10〉}}, the phase
differences generated by the CZ gate are {0, π, π, 0}. We
also get similar results for the particle configuration ◦ • and
• •. To summarize, for all these nonzero particle configura-
tions, half of the corresponding bit-string pairs contribute a π

phase to the accumulated phase, while half of them do not
contribute any phase terms. This result can be generalized
to the many-qubit case. The accumulated phase terms of all
the configurations that contain particles in B will add up to
zero and make no contribution to Eq. (24). Meanwhile, the
configurations that will contribute to Q(t ) are those with no
particles in B and hence have zero relative phase. Therefore,
Q(t ) can be alternatively viewed as the fraction of configura-
tions in which the particles never reach the boundary between
A and B,

Q(t ) ≈ K0(t )

K
, (25)

where K is the total number of particle configurations in A and
K0 is the number of particle configurations in which particles
never reach the boundary up to time t .

C. Single-species BAW model

The above analysis motivates us to define a single-species
BAW model. Initially, the particles are distributed randomly in
A on a 1D lattice. We let them undergo the same dynamics as
the QA circuit in which they perform BAW. Our aim is to find
the probability Q(t ) that the particles have never reached the
boundary between A and B up to time t . In the limit where
p = 0, the particle front propagates with a constant veloc-
ity v. Then, only the initial configurations with no particles
distributed within a distance vt to the boundary contribute to
K0(t ). This leads to Q(t ) ∼ 2−vt , i.e., the probability that parti-
cles never cross the boundary decays exponentially in time. If
we roughly take the entanglement entropy as SA ∼ − ln Q(t ),
it then grows linearly in time. As we increase p, the propaga-
tion slows down and eventually becomes diffusion dominated
when p > pc. At this critical point pc and in the critical
phase p > pc, we will see that Q(t ) decays algebraically as
Q(t ) ∼ t−θ where θ is the so-called persistence exponent in
the first passage problem [27].

We first simulate the phase dynamics and numerically
compute Q(t ) defined in Eq. (24) on an open-boundary 1D
lattice in Fig. 5(a). We find that at p = pc, Q(t ) ∼ t−θ with
θ = 0.484 before saturation; when p > pc, θ decreases by
increasing p and the system still stays in the critical phase.
We also replace the CZ phase gate by a random phase gate
and we observe the same scaling behavior (not presented in
the plot). For comparison, we compute the fraction K0(t )/K
and we find that it has the same scaling behavior as Q(t ),
confirming their equivalence in Eq. (25) [see the curves for
p = 0.9 in Fig. 5(a)]. In addition, we also consider the case
when there are no CNN gates and the particles only diffuse
and annihilate upon contact. As shown in Fig. 5(b), the prob-
ability that the particles never cross the boundary scales as
K0(t )/K ∼ t−3/16 for all p. The exponent 3

16 is the persistence
rate for the 1D diffusion-annihilation process and has been

(a)

(b)

FIG. 5. (a) The evolution of Q on a log-log scale. The system size
is L = 120. We also plot K0/K at p = 0.9 for comparison. (b) We
simulate the single-species BAW model with no CNN gates and plot
K0
K vs t for L = 120 on the log-log scale. K0

K decays as a power-law
function with the exponent close to the analytical prediction 3

16 .

analytically computed in Refs. [28,29]. (For more details, see
Appendix B).

D. Two-species BAW model

Inspired by the single-species BAW model, in this section,
we will take into account all of the phase terms and analyze
the dynamics of the purity defined in Eq. (14).

Similar to Q(t ) in the previous section, only the bit-string
pairs with zero relative phase up to time t , viz., those with
−θn′

1
− θn′

2
+ θn1 + θn2 = 0, can contribute to Tr[ρ2

A(t )]. Any
other bit-string pairs will generate random accumulated phase
terms, which sum up to zero.

To understand the zero relative phase constraint, we
propose a two-species BAW model. Initially, the particles
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t = 0

t > 0

A B

X particle Y particle

(1)

(2)

FIG. 6. An example of the two-species BAW model. The black
dots represent X particles, and the red dots represent Y particles.
Initially, X and Y particles are distributed in regions A and B, re-
spectively. Under the time evolution, the two species perform BAW
before they encounter one another. There are two types of possible
particle configurations in which the two species have not met up
to time t : (1) X particles intrude into B and (2) Y particles intrude
into A.

representing the difference of the bit-string pair |n1 − n2| are
distributed randomly along a 1D lattice. Let X (Y ) particles
denote the bit-string difference initially in region A (region B).
We further define x as the location of the rightmost X particle
and y as the location of the leftmost Y particle. As shown
in Fig. 6, under the hybrid QA circuit with Z2 symmetry,
the particles start to perform BAW. Before X and Y particles
encounter one another, the generated phase in each layer θn is
composed of three parts: θ [1,x]

n , θ
(x,y)
n , and θ

[y,L]
n , which denote

the phases generated within the regimes [1, x], (x, y), and
[y, L], respectively. Since the first regime occupied by X par-
ticles always satisfies n1([1, x]) = n′

2([1, x]) and n2([1, x]) =
n′

1([1, x]), we have θ [1,x]
n1

= θ
[1,x]
n′

2
, θ [1,x]

n2
= θ

[1,x]
n′

1
. Similarly, in

the third regime occupied by Y particles, θ
[y,L]
n1 = θ

[y,L]
n′

1
and

θ
[y,L]
n2 = θ

[y,L]
n′

2
. In addition, since there is no particle in the

intermediate regime, we have θ
(x,y)
n1 = θ

(x,y)
n2 = θ

(x,y)
n′

1
= θ

(x,y)
n′

2
.

Therefore, the total phase difference vanishes: −θn′
1
− θn′

2
+

θn1 + θn2 = 0.
Once the rightmost X particle runs into the leftmost Y

particle, the two-qubit phase gate acting on the xth and yth
sites will generate a random relative phase. Therefore, Tr(ρ2

A)
is equivalent to the fraction of particle configurations in which
two species performing BAW never come across each other,

P(t ) = M0(t )

M
, (26)

where M is the total number of particle configurations and M0

is the number of configurations in which X and Y particles
never encounter one another up to time t .

The validity of the two-species BAW model is numerically
verified by simulating − ln P on a 1D lattice with periodic
boundary condition. Compared with Fig. 6, there are two
boundaries between A and B. As shown in Fig. 7, we find that
this quantity exhibits a logarithmic growth before saturation,
i.e., − ln P(t ) = λ1 ln t for p � pc. Specifically, we compare

the value of −ln P(t ) and S(2)
A (t ) at p = pc in Fig. 7(c) and

find that they have the same scaling. Numerically, λ1(pc) =
1.053 ≈ 1.12 where 1.12 is the prefactor of the logarithmic

TABLE I. The comparison of scaling prefactors of the two-
species BAW model and the Z2-symmetric Clifford QA model for
various measurement rates p � pc. Both of them are computed under
periodic boundary condition.

p = 0.335 p = 0.5 p = 0.7 p = 0.9

λ1 1.053 0.507 0.355 0.293
−ln P λ2 1.858 0.999 0.716 0.615

λ2/λ1 1.765 1.970 2.017 2.099
λ1 1.120 0.473 0.334 0.291

S(2)
A λ2 1.947 0.926 0.665 0.605

λ2/λ1 1.738 1.958 1.991 2.079

scaling of S(2)
A (t ) at p = pc. In addition, we remove the CNN

gates in Fig. 7(d) and let the particles perform diffusion-
annihilation random walks. As a result, we find −ln P(t ) ∼
0.269 ln(t ) for all p, with the prefactor 0.269 being close
to 0.283 which is the prefactor of the entanglement entropy
without CNN gates.

We also investigate P in the steady state and use this
to understand the steady-state entanglement entropy. In the
steady state, M0 is the number of configurations in which X
or Y particles have vanished by annihilating with themselves
before they encounter one another. If the subsystem length
LA � L, it is highly possible that the X particle will vanish
first. In this case, when p � pc, the subsystem A reaches the
steady state at t ∼ Lz

A and we have

P
(
t = Lz

A

) ∼ L−λ1z
A ; (27)

this leads to a logarithmic scaling of entanglement entropy
with respect to the subsystem length LA. In particular, the
prefactor is λ1z.

We simulate − ln P in the steady state in Fig. 7(b) to
numerically verify the above analysis. Here we fix the total
system length L = 120 and vary the subsystem length LA. As
expected, we observe a phase transition from the volume-law
phase to a critical phase in which

− ln P = λ2 ln [sin (πLA/L)L/π ] (28)

for p � pc. We calculate the ratio between λ2 and λ1 for
different p and find that λ2/λ1 = 1.765 at p = pc and λ2/λ1 =
2.029 at p > pc, which are consistent with the two dynamical
exponents z = 1.744 at p = pc and z = 2 at p > pc in the
PC universality class. These exponents are also very close to
the numerical simulation of the Clifford QA model λ2/λ1 =
1.738 at pc and λ2/λ1 = 2.009 for p > pc (For a more de-
tailed comparison, see Table I). Consequently, we can confirm
that the hybrid QA model with Z2 symmetry can be well
described by the classical two-species BAW model.

IV. PURIFICATION DYNAMICS

In this section we will study the purification dynamics of
the hybrid QA model with Z2 symmetry [6]. We consider sys-
tem A and environment B entangled together, and then apply
the hybrid circuit solely on the system A. We aim to explore
how the entropy of the system depends on the measurement
rate.
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(a) (b)

(c) (d)

FIG. 7. (a) −ln P vs t on a semilogarithm scale, defined for a half-system-size cut with system size L = 120. (b) The steady state −ln P vs

ln(x), where x ≡ sin (πLA/L)L/π . (c) The comparison of −ln P(t ) and S(2)
A (t ) at p = pc. (d) The scaling of −ln P(t ) when the CNN gates are

absent. We find that λ1 = 0.269 for all p. All of the numerical data of − ln P(t ) are calculated under the periodic boundary condition.

Under a generic hybrid quantum dynamics, the system will
eventually be purified. It is shown in Ref. [6] that the time
of purification can be used to characterize the entanglement
phase transition. In the volume-law phase with p < pc, the
purification time diverges exponentially in the system size L,
while in the area-law phase with p > pc, the entropy decays
exponentially with a finite rate and the purification time is
proportional to ln L. At the critical point pc, the entropy de-
cays algebraically when t � Lz. This result also holds in the
hybrid QA circuit without Z2 symmetry, where the purifica-
tion dynamics can be further interpreted in terms of classical
bit-string dynamics [15].

In the presence of the Z2 symmetry, we will show that
the purification dynamics of the QA circuit will be modified
when p > pc, analogous to the entanglement dynamics we
studied in the previous section. Numerically, we prepare a

product state with 2L qubits polarized in the x direction, and
then divide them into system A and environment B with equal
size L. In order to impose the Z2 symmetry, we measure the
Pauli string Z1Z2 . . . ZL in the system and ZL+1ZL+2 . . . Z2L in
the environment. Then, we apply four-qubit diagonal phase
gates onto the system A and environment B as in Fig. 8(a) to
create entanglement between them. The phase gate assigns a
π phase to the basis |0110〉, |0111〉, |1110〉, |1111〉 with the
rest of the basis remaining invariant. Moreover, it is a Clifford
gate and therefore the total initial state can be represented
as a stabilizer state. Since each phase gate can create ln 2
entanglement between the system and the environment, the
system has an entropy S(2)

A = L
2 ln 2.

In the purification dynamics, the unitary and measurement
gates are applied solely on system A, as shown in Fig. 8(c).
Notice that different from the entanglement process illustrated
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FIG. 8. Illustration of the circuit used to explore purification
dynamics. (a) Every phase gate acts on four qubits, two from system
A and two from environment B, in order to form L

2 EPR pairs.
(b) The symbols of the four-qubit phase gate, three-qubit CNN gate,
the single-qubit Z measurement gate, and two-qubit rotation gate.
(c) The arrangement of gates in a time step for the purification
process of Z2-symmetric hybrid QA circuit model. Except the initial
setup in (a), the hybrid circuit is applied in system A only.

in Fig. 2(b), here we do not need to introduce phase gates,
due to the fact that the phases between {|n1〉, |n′

2〉} and be-
tween {|n2〉, |n′

1〉} always cancel with each other. Therefore,
the unitary evolution consists solely of CNN gates, which
simply map one basis state to another. These gates scramble
the quantum information within system A, while the entropy
of the full system remains the same. On the other hand, the

(a)

(b)

FIG. 9. Data collapse of purification dynamics described in
Fig. 8(c). (a) The result at p = 0.7 > pc and (b) is the result at
pc = 0.335.

measurement gate disentangles the system from the environ-
ment, and the entropy decreases monotonically under the time
evolution.

We simulate the purification dynamics of the above hy-
brid QA Clifford circuit. When p > pc, we observe that the
entropy has a slow diffusive power-law decay for a long pe-
riod of time due to the presence of the Z2 symmetry, while
it takes a time exponentially long in system size to purify
the system when p < pc. The data collapse of different sys-

tem sizes in Fig. 9(a) further indicates that S(2)
A = F (t/Lz )

with z = 2 when p > pc. In addition, at critical point pc, the
above scaling form also works with different z = 1.744 [see
Fig. 9(b)]. We believe that such scaling is universal in other
non-Clifford hybrid QA circuits with Z2 symmetry and the
dynamical exponents are consistent with what we found in
the entanglement dynamics.
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(a) (b)

(c)

FIG. 10. We simulate the BAW model of the seeding process starting with a pair of adjacent particles and find that the critical point is
around pc = 0.335. In the calculation done in the Appendix with L = 600, we find that if we choose pc = 0.335, the critical exponents have
the best match with the critical exponents of the PC universality class. (a) The mean particle number N vs t on the log-log scale for L = 600.
(b) P vs t on a log-log scale for L = 600. When p = pc, P(t ) ∼ t−0.286 and when p > pc, P(t ) ∼ t−0.5. (c) The mean-square distance scales as
R2(t ) ∼ t1.091 at p = pc for L = 600.

V. CONCLUSION

In this paper, we explore the Z2-symmetric quantum
automaton (QA) circuit subject to local composite mea-
surements. By tuning the measurement rate p, we find an
entanglement phase transition from a volume-law entan-
gled phase to a critical phase with logarithmic entanglement
scaling. By analyzing the underlying classical bit-string dy-
namics, we show that the critical point pc belongs to the
parity-conserving universality class. We further show that the
critical phase is protected by the combination of Z2 symmetry
and the special feature of QA circuit. We derive an effec-
tive two-species particle model in which particles perform
branching-annihilating random walks. We use this model to
understand the entanglement dynamics and illustrate that the

purity of the wave function is equivalent to the fraction of par-
ticle configurations in which two different species of particles
never encounter. Based on this result, we show that the pref-
actors of the logarithmic second Rényi entropy at the critical
point and the critical phase are related to the local persistence
exponents of the corresponding two-species particle models.
In addition, the above critical behavior when p � pc is further
demonstrated in the purification process.

The idea of presenting bit-string dynamics in the particle
language can also be applied in Ref. [15] to explain the entan-
glement phase transition without Z2 symmetry that belongs
to the directed percolation universality class. Based on this
method, it is also possible to develop similar tools to under-
stand the universality classes of entanglement phase transition
in the hybrid Haar random circuit and hybrid Clifford random
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(a)

(b)

FIG. 11. The mean particle number N (t ) vs t on a log-log scale
for (a) the seeding process beginning with a single particle and (b) the
purification process starting with a fully occupied state.

circuit [1,2]. In addition, it can also be used to understand
the subleading correction term in the nonthermal volume-law
phase when p < pc [30,31]. We leave these interesting ques-
tions for future study.
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APPENDIX A: PARITY-CONSERVING UNIVERSALITY
CLASS AND THE BRANCHING-ANNIHILATING RANDOM

WALKS

Nonequilibrium phase transitions in classical dynamical
lattice models can be classified purely by their scaling behav-
ior. The most common nonequilibrium class is the directed
percolation (DP) universality class. Another class called

(a)

(b)

FIG. 12. Mapping between the zero-temperature Glauber dy-
namics in one dimension and the corresponding domain wall
quasiparticles: (a) the spin marked in orange is updated and the
domain wall quasiparticles annihilate; (b) the spin marked in orange
is flipped to match the value of its right neighbor and the domain wall
quasiparticle diffuses to the left.

parity-conserving (PC) universality class emerges when we
add extra symmetry, namely, parity conservation to the sys-
tem. Like the DP universality class, the PC universality class
is very robust in a sense that it contains many models that
share the same critical exponents. In this Appendix, we will
show that the BAW model introduced in Sec. III belongs to
the PC universality class.

In Sec. III we have established the connection between
the hybrid QA model with Z2 symmetry and a classical
particle model. Under the QA circuit composed of CNN
gates and composite measurements, the particles perform the
branching-annihilating random walks (BAW) where they dif-
fuse on a one-dimensional lattice and annihilate when they
come into contact with probability p. Furthermore, each par-
ticle can generate an even number of offsprings, i.e.,

W ↔ 3W, W + W
p−→ ∅. (A1)

There are three initial conditions which lead to different scal-
ing behavior of various properties under the same dynamics:
(a) the seeding process starting with a pair of adjacent par-
ticles, (b) the seeding process starting with a single particle,
and (c) the purification process starting with a fully occupied
state.

We first analyze the BAW model with initial condition (a)
numerically. We vary p and measure the scaling behavior of
the mean particle number N (t ). As shown in Fig. 10(a), we
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observe a phase transition while adjusting p: when p < pc ≈
0.335, an active steady state with finite number of particles
emerges. At p = pc, N (t ) ∼ t θ where θ = 0. When p > pc,
the dynamics is dominated by annihilation of particles in pairs
and the system enters an absorbing phase where the particle
number is monotonically decreasing until N (t → ∞) = 0. In
addition, we measure two other quantities: P(t ), the proba-
bility that the system has not entered the absorbing phase at
time t ; R2(t ), the mean-square distance from the center of
the lattice chain, averaged over the surviving samples. From
Fig. 10(b), when p < pc, the system maintains a finite pos-
sibility to survive and stay away from the absorbing phase.
When p = pc, P(t ) ∼ t−δ where δ = 0.286. Notably, when
p > pc, P(t ) still decays as a power law with the exponent
1/z = 1

2 . P can also be viewed as an order parameter which
marks the existence of a phase transition. Furthermore, the
numerics in Fig. 10(c) shows that the mean-square distance
R2(t ) ∼ t2/z at p = pc with the other dynamical exponent
z = 1.833. These exponents are universal for the PC univer-
sality class and agree with the numerical findings that δ =
0.286, θ = 0, z = 1.744 when p = pc and z = 2 for p > pc

in Ref. [22].
We also study the other initial conditions under the same

dynamics. Figure 11(a) exhibits the scaling of N (t ) for the
seeding process starting with a single particle. It is easy
to see that the system will never reach an empty state for
N (0) = 1 since the parity is conserved, therefore, the survival
rate P(t ) is always zero, δ = 0 for all p. On the other hand,
N (t ) ∼ t0.286 when p = pc. These exponents coincide with
that of the seeding process starting with a pair of particles
except that the values of δ and θ exchange, which is quite
interesting.

As shown in Fig. 11(b), N (t ) for the purification process
has a similar scaling with P(t ) for the seeding process starting
with a pair of adjacent particles. When the measurement rate
p < pc, the system approaches an active state with a finite
number of particles. Once p = pc, N (t ) ∼ t−0.286. When p >

pc, the particles are performing annihilation-dominated BAW,
N (t ) still decays algebraically, i.e., N (t ) ∼ t−1/2.

APPENDIX B: SINGLE-SPECIES BAW MODEL AND THE
FIRST PASSAGE PROBLEM

In this Appendix, we will investigate the correspondence
between the single-species BAW model in Sec. III C and the
first passage problem of the 1D Ising model discussed in
Ref. [28].

In Ref. [28], they studied the persistence probability r(q, t )
that a given spin stays in the same state up to time t of
an infinite 1D q-state Potts model whose update rule obeys
the zero-temperature Glauber dynamics. If a random initial
q-state spin configuration is quenched at zero temperature, the
dynamics tends to align all the spins. At each time step, a cho-
sen spin is updated according to the values of its two nearest
neighbors, i.e., Si(t + 1) = Si−1(t ) or Si+1(t ) with equal prob-
ability. They proposed a coagulation model which treats S0(t )
at different time steps as random walkers which coalesce upon
contact in the time-reversed order and find that the persistence
rate is just the probability that S0(1) = S0(2) = · · · = S0(t )
which scales as

r(q, t ) ∼ t−θ (q), (B1)

where the exponent has the analytical expression

θ (q) = −1

8
+ 2

π2

[
cos−1

(
2 − q√

2q

)]2

. (B2)

A single-species BAW model was introduced in Sec. III C.
Initially, the particles are distributed randomly in the left
half of the lattice chain. Under the unitary gates and com-
posite measurements, the particles perform BAW. We have
demonstrated that Q(t ) defined in Eq. (24) is equivalent to
− ln(K0/K ), where K0(t )/K is the fraction of particle con-
figurations in which the particles never diffuse into the right
half of the lattice chain up to time t , or in other words, the
probability that the boundary between A and B has never
been visited by the particles. If we consider the case when
the particles are performing diffusion-annihilation random
walks, i.e., there are no CNN gates, and we treat them as
domain walls between the spins, then their dynamics under the
measurement-only circuit has a one-to-one correspondence to
the zero-temperature Glauber dynamics of the 1D Ising model
(q = 2). As illustrated in Fig. 12, when the spin different from
both of its nearest neighbors is flipped, the domain walls anni-
hilate. When its neighbors are in different states and the spin
is aligned with one of them, the domain wall either diffuses or
stays still. Besides, there is no creation of domain walls, i.e.,
no particle branching since the zero temperature prohibits any
energy-raising move. Then, K0(t )/K = √

r(q = 2, t ) since it
is equivalent to the probability that the spin on the boundary
of a finite chain has never flipped. Thus, K0(t )/K decays as a
power law with the exponent θ (q = 2)/2 = 3

16 .
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