
PHYSICAL REVIEW B 105, 064304 (2022)

Dynamic bulk-boundary correspondence for anomalous Floquet topology

DinhDuy Vu
Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics, University of Maryland,

College Park, Maryland 20742, USA

(Received 12 November 2021; revised 8 February 2022; accepted 8 February 2022; published 18 February 2022)

Periodically driven systems with internal and spatial symmetries can exhibit a variety of anomalous boundary
behaviors at both the zero and π quasienergies despite the trivial bulk Floquet bands. These phenomena are
called anomalous Floquet topology (AFT) as they are unconnected from their static counterpart, emerging from
the winding of the time-evolution unitary rather than the bulk Floquet bands at the end of the driving period.
In this paper, we systematically derive the first and inversion-symmetric second-order AFT bulk-boundary
correspondence for Altland-Zirnbauer (AZ) classes BDI, D, DIII, and AII. For each AZ class, we start a
dimensional hierarchy with a parent dimension having Z classification, then use it as an interpolating map to
classify the lower-dimensional descendants. From the Atiyah-Hirzebruch spectral sequence, we identify the
subspace that contains topological information and faithfully derive the AFT bulk-boundary correspondence
for both the parent and descendants. Our theory provides analytic tools for out-of-equilibrium topological
phenomena.
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I. INTRODUCTION

Topological phases of matter are characterized by ro-
bust gapless boundary states arising from nontrivial bulk
bands. Regarding noninteracting gapped Hamiltonians with
particle-hole, time-reversal, and chiral symmetries (PHS,
TRS, and CS), the classification for topological phases has
been explored exhaustively by K theory and Bott periodic-
ity, resulting in the well-known 10-fold periodic table [1,2].
The internal symmetries generally protect (d − 1)D gapless
boundary modes in a d − D system, which we refer to as
first-order topology. The topological invariants as well as
bulk-boundary correspondence for this case have been studied
extensively with experimentally relevant examples including
the Thouless-Kohmoto-Nightingale-den Nijs (TKNN) num-
ber for two-dimensional (2D) class A Chern insulators [3], the
Pfaffian parity for Kitaev chains [4], or the Z2 order for quan-
tum spin Hall insulators in two [5,6] and three dimensions
[7–10]. Interestingly, when spatial symmetries are present,
the topological classification is significantly enriched with
a plethora of robust higher-order (d − n)D boundary modes
(here n > 1), known as higher-order topology [11–20]. Much
effort has been made to enumerate higher-order topological
phases and discover their bulk-boundary correspondences,
most notably the systematic construction of symmetry indi-
cators [17–19].

Topological phenomena also manifest in out-of-
equilibrium systems where the time dimension provides
an extra tuning parameter. Experimentally, it is most common
to introduce the time dependence via applying a periodic
action upon an electronic [21–25], photonic [26,27], or
cold-atom [28–30] system. With T being the period of the
driving Hamiltonian, the system dynamics is then described
by a time-evolution unitary

U (k, T ) = T e−i
∫ T

0 H (k,t )dt . (1)

A straightforward way to analyze the time-evolution unitary
is to map it into a time-independent gapped Hamiltonian,
called Floquet Hamiltonian, given by HF (k) = i lnε U (k, T )
with ε being the branch cut of the complex logarithm. For this
operation to be well defined, U (k, T ) must be gapped around
the branch cut, i.e., no states sit at the branch cut. Suppose the
time-dependent Hamiltonian is decomposed into the equilib-
rium part and the oscillating driving field H (t ) = H0 + V (t )
such that T −1

∫ T
0 H (t )dt = H0, the effective Floquet Hamil-

tonian HF , in principle, can be topologically distinct from
the equilibrium analog H0. This provides a way to realize
topological phenomena by driving an otherwise trivial system.
Such effects are grouped into the Floquet topology. However,
there are cases that the nontrivial topology emerges even when
the Floquet Hamiltonian is trivial as a result of the evolu-
tion unitary dynamics, known as anomalous Floquet topology
(AFT) [31–35].

It is instructive to see how one time evolution can be topo-
logically distinct from another. An adiabatic deformation thus
must not close the branch cut and/or break the symmetries.
Throughout this paper, we choose ε = π for consistent with
the PHS and thus use “branch cut” and “π gap” interchange-
ably. If the phase bands (time-dependent quasienergy levels)
of two unitaries cross the branch cut differently, they cannot
be adiabatically deformed to each other without closing the
π gap at T . In fact, the aforementioned AFT is the result of
irremovable π -gap crossings and and uncaptured by the effec-
tive static Floquet Hamiltonian [31–35]. Therefore, studying
AFT requires the knowledge of the full time-evolution history,
instead of just U (k, T ) at the end of the driving period. We
note that in our definition, the Floquet Hamiltonian defin-
ing the static limit has its quasienergy spectrum confined
in (−π/T, π/T ). This condition can be, indeed, relaxed by
allowing an arbitrary 2nπ/T to be added to the Floquet
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Hamiltonian, thus, the static limit itself also has nontrivial
winding data. In addition, the branch cut can be chosen ar-
bitrarily. In this case, the AFT must be associated with the
quotient winding data taking into account all the ambiguity
[36]. In our paper, however, the final goal is to predict the
boundary behavior at a specific quasienergy gap, so our more
narrow definition of AFT is sufficient.

The origin of AFT is contained in the time-evolution uni-
tary after “subtracting” the Floquet part. The residue, referred
to as the unitary loop, has the starting and ending points being
trivial (identity operator) and is unique up to homotopy. By
mapping the unitary loop into a Hermitian map and applying
the K theory, it is shown that the classification for AFT is
similar to the 10-fold way for static gapped insulators and
superconductors [37,38]. Despite being able to enumerate all
possible phases, this approach does not provide the algorithm
to topologically diagnose a time-evolution unitary. A general
dynamic topological invariant for all dimensionalities can
only be defined in complex classes A and AIII. For class
A systems with an even number of spatial dimensions, the
invariant is the winding number of the (d + 1)D unitary in
the space-time Brillouin zone (BZ) [33,34,39], while for chi-
ral systems with an odd spatial dimensionality, the dynamic
bulk-boundary correspondence is built from the phase-band
winding number of one chiral subspace [39,40]. Interestingly,
for (2 + 1)D class A, the phase-band winding number can be
associated with the quantized Weyl charge of π -gap crossings,
which can be viewed as three-dimensional (3D) Weyl points.
The winding numbers decorated with spatial symmetry eigen-
values can also diagnose higher-order AFT phases in complex
AZ classes [36,41,42]. On the other hand, for real AZ classes,
the anomalous Floquet topological invariants have been suc-
cessfully derived only in isolated cases. Specifically, for (1 +
1)D class D systems with PHS, a Pfaffian-type invariant is
constructed from the winding of phase bands across the π gap
at high-symmetry momenta k = 0 and π [32]; for (2 + 1)D
unitaries with TRS, it arises from the winding number of
half the space-time BZ [43]; and for (2 + 1)D driven systems
with particle-hole and rotational symmetries, Ref. [44] obtains
the first- and second-order AFT bulk-boundary correspon-
dences. Our goal is providing the AFT analysis for other real
AZ classes with different spatial dimensionalities. The main
theoretical frameworks are the Atiyah-Hirzebruch spectral
sequence (AHSS) and the dimensional hierarchy. Here, we
briefly describe the motivation for their usage and leave the
technical details for following parts.

Atiyah-Hirzebruch spectral sequence is a mathematical
tool to compute the K group for a system with certain symme-
tries, producing the topological classification. The basic idea
is to divide the configuration space (can be momentum or real
space) into cells inside which each point, under all symmetry
operators, is either mapped back to itself or to another cell
with the same dimensionality. A d-dimensional configuration
space is thus decomposed into 0-cells, 1-cells, . . . , up to
d-cells. Each cell now has an emergent AZ class depending
on which symmetries leave the cell invariant, resulting in
the first-order approximation of the topological classification,
known as E1 pages. Then, the connections between cells,
i.e., how the topological phase of one cell affects its adja-
cent higher-dimensional (or lower-dimensional in real-space

TABLE I. Periodic table for the first-order AFT with d denoting
the number of spatial dimensions.

d = 0 1 2 3 4 5 6 7

A Z 0 Z 0 Z 0 Z 0
AIII 0 Z 0 Z 0 Z 0 Z
AI Z 0 0 0 Z 0 Z2 Z2

BDI Z2 Z 0 0 0 Z 0 Z2

D Z2 Z2 Z 0 0 0 Z 0
DIII 0 Z2 Z2 Z 0 0 0 Z
AII Z 0 Z2 Z2 Z 0 0 0
CII 0 Z 0 Z2 Z2 Z 0 0
C 0 0 Z 0 Z2 Z2 Z 0
CI 0 0 0 Z 0 Z2 Z2 Z

AHSS) cells, are considered iteratively until the classification
converges after at most d + 1 iterations [45–47].

The motivation for us to apply AHSS is the similarity
in the first-order topological classifications of a unitary loop
and a gapped Hamiltonian having the same AZ class and
spatial dimensionality, as shown in the identical period tables.
Furthermore, as explained later, the unitary loop can be rede-
fined such that TRS and CS do not flip the time dimension
[37,38], while PHS and spatial symmetries act trivially on t
by definition. Since both the E1 pages of each cell and the
intercell compatibility relations are unaffected by the extra
time dimension, the implementation of the AHSS is identical
to the case of static insulators and superconductors. We can
then immediately assert that the twisted K group of a unitary
loop that classifies both the first-order and higher-order AFT
in the presence of internal and spatial symmetries is isomor-
phic to that of a gapped Hamiltonian having the same spatial
dimensionality and symmetries. For our bulk-boundary corre-
spondence derivation, the AHSS serves another purpose as it
identifies which cells of the configuration space encode AFT
information, similar to the classification of gapped Hamil-
tonian [48,49]. Physically, this tells us where robust π -gap
closings can exist.

Regarding the eightfold periodic table of real K groups,
for every AZ class n = 0, . . . , 7 (corresponding to AI, . . . ,
CI), the n − D system always has Z classification while its
immediate descendants of n − 1 and n − 2 dimensions have
Z2 classification by the virtue of Bott periodicity (see Ta-
ble I). For AZ classes BDI, D, DIII, and AII, these sequences
cover most of experimentally relevant systems. Interestingly,
the bulk-boundary correspondences of members of the chain
Z → Z2 → Z2 are indeed related and form a dimensional
hierarchy. The relation is transparent through the dimensional
reduction process in which one dimension of the ascendant
(high-dimensional) system is used as an interpolating param-
eter to classify the descendant (lower-dimensional) system
[50,51]. The most important consequence is probably the ax-
ion field and its quantization in the presence of either TRS
with a proper spatial symmetry or an improper one with
determinant −1 [52–56]. In this paper, we do not attempt
to formulate the dynamic version of axion field, but use the
dimensional hierarchy to study how the π gap-closing sin-
gularities are passed from the parent to its descendants and
the subsequent boundary signatures. We find that while the
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Z classification of the parent is characterized by the number
of singularities, only the parity (oddness or evenness) is pre-
served in the descendants, explaining their Z2 classification.
The underlying logic of the dimensional reduction is general
and can be applied to higher-order topology, allowing us to
derive systematically the bulk-boundary correspondence for
both the first- and second-order AFT.

The paper is organized as follows. In Sec. II, we introduce
the technical details of the time-evolution unitary decompo-
sition, the AHSS, as well as the conventions used in the
paper. In Secs. III and IV, we formulate the topological in-
variants and bulk-boundary correspondences for the first- and
second-order AFT in each AZ class. An example of AFT in
a (2 + 1)D class DIII driven system is presented in Sec. V to
demonstrate our theory. We conclude the paper and discuss
some outlooks in Sec. VI.

II. OVERVIEW

A. Return map and the period table

In principle, an arbitrary time-evolution unitary can be
decomposed into a unitary loop and a Floquet part, up to a
homotopy. A common algorithm for such decomposition is
the return map so that if U (k, T ) is gapped around the π

quasienergy, the Floquet Hamiltonian and the return map can
be defined as

HF (k) = iT −1 ln[U (k, T )],

R(k, t ) = U (k, t )[U (k, T )]−t/T .
(2)

Both the ln and the complex exponent take the branch cut
at eiπ = −1, explaining the π -gap condition. Importantly,
by this construction, the return map is periodic R(k, 0) =
R(k, T ) = 1. We summarize the action of symmetry operators
on the return map as follows:

PR(k, t )P−1 = R∗(−k, t ),

θR(k, t )θ−1 = R∗(−k, T − t ),

CR(k, t )C−1 = R(k, T − t ),

(3)

where P, θ , and C are the unitary transformation corre-
sponding to the PHS, TRS, and CS, respectively, while the
complex-conjugating operator in antiunitary symmetries con-
tain is denoted by K. The return map can be transformed
such that the time dimension is trivial under symmetry actions
[37,38]

Rs(k, t ) = R−1

(
k,

T − t

2

)
R

(
k,

T + t

2

)
. (4)

It is now straightforward to compute the K group and the
topological classification with the result being exactly simi-
lar to the 10-fold way of gapped Hamiltonians. We refer to
Refs. [37,38] for detailed arguments, here, for convenience
we present in Table I the periodic table for first-order AFT
where the red indices indicate the dimensional hierarchies that
we study in this work. We note that the symmetrized return
map, despite being convenient to obtain the K group, has a
degenerate plane at t = T/2 because R2

s (k, T/2) = 1 so we
actually derive the topological invariants based on the original
return map R(k, t ).

A continuous return map, in a vicinity of any point (k0, t0)
in the space-time BZ, can be written as

R(δk, δt ) = e−iφn (δk,δt ) |ψn(δk, δt )〉 〈ψn(δk, δt )| , (5)

where (δk, δt ) is a small displacement from the reference
point (k0, t0) and φn, ψn are continuous functions of the dis-
placement. Within this expression, by imposing the continuity
of φn, we in turn relax the condition −π < φn � π . We can
then define the instantaneous Hamiltonian

h(δk, δt ) = [φn(δk, δt ) − φn(0, 0)]

× |ψn(δk, δt )〉 〈ψn(δk, δt )| . (6)

For conciseness, the coordinates of the reference point are
suppressed but can be inferred from the context. In our paper,
we extensively use the concept of instantaneous Hamiltonians
to diagnose the local robustness of the π -gap closing points,
but in the end the topological invariants are still expressed
through the unitary return map.

B. Atiyah-Hizerbruch spectral sequence

In this paper, we implement AHSS in the momentum space
while for the real-space classification, we refer the readers to
[47]. The first step is to decompose the BZ into cells such
that any symmetry operators either act trivially on the cell or
map it to another cell of the same dimension. Within the set
of symmetry-related cells, the orientation should be defined
consistently. The K group of each cell is determined from
the emergent AZ class, i.e., how the little group of symmetry
acts on the cell. If a cell is invariant under a unitary symme-
try other than the identity operator, each of the irreducible
representations has its own K group, depending on whether
this symmetry commutes or anticommutes with internal sym-
metries. This defines the first page E p,−(n+p)

1 := K−n(Sp) of
the p cell having the n grading defined by the emergent AZ
class. Other entries E p+r,−(n+p)

1 can be obtained by advancing
E p,−(n+p)

1 along the eightfold (real K-group) or twofold (com-
plex K-group) ways.

It is instructive to elaborate on the physical interpretation
of the E1 pages. Based on the definition, E p,−(n+p)

1 pages
are understood as the classification of gapped phases on p-
dimensional space for AZ class n. Considering the continuous
path with the time variable t so that h(k, t1) and h(k, t2)
being two topologically inequivalent gapped Hamiltonians,
then the path h(k, t ) must have a robust gap-closing point
at t ∈ (t1, t2). Importantly, the classification of the gapless
h(k, t ) is the same as the classification of the gapped h(k)
with t as a parameter. As a result, E p,−(n+p)

1 page is also the
classification of gapless phase on the p cell with the time
dimension in the (k, t ) BZ. This is indeed consistent with
physical origin of AFT as irremovable π gap closing points
whose robust existence is shown in the AHSS. As a result, we
ignore the time dimension during the cell decomposition and
proceed similarly to the case of gapped phases, but interpret
the results as the classification for unitary return maps. In
Fig. 1, we present the cell decomposition of the 2D and 3D
k-space BZ with respect to the mapping k → −k. The 2D
BZ is decomposed into four 0-cells, three 1-cells, and one
2-cell, while the 3D BZ has eight 0-cells, seven 1-cells, four 2-
cells, and one 3-cell. We refer to the 0-cell as high-symmetry
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(a) (b)

FIG. 1. Cell decomposition of 2D and 3D BZ with respect to the
map k → −k. The arrows denote the orientation of each cell.

momentum (HsM), 1-cell as high-symmetry line (HsL), and
2-cell as high-symmetry plane (HsP).

The second step is to glue the first pages together, tak-
ing into account the action of a p cell on its neighboring
(p + 1) cell through the differential d p,−(n+p)

1 : E p,−(n+p)
1 →

E p+1,−(n+p)
1 . The first differential has physical interpretation

as the extension of the gapped p − D cell into its adjacent
(p + 1) − D gapless cell. Taking the geometrical compatibil-
ity relation into account, the local classification is refined as
E p,−(n+p)

2 := Ker(d p,−(n+p)
1 )/Im(d p−1,−(n+p)

1 ), reminiscent of
the cohomology group. Iteratively, the local K group can be
further refined by higher-order differentials linking the p cell
to its (p + r)-cell neighbors

d p,−(n+p)
r : E p,−(n+p)

r → E p+r,−(n+p+r−1)
r . (7)

This defines the higher-order page as

Er+1 := Ker
(
d p,−(n+p)

r

)/
Im

(
d p−r,−(n+p+r−1)

r

)
. (8)

The converged local K group is E p,−(n+p)
∞ := E p,−(n+p)

d+1 as any
differentials beyond d are identically trivial. The converged
pages provide the actual classification of each cell and identify
the subspaces where the topological information is encoded.
We note that since the differentials only depend on the spatial
geometry, they also describe the connection between p cells
with the time dimension attached to them. As a result, the
computed K group is also applicable to AFT of return maps.

C. Winding number

An important integral that we use extensively in this work
is the integer-quantized winding number of a continuous uni-
tary gauge on an odd-dimensional hypersphere defined as

ν2n+1[U (v)] =
∫

k∈S2n+1
ω2n+1[U (v; k)]d2n+1k, (9)

where v is the set of fixed parameters, and k is the multidi-
mensional integral variable. The winding-number density is

ω2n+1[U (v; k)] = (−1)nn!

(2n + 1)!

(
i

2π

)n+1

εα1α2...

× Tr
[(

U −1∂kα1
U

)(
U −1∂kα2

U
)
. . .

]
, (10)

where εα1α2... is the Levi-Civita symbol and αi ∈
{1, . . . , 2n + 1}. As a convention, for the winding number
ν, we only show the parameters of U , while for the
winding-number density ω we show both the parameters
and the integral variables separated by the semicolon.

An interesting feature of the integer winding number is that
despite being defined globally through the integral over the
BZ, it can also be interpreted as the number of locally defined
π -gap closing points

U (k) =
{− exp[i(kiOi, jγ j )],

∣∣∑
j (kiOi, j )2 � π2

1, otherwise
(11)

where γi is the set of Clifford algebra Cl2n+1,0(R) genera-
tors satisfying {γi, γ j} = 2δi, j , and O is a real matrix (we
set the degenerate quasienergy at π but this is not strictly
required). Throughout this paper, we denote σ1,2,3 as the
three Pauli matrices, generators of Cl3,0 and �1,...,5 as the
five four-dimensional gamma matrices, generators of Cl5,0.
The latter set is explicitly defined as �i=1,2,3 = σ3 ⊗ σi, �4 =
σ1 ⊗ σ0, and �5 = σ2 ⊗ σ0. We also use the shorthand no-
tations �i j = [�i, � j]/(2i). By substituting Eq. (11) into the
winding-number expressions (9) and (10), we show in the
Appendix A that

ν2n+1[U ] = sign{det[O]} = ±1. (12)

Since the winding number is quantized to integers, the struc-
ture that has ±1 winding number can be considered as the
topological building block. Our classification for AFT is based
on how these topological π gap crossing points are passed
from the parent to the lower-dimensional descendants along
the dimensional hierarchy.

III. FIRST-ORDER ANOMALOUS FLOQUET TOPOLOGY

A. Classes A and AIII

We first briefly review the dynamic bulk-boundary cor-
respondence for complex classes A and AIII. A return map
belonging to class A (AIII) has Z classification if the number
of spatial dimensions is even (odd) and trivial classification
otherwise. With d = 2n, the Z index of class A return maps is
simply its winding number in the odd-dimensional (2n + 1)D
space-time BZ [33,34,39]. As shown in Appendix B, the bulk
ν2n+1[R] gives the number of (2n − 1)D boundary modes in
the quasienergy spectrum.

For class AIII, there exist a chiral operator C commuting
with R(k, T/2) [see Eq. (3)] so that at t = T/2, the return map
can be block diagonalized according to the eigenvalue of the
chiral symmetry as

R(k, T/2) =
(

RC+(k, T/2) 0
0 RC−(k, T/2)

)
. (13)

If d = 2n + 1, we can define the topological invariant as
the winding number ν2n+1[RC±(T/2)] of one block [39,40].
We show in Appendix B that this number indeed counts the
boundary Dirac modes across the π gap protected by the
chiral symmetry (the boundary is even dimensional so Dirac
modes can only exist in the presence of the chiral symmetry).
We emphasize that ν2n+1[RC+(T/2)] = −ν2n+1[RC−(T/2)]
because ν2n+1[R(t )] at fixed t is quantized and continuous
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with t but vanishes at t = 0, making the winding number at
any time slices identically zero.

For real AZ classes without spatial symmetries, except for
the 0-cells, the emergent AZ class is either A or AIII as both
PHS and TRS flip the momentum. In fact, the Z index classi-
fying the parent system of each dimensional hierarchy can be
defined similarly to those of classes A and AIII, depending on
whether the spatial dimensionality is even or odd.

B. Class BDI

From the 10-fold way periodic Table I, the Z classification
is realized for d = 1. Its first descendant d = 0 does not have a
lower-dimensional boundary, so for this class we only present
the classification and dynamic bulk-boundary correspondence
for the parent d = 1.

At a generic momentum k 	= 0, π , we can define an
effective chiral symmetry C = Pθ such that C2 = 1 and
CR(k, t )C−1 = R(k, T − t ). Similar to class AIII, the dy-
namic topological invariant is the 1D winding number of C+
block of the return map at t = T/2:

κBDI
1D = ν1[RC+(T/2)]. (14)

To ensure that this is the correct invariant for class BDI,
we check the compatibility between the defined winding
number and the PHS. Since [PK,C] = 0, each block C± is
PH invariant, constraining ω1[R(T/2; k)] = ω1[R(T/2; −k)].
Therefore, the integral over k can still yield nonzero value. We
will see later that the situation is completely different for class
DIII where {PK,C} = 0. Similar to class AIII, the Z index
enumerates the number of CS-protected end modes pinned at
the π gap.

C. Class D

We first present the converged E pages for the (2 + 1)D
parent and the (1 + 1)D descendant:

E p,−(2+p)
∞ p = 0 1 2

d = 2 Z4
2 0 Z

d = 1 Z2
2 0

Through the iterations of constructing the converged E pages,
the Z index of the (2 + 1)D class D return map is similar
to that of class A. Its bulk-boundary correspondence is also
obvious, i.e., the number of anomalous gapless boundary
modes. The other Z2 indices at the 0-cells can be associated
with weak (protected by translational symmetries) or trivial
(connected to the atomic limit) topology with the exact bulk-
boundary correspondence obtained from matching the AHSS
in momentum space with that in real space [48]. Through the
dimensional reduction, these weak indices can generate weak
topology in the lower-dimensional descendants. However, in
this paper, we focus on the strong topology unaffected by
translational symmetries so we only study the dimensional
hierarchy stemming from the strong Z index of the parent sys-
tem. Another valuable information from the AHSS is that the

Z2 invariant of the (1 + 1)D class D return map is contained
in the 0-cells or HsMs.

1. Two-dimensional parent

The (2 + 1)D parent is characterized by the bulk 3D wind-
ing number

κD
2D = ν3[R]. (15)

Again, we should check the compatibility between the PHS
and the invariant. The PHS imposes that ω3[R(k, t )] =
ω3[R(−k, t )] so the winding number integrated over the
(2 + 1)D BZ is not trivialized. We note that a different
symmetry, for example the TRS that imposes ω3[R(k, t )] =
−ω3[R(−k,−t )], can force the winding number to be zero.
Similar to class A, ν3[R] gives the number of 1D boundary
modes traversing the quasienergy π gap.

2. One-dimensional descendant

Moving to the (1 + 1)D class descendant R(k, t ), we can
construct an interpolating path R̃(k, α, t ) with α ∈ [0, 2π ] as
a parameter such that

R̃(k, 0, t ) = 1, R̃(k, π, t ) = R(k, t ),

PR̃(k, α, t )P−1 = R̃∗(−k, 2π − α, t ). (16)

The interpolating path realizes a (2 + 1)D class D return map
classified by the Z winding number. There is, however, a
freedom in choosing the path as the conditions (16) do not
restrict to a unique function. With another R̃′, the difference in
the winding number is given by

ν3(R̃) − ν3(R̃′) = ν3(g1) + ν3(g2) (17)

with the paths g1 and g2 defined similar to Ref. [50] as

g1(k, α, t ) =
{

R̃(k, α, t ) for α ∈ [0, π ),
R̃′(k, 2π − α, t ) for α ∈ [π, 2π ),

g2(k, α, t ) =
{

R̃′(k, 2π − α, t ) for α ∈ [0, π ),
R̃(k, α, t ) for α ∈ [π, 2π ).

(18)

By the PHS, it is obvious that ω3[g1(k, α, t )] =
ω3[g2(−k, 2π − α, t )], leading to ν3[g1] = ν3[g2] and thus
ν3[R̃] − ν3[R̃′] = 2Z, i.e., the parity of ν3[R̃] is conserved
for all symmetry-preserving choices of R̃. This is in fact
consistent with the Z2 classification obtained for the (1 + 1)D
class D return map from K theory and the AHSS.

As we have shown that the dimensional reduction produces
the correct classification, we proceed to formulate the anoma-
lous Floquet topological invariant based on the induction of
phase-band singularities in the (2 + 1)D interpolating path to
the (1 + 1)D return map in interest. The winding number of a
(2 + 1)D interpolating map is nothing but the total charge of
topological phase-band Weyl points. The PHS maps a Weyl
point at a non-TR invariant (k, α) to another one at (−k,−α)
with the same charge, this pair thus does not contribute the
parity of the winding number. Therefore, we only need to
count the Weyl points along the t axis at k ∈ HsMs and
α = π . This is consistent with the AHSS argument that the
Z2 classifying index for (1 + 1)D class D return maps is
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FIG. 2. The passing of the anomalous boundary behavior along
class D dimensional hierarchy. The first figure refers to the 1D
gapless boundary mode of the (2 + 1)D parent at one edge. By
identifying one momentum as the interpolating parameter α and
taking a slide at α = π , the nontrivial boundary behavior of the
immediate descendant is obtained. The second figure shows a single
0D Majorana mode at one end of the topological (1 + 1)D return
map pinned at π quasienergy.

derived from information at high-symmetry momenta. Along
the line, we note that π1[O(N )] = Z2 where the S1 can be
identified by the time loop at a high-symmetry momentum and
the particle-hole symmetry defines a basis in which the return
map is an orthogonal matrix. At a HsM, we can decompose
continuously R(HsM; t ) = M(t )†D(t )M(t ) such that D(t ) =
Diag[ε1(t ), . . . , εN (t ), ε∗

1 (t ), . . . , ε∗
N (t )] is a smooth function

of t , the number of π gap crossing points can be counted
through the winding of one PH partner,

ν ′
1[R(HsM)] = i

2π

∑
j

∫ T

0
dt ε∗

j (t )∂tε j (t ), (19)

where essentially only the first half of the quasienergy spec-
trum is used. There is a freedom to exchange ε(t ) with its
PH partner ε∗(t ). However, this only changes ν ′

1[R] by an
even number, thus preserving the parity. Therefore, the total
charge parity of all π -gap singularities in the (2 + 1)D inter-
polating path can be expressed in the (1 + 1)D return map
through

κD
1D = ν ′

1[R(0)] + ν ′
1[R(π )] mod 2, (20)

with κD
1D = 0(1) indicates trivial (topological) AFT. The topo-

logical (1 + 1)D class D return maps corresponds to the
interpolating map R̃ having an odd winding number and
thus must be equipped with at least one (more precisely an
odd number) gapless mode along its boundary across the
quasienergy branch cut. The PHS pins the π -gap crossing at
either α = 0 or π , but by construction the α = 0 end is the
trivial phase with opened π gap so the π -gap crossing must
happen at α = π as shown in Fig. 2. Therefore, the (1 + 1)D
class D AFT corresponds to 0D Majorana modes pinned at the
π gap.

D. Class DIII

For class DII, we first provide the AHSS analysis
for the family starting from the parent d = 3 with Z
classification:

E p,−(3+p)
∞ p = 0 1 2 3

d = 3 0 Z7
2 0 Z

d = 2 0 Z3
2 0

d = 1 0 Z2

The Z index of the 3-cell is identical to the that of a return
map with chiral symmetry; in fact, due to the existence of
both particle-hole and time-reversal symmetries, the chiral
symmetry can be straightforwardly defined as the product of
the former two. For d = 2 and 1, the topological information
is encoded in HsLs.

1. Three-dimensional parent

The (3 + 1)D class DIII unitary loop has an effective chi-
ral symmetry C = iPθ and can be classified by the winding
number of the positive-chirality block at t = T/2. In partic-
ular, by the eigenvalue of the chiral operator R(k, T/2) =
RC+(k, T/2) ⊕ RC−(k, T/2), defining the Z index

κDIII
3D = ν3[RC+(T/2)]. (21)

We remind that ν3[RC+(T/2)] = −ν3[RC−(T/2)] for the same
reason discussed in class AIII.

At this point, it is instructive to contrast classes DIII/CI
with classes BDI/CII in the (3 + 1)D space-time BZ. In
the former case, the effective CS is C = iPθ since (Pθ )2 =
−1, making {PK,C} = 0, i.e., the PHS maps the C+ sub-
space to the C− subspace. In the latter case, C = Pθ since
(Pθ )2 = 1, so [PK,C] = 0. Within the subspace RC+(T/2),
the PHS enforces ω3[RC+(T/2; k)] = −ω3[RC+(T/2; −k)],
trivializing ν3[RC+(T/2)]. Therefore, even though our earlier
defined invariant only explicitly requires the CS, it is only well
defined in classes DIII/CI. This CS protected winding number
characterizes the number of boundary chiral 2D Dirac modes
across the π gap.

Another way to understand the Z index is to artificially
introduce an extra dimension β ∈ [−π, π ) such that

R̃(k, t, 0) = R(k, t ),

CR̃(k, t, β )C−1 = R̃(k, T − t,−β ), (22)

PR̃(k, t, β )P−1 = R̃∗(−k, t, β ),

Notably, phase-band Dirac modes at (t, β ) = (T/2, 0) are
pinned by the CS, while those off that point must exist in
pairs and can be symmetrically moved away and annihilated
by a choice of β [see Fig. 3(a)]. In this five-dimensional (5D)
space-time BZ, we assume the explicit form of a Dirac mode
with unity charge as

h(δk, δt, β ) =
3∑

i=1

δki�i + δt�4 + β�5. (23)

Within this basis, the only representations of the CS and PHS
are C = �45 and P = �24. Projecting onto the subspace with
δt = β = 0, Eq. (23) describes two decoupled π gap 3D Dirac
modes with opposite charges and chiral eigenvalues. This is
exactly the topological invariant defined in Eq. (21).
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FIG. 3. (a) 5D Dirac singularity in the enlarged space, the mul-
tidimensional k is compressed into a 1D axis for visual clarity.
The singularity away from (β = 0, t = T/2) has a chiral partner
at (−β, T − t ), the pair can be symmetrically moved away and
annihilated by the choice of β. (b) The splitting of the fourfold-
degenerate point at a HsM into a twofold-degenerate ring, inducing
nontrivial winding number into the adjacent HsLs. (c) The adiabatic
trivialization of the return map at HsM, making the winding number
over half the 1D BZ well defined.

2. Two-dimensional descendant

The first step in advancing along the dimensional hierar-
chy is to make one momentum of the parent system into a
parameter in the symmetry-preserving interpolating map for
the descendant. However, the action of the PHS within a chiral
subspace

PR̃C+(k, α, T/2)P−1 = R̃∗
C−(−k, 2π − α, T/2) (24)

is not helpful in deriving the classification because it maps
one chiral subspace to another. However, from the perspective
of the enlarged space with artificial dimension β, it is more
natural to study the dimensional hierarchy as we can define
the interpolating path R̃(k, α, t, β ) such that

R̃(k, 0, t, 0) = 1, R̃(k, π, t, 0) = R(k, t ),

CR̃(k, α, t, β )C−1 = R̃(k, α, T − t,−β ), (25)

PR̃(k, α, t, β )P−1 = R̃∗(−k,−α, t, β ).

Since the enlarged interpolating path is characterized by
the singularities along the axis (t, β ) = (T/2, 0), we fur-
ther assume that there exist no off-axis singularities without
loss of generality as explained above. The PHS imposes
that ω5[R̃(k, α, t, β )] = ω5[R̃(−k,−α, t, β )], allowing the
dimensional reduction process to be implemented exactly
similar to the presented class D case. As a result, ν5[R̃]
has conserved parity for all symmetry-preserving choices of
the interpolating map, proving the Z2 classification of the
(2 + 1)D class DIII return maps.

The parity of the total charge ν5[R̃] only depends on the
fourfold Dirac modes at k = HsM, α = π , t = T/2. Such a
Dirac mode is described by

h(δk, δt ) = δk1�1 + δk2�2 + δt�4. (26)

A symmetry-preserving homogeneous term m must satisfy
{m, h} = 0, [m,C] = 0, and {m, PK} = 0. The only gap-
opening mass terms ∝�3, �5 are not allowed by the PHS
and CS (C = �45 and P = �24), justifying the nontrivial clas-
sification; moreover, the terms ∝�4 are not allowed either,
showing that the Dirac mode is indeed pinned at t = T/2.
Even though the gap closing and its associated topological
charge are robust, the fourfold-degenerate point is not. In fact,
one can introduce a symmetry-preserving term λ�45 that does
not open the gap but transform the degenerate point into a
degenerate ring at δk2

1 + δk2
2 = λ2. As shown in Fig. 3(b),

these nodal rings around a HsM necessarily thread through
the adjacent HsL, suggesting us to look at the 1-cells for
the topological invariant. This agrees with the AHSS analysis
showing that the topological information is encoded in three
1-cells.

We first emphasize that a 1-cell is not periodic but only half
of a one-dimensional BZ so we cannot immediately evaluate
any winding number. For demonstration, we restrict to a 1D
k-space BZ (comprised of two related 1-cells) and consider
a fourfold-degenerate point in the form of Eq. (26) at k = 0,
which can split into twofold-degenerate points (the projection
of the actual nodal ring) in the two adjacent 1-cells. With the
π gap being opened, the return map at the two HsMs k = 0, π

can be adiabatically trivialized to 1, making the 1-cells pe-
riodic [see Fig. 3(c)]. The original fourfold-degenerate point
now translates to the 1D winding number of the C+ subspace
over the closed 1-cell. Because the 1D winding number is
invariant against adiabatic deformation, we can choose an
explicit deformation that closes the 1-cell as

R̄C+(k) = RC+(k)[RC+(π )]−
k
π [RC+(0)]−1+ k

π . (27)

Here, for conciseness, we suppress the coordinates of time and
perpendicular momenta, and only keep the momentum along
the 1-cell in the argument. This algorithm is similar to the
one used to extract the periodic return map from the time-
evolution unitary. The topological invariant ν1[R̄C+(a, T/2)]
is now well defined.

Before moving on, we need to address two questions re-
garding what happens to the defined invariant if we (i) choose
the other half of the one-dimensional BZ as the 1-cell and (ii)
consider the C subspace instead of the C+. For the similar
reason of the winding number continuity as presented in class
AIII,

ν1[RC+(a, T/2)] + ν1[RC+(a′, T/2)]

+ ν1[RC−(a, T/2)] + ν1[RC−(a′, T/2)] = 0;

but the PHS also imposes that ν1[RC+(a, T/2)] =
ν1[RC−(a′, T/2)]. As a result,

ν1[RC+(a, T/2)] = −ν1[RC+(a′, T/2)]

= −ν1[RC−(a, T/2)]. (28)

The freedom of choices in the 1-cell and chiral subspace thus
only modifies the invariant by a sign, irrelevant to its parity.
Therefore, our defined topological invariant on 1-cell has a
unique parity.

From Fig. 3(b), the classification depending on the parity
of the total number of phase-band fourfold Dirac modes can
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FIG. 4. Anomalous boundary behavior of members in class DIII
dimension hierarchy obtained by iteratively taking a slide on bound-
ary of the ascendant. The sequence from left to right is as follows:
chiral 2D Dirac modes for the (3 + 1)D parent, 1D helical modes
for the (2 + 1)D descendant, and 0D Majorana Kramers pairs for the
(1 + 1)D descendant.

be expressed as

κDIII
2D = ν1[R̄C+(�X , T/2)]

+ ν1[R̄C+(Y M, T/2)] mod 2. (29)

Here, κDIII
2D = 0 (1) corresponds to the trivial (topological)

(2 + 1)D class AIII return maps. The boundary behavior is
a slide at α = π cutting through the 2D chiral Dirac modes at
the boundary of the (3 + 1)D parent system (see Fig. 4), man-
ifesting as a pair of 1D helical modes across the quasienergy
BZ. The other two Z2 indices correspond to the weak topo-
logical phases resulted from the stacking of topological 1D
chains. These weak phases are protected by the translational
symmetry along the x or y direction.

3. One-dimensional descendant

We can further advance the dimensional hierarchy and ob-
tain the classification for the (1 + 1)D class DIII return map.
In a similar manner, we first construct a symmetry-preserving
interpolating map R̃(k, α, t ) such that

R̃(k, 0, t ) = 1, R̃(k, π, t ) = R(k, t ),

PR̃(k, α, t )P−1 = R̃∗(−k, 2π − α, t ), (30)

θ R̃(k, α, t )θ−1 = R̃∗(−k, 2π − α, T − t ).

The interpolating map is nothing but a (2 + 1)D class D return
map; here we choose to identify ky with α so that the high-
symmetry lines (�X , α = 0) and (�X , α = π ) correspond to
�X and Y M in Eq. (29). By construction, R̃(�X , 0, T/2) is
trivial, so Eq. (29) effectively provides the topological invari-
ant for the (1 + 1)D class DIII return map as

κDIII
1D = ν1[R̄C+(�X , T/2)]. (31)

Here, κDIII
1D = 0 (1) indicates the trivial (topological) phase

with the boundary of the topological phase hosting Majorana
Kramers pairs in the π gap which can be thought of as a slide
of the helical boundary modes of the (2 + 1)D interpolating
map (see Fig. 4).

E. Class AII

For class AII with the Z-indexed parent d = 4, the con-
verged classification from the AHSS is as follows:

E p,−(4+p)
∞ p = 0 1 2 3

d = 3 Z 0 Z4
2 0

d = 2 Z 0 Z2

We do not perform the spectral sequence for d = 4, but
by analogy to the case d = 2 of class D, the Z classification
is similar to a (4 + 1)D class A return map. On the other
hand, the Z2 classifications of the (3 + 1)D and (2 + 1)D
descendants are encoded in HsPs.

1. Four-dimensional parent

Similar to class A, (4 + 1)D class AII is also classified by
the 5D winding number. The time-reversal symmetry enforces
ω5(k, t ) = ω5(−k, T − t ) and does not trivialize the integral
over the space-time BZ. The dynamic topological invariant is
simply

κAIII
4D = ν5[R]. (32)

This winding number corresponds to the number of 3D Dirac
modes across the quasienergy π gap.

2. Three-dimensional descendant

We begin the dimensional reduction by constructing the
(4 + 1)D symmetry-preserving interpolating map

R̃(k, 0, t ) = 1, R̃(k, π, t ) = R(k, t ),

θ R̃(k, α, t )θ−1 = R̃∗(−k, 2π − α, T − t ). (33)

Similar to the class D dimensional hierarchy, the TRS con-
straints ν5(R̃) to have conserved parity, establishing the Z2

classification. Without compromising of generality, we as-
sume an explicit form for the fourfold-degenerate Dirac mode
in (3 + 1)D class AII phase band

h(δk, δt ) =
3∑

i=1

δki�i + δt�4. (34)

The only gap-opening mass terms ∝�5 are not allowed by the
TRS θ = �25. However, time-reversal-symmetric terms ∝�i, j

with 1 � i < j � 5, even though they do not open the gap,
generically split the degenerate point into a nodal loop induc-
ing π -gap closing points into the adjacent (2 + 1)D HsPs as
schematically shown in Fig. 5(a). Similar to class DIII hier-
archy, this fact suggests that the fourfold singularity charge is
translated to invariants defined on the 2-cells, consistent with
the AHSS analysis.

A (2 + 1)D space-time BZ is naturally characterized by the
3D winding number. We face the same problem that the 2-cell
is not periodic, but we note that any π gap-closing points at
the (1 + 1)D boundary can be moved symmetrically to the
2-cell bulk, allowing us to trivialize the boundary and close
the 2-cell [see Fig. 5(b)]. For a 2-cell over (k1, k2, t ) (we
suppress the notation for the perpendicular coordinates) where
k1 ∈ (0, π ) while k2, t ∈ (−π, π ), we define the symmetrized
return map over the 2-cell as

R̄(k1, k2, t ) = R(k1, k2, t )[R(π, k2, t )]−k1/π

× [R(0, k2, t )]−1+k1/π . (35)
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(a) (b)

(c)

FIG. 5. (a) The fourfold-degenerate points at HsMs can be generically deformed into twofold-degenerate rings threading through the
adjacent HsPs. The ring actually exist in the (3 + 1)D space-time but the time dimension is not shown for visual clarity. (b) On a (2 + 1)D
BZ, a fourfold singularity at HsM and t = T/2 can be split into a pair of two symmetric twofold singularities with opposite charges. Since
the π gap at k1 = 0 is open, the return map there can be trivialized so that the 3D winding number over the HsP (half the BZ) is well
defined. (c) Anomalous boundary behaviors of members in the class AII dimensional hierarchy: 3D Dirac mode for the (4 + 1)D parent,
time-reversal-invariant 2D Dirac modes for the (3 + 1)D descendant, and 1D quantum spin Hall modes for the (2 + 1)D descendant.

As a result, we can define the 3D winding number of the
closed 2-cell. From the interpretation sketched in Fig. 5(a),
the classification of the (3 + 1)D descendant is the parity of
the total number of 5D Dirac modes presented in the (4 + 1)D
interpolating map, the bulk-boundary correspondence is thus
expressed through

κAII
3D = ν3[R̄(�Y MX )] + ν3[R̄(UTV Q)] mod 2. (36)

The invariant κAII
3D = 0 (1) indicates the trivial (topologi-

cal) (3 + 1)D class AII return map. From the dimensional
hierarchy, the anomalous boundary hosts 2D time-reversal-
symmetric Dirac modes as shown in Fig. 5(c). The other Z2

indices characterize weak phases associated with the stacking
of topological 2D slices.

3. Two-dimensional descendant

The (2 + 1)D class AII return map can be classified by a
symmetry-preserving interpolating map R̃(k, α, t ) such that

R̃(k, 0, t ) = 1, R̃(k, π, t ) = R(k, t ),

θ R̃(k, α, t )θ−1 = R̃∗(−k, 2π − α, T − t ). (37)

The interpolating map realizes a (3 + 1)D class AII return
map and is thus characterized by the Z2 index defined in
Eq. (36). The two HsPs appearing in Eq. (36) correspond to
slides at α = 0 and π with the former being trivial by con-
struction. The Z2 index, therefore, does not depend explicitly
on the interpolating map and is given by

κAII
2D = ν3[R̄(�Y MX )] mod 2. (38)

The topological phase with κAII
2D = 1 hosts quantum spin Hall

modes at the boundary as a result of the 2D boundary Dirac
modes of the interpolating map [see Fig. 5(c)].

In Table II, we summarize the first-order anomalous Flo-
quet dynamic topological invariant and the boundary signature
for all the AZ classes we just studied. In the present literature
concerning Floquet systems belonging to real AZ classes, we
are only aware of the AFT bulk-boundary correspondence for
(1 + 1)D class D [32] and (2 + 1)D class AII [43]. We note
that in Ref. [43], the topological invariant for (2 + 1)D class
AII is the 3D winding number computed over half the space-
time BZ with t ∈ (0, T/2). Our presented derivation, on the
other hand, systematically covers a wide range of system and
explicitly shows the dynamic bulk-boundary correspondence
as well as the relation among dimensions.

Before ending the section, we mention the role the static
Floquet part of the evolution unitary in the boundary behavior.
We first start with the parent system with Z-indexed AFT
characterized by the return map winding number, i.e., AZ
class A, and parent systems of classes D and AII. The winding
number is naturally related to the Chern number by [33]

ν2n+1[Rε] − ν2n+1[Rε′] = Cn(εε′), (39)

where ν2n+1[Rε] is the winding of the returning map obtained
from the unitary U with the branch cut defined at quasienergy
ε, and Cn(εε′) is the n Chern number of the Floquet bands
(by diagonalizing U ) between the quasienergies ε and ε′.
By setting ε′ = π and ε = 0, it is clear that the number of
boundary modes crossing the 0 gap is the number of modes
across the π gap (computed from the AFT index) modified
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TABLE II. First-order AFT bulk-boundary correspondence for different AZ classes. The number of spatial dimensions is denoted by d .
For class DIII, d = 2, a = �X ,Y M; while for class AII, d = 3, b = �Y MX , �Y MX .

AZ class d Classification Phase-band invariant Boundary signature

BDI 1 Z ν1[RC+(T/2)] 0D end modes
D 2 Z ν3[R] 1D chiral modes

1 Z2 ν1 of one PH partner mod 2 0D Majorana end modes
DIII 3 Z ν3[RC+(T/2)] 2D CS Dirac modes

2 Z2
∑

a ν1[R̄C+(a, T/2)] mod 2 1D helical modes
1 Z2 ν1[R̄C+(�X , T/2)] mod 2 0D Majorana Kramers pairs

AII 4 Z ν5[R] 3D Dirac modes
3 Z2

∑
b ν3[R(b)] mod 2 2D TRS Dirac modes

2 Z2 ν3[R(�Y MX )] mod 2 1D QSH modes

by the Chern number of Floquet bands from 0 to π . Not sur-
prisingly, Eq. (39) also has an analog for chiral systems, e.g.,
class AIII and parent systems of classes BDI and DIII. The
winding number is redefined with chiral basis and the Chern
number is substituted by the “chiral winding number” (not to
be confused with the phase-band winding number) [39]. In
short, if the Floquet bands are trivial (zero Chern number or
chiral winding number), the Z index we define for AFT counts
the number of boundary modes at both the 0 and π gaps.
Advancing along the dimensional hierarchy, since the bound-
ary of the descendant can be constructed iteratively from the
ascendant boundary, the Z2 indices for AFT characterizes the
simultaneous presence or absence of boundary modes at both
the 0 and π gaps. On the other hand, if the Floquet bands are
nontrivial, the boundary behaviors at quasienergy gaps are

n(π ) = κAFT, n(0) = κAFT + κF, (40)

where n(0, π ) is the number of boundary modes at the 0 and
π gaps, κAFT is the index for AFT obtained from the winding
number of the return map, and κF is the topological index of
the static HF gapped around the 0 quasienergy. The sum is
always well defined because κAFT and κF are either both Z or
both Z2 indices.

IV. SECOND-ORDER AFT PROTECTED BY INVERSION
SYMMETRY

In this section, we expand the bulk-boundary correspon-
dence derivation scheme based on the AHSS and dimensional
reduction to the second-order AFT protected by the inver-
sion symmetry. For static insulator and superconductors, even
when the first-order topology is trivial, the inversion symme-
try (or in general spatial symmetry) may obstruct the system to
be deformed into the atomic limit, giving rise to higher-order
anomalous boundary modes of dimensionality less than d − 1
(d is the number of bulk spatial dimensions). In this section,
we assume the system has an inversion symmetry I charac-
terized by IR(k, t )I−1 = R(−k, t ), I2 = 1, [I, θK] = 0, and
{I, PK} = 0. The second-order topology in a d − D space can
be viewed as the manifestation of a topological (d − 1)D sub-
space. The necessary condition is thus the (d − 1)D subspace
must have nontrivial classification. Therefore, it is interest-
ing that a d − D system with trivial first-order classification
might have nontrivial second-order AFT, e.g., d = 2 in class
BDI is strictly trivial but the d = 1 has Z classification.

Naively, the second-order topology should inherit the same
Z classification; however, the (d − 1)D topological system is
actually embedded in a higher-dimensional space so some of
the phases can be connected, potentially reducing the classifi-
cation to Zn [41]. We leave this case for future work, focusing
only on the second-order topology of the parent and the first
descendant in AZ hierarchies D, DIII, and AII. Therefore, the
second-order AFT, if it exists, must have Z2 classification,

With gapped Hamiltonians, the higher-order topology is
usually studied by the symmetry data at HsMs excluding those
associated with the corresponding atomic limit [17–19,36].
However, in some cases, the symmetry data at HsMs is triv-
ial and the topological characteristics is actually encoded in
higher-dimensional subspaces [49]. In this work, we do not
assume that higher-order topology depends on information
at HsMs, but explicitly prove that fact through the AHSS.
An important note in computing the E pages is that because
(IPK)2 = −(PK)2, for cells with dimensionality >0, classes
BDI/D/DIII change to CII/C/CI. With that in mind, we
present the converged pages for AZ classes D, DIII, and AII
with inversion symmetry. The row for class AII and d = 4 is
not derived explicitly but inductively from the d = 3 case:

Class d p = 0 1 2 3 4

D 2 Z4 0 Z
1 Z2 0

DIII 3 Z8 0 0 Z
2 Z4 0 0
1 Z2 0

AII 4 Z17 0 0 0 Z
3 Z9 0 0 0
2 Z5 0 0

Except for the parent system having an additional Z in-
dex defined in the bulk, all other topological information is
encoded in the HsMs. One can also perform the AHSS on
an open geometry, showing that there exists an extra Z2-
indexed boundary mode corresponding to the second-order
topology [47]. For class AII, each irrep at a HsM can in
principle have an independent Z index, resulting in Z2d+1

.
However, the first differential restricts nI+ + nI− = const for
all HsMs, reducing the classification to Z2d +1. We remind that
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(a)

(b)  Topological

(c)  Trivial

FIG. 6. (a) A (2 + 1)D class D singular point at a HsM projected
onto the t axis with the bands labeled by the inversion-symmetry
eigenvalues. (b) A topological NCP whose gap closing is protected
by the inversion symmetry. (c) A trivial NCP whose degeneracy can
be lifted by a symmetry-preserving mass term.

the AHSS analysis is identical between gapped Hamiltonians
and Floquet unitaries within the same AZ class and spatial
dimensionality.

A. Class D

The inversion symmetry only flips two spatial dimension
so the winding number in (2 + 1) space-time is not trivialized.
As a result, the definition of the first-order AFT bulk Z index
is unchanged. The classification of the second-order AFT is
only meaningful if the first-order one is trivial, corresponding
to the vanishing 3D winding number ν3[R]. This situation
can be interpreted in two ways: (i) the phase band has no
π -gap singular points or (ii) the π -gap singular points exist in
null-charge pairs (NCP), i.e., a pair of two singularities with
opposite charges. Without any spatial symmetry, (i) and (ii)
are adiabatically connected, but this is no longer true if the
inversion symmetry (or other appropriate spatial symmetries)
is presented. We first note that off the HsM axes, singularities
must exist in pairs by the PHS, and two pairs with opposite
charge can always annihilate each other as the inversion sym-
metry does not manifest off axis. On the other hand, at the
HsM axes, a NCP is robust if it is described by

h(δk, δt ) = δk1�4 − δk2�34 + δt�45 (41)

in the basis where I = �45 and P = �4. Due to anticommu-
tation between the inversion and PH symmetries, PH-related
bands have opposite inversion eigenvalues [Fig. 6(a)]. Since
I ∝ h(0, δt ), any mass term anticommuting with h is thus for-
bidden by the inversion symmetry. On the other hand, within
the same basis, another NCP written as

h(δk, δt ) = δk1�4 − δk2�5 + δt�5 (42)

can be gapped out by a mass term ∝�42. The difference
between Eqs. (41) and (42) is apparent in the projection onto
the t axis. Specifically, the former has the 1D winding number
of the I+ subspace ν1[RI+(HsM)] = 2, while the latter has
ν1[RI+(HsM)] = 0 [see Figs. 6(b) and 6(c)]. Naively, the
description (41) gives rise to a Z classification because if
multiple of its copies are stacked together, the gap closing is
still robust by the similar argument. This is indeed reflected in
the Z classification at HsMs produced by the AHSS. However,

following the argument for symmetry indicators, the atomic
limit needs to be subtracted from these Z indices, resulting
in the actual Z2 classification of the higher-order topological
phase [17–19,36].

In this work, we arrive at the Z2 classification not by defin-
ing phases connected to the atomic limit, but by introducing a
spatially modulated π -gap-opening term, effectively bringing
out from the (2 + 1)D bulk a topological (1 + 1)D subsystem
whose Z2 classification is shown in the previous section.
This process can be extended naturally along the dimensional
hierarchy, providing a fast way to derive the dynamic bulk-
boundary correspondence. In the case described in Eq. (41),
the mass term is given by m(x1) = M sign(x1)�42, preserv-
ing the inversion symmetry globally as Im(x1)I−1 = m(−x1)
(here x1 conjugates to k1). At the edge x1 = 0, modes crossing
the branch cut are obtained by solving the equation

[−∂1 + M�2sign(x1)] |ψ〉 = 0. (43)

Without loss of generality, we assume M > 0 so Eq. (43) has
two solutions |ψ1,2〉 e−|x1|/M with |ψ1,2〉 being two eigenvec-
tors of �2 with eigenvalues 1. Projecting (41) onto two π -gap
modes gives the effective edge as

h(δk2, t ) = δk2σ1 + δtσ3 (44)

with P = σ1. This describes a topological (1 + 1)D class D
return map with Z2 classification indexed by the parity of the
total number of π -gap closing points. Thus, the second-order
AFT index is given by

ηD
2D = 1

2

∑
HsM

ν1[RI+(HsM)] mod 2. (45)

The factor 1
2 is founded on our dimensional reduction ar-

gument that two singularities of opposite charges produce
one symmetry-protected singularity on the domain wall (the
4 × 4 gapless matrix [Eq. (41)] reduces to the 2 × 2 gapless
matrix on the domain wall [Eq. (44)]). Because of the factor,
the index is only well defined when

∑
ν1[RI+(HsM)] ≡ 0

mod 2, otherwise
∑

ν1[RI+(HsM)] ≡ 1 mod 2 corresponds
to the nonzero 3D winding number, indicating the first-order
AFT.

The inversion symmetry, even though it does not change
the classification of the (1 + 1)D class D return map, provides
an additional expression for its indicator. Without the any
spatial symmetries, the topological invariant is the 1D winding
number of one PH partner defined from the continuity of the
phase band. When the inversion symmetry is introduced, two
bands related by PHS must have opposite inversion eigen-
value, simplifying the first-order AFT indicator to

ηD
1D =

∑
HsM

ν1[RI+(HsM)] mod 2, (46)

with the bulk-boundary correspondence identical to the κD
1D

without the inversion symmetry.

B. Class DIII

1. Z2 index for the (3 + 1) parent

As discussed earlier, it is more natural to think of class DIII
singularities as existing in an enlarged space with the extra
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dimension being flipped by the chiral symmetry. We choose
the action of the inversion symmetry so that

IR(k, t, β )I−1 = R(−k, t,−β ). (47)

A 5D singularity in this enlarged space is robust by the fact
that I flips four-momentum and does not trivialize ν5. Similar
to case of class D, a NCP at a HsM can be protected by
the inversion symmetry, giving rise to the symmetry-protected
second-order topology.

Because {PK, I} = 0 and [θK, I] = 0, along k = HsM,
and β = 0, the two right-moving bands must have the same
inversion eigenvalue, opposite to that of the other two left-
moving bands. Schematically, the projection of a singularity
at HsM on the t axis is also described by Fig. 6(a) except
for that each band is now a two-component Kramers pair by
the TRS. Therefore, h(0, δt, 0) ∝ δtI4 where the subscript 4
denotes the projection of I onto the four-band subspace. If
two singularities have opposite charges but their projections
on the t axis are similar, i.e., the NCP is written as

hcomp(0, δt, 0) ∝ δtσ0 ⊗ I4 = δtI8,

any mass terms must anticommute with the inversion-
symmetry operator, and is thus not allowed. We now show
that this inversion-protected π -gap closing leads to a topo-
logical (2 + 1)D subsystem. For demonstration, we explicitly
construct a NCP pinned at (HsM, T/2, 0) as

hcomp(δk, δt, β )

= σ3�1δk1 + σ0

(∑
i=2,3

δki�i + δt�4 + β�5

)
(48)

with C = σ0�45, P = σ0�24, and I = σ0�4. A homoge-
neous mass term ∝σ1�1 anticommutes with I and is thus
forbidden. However, a symmetry-preserving spatially modu-
lated mass term can be constructed accordingly as m(x1) =
M sgn(x1)σ1�1. Similar to the previous case of class D, this
mass term generates a gapless domain wall where the effec-
tive Hamiltonian can be obtained by projecting the original
instantaneous Hamiltonian onto π -gap-crossing modes which
are the four eigenvectors with eigenvalues 1 of σ1�1, resulting
in

h(δk2,3, δt, β ) =
∑
i=2,3

δki�i + δt�4 + β�5, (49)

with C = �45 and P = �24. This describes the return map of
the topological (2 + 1)D class DIII, leading to the second-
order topological bulk-boundary correspondence

ηDIII
3D = 1

4

∑
HsM

ν1[RI+(HsM)] mod 2, (50)

where compared with Eq. (45) the extra 1
2 factor accounts

for the Kramers degeneracy, and ηDIII
3D = 1(0) indicates the

presence (absence) of 1D anomalous boundary modes in a 3D
open geometry.

2. Z4 index for (2 + 1)D descendant

A (3 + 1)D class DIII return map with second-order topol-
ogy, under the dimensional reduction, produces a (2 + 1)D
return map hosting a topological (1 + 1)D subspace. The

process is performed similarly to other presented cases with
one momentum of the (3 + 1)D return map being used as the
interpolating parameter α so that the second-order AFT index
of the interpolating map R̄(k, α, t ) is

ηDIII
3D = 1

4

∑
α=0,π

∑
HsM

ν1[R̄I+(α, HsM)] mod 2. (51)

By construction, R̄(0, k, t ) = 1 and R̄(π, k, t ) = R(k, t ) so
for the (2 + 1)D class DIII return map, the second-order AFT
index is defined identically to Eq. (50) except for the sum is
taken over 2D high-symmetry momenta.

There exists, however, an important difference from the
parent, i.e., the topological invariant characterizing the first-
order AFT cannot be defined by Eq. (29) because the HsLs
are all trivial as shown by the AHSS. In the (2 + 1)D class
DIII return map, the π gap singularities that give rise to the
first-order AFT generically exist in the form of nodal rings.
Consulting Eq. (26), the nodal ring is nothing but a singular
point at a HsM deformed by a perturbation ∝�45. If the inver-
sion symmetry is presented, in this case I = �5, it rules out
such perturbations and stabilizes the singular point. As such,
the natures of the first-order AFT in the (2 + 1)D descendant
with and without inversion symmetry are indeed identical.
The bulk-boundary correspondences for the first- and second-
order AFT are now both encoded in the HsMs and can be
obtained straightforwardly from the (3 + 1)D parent through
the dimensional hierarchy

1

2

∑
HsM

ν1[RI+(HsM)] =
⎧⎨
⎩

2n + 1, 1st-order topo.
4n + 2, 2nd-order topo.
4n, trivial topo.

As a result, we can define a Z4 index to capture the two
phenomena

ηDIII
2D = 1

2

∑
HsM

ν1[RI+(HsM)] mod 4. (52)

The dynamic bulk-boundary correspondence is as follows:
for ηDIII

2D = 1, 3 the system has first-order AFT and hosts 1D
helical modes across the π quasienergy; for ηDIII

2D = 2, the
system has second-order AFT with two inversion-symmetric
Majorana Kramers pairs as the boundary of the (1 + 1)D
subsystem; lastly, for ηDIII

2D = 0, the boundary is trivial with
opened π gap.

For the (1 + 1)D descendant, the second-order AFT is not
supported, while for the same reason as the (2 + 1)D case, the
indicator for the first-order AFT is modified as

ηDIII
1D = 1

2

∑
HsM

ν1[RI+(HsM)] mod 2, (53)

with the value of 1 (0) corresponds to the absence (presence)
of the π -gap Majorana Kramers pairs.

C. Class AII

For the (4 + 1)D parent system, the inversion symmetry
does not trivialize the Z index of the first-order AFT as it flips
four momenta, thus keeping the sign of the winding-number
density. A Dirac mode in the (4 + 1)D space-time can be
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written as

h(δk, δt ) =
4∑

i=1

δki�i + δt�5. (54)

The only choices for the time-reversal and inversion sym-
metries are θ = �25 and I = �5. The form of the inversion
symmetry constrains that on the t-axis, the two left-moving
bands have the same inversion eigenvalue, opposite to those
of the two right-moving bands, similar to the case of class
DIII. To demonstrate the emergence of a topological (3 + 1)D
subsystem, we can introduce a spatially modulated mass term
similar to class DIII. The conclusion is the same: a NCP at
HsMs is protected by the inversion symmetry if along the
t axis, the winding number of the I+ (or I−) is 8n + 4.
There is a subtlety as the fourfold singular point (54) can
be generically deformed into a nodal ring (or sphere) by a
symmetry-preserving perturbation, possibly opening the π

gap along the t axis. However, all the perturbations must
commute with the inversion-symmetry operator, or h(0, δt ),
ensuring that the symmetry-preserving nodal rings must cut
through the t axis. This establishes that the winding number
of I+ irrep along the time dimension at HsMs is indeed
invariant. From this fact, we can straightforwardly define the
second-order AFT Z2 index for the (4 + 1)D parent and the
Z4 index for the (3 + 1) descendant. Specifically, for the
(4 + 1)D parent,

ηAII
4D = 1

4

∑
HsM

ν1[RI+(HsM)] mod 2, (55)

where ηAII
4D = 1 (0) corresponds to the presence (absence)

of the second-order time-reversal-invariant 2D Dirac mode
across the quasienergy BZ and is only well defined when
ν5[R] = 0; while for the (3 + 1)D descendant,

ηAII
3D = 1

2

∑
HsM

ν1[RI+(HsM)] mod 4, (56)

where ηAII
3D = 0/1, 3/2 corresponds to the trivial/first-

order/second-order AFT, respectively. Lastly, for the (2 +
1)D descendant, the second-order AFT is trivial because the
(1 + 1)D class AII return map is trivial but the indicator for
the first-order AFT is nevertheless modified as

ηAII
2D = 1

2

∑
HsM

ν1[RI+(HsM)] mod 2. (57)

Before summing up the section, we clarify the ambiguity
in the choice of I+ versus I− subspace. From the AHSS
analysis,

∑
ν1[RI+(HsM)] + ∑

ν1[RI−(HsM)] = 2 × 2d ×
n, where the first factor of 2 is due to the Kramers pairs, 2d

is the number of HsMs, and n is an integer. As a result, the
substitution of I+ by I− does not change the value of our
defined invariants. We summarize the classification for class
D, DIII, and AII dimensional hierarchies in Table III where
except from the Z indices, the other Z2 and Z4 indices are all
derived from the winding number of the I+ subspace along
the t axis at HsMs, in the same spirit as the symmetry indica-
tors characterizing gapped Hamiltonians. Lastly, we note that
the topology of the Floquet bands can be added to the AFT

TABLE III. Classification of return map with inversion symme-
try. The Z indices are defined similar to the case without the inversion
symmetry while the Z4 and Z2 indices are defined from the 1D
winding number of the I along the time dimension at HsMs.

Class d Classification First order Second order

D 2 Z × Z2 � �
1 Z2 �

DIII 3 Z × Z2 � �
2 Z4 � �
1 Z2 �

AII 4 Z × Z2 � �
3 Z4 � �
2 Z2 �

indicators η to determine the boundary behavior across the
0-gap in the same manner as Eq. (40).

V. CLASS DIII DEMONSTRATIVE MODEL

In this section, we demonstrate our theory for (2 + 1)D
class DIII return maps where the first-order topology is char-
acterized by helical modes traversing the π gap while the
second-order one hosts inversion-symmetric corner Majorana
Kramers pairs. Experimentally, class DIII driven systems can
be realized on an optical lattice of BEC [30] or a Josephson
junction comprised of a nonmagnetic semiconductor sand-
wiched between two 2D superconductors [57]. Here, we do
not attempt to propose a realistic model but only provide a
minimal tight-binding model that exhibits various AFT phe-
nomena.

A. First-order AFT

We first demonstrate the first-order AFT with and without
the inversion symmetry by the tight-binding model

H (k, t ) = [J (t )(2 − cos kx − cos ky) − μ]s0σ3

+�(sin kxs3σ1 + sin kys0σ2) + ms2σ2. (58)

The Pauli matrices s and σ denote the spin and the particle-
hole degrees of freedom so that PHS and TRS are expressed
by P = s0σ1 and θ = is2σ0. Important, the presence of the
inversion symmetry I = s0σ3 ({PK, I} = 0) is controlled by
the parameter m such that the Hamiltonian is inversion sym-
metric for m = 0. The Hamiltonian includes common terms:
the hopping term J , the chemical potential μ, and the odd
pairing �. The time dependence is included in the hopping
strength by

J (t ) =
{

J0 − JD for t ∈ [0, T/4] ∪ [3T/4, T ],
J0 + JD for t ∈ (T/4, 3T/4). (59)

We choose J0 = 2, JD = 2
√

2, μ = −2, � = 1, T = π/4,
and m = 0(0.5) in the cases with (without) inversion
symmetry.

In Figs. 7(a) and 7(b), we present the simulation results in
the inversion-symmetry-breaking case (m = 0.5). The density
of states at the upper edge of a ribbon configuration clearly
shows the presence of helical boundary modes at both the
0 and π quasienergies, establishing the nontrivial first-order
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(a) (b) (c)
(d)

(e)

T/2 T

FIG. 7. (a) Density of states at the upper edge of a ribbon configuration under an inversion-symmetry-breaking driving Hamiltonian (m 	=
0), focusing on the helical AFT modes traversing the zero and π quasienergies. (b) Phase bands of RC+(T/2) along high-symmetry lines
�X , XM, and MY . The numbers denote the number of π -gap crossings modulo 2. The inset shows the phase bands of RC−(T/2). (c) Same
as (a) but for the inversion-symmetric case (m = 0). (d) Symmetry-preserving counterpart of (c) with the 1D winding number of the HsLs
identically trivial. (e) Phase bands along the t axis the M momentum point (π, π ) with the inset zooming in the fourfold-degenerate point at
the π quasienergy.

AFT in the (2 + 1)D class DIII return map. According to our
theory, this phase is characterized by the 1D winding number
of the C+ subspace over the HsLs �X and MY . Figure 7(b)
shows that ν1[R̄C+(�X, T/2)] = 1 and ν1[R̄C+(MY, T/2)] =
0, resulting in κDIII

2D = 1 consistence with the simulation on the
ribbon geometry. If we choose the C− subspace instead, the
topological invariant is unchanged up to modulo 2, showing
our bulk-boundary correspondence is uniquely defined.

By tuning m = 0, we impose the inversion symmetry
upon the system. Figure 7(c) shows that this action does
not affect the manifestation of the first-order AFT. How-
ever, the same invariant is no longer applicable. As shown
in Fig. 7(d), every time a band crosses the π gap in one
direction, there exists another band crossing the π gap in
the opposite direction, making the total number of crossings
identically zero. The winding numbers over the HsLs are thus
trivialized. This agrees with our analysis that the topological
information of the inversion-symmetry-preserving (2 + 1)D
return map is instead encoded in the winding number along
the time dimension at fixed HsMs. In Fig. 7(e), we demon-
strate that ν1[RI+(M )] = −2, our phase-band analysis also
shows ν1[RI+(X )] = ν1[RI+(Y )] = −2, establishing ηDIII

2D =
1 consistent with the first-order AFT displayed in the open-
boundary simulation.

B. Second-order AFT

According to our theory, to realize the second-order AFT,
we need at least eight bands. For this reason, we add another
orbital degrees of freedom, denoted by the Pauli matrices ρ.
The driving Hamiltonian is modified as

H (k, t ) = [J (t )(2 − cos kx − cos ky) − μ]ρ0s0σ3

+�(sin kxρ3s3σ1 + sin kyρ0s0σ2)

+ v(ρ2s3σ0 + ρ1s0σ3). (60)

The temporal modulation and the numerical value of
J (t ), μ, �, and T are similar to Eq. (58); the last term v =
0.2 couples two pairs of helical modes, creating the Kramers
pairs of Majorana corners.

Figures 8(a) and 8(b) exhibit the simultaneous existence
of majorana Kramers pairs at both the 0 and π quasiener-
gies, establishing this phase as the second-order AFT phase.
The phase-band analysis at HsMs shows that ν1[RI+(X )] =
ν1[RI+(Y )] = ν1[RI+(M )] = −4 (see Fig. 8 for the phase
band at M), leading to ηDIII

2D = 2 consistent with our derived
bulk-boundary correspondence. Our example has demon-
strated the merit of our classification scheme, and we expect
our theory to be readily applied into realistic Floquet systems.

VI. CONCLUSION

We have derived systematically the dynamic bulk-
boundary correspondence along the dimensional hierarchies
of classes BDI, D, DIII, and AII including both the first- and
second-order AFT protected by the inversion symmetry. We
rely on the fact that AFT arises from irremovable branch-cut
crossing and study the robustness of these crossings to obtain
the classification. Our derivation is organized into sequences
of decreasing dimensionality within each AZ class where the
parent (highest dimensionality) has Z classification related to
the total charge of bulk phase-band singularities. Advancing
along the hierarchy, the descendant system is classified by an
interpolating map between it and the identity operator. This
map is nothing but the higher-dimensional ascendant return

(a)

(b)

(c)

T/2 T

FIG. 8. (a), (b) Quasienergy levels and the density profile of the
in-gap modes at the zero (a) and π quasienergy gaps. (c) Phase bands
along the t axis the M momentum, the top subfigure shows the π -gap
crossing is actually composed of eight bands.
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map, allowing us to iteratively derive the classification and
the anomalous boundary behavior. Physically, the process can
be thought of the passing of phase-band singularities from
the parent to the descendants. However, the topological in-
variants characterizing the singularities depend highly on the
dimensionality and must be modified accordingly to describe
the descendant systems. This is a nontrivial task that so far has
only been achieved in isolated occasions.

Our work avoids the trial-and-error approach by im-
plementing the AHSS which is conventionally used for
computing K group of gapped Hamiltonians. Interestingly,
the process works equally well for unitary return map, as
a result from the similarity between the 10-fold periodic
tables for the gapped Hamiltonian and unitary loops. The
AHSS identifies subspace of the BZ where a topological in-
variant is robust. Specifically, the topological information is
encoded in HsMs for (1 + 1)D class D, in HsLs for (2 +
1)D, and (1 + 1)D class DIII, and in HsPs for (3 + 1)D and
(2 + 1)D class AII return maps. By introducing symmetry-
preserving perturbation to the phase-band singular points, we
prove this analysis indeed reflects the physical picture and
accordingly derive the dynamic bulk-boundary correspon-
dence.

With the inversion symmetry, the AFT landscape is greatly
enriched with the manifestation of higher-order anomalous
boundary modes. In our classification scheme, we regard
the second-order AFT as an emergence of a topological
lower-dimensional (d − 1)D subsystem inside the bulk of
the d − D system. By introducing a spatially modulated
π gap opening term so that it preserves symmetry globally,
we explicitly bring out the topological subsystem from the
bulk and relate its physical origin to a NCP that is pro-
tected by the inversion symmetry. Surprisingly, by studying
symmetry-preserving perturbations, we show that these sin-
gularities that give rise to the second-order AFT (as well as
first-order AFT in descendant systems) are pinned to the time

axis at HsMs, consistent with the AHSS analysis. This allows
us to obtain the dynamic version of symmetry indicators for
the AFT. It is noteworthy that not all systems with a spa-
tial symmetry admit the HsM indicators but our established
framework can be adapted in these situations as the AHSS
rigorously identifies the topological invariants rather than as-
suming their existence.
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APPENDIX A: BUILDING BLOCK OF THE WINDING
NUMBER

In this Appendix, we prove that in a d-dimension BZ with
odd d = 2n + 1, a structure described by

U (k) =
{− exp [i(kiOi, jγ j )],

∣∣∑
j (kiOi, j )

2 � π2

1, otherwise
(A1)

has the winding number ±1 and thus can be regarded as the
building block for the nontrivial winding number. Due to the
anticommutation between Clifford generators γ , the exponent
can be expressed as

exp[i(kiOi, jγ j )] = 1 cos θ + i sin θ

θ
θ jγ j, (A2)

where θ j = kiOi, j and θ =
√∑

θ2
j with 0 � θ � π . We can

further define a vector A = (A0, A1, . . . , Ad )T with A0 =
cos θ and Aj = sin θ/θ . We note that AαAα = 1, defining a
d-dimension hypersphere. The new set of matrices are also
defined by γ̃0 = 1 and γ̃ j = iγ j so that γ̃iγ̃

†
j = −γ̃ j γ̃

†
i . We

first need to manipulate the integrand

Tr
[(

U †∂kα1
U

)(
U †∂kα2

U
)
. . .

(
U †∂kαd

U
)] = Tr

[
U †∂kα1

U∂kα2
U † . . . ∂kαd

U
]

= Tr
[
γ̃

†
β0

γ̃β1 γ̃
†
β2

. . . γ̃βd

]
Aβ0∂kα1

Aβ1∂kα1
Aβ1 . . . ∂kαd

Aβd

= 2ni3n+1εβ0β1β2...βd

(
Aβ0∂kα1

Aβ1∂kα1
Aβ1 . . . ∂kαd

Aβd
)

= i(−2i)nDet
[
A, ∂kα1

A, ∂kα2
A, . . . , ∂kαd

A
]

= i(−2i)nDet
[
A, ∂θα1

A, ∂θα2
A, . . . , ∂θαd

A
]
Det[O].

(A3)

The value of the Tr is obtained inductively from the “anticommutation” and fact that 2Aα∂βAα = ∂β (AαAα ) = 0. On one hand,∫
dd k = ∫

dθd |Det[O]|−1, allowing us to rewrite the winding-number integral as∫
BZ

εα1,α2,...,αd Tr
[(

U †∂kα1
U

)(
U †∂kα2

U
)
. . .

(
U †∂kαd

U
)]

dd k = i(−2i)n(2n + 1)!�2n+1sign{Det[O]}

= (−2iπ )n+1 (2n + 1)!

n!
sign{Det[O]}, (A4)

where �n is the solid angle of the n sphere. By plugging in the
above integral into the winding-number definition in Eqs. (9)
and (10), we prove that

ν2n+1[U ] = sign{Det[O]} = ±1. (A5)

We note that this result does not depend explicitly on the
form of O, i.e., the singularity can be adiabatically deformed
without changing the invariant winding number.
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APPENDIX B: BOUNDARY OF Z-INDEXED AFT

In the main text, we derive the boundary signature of the
Z2-indexed descendant from the boundary of the Z-indexed
parent for each dimensional hierarchy. In this section, we
obtain the boundary behavior of a return map with Z clas-
sification through direct calculation. This Z classification is
related to either class A for odd space-time dimensions or
class AIII for even space-time dimensions. We first study the
former case.

The class A Z classification is realized in a return map
with even d = 2n + 2 spatial dimensions, its boundary thus
has odd 2n + 1 dimensions in space. We assume a generalized
ribbon geometry with two surfaces perpendicular to the dth
dimension. As a result, the return map in this geometry can be
approximately partitioned into the boundary and bulk parts as

R̃(k, t ) =
⎛
⎝R̃1(k, t ) 0 0

0 R(k, t ) 0
0 0 R̃3(k, t )

⎞
⎠, (B1)

where k = (k1, k2, . . . , kd−1)T . The first and third rows corre-
spond to the upper and lower surface, while the middle row

represents the bulk return map that satisfies the periodic con-
dition R(k, t ) = R(k, t + T ). We can also define an auxiliary
matrix

Q =
⎛
⎝0 0 0

0 Q2 0
0 0 1

⎞
⎠ (B2)

to select the anomalous behavior only at the lower boundary.
For conciseness, we use the notation M̃α = R̃†∂kα

R̃ with a
derivative identity

∂kβ
M̃α = −M̃βM̃α + R̃†∂kβkα

R̃, (B3)

where the symmetric term can be canceled by adding total
derivatives that do not contribute the integral over the BZ, so
we only need to keep the antisymmetry term. By using the
same formula for the winding number, we can compute the
number of branch-cut-crossing Dirac modes on the boundary,

χDirac = (−1)nn!

(2n + 1)!

(
i

2π

)n+1 ∫
εα1α2...α2n+1 Tr

[
M̃α1 M̃α2 . . . M̃α2n+1 .Q

]
d2n+1k

= (−1)nn!

(2n + 1)!

(
i

2π

)n+1 ∫
εα1α2...α2n+1∂t Tr

[
M̃α1 M̃α2 . . . M̃α2n+1 .Q

]
d2n+1k dt

= (−1)nn!

2(2n + 1)!

(
i

2π

)n+1 ∫
εα0α1...α2n+1 Tr

[
M̃α0 M̃α1 . . . M̃α2n+1

[
Q, M̃α2n+1

]]
d2n+2k.

(B4)

In the last row, we identify t ≡ k0 so that α0,...,2n+1 ∈ {0, . . . , 2n + 1} and the total derivatives we add to cancel symmetric terms
are with respect to the spatial momentum. From the construction of Q, the commutation is only nonzero for the bulk (the middle
row of R̃) so that we can make the substitution R̃ → R and accordingly M̃ → M. We also have the following identity from the
construction of Q [33]:

Tr{A[Q, B]} = i

2π

∫
dkd A(kd )∂kd B(kd ). (B5)

The number of boundary Dirac modes is given by

χDirac = (−1)nn!

2(2n + 1)!

(
i

2π

)n+2 ∫
εα0α1...α2n+1 Tr

[
Mα0 Mα1 . . . Mα2n

(
∂k2n+2 Mα2n+1

)]
d2n+3k

= (−1)nn!

2(2n + 1)!

(
i

2π

)n+2 −1

2n + 3

∫
εα0α1...α2n+2 Tr

[
Mα0 Mα1 . . . Mα2n+1 Mα2n+1

]
d2n+3k

= ν2n+3[R].

(B6)

We have generalized the proof in Ref. [33] to arbitrary odd
space-time dimensions, showing that the Z index of class A
return maps gives the number of boundary Dirac modes across
the branch cut. On the other hand, as presented in the main
text in details, gapless chiral systems can be thought of as

an enlarged system with an artificial dimension β where the
chiral symmetry flips the β parameter, thus pinning the nodal
point to β = 0. As a result, the Z index of class AIII return
maps analogously provides the number of even-dimensional
chiral Dirac modes on the boundary.
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Phys. Rev. Lett. 114, 106806 (2015).
[44] D. D. Vu, R.-X. Zhang, Z.-C. Yang, and S. Das Sarma, Phys.

Rev. B 104, L140502 (2021).
[45] K. Shiozaki, M. Sato, and K. Gomi, arXiv:1802.06694.
[46] L. Stehouwer, J. de Boer, J. Kruthoff, and H. Posthuma,

arXiv:1811.02592.
[47] N. Okuma, M. Sato, and K. Shiozaki, Phys. Rev. B 99, 085127

(2019).
[48] S.-J. Huang and Y.-T. Hsu, Phys. Rev. Research 3, 013243

(2021).
[49] Y. Chen, S.-J. Huang, Y.-T. Hsu, and T.-C. Wei,

arXiv:2109.06959.
[50] X. L. Qi, T. L. Hughes, and S. C. Zhang, Phys. Rev. B 78,

195424 (2008).
[51] S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig,

New J. Phys. 12, 065010 (2010).
[52] Z. Wang, X.-L. Qi, and S.-C. Zhang, New J. Phys. 12, 065007

(2010).
[53] A. M. Turner, Y. Zhang, R. S. K. Mong, and A. Vishwanath,

Phys. Rev. B 85, 165120 (2012).
[54] C. Fang, M. J. Gilbert, and B. A. Bernevig, Phys. Rev. B 86,

115112 (2012).
[55] B. J. Wieder and B. A. Bernevig, arXiv:1810.02373.
[56] J. Yu, Z.-D. Song, and C.-X. Liu, Phys. Rev. Lett. 125, 036401

(2020).
[57] R. X. Zhang and S. Das Sarma, Phys. Rev. Lett. 127, 067001

(2021).

064304-17

https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1126/science.1133734
https://doi.org/10.1103/PhysRevLett.98.106803
https://doi.org/10.1103/PhysRevB.76.045302
https://doi.org/10.1103/PhysRevB.75.121306
https://doi.org/10.1103/PhysRevB.79.195322
https://doi.org/10.1103/PhysRevLett.106.106802
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1103/PhysRevLett.119.246402
https://doi.org/10.1103/PhysRevLett.119.246401
https://doi.org/10.1103/PhysRevB.97.205136
https://doi.org/10.1103/PhysRevB.98.081110
https://doi.org/10.1038/s41467-016-0009-6
https://doi.org/10.1103/PhysRevB.98.115150
https://doi.org/10.1103/PhysRevX.8.031070
https://doi.org/10.1103/PhysRevX.7.041069
https://doi.org/10.1103/PhysRevLett.99.047401
https://doi.org/10.1103/PhysRevLett.105.017401
https://doi.org/10.1038/nphys1926
https://doi.org/10.1103/PhysRevB.89.121401
https://doi.org/10.1103/PhysRevLett.113.266801
https://doi.org/10.1038/nature12066
https://doi.org/10.1038/ncomms13756
https://doi.org/10.1038/nature13915
https://doi.org/10.1103/PhysRevLett.114.125301
https://doi.org/10.1038/s41598-018-20604-w
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1103/PhysRevLett.106.220402
https://doi.org/10.1103/PhysRevX.3.031005
https://doi.org/10.1088/1367-2630/17/12/125014
https://doi.org/10.1103/PhysRevResearch.2.033045
https://doi.org/10.1038/s41467-021-26092-3
https://doi.org/10.1103/PhysRevB.96.155118
https://doi.org/10.1103/PhysRevResearch.2.013124
https://doi.org/10.1103/PhysRevB.93.115429
https://doi.org/10.1103/PhysRevB.90.125143
http://arxiv.org/abs/arXiv:2010.07945
https://doi.org/10.1103/PhysRevB.104.L020302
https://doi.org/10.1103/PhysRevLett.114.106806
https://doi.org/10.1103/PhysRevB.104.L140502
http://arxiv.org/abs/arXiv:1802.06694
http://arxiv.org/abs/arXiv:1811.02592
https://doi.org/10.1103/PhysRevB.99.085127
https://doi.org/10.1103/PhysRevResearch.3.013243
http://arxiv.org/abs/arXiv:2109.06959
https://doi.org/10.1103/PhysRevB.78.195424
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1088/1367-2630/12/6/065007
https://doi.org/10.1103/PhysRevB.85.165120
https://doi.org/10.1103/PhysRevB.86.115112
http://arxiv.org/abs/arXiv:1810.02373
https://doi.org/10.1103/PhysRevLett.125.036401
https://doi.org/10.1103/PhysRevLett.127.067001

