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Lattice dynamics with molecular Berry curvature: Chiral optical phonons
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Under the Born-Oppenheimer approximation, the electronic ground state evolves adiabatically and can
accumulate geometrical phases characterized by the molecular Berry curvature. In this work, we study the
effect of the molecular Berry curvature on the lattice dynamics in a system with broken time-reversal symmetry.
The molecular Berry curvature is formulated based on the single-particle electronic Bloch states. It manifests
as a nonlocal effective magnetic field in the equations of motion of the ions that are beyond the widely
adopted Raman spin-lattice coupling model. We employ the Bogoliubov transformation to solve the quantized
equations of motion and to obtain phonon polarization vectors. We apply our formula to the Haldane model
on a honeycomb lattice and find a large molecular Berry curvature around the Brillouin zone center. As a
result, the degeneracy of the optical branches at this point is lifted intrinsically. The lifted optical phonons show
circular polarizations, possess large phonon Berry curvature, and have a nearly quantized angular momentum
that modifies the Einstein-de Haas effect.
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I. INTRODUCTION

The Born-Oppenheimer approximation assumes an adia-
batic evolution of electronic states following motion of the
ions [1]. During the evolution, the electronic ground state
can accumulate nontrivial geometrical phase in the absence
of time-reversal symmetry [2,3]. The influence of this phase
on the ion’s dynamics was discussed first by Mead and
Truhlar in molecules [2], which was later identified as an
electronic Berry phase with respect to the ion’s displacement
[3] and dubbed as a molecular Berry phase [4]. In magnetic
molecules, the molecular Berry phase can induce vibration
modes with nonzero angular momentum [5].

In a periodic lattice, the molecular Berry curvature associ-
ated with this phase can influence directly the lattice dynamics
and therefore the properties of the phonons [6–13]. In the
long-wavelength limit, this Berry curvature manifests as a
Hall viscosity [8–10] that can modify the dispersion, polariza-
tion, and transport properties of the long-wavelength phonons
[6,7,11,12]. By considering a finite overlap between electronic
wave functions on neighboring sites, a recent work studied the
molecular Berry curvature induced by a magnetic field B in a
nonmagnetic insulator in the linear order of B [14]. However,
the molecular Berry curvature in a Bloch system without a
uniform magnetic field has not been explicitly studied [15].
A Bloch-wave-function-based formula of the molecular Berry
curvature is highly desired [16].

In this work, we explore the effect of molecular Berry
curvature on the lattice dynamics in the absence of a uniform
magnetic field. In an electronic system that breaks the time-
reversal symmetry and respects the translational symmetry
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we formulate the molecular Berry curvature by using single-
particle Bloch wave functions and assuming the many-body
electronic ground state as a Slater determinant. The molecular
Berry curvature influences the lattice dynamics as an effective
magnetic field, which, however, is nonlocal. We then employ
the Bogoliubov transformation to solve the quantized equation
of motions and to obtain the spectrum and polarization vector
of the phonons.

We apply the formula to the Haldane model of a honey-
comb lattice. The molecular Berry curvature exhibits a peak
value at the Brillouin zone center. The peak value depends
strongly on the electronic band gap and the electronic band
topology. The narrow distribution of the molecular Berry cur-
vature in momentum space indicates that, in real space, one
atom can be influenced by the velocity of another atom far
away. With the molecular Berry curvature, the double degen-
eracy of the optical phonons at the Brillouin zone center is
lifted intrinsically, in contrast to the splitting induced extrinsi-
cally by the magnetic field [17–24]. The polarization vectors
become left and right handed, separately, which carry nonzero
angular momenta contributing to a nonzero zero-point angular
momentum of the lattice vibration [25]. The phonon modes
also carry nonzero phonon Berry curvature and contribute to
the phonon thermal Hall effect, which attracts much attention
in experiments recently [26–29].

II. MOLECULAR BERRY CURVATURE
AND PHONON POLARIZATION

A. Molecular Berry curvature

Under the Born-Oppenheimer approximation, electrons
stay at their instantaneous ground state |�0({R})〉 at a
given time with lattice configuration {R}. When the lattice
configuration evolves, the electronic ground state evolves
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adiabatically and accumulates a geometrical phase, which in
turn can modify the lattice dynamics. The geometrical phase
manifests itself as a gauge field Al,κ in the lattice Hamiltonian
(it was originally reported by Mead and Truhlar [2] and an
alternative derivation is shown in Appendix A)

HL =
∑
l,κ

1

2Mκ

(pl,κ − h̄Al,κ ({R}))2 + Veff({R}) (1)

where pl,κ = −ih̄∇l,κ with ∇l,κ = ∂/∂Rl,κ is the canonical
momentum of the κth atom at the lth unit cell with a co-
ordinate Rl,κ and a mass Mκ . The scalar potential Veff ({R})
is contributed from the Coulomb interaction of the ions
and the electrons whereas the vector potential Al,κ ({R}) =
i〈�0({R})|∇l,κ�0({R})〉 is the molecular Berry connection
that describes the geometrical phase of the electronic ground
state. Although the molecular Berry connection is gauge de-
pendent, it can give rise to a gauge invariant molecular Berry
curvature [7,30]

Gκα
κ ′β (Rl , Rl ′ ) = 2Im

〈
∂�0

∂Rl ′,κ ′β

∣∣∣∣ ∂�0

∂Rl,κα

〉
(2)

where the indices α, β represent the Cartesian components of
the coordinates. One can proceed further under the assump-
tion that every lattice point vibrates around its equilibrium
position with {R} = {R0

l,κ + ul,κ , l = 1, . . . , N ; κ = 1, . . . , r}
where the equilibrium position R0

l,κ ≡ R0
l + dκ with R0

l being
the equilibrium position of the lth unit cell, dκ being the
relative position of the κth ion, and ul,κ being its displace-
ment. At the equilibrium configuration, the Berry curvature
Gκα

κ ′β (Rl , Rl ′ ) exhibits translational symmetry that depends on

R0
l − R0

l ′ only.
In the following, we consider a symmetric gauge [31],

which exists near the equilibrium position as shown in
Appendix B, such that

Al,κα = −1

2

∑
κ ′,β,l ′

Gκα
κ ′β
(
R0

l − R0
l ′
)
ul ′,κ ′β. (3)

By taking the advantage of the translational invariance, we
express the lattice Hamiltonian in momentum space

HL =
∑
k,κ

1

2Mκ

[pκ (−k) − h̄Aκ (−k)][pκ (k) − h̄Aκ (k)]

+ Veff({u(k)}) (4)

where the momentum-space Berry connection

Aκα (k)
.= 1√

N

∑
l

Al,καe−ik·R0
l = −1

2

∑
κ ′,β

Gκα
κ ′β (k)uκ ′β (k)

with

uκ (k) = 1√
N

∑
l

ul,κe−ik·R0
l

pκ (k) = 1√
N

∑
l

pl,κe−ik·R0
l

Gκα
κ ′β (k) = 1

N

∑
l

∑
l ′

Gκα
κ ′β
(
R0

l − R0
l ′
)
e−ik·(R0

l −R0
l′ ). (5)

We further express the momentum-space molecular Berry
curvature in a gauge invariant form by employing a set of
many-body wave function {|�n〉} with the completeness re-
lation

∑
n |�n〉〈�n| = 1 and associated eigenenergy En. By

using the identity 〈�n|Mk,κα|�n′ 〉 = 〈 ∂�n
∂u−k,κα

|�n′ 〉(En − En′ )
for n′ �= n, the molecular Berry curvature reads

Gκα
κ ′β (k) =i

∑
n �=0

[ 〈�0|Mk,κα|�n〉〈�n|M−k,κ ′β |�0〉
(En − E0)2

]

− {Mk,κα ↔ M−k,κ ′β} (6)

where E0 is the energy of the electronic ground state, En is
for the excited states, Mk,κα = ∂He

∂u−k,κα
|u−k,κα→0 represents the

electron-phonon coupling with He being the electronic Hamil-
tonian that depends on the atomic coordinates. By further
taking {|�n〉} as Slater determinant, the above formula can
be expressed in terms of single-particle Bloch wave functions
as detailed in Appendix D. This expression can readily be
applied to a specific model using the first-principles approach.

B. Phonon polarization vectors

We further simplify the notation by normalizing the coordi-
nates and expressing the Hamiltonian in terms of matrices. We
first define column vectors pk = (. . . pκα (k)/

√
Mκ . . . )T and

uk = (. . .
√

Mκuκα (k) . . . )T . For the two-dimensional system
studied in this work, there are 2r elements. We also define
the matrix G̃k with elements G̃k(κα, κ ′β ) = h̄

2
√

Mκ Mκ′
Gκα

κ ′β (k)

(see Appendix E). By expressing the potential energy in
a quadratic form [32] Veff({u(k)}) = 1

2 u†
kKkuk, the lattice

Hamiltonian reads

HL =
∑

k

1

2

(
uk

pk

)†(
Dk G̃†

k
G̃k 1

)(
uk

pk

)
(7)

where Dk = Kk + G̃†
kG̃k. It is noted that Dk here is different

from that in Ref. [7]. The corresponding canonical equations
of motion are [33]:(

u̇k

ṗk

)
=
(

∂HL
∂ p−k

− ∂HL
∂u−k

)
=
(

G̃k 1
−Dk G̃k

)(
uk

pk

)
. (8)

We then introduce the canonical transformation

uk =
∑

ν

√
h̄

ω0
(γ ∗

ν b†
−k,ν

+ γνbk,ν ) (9)

pk =
∑

ν

i
√

h̄ω0(γ̄ ∗
ν b†

−k,ν
− γ̄νbk,ν ) (10)

to diagonalize the Hamiltonian as

HL =
∑
k,ν

h̄ωk,ν

(
b†

k,ν
bk,ν + 1

2

)
(11)

where b†
−k,ν

and bk,ν are the creation and annihilation oper-
ators of the phonon modes. These operators are constrained
by the commutation relation [bk,ν , b†

k′,ν ′ ] = δk,k′δν,ν ′ and the
Heisenberg equations of motion

ḃk,ν = −iωk,νbk,ν

ḃ†
−k,ν

= iω−k,νb†
−k,ν

. (12)
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Assisted by these identities, the phonon energy ωk,ν and the
polarization vector ψν = (γν, γ̄ν )T need to satisfy the eigen-
value equation

ωk,νψν =
(

iG̃k ω0
Dk
ω0

iG̃k

)
ψν (13)

which can be obtained by substituting Eqs. (9) and (10) into
Eq. (8). The eigenvalues show particle-hole symmetry like
property [6], i.e., ων,k = −ω−ν,−k. Only the positive branches
are physically allowed since only the wave functions for those
branches can make the commutation relation [bk,ν , b†

k′,ν ′ ] =
δk,k′δν,ν ′ valid with the normalization condition ψ†

ν σxψν = 1.
One can transform the non-Hermitian problem to a Hermi-

tian one. By multiplying Eq. (13) with σx from left, one can
find that

ωk,νσxψν = 
kψν (14)

with the Hermitian matrix


k =
( Dk

ω0
−iG̃†

k

iG̃k ω0

)
.

Multiplying Eq. (14) with 

1
2
k σx from the left side and intro-

ducing a new set of eigenstates ψ̃ν = 

1
2
k ψν , where 


1
2
k is also

Hermitian, we come to a Hermitian eigenvalue problem as

ωk,νψ̃ν = 

1/2
k σx


1/2
k ψ̃ν = Heffψ̃ν (15)

where the effective Hamiltonian Heff is Hermitian.

III. LATTICE DYNAMICS IN HALDANE MODEL

A. Electronic model and molecular Berry curvature

In this section, we present a case study on the dynamics
of the honeycomb lattice. In the harmonic approximation, the
atoms are considered connected by springs with longitudinal
and transverse spring constants KL and KT , respectively. De-
tails of this model can be found in Appendix E.

The time-reversal symmetry is broken by the electronic
property described by the Haldane model [34] with a tight-
binding Hamiltonian

He = −
∑
〈i, j〉

ta†
i b j + H.c.−

∑
〈〈i, j〉〉

t ′eiφi j a†
i a j−

∑
〈〈i, j〉〉

t ′e−iφi j b†
i b j

=
∑

q

(
a†

q b†
q

)
H(q)

(
aq

bq

)
(16)

where ai (a†
i ) and bi (b†

i ) are electron creation (annihilation)
operators of A and B sublattices, respectively, in the ith unit
cell. The first line represents the nearest neighbor hopping
with the hopping energy t while the second line represents
the next-nearest neighbor hopping with a flux φi j attached to
it. We set φi j = ±π/2 for clockwise/anticlockwise hoppings.
The lattice Hamiltonian can also be expressed in momentum
space with kernel H(q) and q running over the first Brillouin
zone. The single-particle Bloch eigenstates for the conduction
and valence bands are denoted as φc,v

q with corresponding
eigenenergies εc,v

q . The Bloch bands are plotted in Fig. 1(a).
The phonons couple to the electronic system through the

dependence of the hopping energies t and t ′ on the lattice

FIG. 1. (a) Electronic band structure represented in the Brillouin
zone. Gap openings at the K and K ′ points are due to broken time-
reversal symmetry. (b) Real part of the electronic contribution to the
molecular Berry curvature GAx

Ay at the k = 0 limit (� point). (c) Real
part of the molecular Berry curvature GAx

Ay in the phonon Brillouin
zone. Largest electronic contributions come from the K and K ′ points
[see Fig. 1(b)]. (d) Dependence of the peak of the Berry curvature
GAx

Ay (k = 0) on the lattice parameters ∂dt, t , and t ′.

displacement {u}. The nearest-neighbor hopping energy t
depends on the relative distance d between the two atoms.
When the interatomic distance changes by δd due to atomic
displacement, t changes by ∂dtδd . Here we set t ′ as a constant
for simplicity.

In this work, we consider the electronic insulating system
with the lower Bloch band being completely filled. In the
noninteracting case, the many-body ground state |�0〉 and the
excited one |�n〉 can be expressed as the Slater determinant
of single-particle states. One thus can calculate the Berry
curvature shown in Eq. (6) by using the single-particle states.
We can take the Berry curvature induced by the motion of A
sublattices along x and y directions as an example, which can
be expressed as

GAx
Ay (k) = i

N

∑
q

[
φv†

q Mk,Axφ
c
q+k

][
φ

c†
q+kM−k,Ayφ

v
q

]
(
εc

q+k − εv
q

)2

− i

N

∑
q

[
φ

v†
q+kM−k,Ayφ

c
q

][
φc†

q Mk,Axφ
v
q+k

]
(
εc

q − εv
q+k

)2 (17)

where M±k,Ax/Ay represent the electron-phonon couplings as
detailed in Appendix D that couple the electronic states with a
momentum difference of k. In Fig. 1(b), we plot the contribu-
tion from each electronic momentum q to the molecular Berry
curvature GAx

Ay (k) at k = 0. This corresponds to the phonon
induced virtual direct interband transition process with the
peak contribution concentrating at K and K ′ valley. The de-
pendence of GAx

Ay (k) on k is plotted in Fig. 1(c) where one can
find that the Berry curvature shows a peak at the phonon Bril-
louin zone center. By using reasonably realistic parameters,
e.g., t = 3 eV, t ′ = 0.02 eV, ∂dt = 1 eV/Å, we find that the
peak of molecular Berry curvature corresponds to an effective
magnetic field of ∼103 T. Thus, the effect of molecular Berry
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curvature can be large in materials with narrow electronic
band gap, e.g., topological materials. In the small gap limit,
we find an analytical formula for the peak value GAx

Ay (k = 0) =
3

2πa2 C(∂dt/t )2 where C is the Chern number of the system
as plotted in Fig. 1(d). It is noted that the molecular Berry
curvature vanishes at K and K ′ points due to the vanishing of
the matrix elements in ∂x,yH between conduction and valence
bands at different valleys in this model.

The formula above can be adopted by the first principle
calculation directly, which is thus essential for exploring the
phonon Hall effect in magnetic materials. The GAx

Ay is an anal-
ogy of the effective magnetic field in the Raman spin-lattice
coupling model [35–40]. In the Raman spin-lattice coupling
model, the motion of ul,Ax can only be influenced by u̇l,Ay

on the same site. In contrast, the molecular Berry curvature
distributes sharply around the Brillouin zone center. This dis-
tribution indicates that, by Fourier transforming back to the
real space, the displacement ul,Ax can be influenced by the
velocity u̇l ′,Ay that is far away.

Moreover, the G matrix also has off-diagonal blocks with
nonzero matrix element GAx

By, which reflects the correlation
between the motions of the A and the B atoms. The amplitude
of this term is comparable with GAx

Ay such that GAx
Ay = −GAx

By
at k = 0. The off-diagonal block is thus important, which
was completely neglected in the traditional Raman spin-lattice
coupling and can lead to a gap opening of the degenerate
acoustic bands [6,7]. Therefore, the molecular Berry curvature
is a better choice to explore the influence of electronic states
on phonons in a unified way.

B. Phonon spectrum and chiral optical phonons

Once the Berry curvature is calculated for our model we
can find the phonon spectrum using Eq. (15). The result of the
numerical calculation of this equation is presented in Fig. 2.
In this figure, we can see a gap opening between the optical
branches at the � point. This band gap is proportional to the
molecular Berry curvature. To show this relation, we employ
the perturbation method since G̃†

kG̃k � Kk. From Eq. (14),
one can find that

ω2
k,νγν = Kkγν + 2iωk,νG̃kγν. (18)

The second term on the right hand side is treated as a per-
turbation. The unperturbed eigenvalues ω1,2 and eigenstates
γ 0

1,2 for the optical branches at the � point can be obtained
from ω2

kγ
0
ν = Kkγ

0
ν . The solutions are ω1,2 = ω� and γ 0

1 =√
ω0

4ω�
(1 0 −1 0)T and γ 0

2 =
√

ω0
4ω�

(0 1 0 −1)T .

In the presence of the perturbation, the general eigenstate
can be expressed as a linear combination γ̃ = c1γ

0
1 + c2γ

0
2

with c1 and c2 being some constants to be determined. By
expanding the phonon eigenvalue at the � point to the first
order as ω = ω� + δω, one can find that

δω

(
c1

c2

)
= 2iω�

ω0

(
γ 0

1
†
G̃kγ

0
1 γ 0

1
†
G̃kγ

0
2

γ 0
2

†
G̃kγ

0
1 γ 0

2
†
G̃kγ

0
2

)(
c1

c2

)
(19)

where γ 0
i

†
γ 0

j = ω0
2ω�

δi j is employed. Since G̃†
k = −G̃k, the

matrix on the right hand side is Hermitian. Thus the diago-
nal terms are zero. We find that, by setting c1 = 1/

√
2 and

FIG. 2. (a) Phonon spectrum in the presence of molecular Berry
curvature. Gap opening of the optical bands (upper two bands)
around the � point is due to the effect of molecular Berry cur-

vature, where δω = �

√
KL
M . Here KL = 10−3 eV/Å2 is an in-plane

longitudinal and KT = KL/4 is an in-plane transfers effective spring
constants. Inset: Two separate phonon modes corresponding to the
frequency at the � point. The upper phonon band (red color) corre-
sponds to the circular vibrations of atoms in the clockwise direction,
and the lower band (blue color) corresponds to the circular vibration
in the counter-clockwise direction. The difference of energies of
these two modes is δE = h̄δω. (b) Phonon Berry curvature of the
upper optical band with the corresponding color plot. The upper and
lower optical bands have corresponding Chern numbers of +1 and
−1, respectively. Acoustic bands have zero Chern numbers.

c2 = ±i/
√

2, the above matrix can be diagonalized with the
phonon energy shifts δω = ± h̄

M Re[G(k = 0)]. Therefore, the
optical phonons are split and the phonon polarizations become
right- and left-handed polarized. The splitting of the phonon
branches at the Brillouin zone center is expected to be observ-
able in optical spectral experiments.

We would like to point out that, in the absence of the
molecular Berry curvature, the dynamical matrix can be writ-
ten as a real matrix at the Brillouin zone center. As a result, the
phonons are always linearly polarized. In the presence of the
molecular Berry curvature, however, phonons at the � point
become circularly polarized. This is different from the chiral
phonon at the Brillouin zone corner, which has a degenerate
state at the opposite momentum [41].

By using the phonon wave function, one can also define a
phonon Berry connection and phonon Berry curvature [38].
In Fig. 2(b), we plot the phonon Berry curvature along the
high-symmetric line for the higher optical branch. Peaks ap-
pear at the points where the phonon polarization changes from
circular around the � point to linear away from that point.
The phonon Berry curvature contributes to a nonzero Chern
number 1. The Chern number for the lower optical branch is
−1 whereas the acoustic branches have zero Chern numbers.
Associated with the spectrum splitting, the Berry curvature of
optical branches can also contribute to the thermal Hall effect
[26–29].

C. Phonon angular momentum

The circular polarization of phonons also gives rise to
nonzero phonon angular momentum [25] that can be ex-
pressed as

Jph =
∑

lα

ulα × u̇lα. (20)
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FIG. 3. (a) Contribution of each phonon band to the total phonon
angular momentum, where lz

k,ν
represents the angular momen-

tum of each branch without the distribution, such that 〈Jph
z 〉 =∑

k Jz(k) = ∑
k,ν lz

k,ν
( 1

2 + f (ωk,ν )). (b) Spectrum of total phonon an-
gular momentum Jz(k) from all four branches in the limit T → 0 K.
(c) Phonon angular momentum of each unit cell in real space. The
angular momentum vanishes in a classical limit T → ∞.

For a two-dimensional system, the vertical component of the
angular momentum becomes Jph

z = ∑
l,κ (ux

lκ u̇y
lκ − uy

lκ u̇x
lκ ). It

can also be written in a matrix product form

Jph
z =

∑
k

u†
kLu̇k =

∑
k

u†
kL(pk + G̃kuk) (21)

where L is a real 2r × 2r antisymmetric matrix for a system
with r atoms per unit cell. By using the second quantized
expression for the canonical variables of atoms [Eqs. (9) and
(10)], we calculate the angular momentum for each phonon
branch [Fig. 3(a)]. We find that the phonon angular momen-
tum of both acoustic branches vanish whereas the circularly
polarized optical branches are nearly quantized. This is in
contrast with the phonon angular momentum obtained by us-
ing the Raman spin-lattice model which neglects the nonlocal
effective magnetic field [25,42]. In those calculations, the
acoustic phonons at the Brillouin zone center split and can
carry nonzero energy and nonzero angular momentum. The
splitting of the acoustics bands is induced by breaking the
Galilean translational symmetry due the Raman spin-lattice
coupling term that meant to serve as an analogy to a uniformly
charged lattice under a real magnetic field. This symmetry is
respected by the molecular Berry curvature.

By summing over the angular momentum of all the phonon
branches, we find a nonzero value as illustrated in Fig. 3(b).
This indicates a finite zero-point lattice angular momentum in
the zero temperature limit. At finite temperature, the thermal
averaged phonon angular momentum is

〈
Jph

z

〉 = −
∑
k,ν

γ †
ν Lγν

(
i2h̄ωk,ν

ω0

)(
1

2
+ f (ωk,ν )

)
. (22)

Here we used bk,νb†
k,μ

= δμ,ν + b†
k,μ

bk,ν , 〈b†
k,μ

b†
k′,ν〉 =

〈bk,μbk′,ν〉 = 0 and 〈b†
k,μ

bk,ν〉 = f (ωk,ν )δμ,ν , where

f (ωk,ν ) = 1
eβ h̄ωk,ν −1

is the Bose-Einstein distribution. In
low temperature regime, the phonon angular momentum has
a finite value as shown in Fig. 3(c). In this limit, an analytic
expression for the phonon angular momentum at the � point
can be found by using the perturbative approximation as:

〈
Jph

z

〉
�

= h̄2

Mω�

Re(G(k = 0)) (23)

which is consistent with the numerical calculations of
Eq. (22). As the temperature increases, the thermal averaged
phonon angular momentum tends to go to zero. As T → ∞,
Eq. (22) approximates to

〈
Jph

z

〉 = −
∑
k,ν

γ †
ν Lγν

(
2ikBT

ω0
+ ih̄2ω2

k,ν

6ω0kBT

)
(24)

where the first term vanishes because
∑

ν γ †
ν Lγν = 0 (see

Appendix G) and the second term decreases as 1/T .

IV. SUMMARY

We formulated the molecular Berry curvature by using
the single-particle Bloch wave functions in the absence of
a uniform magnetic field. We studied its effect on the lat-
tice dynamics and thus phonons. The quantized equations
of motion of the lattice are solved by using the Bogoliubov
transformation. We applied our theory to the Haldane model
of a honeycomb lattice. For this model, the molecular Berry
curvature is narrowly distributed around the Brillouin zone
center, which indicates that, in real space, the motion of an
ion can be influenced by the velocity of another atom that
is far away. This is different from the Lorentz force on the
nuclei induced by a magnetic field as well as the widely
adopted Raman spin-lattice coupling model. The molecular
Berry curvature lifts the degeneracy of optical phonons at the
� point forming chiral phonons with left- and right-handed
polarizations. These modes carry nonzero angular momen-
tum and contribute to a nonzero total angular momentum
in the low temperature limit and thus modify the Einstein-
de Haas effect. These optical branches also carry nonzero
phonon Berry curvature that can contribute to the thermal Hall
effect.
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APPENDIX

1. Effective lattice Hamiltonian from the time-dependent
variational principle

The state of electrons is governed by the time-dependent
Schrödinger equation. By assuming a normalized condition, it
can be derived from the time-dependent variational principle
with Lagrangian Le = 〈�0|ih̄dt − He|�0〉 by minimizing the
action with respect to any variation of 〈�0| in the bra space.
Under the Born-Oppenheimer approximation, the electronic
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state lies at the instantaneous ground state of the Hamilto-
nian He that depends on the lattice configuration {R}. With
known instantaneous ground state, one can integrate out the
electronic degree of freedom to get the effective Lagrangian
of lattice that reads

L =
∑
l,κ

Mκ

2
Ṙ

2
l,κ + 〈�0|ih̄dt − He|�0〉

=
∑
l,κ

Mκ

2
Ṙ

2
l,κ + 〈�0|ih̄dt |�0〉 − Veff ({R})

=
∑
l,κ

Mκ

2
Ṙ

2
l,κ + h̄Al,κ · Ṙl,κ − Veff ({R}) (A1)

where Rl,κ labels the position of the κth atom in the l-th
unit cell with mass Mκ . Al,κ = 〈�0|i∇Rl,κ |�0〉 is the the Berry
connection. Veff ({R}) is the total energy of the electrons and
ions at the configuration {R} that forms the potential landscape
of the ion. In the equilibrium configuration {R0}, Veff takes its
minimum. From the Lagrangian, one can reveal the Hamilto-
nian Eq. (1) by Legendre transformation, which agrees with
that derived by Mead and Truhlar [2].

2. The existence of a symmetric gauge near
the equilibrium configuration

We consider a lattice where each atom vibrates around
its equilibrium position with a displacement ul where, in
this paragraph, we use shorthand notation for these in-
dices as {l, κα} → l and {l ′, κ ′β} → l ′. In the small {ul}
limit, we can expand the Berry connection Al = 〈�0|i∂l |�0〉
to the linear order of {ul} as Al = A0

l + ∂l ′Alul ′ where
the coefficients ∂l ′Al are taken in the limit of {ul} → 0
and thus are independent of {ul}. It is noted that the
Berry connection Al is expressed in a parameter space of
high dimension. It is questionable whether there exists a
gauge transform such that Ãl = Al − ∂lχ = −1/2

∑
l ′ Gl,l ′ul ′

with gauge invariant Gll ′ = ∂lAl ′ − ∂l ′Al = ∂l Ãl ′ − ∂l ′ Ãl . The
answer is yes. One can first define δAl = Al − Ãl . By defini-
tion, δAl = A0

l + i
∑

l ′ ul ′ ( 1
2 〈∂l ′�0|∂l�0〉 + 1

2 〈∂l�0|∂l ′�0〉 +
〈�0|∂l ′∂l�0〉). It can be verified that ∂lδAl ′ − ∂l ′δAl = 0. Ac-
cording to Poincaré’s Lemma, there always exists locally a
scalar function χ such that δAl = ∂lχ . One can thus perform
such a gauge transformation eiχ |�0〉 to obtain the Berry con-
nection in the symmetric form.

We can now express the Berry connection (gauge field) in
a symmetric gauge. The gauge invariant Berry curvature can

be written as

Gκα
κ ′β
(
R0

l − R0
l ′
) =

[
∂Al ′,κ ′β

∂ul,κα

− ∂Al,κα

∂ul ′,κ ′β

]

= i

[〈
∂�0

∂ul,κα

∣∣∣∣ ∂�0

∂ul ′,κ ′β

〉
−
〈

∂�0

∂ul ′,κ ′β

∣∣∣∣ ∂�0

∂ul,κα

〉]
.

(A2)

Near the equilibrium position, the Berry connection in the
symmetric gauge is

Aκα

(
R0

l

) = −1

2

∑
l ′,κ ′β

Gκα
κ ′β
(
R0

l − R0
l ′
)
uκ ′β

(
R0

l ′
)

(A3)

and in momentum space:

Aκα (k) = −
∑
κ ′,β

1

2
Gκα

κ ′β (k)uκ ′β (k). (A4)

3. Symmetry constraints on the molecular Berry curvature

In the presence of time reversal symmetry, the Berry cur-
vature Gκα

κ ′β (R0
l − R0

l ′ ) = 0 as shown below. We consider the
electronic ground state that preserves time reversal invari-
ance and is nondegenerate. Therefore, under time reversal
operation �, the ground state |�0〉 becomes |�̃e〉 = |��0〉 =
eiφ |�0〉 with a possible phase difference. Therefore, the Berry
connection obtained from |�̃e〉 is Ãl,κα = Al,κα + ∂l,καφ.
Alternatively, Ãl,κα = i〈��e|∂l,κα|��e〉 = i(〈�e|∂l,κα|�e〉)∗
by the definition of the time reversal operator � with ∗
being the complex conjugate. Thus, Ãl,κα = −Al,κα . As a
result, Al,κα = ∂l,καφ/2. The corresponding Berry curvature
Gκα

κ ′β (R0
l − R0

l ′ ) = ∂l,καAl ′,κ ′β − ∂l ′,κ ′βAl,κα = 0.
Since the Berry curvature in real space is real number and

Gκα
κ ′β (R0

l − R0
l ′ ) = −Gκ ′β

κα (R0
l ′ − R0

l ), it can be shown by defini-

tion that Gκα
κ ′β (k) = −Gκ ′β

κα (−k) = −Gκ ′β
κα (k)∗. Thus, G(k) =

−G(k)†.
Considering the translational symmetry, one can find

that when all the displacement vectors ul,κ change
by the same small amount δu, the Berry connections
do not change, i.e., Al,κα ({u} + δu) = Al,κα ({u}). Thus,
δu

∑
l ′,κ ′β ∂l ′,κ ′βAl,κα = 0. Therefore,

∑
l ′,κ ′β Gκα

κ ′β (R0
l − R0

l ′ ) =
2Im

∑
l ′,κ ′β ∂l ′,κ ′βAl,κα = 0.

4. Molecular Berry curvature in noninteracting
electronic system

The molecular Berry curvature can be expressed in general
by the many-body wave function {�n}, where n = 0 stands
for the ground state and the n > 0 are excited states

Gκα
κ ′β (k) = 1

N

∑
l

∑
l ′

Gκκ ′
αβ

(
R0

l − R0
l ′
)
e−ik·(R0

l −R0
l′ )

= 1

N

∑
l,l ′,n �=0

i

[〈
∂�0

∂ul,κα

∣∣∣∣�n

〉〈
�n

∣∣∣∣ ∂�0

∂ul ′,κ ′β

〉
− (ul,κα ↔ ul ′,κ ′β )

]
u→0

e−ik·(R0
l −R0

l′ )

= i

N

∑
n �=0

⎡
⎣ 〈�0|

∑
l

∂He
∂ul,κα

e−ik·R0
l |�n〉〈�n|

∑
l ′

∂He
∂ul′ ,κ′β

eik·R0
l′ |�0〉

(En − E0)2

⎤
⎦
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−
⎡
⎣ 〈�0|

∑
l ′

∂He
∂ul′ ,κ′β

eik·R0
l′ |�n〉〈�n|

∑
l

∂He
∂ul,κα

e−ik·R0
l |�0〉

(En − E0)2

⎤
⎦

= i

N

∑
n �=0

〈�0|Mk,κα|�n〉〈�n|M−k,κ ′β |�0〉 − 〈�0|M−k,κ ′β |�n〉〈�n|Mk,κα|�0〉
(En − E0)2

(A5)

where Mk,κα = ∑
l

∂He
∂ul,κα

e−ik·R0
l = √

N ∂He
∂u−k,κα

in the ul → 0
limit. In this limit, the Mk,κα involves only single electron
scattering process.

In the noninteracting system, the ground state is a product
state composed of single-particle states below the chemical
potential μ with |�0〉 = �εm,q<μc†

m,q|0〉 and c†
m,q being the

creation operator of the state at the momentum q of the mth
band. The excited states can be expressed |�n′ 〉 is the many
body states with one occupied excited state and a hole. One
can then express the Berry curvature in single particle wave
function as

Gκα
κ ′β (k) = i

N

∑
q

∑
εm<μ
εm′ >μ

φ†
m,qMk,καφm′,q+kφ

†
m′,q+kM−k,κ ′βφm,q

(εm,q − εm′,q+k)2

−
φ

†
m,q+kM−k,κ ′βφm′,qφ

†
m′,qMk,καφm,q+k

(εm,q+k − εm′,q)2
(A6)

In the following, we focus on the Haldane model to calcu-
late the molecular Berry curvature explicitly. We take GAx

Ay (k)
as an example by setting ul,κα = ul,Ax and ul ′,κ ′β = ul ′,Ay. For
this particular case, we have:

Mk,Ax =
∑

l

∂He

∂ul,Ax
e−ik·R0

l

=
∑

l,i

−
(

∂ti
∂ul,Ax

b†
l,−Ri

al + H.c.

)
e−ik·R0

l ,

where ti with i = 1–3 represents the hopping from site A
in the unit cell R0

l to site B in the unit cell of R0
l − Ri

with R1 = (a/2, a
√

3/2), R2 = (a, 0), R3 = (0, 0) as shown
in Fig. 4. Here, we have ∂t1

∂ul,Ax
= 0, ∂t2

∂ul,Ax
=

√
3

2 ∂dt , ∂t3
∂ul,Ax

=

FIG. 4. Honeycomb model to describe the effective spring con-
stant of a unit cell. In plane longitudinal and transverse spring
constants are KL and KT , respectively.

−
√

3
2 ∂dt which are independent of l and ∂dt represents the gra-

dient of the hopping energy between two adjacent sites along
the bond between them, which we take to be ∂dt = 1 eV/Å.

By using the Fourier transformation al = 1√
N

∑
q aqeiq·R0

l ,
we find that

Mk,Ax =
√

3∂dt

2

∑
q

b†
qaq+k(eiq·R2 − e−iq·R3 )

+
√

3∂dt

2

∑
q

a†
qbq+k(e−i(q+k)·R2 − ei(q+k)·R3 )

=
∑

q

(a†
q b†

q)∂xH
(

aq+k

bq+k

)
(A7)

where ∂xH is a 2×2 matrix with only off diagonal elements:

(∂xH)12 =
√

3

2
∂dt (e−i(q+k)·R2 − ei(q+k)·R3 )

(∂xH)21 =
√

3

2
∂dt (eiq·R2 − e−iq·R3 ).

Similarly, we have ∂t1
∂ul,Ay

= −∂dt , ∂t2
∂ul,Ay

= ∂d t
2 , ∂t3

∂ul,Ay
= ∂d t

2 .
We thus can obtain

M−k,Ay =
∑

l

∂He

∂ul,Ay
eik·R0

l

=
∑

l,i

[
− ∂ti

∂ul,Ay
a†

l bl+δi e
ik·R0

l − ∂ti
∂ul,Ay

b†
l+δi

al e
ik·R0

l

]

= ∂dt

2

∑
q

a†
k+qbq(2e−iq·R1 − e−iq·R2 − eiq·R3 )

+∂dt

2

∑
q

b†
k+qaq(2ei(k+q)·R1−ei(k+q)·R2−e−i(k+q)·R3 )

=
∑

q

(
a†

q+k b†
q+k

)
∂yH

(
aq

bq

)
(A8)

with:

(∂yH)12 = ∂dt

2
(2e−iq·R1 − e−iq·R2 − eiq·R3 )

(∂yH)21 = ∂dt

2
(2ei(k+q)·R1 − ei(k+q)·R2 − e−i(k+q)·R3 ).

This is an expression in terms of single particle wave func-
tions and eigenstates. Since only the relative motion of atoms
generate the Berry curvature urel = u1 − u2 ⇒ du1 = −du2,
where u1 and u2 are displacements of two different atoms,
all 16 different combinations of atoms will generate only four
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independent values of Berry curvature:

GAx
Ax(k) = −GAy

Ay(k) = GBx
Bx

∗
(k) = −GBy

By

∗
(k) ≡ G1(k)

GAx
Ay (k) = −GAy

Ax

∗
(k) = GBx

By
∗
(k) = −GBy

Bx(k) ≡ G2(k)

GAx
By(k) = −GAy

Bx (k) = GBx
Ay

∗
(k) = −GBy

Ax

∗
(k) ≡ G3(k)

GAx
Bx(k) = GAy

By(k) = GBx
Ax (k) = GBy

Ay (k) ≡ 0.

5. Phonon modes of a honeycomb lattice

a. Hamiltonian for the lattice dynamics

A semiclassical Hamiltonian of the lattice in the adiabatic
approximation can be written in a matrix form as [Eq. (1)]:

HL =
∑

l

1

2
(pl − h̄Ãl )

T (pl − h̄Ãl ) + V ({ul})

=
∑

k

1

2
(pk − h̄Ãk)†(pk − h̄Ãk) + V ({uk})

=
∑

k

1

2
(pk + G̃kuk)†(pk + G̃kuk) +

∑
k

1

2
u†

kKkuk (A9)

where the first term is a kinetic energy of atomic vibrations
and the latter is the effective interaction of the atoms mediated
by the dynamics of electrons. Here the masses have been
absorbed into the definition of momentum and displacement
vectors. For a lattice with two atoms per unit cell, such as a
honeycomb lattice, the momentum and displacement vectors
can be expressed as:

pk =

⎛
⎜⎜⎜⎝

pk,Ax√
MA

pk,Ay√
MA

pk,Bx√
MB

pk,By√
MB

⎞
⎟⎟⎟⎠; uk =

⎛
⎜⎜⎜⎝

√
MAuk,Ax√
MAuk,Ay√
MBuk,Bx√
MBuk,By

⎞
⎟⎟⎟⎠

and a gauge field matrix as:

G̃k = h̄

2

⎛
⎜⎜⎜⎜⎜⎝

G1(k)
MA

G2(k)
MA

0 G3(k)√
MAMB

−G2(k)∗
MA

−G1(k)
MA

−G3(k)√
MAMB

0

0 G3(k)∗√
MAMB

G1(k)∗
MB

G2(k)∗
MB

−G3(k)∗√
MAMB

0 −G2(k)
MB

−G1(k)∗
MB

⎞
⎟⎟⎟⎟⎟⎠

which is a skew-Hermitian matrix by definition. Here Kk is
a force constant matrix (in units of eV/(uÅ2), u-atomic mass
unit) defined as [25]:

Kk =
( K01+K02+K03

MA
−K02+K01e−ik·R1 +K03e−ik·R2√

MAMB

−K02+K01eik·R1 +K03eik·R2√
MAMB

K01+K02+K03
MB

)

where k · R1 = kxa/2 + √
3kya/2 and k · R2 = kxa, with

a being a distance between two neighboring unit cells
with unit vectors (a, 0) and (a/2, a

√
3/2). Here K01 =

U (π/2)KxU (−π/2), K02 = U (π/6)KxU (−π/6), and K03 =
U (−π/6)KxU (π/6) where Kx = (KL 0

0 KT

)
is a spring con-

stant matrix constructed from longitudinal and transverse
spring constants KL and KT , and U (θ ) = (cos θ − sin θ

sin θ cos θ

)
is a

two-dimensional rotation operator in the x-y plane. Combin-
ing all these we obtain the lattice Hamiltonian as in Eq. (A9).

Considering all these the lattice Hamiltonian can be written
as:

HL =
∑

k

1

2
[p†

k pk + u†
kDkuk + (p†

kG̃kuk + H.c.)] (A10)

where Dk = Kk + G̃†
kG̃k. We then can get a pair of canonical

equations of motion

ṗk = − ∂H

∂u−k
= G̃k pk − Dkuk (A11)

u̇k = ∂H

∂ p−k
= pk + G̃kuk. (A12)

b. Second quantization with Bogoliubov transformation

After introducing the second quantization of displacement

and momentum as [33] uk =
√

h̄
2ω0

(a†
−k + ak) =

√
h̄

2ω0
ūk and

pk = i
√

h̄ω0
2 (a†

−k − ak) =
√

h̄ω0
2 p̄k, where a†

−k and ak repre-
sent column vectors of creation and annihilation operators, the
canonical equations of motion can be combined into a matrix
form: (

˙̄uk
˙̄pk

)
=
(

G̃k 1ω0

−Dk
ω0

G̃k

)(
ūk

p̄k

)
. (A13)

Now replacing (ūk

p̄k
)=(

1 1
1i −1i

)(
a†

−k
ak

) we can obtain:

(−1i 0
0 1i

)(
˙̃a†
−k
ȧk

)

= 1

2

(
Dk
ω0

+ 1ω0 − 2iG̃k
Dk
ω0

− 1ω0
Dk
ω0

− 1ω0
Dk
ω0

+ 1ω0 + 2iG̃k

)(
ã†

−k
ak

)

= 
̃∗
k

(
ã†

−k
ak

)
(A14)

where 
̃∗
k is an 8×8 positive semidefinite Hermitian matrix.

The notation 
̃∗
k was chosen for the convenience that will be

clear shortly. Now we introduce the Bogoliubov transforma-
tion as [43]:

ak =
∑

ν

(ανbk,ν + β∗
ν b†

−k,ν
) (A15)

ã†
−k =

∑
ν

(α∗
ν b†

−k,ν
+ βνbk,ν ) (A16)

where the tilde represents the transpose of the vector and
the summation is over all the branches. Here bk,ν (b†

−k,ν
)

are single valued Bogoliubov operators corresponding to each
branch and αν and βν are column vectors of 4 elements cor-
responding to each degree of freedom. We require that each
Bogoliubov operators represent the eigenstates with a spe-
cific frequency ωk,ν , such that ḃk,ν = −iωk,νbk,ν and ḃ†

−k,ν
=

iω−k,νb†
−k,ν

. Using this transformation we can obtain the fol-
lowing equations:

ωk,νσzχ = 
̃kχ (A17)

ω−k,νσzχ
∗ = 
̃∗

−kχ
∗ (A18)
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where χ = (
αν

βν

)
and 
̃k is the same as was defined in

Eq. (A17). Now, if we introduce a new eigenstate as χ̃ =

̃

1/2
k χ , we can obtain a new eigenvalue equation as

ωk,νχ̃ = 
̃
1/2
k σz
̃

1/2
k χ̃ = H̃effχ̃ (A19)

where H̃eff is an effective Hamiltonian which is an 8×8 Her-
mitian matrix and can be solved to find the ωk,ν .

As Eq. (A19) suggests, we will obtain eight different
phonon branches but only four of them should have physical
meaning as we have only four physical degrees of freedom. In
the following discussion we will show how to pick those four
physical branches. Using Eq. (A17) we can get a relation:

ωk,ν (α†
ναν − β†

ν βν ) = (α†
ν β†

ν )
̃k

(
αν

βν

)
. (A20)

This expression will help us to identify the four branches we
are looking for. For that, we first need to put constraints on the
Bogoliubov transformation. Initial bosonic operators had the
commutation relations as

[ak,d , a†
k′,d ′] = δkk′δdd ′ (A21)

[ak,d , ak′,d ′ ] = [a†
k,d , a†

k′,d ′ ] = 0. (A22)

After the transformation we require that the new operators
should obey similar bosonic commutation relations. For that
we write

[bk,ν , b†
k′,μ] = δkk′δμν (A23)

[bk,ν , bk′,μ] = [b†
k,ν

, b†
k′,μ] = 0. (A24)

From these two conditions it is easy to show the following
relations: ∑

ν

(
αν

dαν
d ′

∗ − βν
d

∗
βν

d ′
) = δdd ′ (A25)

∑
d

(
α

μ

d
∗
αν

d − βν
d

∗
β

μ

d

) = δμν (A26)

where the first one can be defined as the completeness re-
lation and the second one as orthonormal condition. From
this we can see that for the Bogoliubov transformations to
preserve the bosonic commutation relations we should have
α†

ναν − β†
ν βν = +1, i.e., it should be a positive number, and

this appears on the left-hand side of Eq. (A26). It can also be
shown that 
k is a positive semidefinite matrix and we con-
clude that only positive solutions of ωk,ν should be considered
as physical.

Alternatively, if we switch to a new basis as γν = 1√
2
(αν +

βν ) and γ̄ν = 1√
2
(αν − βν ) Eq. (A20) can be rewritten as

ωk,ν

(
γν

γ̄ν

)
=
(

iG̃k ω0
Dk
ω0

−iG̃†
k

)(
γν

γ̄ν

)
(A27)

with the normalization condition resulted from Eq. (A20):

γ †
ν γ̄ν + γ̄ †

ν γν = 1. (A28)

From this we can construct a more compact eigenvalue prob-
lem: multiplying both sides of Eq. (A33) by σx we obtain

ωk,νσxψν =
( Dk

ω0
−iG̃†

k
iG̃k ω0

)
ψν = 
kψν (A29)

where ψν = (
γν

γ̄ν

)
. Here 
k is again a semidefinite positive

matrix and for that we can introduce a new eigenstate as
ψ̃ν = 


1/2
k ψν and obtain:

ωk,νψ̃ν = 

1/2
k σx


1/2
k ψ̃ν = Heffψ̃ν (A30)

where the effective Hamiltonian Heff introduced above is Her-
mitian and can be solved to find the eigenvalues ωk,ν . The
result of numerical calculation of this equation is the same as
the one obtained from Eq. (A22).

6. Determinant of the eigenvalues and related

The effective Hamiltonian can be written as Heff =



1/2
k (σx ⊗ Id )
1/2

k where Id is the identity matrix with the
dimension d being that of the K matrix. Thus the deter-
minant det Heff = det 
 · (det σx )d . From the definition of
the 
, we can find that det 
 = det(ω0Id ) · det(D/ω0 −
iG(ω0Id )−1iG) = det(D + G2) = det(D − GG†) = det K .

By the definition of 
, one can find that 
−k = U †
∗
kU

with U = σz. Thus, Heff (−k) = (U †
∗
kU )1/2σx(U †
∗

kU )1/2.
By noting that (U †
∗

kU )1/2 = U †

∗1/2
k U , one can find that

Heff (−k) = −U †Heff (k)∗U .

7. Phonon angular momentum

A classical angular momentum phonons is defined as:

Jph
z =

∑
l,κ

(
ux

lκ u̇y
lκ − uy

lκ u̇x
lκ

)

=
∑
l,κ

(
ux

lκ

uy
lκ

)T( 0 1

−1 0

)(
u̇x

lκ

u̇y
lκ

)

=
∑
k,κ

(
uκ,x

k

uκ,y
k

)†( 0 1

−1 0

)(
u̇κ,x

k

u̇κ,y
k

)
. (A31)

For a system with n = 2 atoms per unit cell, such as hon-
eycomb lattice, the total phonon angular momentum can be
written as:

Jph
z =

∑
k

⎛
⎜⎜⎜⎜⎝

uA,x
k

uA,y
k

uB,x
k

uB,y
k

⎞
⎟⎟⎟⎟⎠

†⎛
⎜⎜⎜⎝

0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

u̇A,x
k

u̇A,y
k

u̇B,x
k

u̇B,y
k

⎞
⎟⎟⎟⎟⎠

=
∑

k

u†
kLu̇k =

∑
k

u†
kL(pk + Gkuk). (A32)

We replace the canonical variables with uk =∑
ν

√
h̄
ω0

(γ ∗
ν b†

−k,ν
+ γνbk,ν ) and pk = ∑

ν i
√

h̄ω0(γ̄ ∗
ν b†

−k,ν
−

γ̄νbk,ν ) using which we can get the expression for the phonon
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angular momentum as:

Jph
z =

∑
k,μ,ν

h̄

(
iγ T

μ Lγ̄ ∗
ν + 1

ω0
γ T

μ LGkγ
∗
ν

)
b−k,μb†

−k,ν

+
∑
k,μ,ν

h̄

(
−iγ †

μLγ̄ν + 1

ω0
γ †

μLGkγν

)
b†

k,μ
bk,ν

+
∑
k,μ,ν

h̄

(
−iγ T

μ Lγ̄ν + 1

ω0
γ T

μ LGkγν

)
b−k,μbk,ν

+
∑
k,μ,ν

h̄

(
iγ †

μLγ̄ ∗
ν + 1

ω0
γ †

μLGkγ
∗
ν

)
b†

k,μ
b†

−k,ν
. (A33)

We can calculate the thermal average of this expression. Since
bk,νb†

k,μ
= δμ,ν + b†

k,μ
bk,ν and 〈b†

k,μ
bk,ν〉 = f (ωk,ν )δμ,ν ,

〈b†
k,μ

b†
k′,ν〉 = 〈bk,μbk′,ν〉 = 0, where f (ωk,ν ) = 1

eβ h̄ωk,ν −1
is the

Bose-Einstein distribution, we can write:〈
Jph

z

〉 = ∑
k,ν

h̄

(
iγ T

ν Lγ̄ ∗
ν + 1

ω0
γ T

ν LGkγ
∗
ν

)
(1 + f (ωk,ν ))

+
∑
k,ν

h̄

(
−iγ †

ν Lγ̄ν + 1

ω0
γ †

ν LGkγν

)
f (ωk,ν )

=
∑
k,ν

h̄

(
1

ω0
γ †

ν LGkγν − iγ †
ν Lγ̄ν

)
(1 + 2 f (ωk,ν ))

=
∑
k,ν

h̄γ †
ν L

(
G̃k

ω0
γν − iγ̄ν

)
(1 + 2 f (ωk,ν ))

= −
∑
k,ν

γ †
ν Lγν

(
ih̄ωk,ν

ω0

)
(1 + 2 f (ωk,ν )). (A34)

Here we show that
∑

ν γ †
ν Lγν = 0.∑

ν

γ †
ν Lγν = Trψ†L̂ψ

= Trψ̃†
̃
−1/2
k L̂ωk,ν
̃

−1/2
k ψ̃

= Trψ̃†

−1/2
k L̂σx


1/2
k ψ̃

= Tr
1/2
k ψ̃ψ̃†


−1/2
k L̂σx

= TrL̂σx = 0 (A35)

where ωk,ν is the eigenenergy, which is a diagonal matrix, and

L̂ = (L 0
0 0

)
.
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