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We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional,
quantum-mechanically consistent manner by constructing an appropriate open quantum system. We fo-
cus on the quantum steady states of such models for both fermionic and bosonic systems. Surprisingly,
key features and spatial structures in the steady state cannot be simply understood from the non-Hermitian
Hamiltonian alone. Using the 1D Hatano-Nelson model as a paradigmatic example, we show that the steady
state has a marked sensitivity to boundary conditions. In particular, the open boundary system can exhibit a
large macroscopic length scale, despite having no corresponding long timescale. These effects persist in more
general models and are distinct from the localization physics associated with the non-Hermitian skin effect.
Further, particle statistics play an unexpected role: The steady-state density profile is dramatically different
for fermions versus bosons. Our paper highlights the key role of fluctuations in quantum realizations of non-
Hermitian dynamics and provides a starting point for future work on engineered steady states of open quantum
systems.
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I. INTRODUCTION

The physics of systems whose dynamics is governed by
non-Hermitian Hamiltonians has generated interest in a wide
range of fields, from classical optics [1–5] to topological
band theory [6–13] to soft-matter physics [14–22]. Introduc-
ing non-Hermiticity often means forgoing seemingly basic
intuition formed when studying Hermitian models. The ex-
treme sensitivity to small perturbations [23–25] and having
to revisit the bulk-boundary correspondence [22,26–28] are
a few of many such examples. Understanding these effects
often amounts to studying the eigenvalues and correspond-
ing right and left eigenvectors of an effective non-Hermitian
Hamiltonian.

In the quantum regime, a fully consistent description
of non-Hermitian dynamics requires one to consider an
open quantum system, where modes of interest are cou-
pled to dissipative Markovian baths. Conditioned on the
absence of a quantum jump, the dynamics are governed by a
non-Hermitian Hamiltonian whose anti-Hermitian part is de-
termined by the coupling to the environment [29]. In contrast,
the full unconditional dynamics also depends on fluctuations.
Despite numerous works examining non-Hermitian tight-
binding models in quantum settings, few studies have fully
addressed the unconditioned steady-state properties (for the
fermionic case, see, e.g., Refs. [30,31]). There thus remain
several basic open questions. These include the role of par-
ticle statistics, the possible sensitivity of the steady state to
boundary conditions (analogous to the non-Hermitian skin
effect (NHSE) [32–34]), and the general connections between

the steady state’s spatial structure and the underlying non-
Hermitian Hamiltonian.

Here we address these questions by studying the steady
states of open quantum systems that realize the physics of
a target non-Hermitian tight-binding Hamiltonian Ĥeff . We
begin by discussing the general class of master equations that
correspond to the desired Ĥeff . We then construct the formal
steady-state density matrix ρ̂ss of such models, emphasizing
that this requires specifying both Ĥeff and the unavoidable
fluctuations arising from the coupling to dissipation. We find
generically that these steady states exhibit features and spatial
structures that are not at all obvious if one simply looks at
the eigenvectors of Ĥeff . Taking the paradigmatic nonrecip-
rocal Hatano-Nelson model [35,36] as an example, we find
that the real-space steady-state occupation 〈ĉ†

j ĉ j〉ss under open
boundary conditions is controlled by a macroscopic length
scale ξobc, which is independent of the localization length of
the right and left eigenvectors of Ĥeff . Surprisingly, this long
length scale is not associated with nor the result of a corre-
sponding long timescale: The dissipative gap is large under
open boundary conditions (see Fig. 1). We argue that this
feature is not specific to the Hatano-Nelson model by studying
two additional models in Appendix F which feature multiple
bands and/or broken time reversal. Further, we demonstrate
that the occupation is strikingly different for fermions and
bosons, despite the left and right eigenvectors of Ĥeff be-
ing independent of particle statistics. Finally, we demonstrate
that the set of orthogonal modes which fully specify the
steady state under open boundary conditions are very sim-
ilar to delocalized standing-wave states, even for extreme
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FIG. 1. Left: Periodic (orange) and open (blue) chain spectrum of the quantum Hatano-Nelson model with parameters κ = 0.99w and
� = 0.01w. The spectrum for fermions and bosons only differ by shift of −i2�, and we thus only plot the fermionic spectrum for clarity.
Dissipation is used to realize asymmetric hopping amplitudes w ± κ , and each site is incoherently pumped at a rate 2�. Right: Steady-state
occupation 〈ĉ†

j ĉ j〉ss of a quantum Hatano-Nelson model under periodic boundary conditions for fermions (orange) and for open boundary
conditions (OBC) for both fermions and bosons (blue). Remarkably, despite the existence of a large damping gap, the density is controlled
by a large length scale ξobc ≈ w/(2�). Further, ξobc is unrelated to 2A = ln[(w + κ )/(w − κ )], the (inverse) localization length of the non-
Hermitian Hamiltonian’s OBC left and right eigenvectors. For fermions, ξobc corresponds to a healing length whereas for bosons it describes
the exponentially localized pileup of particles on one edge. Note that we only plot the periodic boundary condition results for fermions, as the
bosonic model with the same parameters is dynamically unstable.

nonreciprocity: There is thus no true analog of the non-
Hermitian skin effect for ρ̂ss. Our results provide a framework
to understand steady states of general non-Hermitian systems
in the quantum regime and illustrate how fluctuations play a
critical role.

II. CONSISTENT OPEN-SYSTEM DESCRIPTION OF
QUANTUM NON-HERMITIAN HAMILTONIANS

A. Effective unconditional non-Hermitian Hamiltonians

The motivating question throughout this paper is straight-
forward: If one wants quantum dynamics of a fermionic
or bosonic system generated by a target non-Hermitian
Hamiltonian

Ĥtarg =
∑
n,m

(Htarg)nmĉ†
nĉm, (1)

what can be said about the steady state? Here ĉm and ĉ†
n

are fermionic or bosonic creation and annihilation operators
satisfying canonical anticommutation and commutation rela-
tions, respectively. The indices n and m label independent
orthogonal modes and include any and all degrees of freedom
such as position, spin, or polarization.

Before attempting to formulate an answer, it is imperative
to discuss how Ĥtarg is realized. Implementing an effec-
tive non-Hermitian Hamiltonian in a quantum system can
be achieved by using parametric-amplifier type interactions
[37,38] or by considering an open quantum system (see,
e.g., Ref. [25]); we focus here on the latter. To ensure that
the dynamics are Markovian, as already implied by Eq. (1),
the system of interest is coupled to independent Markovian
reservoirs which either incoherently add or remove particles,
processes described by the jump operators L̂μ =∑m lμmĉm

and Ĝν =∑n g∗
νnĉ†

n, respectively. The coeffecients lμn and g∗
νn

specify in what state the particles are removed or added to

the system by the environment, with μ and ν indexing the
independent loss and pump baths. The equation of motion for
the density matrix has the standard Lindblad form and can be
written as (h̄ = 1),

i∂t ρ̂ ≡ Lρ̂ = (Ĥcondρ̂ − ρ̂Ĥ†
cond )

+ i
∑

γ

Lγ l̂γ ρ̂ l̂†
γ + i

∑
δ

Gδ ĝ†
δρ̂ĝδ, (2)

where L is the Lindbladian superoperator. The conditional
Hamiltonian is defined as

Ĥcond =
∑
n,m

Hnmĉ†
nĉm − i

2

∑
γ

Lγ l̂†
γ l̂γ

− i

2

∑
δ

Gδ (1 ∓ ĝ†
δ ĝδ ), (3)

with − and + corresponding to fermionic and bosonic
creation and annihilation operators, respectively. We have de-
fined l̂γ =∑m〈lγ |m〉ĉm and ĝ†

δ =∑n〈n|gδ〉ĉ†
n, where |lγ 〉 and

|gδ〉 are eigenvectors of the Hermitian positive semidefinite
matrices Lnm = (l†l )nm and Gnm = (g†g)nm, with correspond-
ing eigenvalues Lγ and Gδ . Thus, the Hermitian matrix H
describes the coherent Hamiltonian of the isolated system,
whereas the matrices L and G completely capture the effects
of the dissipative baths. Note that the choice of coherent
Hamiltonian and dissipators leads to a master equation with
a U (1) symmetry ĉ†

n → eiϕ ĉ†
n, ĉm → e−iϕ ĉm. Our results and

the phenomena we discuss do not fundamentally rely on
this symmetry. They can readily be extended to quadratic
Hamiltonians Ĥ which do not preserve particle number and
arbitrary dissipators which are linear in creation and annihila-
tion operators.

By unraveling the master equation to a stochastic
Schrödinger equation, one can show that Ĥcond generates
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time evolution of the system conditioned on the absence of a
quantum jump [39,40]. The conditional Hamiltonian is thus
only directly accessible by postselecting measurement out-
comes. While this is feasible in some platforms [41], it is
generally challenging and involves discarding a large volume
of data. More conventional experiments do not postselect,
and thus probe the full unconditioned dynamics of ρ̂. Yet
in this setting, it is not obvious that it is even possible to
attribute the evolution of the density matrix to a single-particle
Hamiltonian as we did for the postselected evolution. How
then should we think about the unconditioned evolution of ρ̂?

The answer lies in the unconditional equations of motion
of the normal-ordered covariance matrix 〈ĉ†

nĉm〉, which reads
(see Appendix A)

i∂t 〈ĉ†
nĉm〉 =

∑
a

((Heff )ma〈ĉ†
nĉa〉 − (H†

eff )an〈ĉ†
aĉm〉) + iGmn,

(4)

where

Heff ≡ H − i

2
(L ± G). (5)

The + and − are for fermions and bosons, respectively. This
effective Hamiltonian Heff , which fully incorporates the ef-
fects of the jumps, is in general distinct from the effective
Hamiltonian relevant to no-jump conditional evolution. From
Eq. (3), this conditional Hamiltonian is

Hcond = H − i

2
(L ∓ G). (6)

Note that Heff and Hcond only coincide in the absence of inco-
herent pumping (i.e., G = 0). We stress that the identification
of Heff from the covariance matrix dynamics is independent
of how correlators are ordered. Other ordering prescriptions
lead to the same dynamical matrix Heff (only the inhomoge-
neous term in the equations is modified, see Appendix A).
As shown in Refs. [42,43], solving Eq. (4) is tantamount to
knowing the full structure of the Lindbladian L. In particular,
the steady-state density matrix is Gaussian, and hence fully
characterized by two-point averages. Equation (4) thus lets us
unambiguously identify the non-Hermitian dynamical matrix
relevant to the unconditional steady state as Heff .

Equation (4) is particularly easy to interpret when our
particles are bosons. In this case, our system could also be
described using the Heisenberg-Langevin equations

i∂t ĉm =
∑

a

(Heff )maĉa −
∑

μ

lμmη̂μ −
∑

ν

g∗
νmζ̂ †

ν , (7)

which are equivalent to the master equation. The
inhomogeneous terms η̂μ and ζ̂ †

ν are the operator equivalent
of independent Gaussian white noise with zero mean and
unit variance (see Ref. [44] for a pedagogical introduction).
The upshot is that Eq. (4) affords a similar interpretation
for either particle type: ĉm evolves under Heff while being
driven by white noise, and particle statistics only play a role
in determining the anti-Hermitian part of Heff , the difference
being a simple change of sign. For bosons, pump baths tend to
generate amplification and exponential growth of amplitude
and particle number. In contrast, for fermions, the Pauli

principle makes this impossible and precludes exponential
growth. This is enforced by the simple sign change in Eq. (5).

B. Constructing valid quantum descriptions of a target
non-Hermitian Hamiltonian

Equation (4) shows how a non-Hermitian Hamiltonian Heff

naturally arises in the description of unconditional dissipative
quantum dynamics. We now ask a reverse engineering ques-
tion: If one starts with a given, non-Hermitian Hamiltonian of
interest H targ, how does one construct a valid corresponding
quantum open system? This amounts to making consistent
choices of both Heff and the pumping matrix G appearing
in Eq. (4) to match the desired dynamics. This construction
is a crucial first step in understanding how any interesting
features of H targ might manifest themselves in a quantum
setting (including the steady state).

Naively, one might start by simply picking Heff in Eq. (4)
to be identical to the desired Hamiltonian H targ. The validity
of this procedure surprisingly depends on particle statistics.
For fermions, we need to mindful of a constraint arising from
the exclusion principle: Heff for fermions cannot give rise to
exponential growth, implying that the anti-Hermitian part of
Heff must be negative semidefinite. This follows directly from
Eq. (5). Thus, for fermions, we will, in general, have to add
loss to H targ to satisfy this constraint. In contrast, choosing
Heff = H targ for bosons is always permissible.

We, in general, however, will require more than a valid
master equation but will also want to ensure the existence of a
unique steady state. For this, the eigenvalues of the dynamical
matrix Heff must have negative-definite imaginary parts. To
achieve this, we will generically have to add extra loss to
bosonic Hamiltonians as well. To that end, let λ denote the
largest positive eigenvalue of −i(H targ − H†

targ)/2. We will
then choose Heff according to

Heff ≡ lim
ν→0+

(H targ − i(λ + ν)1). (8)

This is a minimal prescription for satisfying the constraint for
fermions and bosons: We simply add enough uniform loss
to each mode to ensure the no-gain condition is satisfied. It
implies that the eigenvectors of Heff coincide that of H targ and
their spectra differ at most by a trivial global shift. This en-
sures that any interesting and desirable novel non-Hermitian
phenomena exhibited by H targ will also be present in Heff .
Note that having ν = 0+ ensures a unique steady state.

We stress that the no-gain condition on the anti-Hermitian
part of Heff is, strictly speaking, distinct from requiring that
the eigenvalues of Heff have a negative-definite imaginary
part. The former, for fermions, ensures consistency with a
valid master equation while the later, for both types of par-
ticles, is required for the existence of the steady state.

Having Heff match H targ means that the drift terms in
Eq. (4) directly mirror the desired non-Hermitian dynamics.
This does not, however, specify our open quantum system:
We also need to specify G (i.e., the noise) in a manner that
is consistent with Heff . There are, of course, many different
ways to achieve this. In what follows, we present two simple
and physically motivated approaches.
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(a) (b)

FIG. 2. Two different ways to realize the dissipative version of
the fermionic quantum Hatano-Nelson. Although both methods lead
to an effective Hatano-Nelson Hamiltonian, they do not have the
same steady state, since the noise G is not equivalent. (a) In the
first method, each loss bath (blue) has an equivalent pumping bath
(orange). The parameter ε controls the strength of the fluctuations
G. (b) In method two, the nonreciprocal hopping is realized using
loss dissapators only. Each mode is also subject to uniform pumping,
which leads to a nontrivial steady state.

1. Method 1: Minimal prescription

Recall that the anti-Hermitian part of Heff is determined by
Eq. (5). The simplest way to fully specify our open quantum
system is to have both the loss matrix L and pumping matrix
G be proportional to the anti-Hermitian part of Heff . This
leads to

L ≡
{

i(1 − ε)(Heff − H†
eff ) fermions

iε(Heff − H†
eff ) bosons,

(9)

G ≡
{

iε(Heff − H†
eff ) fermions

i(ε − 1)(Heff − H†
eff ) bosons,

(10)

where the parameter ε (0 � ε � 1 for fermions and ε > 1 for
bosons) determines the balance between pumping and loss.
Diagonalizing L or G and specifying ε then directly deter-
mines one possible set of loss and pumping jump operators
L̂μ and Ĝν . This method gives us a simple way of generating
a valid open system (for either fermions or bosons) with a
minimal number of extra assumptions. The only additional
parameter introduced (beyond the desired target Hamiltonian
H targ) is ε. It controls the average particle number in the
system and hence plays the rough role of a chemical potential.

2. Method 2: Featureless pumping

An alternate approach that in many cases is more exper-
imentally tractable is to only use structured loss to realize
the anti-Hermitian part of Heff , i.e., L = i(Heff − H†

eff ). Of
course, one still needs some pumping to have a steady state
with nonzero particle number. This can be achieved by also
introducing spatially uniform, featureless pumping to the sys-
tem: G = 2�1, where � is an overall pumping rate. This
pumping only changes Heff by a constant diagonal term,
implying that it still faithfully reflects the dynamics of the
desired non-Hermitian Hamiltonian H targ. This is the method
we employ throughout the main text. A visual comparison of
the two methods for fermions is shown in Fig. 2. Note that
for bosons, pumping always decreases decay rates and care
must be taken to ensure dynamical stability (by, e.g., adding
additional background loss).

C. Steady state ρ̂ss

Having constructed a consistent master equation corre-
sponding to the target dynamics Ĥtarg, we now characterize the
steady state of Eq. (2). With a quadratic coherent Hamiltonian
and linear jump operators, the stationary state is Gaussian and
completely determined by the steady-state covariance matrix:

Fmn ≡ 〈ĉ†
nĉm〉ss. (11)

If we assume that all eigenvalues of Heff have a nonzero
negative imaginary part (as ensured by our construction in the
previous subsection), then the steady state is unique, with F
satisfying the so-called Lyaponov equation

HeffF − FH†
eff = −iG, (12)

which follows from Eq. (4). The formal solution to F reads

Fmn =
∫ ∞

−∞

dω

2π
〈m| 1

ω1 − Heff
G

1

ω1 − H†
eff

|n〉

=
∑

δ

Gδ

∫ ∞

−∞

dω

2π
〈m| 1

ω1 − Heff
|gδ〉〈gδ| 1

ω1 − H†
eff

|n〉.

(13)

The last expression provides a simple intuitive interpretation.
At each frequency, the pump baths populates the state |gδ〉
at a rate Gδ , which then evolves under the propagator (ω1 −
Heff )−1 to different sites |m〉 in the lattice.

We stress that ρ̂ss is thus controlled both by the non-
Hermitian Hamiltonian and the fluctuations from the loss and
pumping baths. This exact solution Fmn should be contrasted
with previously suggested prescriptions on how to asso-
ciate steady states with a given non-Hermitian Hamiltonian.
These methods, such as exponentiating the non-Hermitian
Hamiltonian [45,46] or occupying the right or left eigenstates
[47] are either ad hoc or assume conditional dynamics. They
are thus not relevant to the generic (unconditional) situation
we consider.

If Heff can be diagonalized, then the steady-state correla-
tion matrix can also be written as

F = −i
∑
α,β

∣∣ψR
α

〉( 〈ψL
α

∣∣G∣∣ψL
β

〉
Eα − E∗

β

)
〈ψR

β |, (14)

where |ψR
α 〉 and |ψL

α 〉 are the right and left biorthonormal
〈ψL

α |ψR
β 〉 = δαβ eigenvectors of Heff with eigenvalue Eα . The

form of F reminds us how we should interpret the eigenvec-
tors of a non-Hermitian matrix. A right eigenvector |ψR

α 〉 is
a mode whose temporal evolution is trivial and determined
by the eigenvalue Eα , akin to how one normally thinks of
eigenstates of a Hermitian matrix. The meaning of the left
eigenstate |ψL

α 〉 is more subtle: It describes the susceptibility
of the corresponding right eigenvector to a spatially varying
perturbation. More concretely, the overlap 〈ψL

α |gl〉 quantifies
how the gain bath l populates the state |ψR

α 〉 [48].
Note that if we choose to implement our non-Hermitian

dynamics using structured loss and uniform pumping (i.e.,
G = 2�1, cf. Sec. II B 2), then Eq. (14) reduces to

F = −2i�
∑
α,β

∣∣ψR
α

〉( 〈ψL
α

∣∣ψL
β

〉
Eα − E∗

β

)〈
ψR

β

∣∣. (15)
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Even in this seemingly simple case, we see that the steady
state does correspond to a simple statistical mixture of right
eigenvectors.

We have thus in principle achieved our goal of identifying
the steady state: It is completely determined by the non-
Hermitian Hamiltonian Heff and the noise matrix G through
Eqs. (13) and (14). As we will now show, these formal
expressions do not immediately provide useful intuition. In
particular, the nontrivial interplay between the dynamics and
the noise can lead to a steady state which cannot be understood
by considering either independently. Further, there exist subtle
new length scales in the steady state that are not associated
with any one eigenvector and which are not obvious from the
general expression in Eq. (13).

D. Relevance to other work

We pause to note connections and differences between
our paper and previous studies connecting non-Hermitian
physics, open quantum systems, and steady states. While most
works focus on conditional dynamics and the conditional
Hamiltonian Ĥcond, several papers have addressed aspects of
unconditional evolution and the role played by Heff . We stress
that our paper is markedly distinct from these previous studies.
References [30,31,49] discuss ρ̂ss in the context of topological
classification, which is not the focus here. The steady states
of continuum interacting systems exhibiting non-Hermitian
structures has also been studied in certain cases (see, e.g.,
Refs. [50,51]); this is also distinct from our non-Hermitian
band-structure setting. Other works such as Refs. [52–54]
explore the relaxation dynamics toward the stationary state, as
determined solely by Heff . In contrast, our focus is the steady
state itself, which manifestly depends on both the dynamics
Heff and the noise G. The analysis in Ref. [55] does include
the effect of fluctuations but focuses solely on infinite transla-
tionally invariant systems. Here, we show that the steady state
is drastically different with boundaries present, in a manner
that is not a trivial consequence of the NHSE. Further, we ana-
lyze non-Hermitian Hamiltonian of both fermions and bosons,
whereas previous works have mostly focused exclusively on
the fermionic case.

We also note that quantum nonreciprocal models have
been previously studied, motivated by applications to
quantum engineering. Most works focus on few-mode sys-
tems, but lattices have also been considered recently [23,56].
Unlike our paper, the motivation in these previous studies
is different and the focus is primarily on the output state of
radiation emitted from the lattice.

III. QUANTUM HATANO-NELSON MODEL

We now focus on determining the steady state of an N-site
Hatano-Nelson model, which describes particles asymmetri-
cally hopping on a 1D lattice [35,36]. In addition to being
among the simplest of non-Hermitian tight-binding models, it
also displays rich features such as the NHSE [27,32,38] and
non-Hermitian topology [12]. It thus serves as the ideal can-
didate to study how the non-Hermitian Hamiltonian imprints
itself on the steady state.

The target Hamiltonian of interest reads

ĤHN
targ =

∑
j

[
w + κ

2
ĉ†

j+1ĉ j + w − κ

2
ĉ†

j ĉ j+1

]
, (16)

where without loss of generality we take w, κ > 0. Note the
anti-Hermitian part of this Hamiltonian (proportional to κ) is
not negative semidefinite, regardless of boundary conditions.
To permit a quantum treatment valid for both fermions and
bosons, we thus modify the Hamiltonian by adding minimal
uniform loss, resulting in a valid Heff whose anti-Hermitian
part is now negative semidefinite as required [cf. Eq. (8)].
Further, we will use method 2 (cf. Sec. II B 2) to realize
this non-Hermitian, nonreciprocal Hamiltonian using a set
of structured, nonlocal loss baths and uniform incoherent
pumping.

Following the above prescription, we obtain a Lind-
blad master equation [cf. Eq. (2)] corresponding to the
target Hatano-Nelson Hamiltonian. The coherent Hamilto-
nian Ĥ and jump operators L̂ j and Ĝ j are given by (see
Appendix B)

Ĥ = w

2

∑
j

(ĉ†
j+1ĉ j + H.c., ) (17)

L̂ j = √
κ (ĉ j − iĉ j+1), (18)

Ĝ j =
√

2�ĉ†
j , (19)

where w is the coherent nearest-neighbor hopping, κ is the
decay rate, and � is the pumping rate. The resulting non-
Hermitian Hamiltonian is (up to a constant) that of the
Hatano-Nelson model: Heff = HHN

targ − i(κ ± �)1. Note that
similar structured loss dissipators have been used to study
nonreciprocal hopping in previous works, albeit with very
different motivations (see, e.g., Refs. [56–59]).

While our mapping is general, we focus in what follows
on the interesting case of strong nonreciprocity (κ � w) and
weak pumping (� � w, κ). In this limit, the natural expec-
tation is that the pumping serves only as a weak probe of
the underlying non-Hermitian dynamics: its only purpose is
to populate the system without disrupting the dynamics. As
we will show, this is surprisingly not the case: the weak
pumping rate � determines an extremely long system length
scale. Further, for open boundary conditions, this long length
scale is not related to a corresponding long relaxation time
scale (i.e., the dissipative gap remains constant as � → 0).

A. Periodic boundary conditions

We first work with periodic boundary conditions. With the
effective Hamiltonian Heff and pumping matrix G, we can
readily use the formalism described in the previous section
to determine the steady-state correlation matrix F. It is per-
haps however more instructive to write the master equation in
momentum space. Letting N denote the number of sites in our
lattice and ĉk =∑n e−iknĉn/

√
N , we have

i∂t ρ̂ =
∑

k

w cos k[ĉ†
k ĉk, ρ̂]

+ i
∑

k

κ (k)D[ĉk]ρ̂ + i2�
∑

k

D[ĉ†
k ]ρ̂, (20)
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where κ (k) = 2κ (1 + sin k) and the allowed momenta are
k = 2πq/N with q an integer running from 1 to N . This
form of the master equation serves as a useful reminder that
non-Hermitian hopping can also be interpreted as momentum-
depending damping κ (k). This is also apparent by consid-
ering the spectrum of Heff , which reads E (k) = w cos k −
iκ (1 + sin k) ∓ i�. To ensure stability in the bosonic case
Im(E (k)) < 0, we always work in the limit of weak pumping
and where the quantization of k leads to � < κ (1 + sin k) for
all allowed k.

It is clear from Eq. (20) that there will be no steady-state
coherences between different momentum states. The indepen-
dent baths add and remove particles from these orthogonal
modes, and the coherent dynamics can not cause any transi-
tion between such states. The only nonvanishing steady-state
component in this basis are the diagonal elements

〈ĉ†
k ĉk〉ss = 1

eβε(k) ± 1
, (21)

where we have defined the effective Boltzman factor

e−βε(k) ≡ 2�

κ (k)
. (22)

The steady state of the periodic-boundary condition
Hatano-Nelson model is thus completely determined by
these effective momentum-dependent Boltzmann factors. The
nonreciprocity of our system reflects itself in an asymmetry of
the momentum-space occupancy of mode at k versus 2π − k.
The real-space steady-state density is of course uniform, as
required by translational invariance. We also stress that only
the product of β and ε(k) is physically meaningful.

A simple but crucial point is that our steady state is insensi-
tive to the coherent Hamiltonian Ĥ ; the steady state would not
change even if we added additional (translationally invariant)
terms to Ĥ . This is a general feature of master equations where
the Hamiltonian H , loss L, and pumping matrices G commute
with one another. In this instance, it is always possible to
write the master equation in a compact form by using the
basis which diagonalizes all three matrices, in analogy with
Eq. (20). The physics underling the steady states of these
models are then readily understood in terms of a orthogonal
set of modes, the same as the effective Hamiltonian Heff .

For instance, in this translationally invariant model, the
real-space correlation functions for fermions can be easily
obtained using Eq. (21),

〈ĉ†
j ĉp〉ss = 1

N

∑
k

�e−i( j−p)k

� + κ (1 + sin k)
∼ e−| j−p|/ξpbc , (23)

where the difference j − p is understood to be modulo N .
Note that bosons are generically unstable in this model due
to the additional pumping �, and there is thus no steady
state. Here ξpbc is length scale determined by the dissipation,
and is defined by κ cosh ξ−1

pbc ≡ κ + �. For small pumping
it behaves as ξpbc = √

κ/(2�) (see Appendix C for details).
This (inverse) length scale can be readily extracted by con-
sidering the spectrum of our periodic chain E (k) = w cos k −
iκ (1 + sin k) − i�. The smallest decay rate of any mode is
�. It is thus not surprising that this quantity gives rise to a
large length scale. In fact, it was shown in Ref. [55] that for

FIG. 3. Scaled steady-state occupation 〈ĉ†
j ĉ j〉ss/〈ĉ†

N ĉN 〉ss under
open boundary conditions of the Hatano-Nelson model realized with
a coherent Hamiltonian and dissipators Eqs. (17)–(19) for N = 200
sites and κ = 0.99w. For small enough pumping, the occupation
for bosons and fermions are essentially identical. As we increase
the pumping, the length scale ξobc decreases. In the fermionic case,
this leads to a depletion of particles on the left-hand side of the
chain. For bosons, this leads to exponential localization of particles
on the right-hand side of the system. Note that unlike the periodic
boundary condition case, the bosonic model is dynamically stable
for these parameters (κ � w and � < κ). These numeric plots are
indistinguishable from the analytical forms predicted by Eq. (26) on
this scale.

a transitionally invariant non-Hermitian tight-binding model
with periodic boundary conditions, this is always the case: A
divergent correlation length must be accompanied by a critical
slowing down, i.e., a vanisingly small decay rate. Surprisingly,
we will see that this intuitive connection between large length
and timesscales will be violated by introducing boundaries.

B. Open boundary conditions

We now examine the properties of our quantum
Hatano-Nelson chain under open (rather than periodic)
boundary conditions. It is well-known that this change of
boundary conditions dramatically alters the spectrum and
eigenvectors of Heff [35,36]. At a formal level, this can
be understood as arising from an incompatibility between
the Hermitian and anti-Hermitian parts of Heff . For peri-
odic boundary conditions, both are diagonalized by plane
waves, whereas with open boundary conditions these ma-
trices no longer commute. This incompatibility has a direct
consequence on our quantum master equation [specified by
Eqs. (17)–(19)]: the jump operators associated with our
structured loss can now cause transitions between different
eigenstates of the coherent Hamiltonian Ĥ . As we will see,
this directly leads to a far more interesting steady state than
in the periodic boundary condition case. The most immediate
consequence of having boundaries is that the steady-state av-
erage density 〈ĉ†

j ĉ j〉ss will not be spatially uniform, as shown
in Fig. 3. It is tempting to assume that this will simply reflect
the NHSE; however, we show in the following that this is due
to a distinct mechanism.
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In the conventional scenario, the NHSE causes right eigen-
vectors to localize at one edge: 〈 j|ψR

α 〉 ∝ eA j with the inverse
localization length A given by

A = 1

2
ln
(w + κ

w − κ

)
. (24)

The appearance of this short length scale A−1 is accompa-
nied by an opening of the dissipative gap: The decay rate
of all eigenmodes of Heff become large, unlike its periodic
counterpart which has nearly undamped modes, see Fig. (1).
Conventional wisdom would then suggest that any length
scale in the open boundary case is much smaller than the
periodic boundary length scale ξpbc � ξobc; particles are so
heavily damped that they cannot propagate very far. However,
surprisingly, the opposite is true: Not only is the character-
istic length for the steady state in open boundary condition
ξobc = w/(2�) completely unrelated to the localization length
A of right and left eigenvectors, but it is also parametrically
larger than the length scale of the equivalent system with
periodic boundary conditions ξpbc = √

κ/(2�) at small �.
Hence, simply knowing about the NHSE and its impact on
the eigenvectors or eigenvalues does not immediately let one
understand the spatial structure of the steady-state density. We
expect this to be a generic feature of open quantum systems
exhibiting NHSE: we have provided two more examples in
Appendix F.

Instead of thinking about eigenvectors of eigenvalues of
Heff , a more fruitful starting point is to use the alternate
formal solution for the steady-state correlation matrix given
in Eq. (13). This yields

〈ĉ†
j ĉ j〉ss = 2�

N∑
p=1

∫ ∞

−∞

dω

2π

∣∣GR
obc[ j, p; ω]

∣∣2, (25)

with GR
obc[ j, p; ω] ≡ 〈 j|(ω1 − Heff )−1|p〉 the real-space re-

tarded Green’s function with open boundaries. Equation (25)
reminds us how the incoherent pumping populates each site. A
pump bath attached to site p injects a particle with frequency
ω which then propagates to site j with an amplitude given by
GR

obc[ j, p; ω]. The total particle number is thus this amplitude
squared summed over all baths and frequencies.

The physical picture provided to us by Eq. (25) im-
plies that we should attempt to understand the real-space
propagation dynamics of Heff as encoded by the Green’s
function. Although the NHSE forces both the eigenvec-
tors and eigenvalues of Heff to change drastically when
there are edges, on physical grounds the same should
not be true of the Green’s function. For the short-ranged
Hamiltonian under consideration, we expect for large enough
system size N that the response for open boundary conditions
is well approximated by the infinite-system Green’s function
GR

obc[ j, p; ω] ≈ GR
∞[ j − p; ω], at least within the bulk 1 �

j, p � N . The length scale which controls the steady-state
occupation 〈ĉ†

j ĉ j〉ss is therefore essentially determined by how
far a particle injected into the boundary-free chain can propa-
gate before it loses an appreciable amount of its amplitude.

The dispersion of the Hatano-Nelson model E (k) =
w cos k − iκ (1 + sin k) ∓ i� can be readily used to extract
this length scale. Indeed, ignoring the boundaries affords
us the possibility to think about propagation in terms of

plane waves. We first note that the least damped momen-
tum mode at k = −π/2 also has the largest group velocity
w(∂k cos k)|k=−π/2 = w > 0 which implies a right-moving
mode. We can thus estimate the relevant decay length as this
maximal group velocity w divided by the residual decay rate
� of that mode. This gives GR

obc[ j, p; 0] ∼ e∓| j−p|/(w/�) when
p < j. Note the sign difference for fermions versus bosons:
� induces additional damping for fermions yet bosons experi-
ence spatial amplification as a consequence of the additional
pumping.

The above heuristic estimate is confirmed by a more
careful analysis of the open-boundary Green’s function pro-
vided in Appendix D. It is demonstrated that GR

obc[ j, p; ω] ≈
GR

∞[ j − p; ω] and GR
obc[ j, p; 0] ∼ e∓| j−p|/(w/�) are excellent

approximations in the strong nonreciprocity κ ≈ w and weak
pumping � � w, κ limit. Generically, one can also associate
a (direction-dependent) decay length to GR[ j, p; w] for arbi-
trary ω: for j > p it is roughly w/� near zero-frequency and
drops quickly to zero outside the band ω ≈ w. However, in
the limit of interest where the spacing of the modes is much
smaller than their width, the occupation is dominated by low
frequencies and we find (see Appendix D for details)

〈ĉ†
j ĉ j〉ss

κ→w≈ �

κ ± �

(
1 + C1

∑
p� j

e∓2| j−p|/(w/�)

√|n − l|

)

≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�
κ+�

( erf
(√

j
ξobc

)
√

ξ−1
obc

+ C2

)
, fermions

�
κ−�

( erfi
(√

j
ξobc

)
√

ξ−1
obc

+ C3

)
, bosons.

(26)

In the first line, we immediately consider the limit of extreme
nonreciprocity where only pump baths attached to sites on
the left of a given site j contribute to the occupation. In this
limit, the localization length 1/A associated with the NHSE
goes to zero yet, in contrast, we see the emergence of a length
scale ξobc = w/(2�) which controls the quantum steady state
of the open boundary condition system. Here, erf and erfi
are the error and imaginary error function, respectively, and
C1,C2,C3 are constants (see Appendix D).

Equation (26) is a central result of our paper. It demon-
strates that the spatial distribution of the steady-state occu-
pation is controlled by a macroscopic length scale ξobc =
w/(2�), despite the absence of a long timescale. In addition,
ξobc is not related to the localization length of Heff . Collo-
quially, the open-boundary steady state has remembered the
long propagation length of the periodic chain but not the
associated long timescale that came with it. Further, it shows
that this emergent lengthscale has a dramatically different
interpretation depending on particle statistics. For fermions,
it corresponds to a decay length, whereas for bosons it repre-
sents an amplification length.

In Fig. 1, we plot the steady-state occupation 〈ĉ†
j ĉ j〉ss and

find behavior consistent with the above interpretation. The
density of fermions in the steady state is suppressed over a
length scale ξobc on the left edge of the system and saturates as
we move to the right at a value coinciding with the expected
constant PBC occupancy. In contrast, the number of bosons
increases exponentially as one moves to the right edge of
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the system, with ξobc now serving as the associated localiza-
tion length. The numerically computed results in Fig. 1 do
not differ from the analytical prediction of Eq. (26) on the
presented scale.

In Fig. 3, we plot the scaled steady-state occupation
〈ĉ†

j ĉ j〉ss/〈ĉ†
N ĉN 〉ss over a range of �. The behavior here has

a simple origin. Vanishingly small pumping � ≈ 0 implies
a large length scale ξobc � N and we expect the density of
particles in the steady state to be essentially independent of
statistics: The particles must propagate a large distance before
the effects of � are noticeable. This is verified by taking the
ξobc � j limit of Eq. (26), which gives

〈ĉ†
j ĉ j〉ss ∼ �

κ ± �

(
1 + 2√

π
(
√

j − 1)

)
, (27)

where the + (−) sign is for fermions (bosons).
As we increase the pumping, fermions will experience

additional damping. Particles injected by the baths into the
chain can therefore not propagate as far before decaying. The
length scale ξobc thus becomes smaller and the particle density
will saturate more rapidly as we move from left to right. In
contrast, bosons are less damped as we increase �, but this
simply means particles can propagate further, and we expect
that the accumulation of particles on the right edge becomes
more pronounced. Both these predictions are in agreement
with Fig. 3, and with the analytical result obtained for ξobc

in the limit of larger pumping [see Eq. (D18)] .
The analysis presented in this section shows conclusively

that in a quantum realization of the Hatano-Nelson model, a
large dissipative gap in the spectrum of Heff does not preclude
the existence of a long length scale. Further, neither the spatial
structure of left or right eigenvectors can be used to infer the
steady-state occupation 〈ĉ†

j ĉ j〉ss under open boundary condi-
tions. Do these two features holds generically? Referring back
to Eq. (25) and the accompanying discussion, we expect this
to be the case. The steady-state occupation is controlled by
the real-space Green’s function and unlike the spectrum and
eigenvectors, the former is largely unaffected by the NHSE
when changing boundary conditions. The long attenuation
length in the infinite-sized model can therefore show up in
the finite open-boundary case, despite having a large damping
gap. To verify this prediction, we briefly analyze two addi-
tional non-Hermitian models in Appendix F. Both models
exhibit a large dissipative gap, yet there stills exists a large
length scale in both models which can be extracted from the
Green’s function of the infinite-sized model.

The validity of GR
obc[ j, p; ω] ≈ GR

∞[ j − p; ω] also makes it
clear that the sensitivity to boundary conditions is not caused
by the NHSE. Once this approximation has been made, the
only remaining information regarding boundary conditions
is the trivial one: particles cannot tunnel directly between
the first and last site. Given the propensity for particles to
propagate to the right, this implies that a pump bath attached
to the first site can contribute to the total particle number
on site N , but not vice versa. Thus, the asymmetry we see
in the occupation is categorically not due to a change in the
spectrum or eigenvectors of Heff and therefore not due to
the NHSE. Rather, the built-in nonreciprocity of the effective

Hamiltonian is the sole reason we see just a drastic change
under different geometries.

C. Orbitals

The steady-state real-space average occupation only gives
us partial information about ρ̂ss. In general, one would need
knowledge of all possible steady-state correlations to recreate
ρ̂ss. The Gaussian nature of our steady state greatly simpli-
fies this task: All higher-order correlations are completely
determined by the two-point correlation matrix F (i.e., Wick’s
theorem holds). Indeed, if we let |ψr〉 denote the eigenvectors
of F with eigenvalue nr , then the Gaussian nature of the steady
state implies

ρ̂ss = exp
(∑

r ln
( nr

1∓nr

)
ĉ†

r ĉr
)

Z , (28)

where Z is a normalization constant, − (+) is for fermions
(bosons), and ĉr and ĉ†

r are the (orthogonal) annihilation and
creation operators associated with |ψr〉. We thus see that the
eigenvectors |ψr〉 represent real-space wave functions of or-
bitals that are independently occupied in the steady state.

Identifying this structure leads to an obvious question:
Does the spatial structure of these occupied-orbital wave
functions change drastically in going from periodic to open
boundary conditions? Note that these wave functions |ψr〉 are
eigenvectors of a Hermitian matrix and hence form a complete
orthonormal basis. They thus cannot coincide with either the
right or left eigenvectors of Heff . In what follows, we show
something even stronger: These occupied orbital wave func-
tions do not exhibit any singular behavior remotely analogous
to the NHSE.

It is tempting to argue that this is to be expected, given
that F is a Hermitian matrix. One might argue that these
objects, unlike their non-Hermitian counterparts, are more
robust to perturbations (such as varying boundary conditions)
and that singular behavior of their eigenstates is ruled out by
construction. This intuition is, however, incorrect. Perhaps the
best way to demonstrate why this reasoning is incorrect is to
express F as

F =
∫ ∞

0
dte−iHeff t GeiH†

eff t . (29)

Perturbations to Heff which are naively thought to be small
therefore have an infinite amount of time to influence the
steady state. This can already be seen by considering the
steady-state occupation 〈ĉ†

j ĉ j〉ss of fermions versus bosons as
see in Fig. (1). The only difference between their effective
Hamiltonians is the small uniform rate �. Nevertheless, this
leads to an exponentially large difference in average parti-
cle number on the last site 〈ĉ†

N ĉN 〉ss ∼ e∓2�/wN . It it thus
not immediately obvious that changing boundary conditions
does not drastically alter the orbitals |ψr〉 in analogy with
the NHSE.

We focus on the most interesting regime of strong nonre-
ciprocity where w is just slightly smaller than κ . Obtaining
the desired occupied-orbital wave functions |ψr〉 analytically
by diagonalizing F is unfortunately infeasible. Instead, we
use a perturbative argument that has three steps. We first
find the steady-state correlation matrix F0 for the case where
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the coherent hopping vanishes w → 0. We next calculate the
leading order corrections for small w. Finally, we argue that
(somewhat surprisingly) this perturbative-in-w expression
remains approximately valid even for modestly large values
of hopping.

Consider then the case w = 0, where we have a fully re-
ciprocal system but with only dissipative hopping processes
mediate by the loss baths. One finds that in this case, the
steady-state covariance matrix has the form

F0 =
∑
Kq

nKq |Kq〉〈Kq|. (30)

Here |Kq〉 are standing-wave states with a center of mass
momentum π/2:

〈 j|Kq〉 =
√

2

N + 1
ei π

2 j sin Kq j. (31)

nKq is the corresponding occupation, completely determined
by the eigenvalues of G and L,

nKq = GKq

LKq + GKq

= �

κ (1 + cos Kq ) + �
, (32)

with Kq = qπ/(N + 1) and q an integer that runs from 1 to N .
The orbitals and occupation numbers strongly resemble what
we would find with periodic boundaries. This should not be
a surprise, as there is no nonreciprocity and all the dynamics
can be understood in terms of the Hermitian matrix L.

Now we wish to consider the effect of a finite but small
coherent hopping matrix element w. Writing the steady-
state correlation matrix as F = F0 + wF1 + O(w2) and using
Eq. (12) we obtain

〈Kq|F1|Kq′ 〉 = i

w

nKq − nK ′
q

GKq + LKq + GKq′ + LKq′
〈Kq|H|K ′

q〉. (33)

The overlap 〈Kq|H|Kq′ 〉 is zero if Kq and Kq′ have the same
parity and

〈Kq|H|K ′
q〉 = wi

N + 1

sin Kq sin K ′
q

sin
(K ′

q−Kq

2

)
sin
(K ′

q+Kq

2

) (34)

≈
{

wi
N+1 , Kq ≈ Kq′ ≈ 0 or π

w2i
π

, Kq ≈ Kq′ ≈ π
2 ,

(35)

otherwise. In addition to the expected overlap 〈Kq|H|Kq′ 〉
there are two factors that contribute to the first-order cor-
rection. The numerator of Eq. (33) implies that states which
have nearly identical occupations nKq ≈ nKq′ ⇒ Kq ≈ Kq′ are
not strongly mixed. States which are weakly damped GKq +
LKq ≈ � ⇒ Kq ≈ π are more sensitive to the perturbation
than states which are heavily damped, which occurs when
Kq ≈ 0. We stress that Eq. (33) implies that the smallest
dimensionless parameter in our problem is w/� (i.e., when
Kq ≈ Kq′ ≈ −π ).

The higher-order perturbative corrections to F have a sim-
ilar structure to Eq. (33) in that they also depend on the ratio
of population differences to decay rates of the unperturbed
orbitals (see Appendix E). Taking all three terms into account,
we thus expect orbitals near Kq ≈ 0 to be nearly unchanged
by the perturbation H even when w ≈ κ , both because their

FIG. 4. Top: real-space wave function squared |〈 j|ψr〉|2 of the
most occupied steady-state orbital for our quantum Hatano-Nelson
model with open boundary conditions, N = 200 and w = 0.9κ .
The model is realized using a coherent Hamiltonian and dissipators
Eqs. (17)–(19). Despite the strong nonreciprocity for our chosen
parameters, this dominant orbital wave function does not exhibit
the exponential localization associated with the NHSE. Bottom:
Same parameters, steady-state orbital occupation nr (dashed lines)
and the overlap squared |〈ψr |Kpert

q 〉|2 between the exact orbitals |ψr〉
and the ones obtained from second-order perturbation theory in w,
|Kpert

q 〉 (dotted lines). Despite the large value of w, the perturbative
expression for the orbitals still provides a reasonable approximation
for most orbitals. This implies that the majority of orbitals are spa-
tially extended over the whole chain, and have no resemblance to the
right and left eigenvectors of Heff .

damping rate is large, and the overlap 〈Kq|H|Kq′ 〉 with other
modes is small. Conversely, we expect orbitals near Kq ≈ π

to mix strongly since they are weakly damped.
The above expectation is borne out by comparing the

numerically computed orbitals |ψr〉 and the second-order
correction |Kpert

q 〉 to F, as shown in Fig. 4. Despite being
in a regime with strong nonreciprocity and hence large w

(w = 0.9κ), perturbation theory still describes the 150 least-
occupied orbitals (which we do not plot) extremely well:
They are nearly standing-wave states. The most-occupied
orbitals are the ones which perturbation theory describes
less accurately. Nonetheless, these orbitals are still relatively
delocalized, and have no resemblance to the right or left eigen-
vectors of Heff . Finally, as we increase �, and thus the decay
rate of all modes, our perturbation theory is more accurate, as
predicted by Eq. (33).

These results verify the central claim of this section: The
occupied orbitals which characterize our quantum steady state
do not exhibit any analog of the NHSE. These occupied or-
bitals have a form similar to the reciprocal case w = 0 and do
not exhibit any exponential localization.
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IV. CONCLUSION

We have presented a systematic method for construct-
ing open quantum systems whose unconditional physics
reflects that of a desired non-Hermitian tight-binding lattice
Hamiltonian. We identify generic features of the steady states
of such quantum lattice models, focusing on the case where
the target Hamiltonian is nonreciprocal. A crucial conclusion
is that the steady state cannot, in general, be understood
solely using the effective Hamiltonian Ĥeff . First, fluctuations
play a crucial role in determining ρ̂ss, and their form is not
uniquely determined by Ĥeff (though is constrained by it).
Further, taking the Hatano-Nelson model as an example, we
have demonstrated that even when fluctuations are spatially
featureless (i.e., uniform incoherent pumping), the spectrum,
left and right eigenvectors of Ĥeff cannot be simply used to
infer even the most basic features of the steady state. For
weak pumping, we find that our system under open boundary
conditions exhibits a long length scale ξobc. This scale has no
relation to the localization length of the left and right eigen-
vectors nor to the existence of an extremely small relaxation
rate (dissipative gap). Particle statistics also play a surprising
role in the form of the steady state. Finally, we have shown
that the orbital states (the eigenstates of ρ̂ss) do not exhibit any
analog of the NHSE. Unlike the left and right eigenvectors
of Ĥeff , they do not become exponentially localized under a
change of boundary conditions; in fact, a majority of them are
very nearly standing-wave states.

Our work naturally leads to several interesting questions
regarding the interplay of dynamics, noise, and the steady
state. For instance, one could ask to what extent nontrivial
correlated fluctuations (i.e., when the incoherent pumping
has a nontrivial spatial structure) can lead to an interesting
steady state. To that end, we briefly analyze such a model in
Appendix G, where we find a steady-state occupation which
might naively be interpreted as a consequence of the NHSE,
despite the lack of non-reciprocity. Taking the opposite ap-
proach presented in this paper, by starting with a target steady
state and attempting to classify the allowable Heff and G,
would also be extremely interesting.
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APPENDIX A: EQUATIONS OF MOTION—CORRELATION
FUNCTIONS

In this Appendix, we derive the equations of motion for the
normal ordered correlation function 〈ĉ†

nĉm〉. The jump opera-
tors are L̂μ =∑n lμmĉm and Ĝν =∑n g∗

νnĉ†
n, from which we

obtain

i∂t ρ̂ =
∑
a,b

Hab[ĉ†
aĉb, ρ̂] + i

∑
a,b

Lab

(
ĉbρ̂ĉ†

a − 1

2
{ĉ†

aĉb, ρ̂}
)

+ i
∑
a,b

Gab

(
ĉ†

aρ̂ĉb − 1

2
{ĉbĉ†

a, ρ̂}
)

, (A1)

where {·, ·} is the anticommutator and, as in the main text,
Lab = (l†l )ab and Gab = (g†g)ab. Thus, the equations of mo-
tion for the normal ordered correlation function are

i∂t 〈ĉ†
nĉm〉 =

∑
a,b

Ha,b〈[ĉ†
nĉm, ĉ†

aĉb]〉 + i

2

∑
a,b

Lab〈ĉ†
a[ĉ†

nĉm, ĉb]

+ [ĉ†
a, ĉ†

nĉm]ĉb〉 + i

2

∑
a,b

Gab〈ĉb[ĉ†
nĉm, ĉ†

a]

+ [ĉb, ĉ†
nĉm]ĉ†

a〉. (A2)

Using fermionic anticommutation and bosonic commutation
relations, we get

i∂t 〈ĉ†
nĉm〉 =

∑
a

(Hma〈ĉ†
nĉa〉 − Han〈ĉ†

aĉm〉)

− i

2

∑
a

(Lma〈ĉ†
nĉa〉 + Lan〈ĉ†

aĉm〉)

∓ i

2

∑
a

(Gma〈ĉaĉ†
n〉 + Gan〈ĉmĉ†

a〉), (A3)

where ∓ is for fermions and bosons, respectively. Using
the anticommutation and commutation relation once more,
along with L† = L and G† = G, we recover Eq. (4) in
the main text. The anti-normal-ordered correlation function
has the same dynamical matrix Heff , but with a different
inhomogeneous term:

i∂t 〈ĉmĉ†
n〉 =

∑
a

((Heff )ma〈ĉaĉ†
n〉 − (H†

eff )an〈ĉmĉ†
a〉) + iLmn,

(A4)

which follows from the preservation of equal time anti-
commutation or commutation relations.

APPENDIX B: HATANO-NELSON HAMILTONIAN
USING METHOD 2

Here we construct a quantum effective non-Hermitian
Hamiltonian and noise matrix whose dynamics are equiva-
lent to a Lindblad master equation for the Hatano-Nelson
model using method 2 in the main text. Writing the target
Hamiltonian Eq. (16) in momentum space, we have

ĤHN
targ =

∑
k

(w cos k − iκ sin k)ĉ†
k ĉk . (B1)

The largest positive eigenvalue of the anti-Hermitian part is
clearly κ . Thus, the effective Hamiltonian reads

Ĥeff =
∑

k

(w cos k − iκ (1 + sin k) ∓ i�)ĉ†
k ĉk, (B2)

where, as always, ∓ is for fermions and bosons, respectively,
so Heff = HHN

targ − i(κ ± �)1. To obtain a set of real-space
dissipators, it is convenient to write the master equation in
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momentum space as in Eq. (20), then Fourier transform back
to position space. We obtain

i∂t ρ̂ = w

2

∑
j

[ĉ†
j+1ĉ j + H.c., ρ̂] + i

∑
j

D[
√

κ (ĉ j − iĉ j+1)]ρ̂

+ i
∑

j

D[
√

2�ĉ†
j ]ρ̂, (B3)

i.e., the coherent Hamiltonian and dissipators in
Eqs. (17)–(19). Note that there is a small but important
detail when dealing with different boundary conditions.
For periodic boundary conditions ĉ j = ĉ j+N , Eqs. (20) and
(B3) are equivalent whereas for open boundary conditions
ĉ0 = ĉN+1 = 0 they are not. For this choice of geometry,
there are independent loss baths attached to site 1 and N in
addition to the one on each bond that lead to nonreciprocal
hopping. The lack of translational invariance then precludes
the possibility of writing the master equation, where the
jump operators are independent momentum creation and
annihilation operators.

APPENDIX C: STEADY STATE CORRELATION
FUNCTION—PBC

Using the definition of the periodic system length scale
κ cosh ξ−1

pbc = κ + �, we have

〈ĉ†
j ĉp〉ss = �

κN

∑
k

e−i( j−p)k

cosh ξ−1
pbc + sin k

= �

κN sinh ξ−1
pbc

×
∑

k

(
e−i( j−p)k

1 + ie−ike−ξ−1
pbc

− e−i( j−p)k

1 + ie−ikeξ−1
pbc

.

)
(C1)

Since the k are integer multiples of 2π/N , we can perform a
simple geometric sum to obtain

N−1∑
l=0

i−l e−ikl e±ξ−1
pbcl

1 − i−N e±ξ−1
pbcN

= 1

1 + ie−ike±ξ−1
pbc

. (C2)

Inserting Eq. (C2) into Eq. (C1), only the l = p − j term
survives, again due to the quantization of k (where p − j)
being understood modulo N . After some simplification, we
are left with

〈ĉ†
j ĉp〉ss = �i−(p− j)

κ sinh ξ−1
pbc

(
e−(p− j)/ξpbc

1 − i−N e−N/ξpbc
− e(p− j)/ξpbc

1 − i−N eN/ξpbc

)
,

(C3)

which recovers the scaling of Eq. (23) in the main text.

APPENDIX D: STEADY-STATE OCCUPATION UNDER
OPEN BOUNDARY CONDITIONS

In this Appendix, we find approximate expressions for the
steady-state occupation 〈ĉ†

j ĉ j〉ss under open boundary con-
ditions. It is worth pointing out immediately that since the
eigenvectors and eigenvalues of the Hatano-Nelson model are
known [35], we can use the formal expression Eq. (14) and

solve for 〈ĉ†
j ĉ j〉ss without approximations. Assuming w > κ

throughout, we have

〈ĉ†
j ĉ j〉ss =

∑
Kq,Kq′ ,p

e2A( j−p)

N

× sin Kq j sin Kq p sin Kq′ p sin Kq′ j

J ( cos(Kq) − cos(Kq′ )) − i2(κ ± �)
, (D1)

where N−1 = −i8�/(N + 1)2, 2A = ln ((w + κ )/(w − κ )),
and J = √

w2 − κ2. The standing-wave momenta are quan-
tized by Kq = πq/(N + 1), where q is an integer that runs
from 1 to N . Although exact, Eq. (D1) is practically useless,
and does not immediately tell us qualitative features of the
steady-state occupation. For instance, it is not evident that
the small difference in uniform dissipation for fermions and
bosons κ ± � can lead to a drastic change in 〈ĉ†

j ĉ j〉ss as seen
in Fig. 1.

We will instead work with the other formal solution to the
steady-state occupation, given by Eq. (25). We must therefore
first find the retarded frequency-space Green’s function of the
open chain. This has been done in previous work [23,38],
but we present here a different approach that will allow us
to simultaneously find the response of the periodic chain and
compare in what manner the two differ. To that end, we first
find the time-domain Green’s function GR

∞( j, p; t ) for an infi-
nite lattice, whose equations of motion are

i∂t G
R
∞( j, p; t ) − (w + κ )

2
GR

∞( j − 1, p; t ) − (w − κ )

2
GR

∞

× ( j + 1, p; t ) + is±GR
∞( j, l; t ) = δ(t )δ j,p, (D2)

along with the initial condition GR
∞( j, p, 0) = −iδ j,p with δ(t )

the Dirac delta function and δ j,p the Kronecker delta function.
For notational convenience, we have set s± = κ ± �. These
can readily be solved by using the plane-wave solutions, and
with an infinite-sized system there is no quantization condi-
tion on the momentum. Thus

GR
∞( j, p; t ) = − i�(t )e−s±t

∫ π

−π

dk

2π
eik( j−p)e−i(w cos k−iκ sin k)t

= − i�(t )e−s±t eA( j−l )
∫ π

−π

dk

2π
eik( j−p)e−iJ cos kt ,

(D3)

where in the last line we have made an imaginary gauge
transformation k → k − iA using the definition of Eq. (24).
Although seemingly ad hoc, this transformation can be jus-
tified using complex analysis. Viewed as a complex variable,
the integrand is a holomorphic function of k, and one then
constructs a rectangle in the complex plane over which the
integral is zero. Two sides of the rectangle cancel, after which
one equates the two functions above.

The frequency-space response is obtained by taking the
Fourier transform of Eq. (D3), after which we have

GR
∞[ j, p; ω] = eA( j−p)

∫ π

−π

dk

2π

eik( j−p)

w + is± − J cos k

= − i
eA( j−p)e−iQ[ω]| j−p|

J sin Q[ω]
. (D4)
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where we have used the residue theorem to compute the
integral. The complex wave vector Q[ω] is defined
by

w + is± = J cos Q[ω], (D5)

and we always chose the imaginary part of Q[ω] to be negative
such that e−iQ[ω] lies in the unit circle. One can also readily

verify that this satisfies the Fourier-transformed version of
Eq. (D2).

To obtain the retarded response of a chain with peri-
odic boundary conditions, we note that the equations of
motion Eq. (D2) remain unchanged, except the boundary
conditions are now GR

pbc[ j + N, p; ω] = GR
pbc[ j, p + N ; ω] =

GR
pbc[ j, p; ω]. By linearity of the equations, the solution is then

GR
pbc[ j, p; ω] =

∞∑
r=−∞

GR
∞[ j − p + Nr; ω]

= −ieA( j−p)

J sin Q[ω]

(
e−iQ[ω]( j−p)

1 − eAN−iQ[ω]N
− eiQ[ω]( j−p)

1 − eAN+iQ[ω]N

)
, (D6)

where j − p is understood to be modulo N . Each term r �= 0 in Eq. (D6) should be interpreted as an additional round trip by the
particle. That is, in going from site p to j, the particle can propagate clockwise or counterclockwise any number of times. The
total Green’s function is then the sum of each of these processes.

Next we compute the Green’s function of a finite-sized open chain. The particle will propagate in the bulk as it would in the
infinite-sized system, without knowledge of the boundaries. Instead of round trips as in the periodic system, however, when it
reaches the edge the particle can now bounce off on an open boundary, acquiring a phase shift of π in the process. Summing
over all possible bounces, we have

GR
obc[ j, p; ω] = −ieA( j−p)

J sin Q[ω]

∞∑
r=−∞

(e−iQ[ω](|2(N+1)r+|n−p||) − e−iQ[ω](|2(N+1)r+|n+p|)|)

= eA( j−p) 2 sin Q[ω] min( j, p) sin Q[ω](N + 1 − max( j, p))
J sin Q[ω] sin Q[ω](N + 1)

, (D7)

in agreement with previously obtained results [38]. We stress once again that each term in the sum above should be interpreted
as scattering off either boundary.

Our remaining task is to compute the integral over all frequencies:

〈ĉ†
j ĉ j〉ss = 2�

N∑
p=1

∫ ∞

−∞

dω

2π

∣∣GR
obc[ j, p; ω]

∣∣2. (D8)

We stress again that this can, in principle, be computed exactly, see Eq. (D1). The first step in finding a more enlightening
approximate expression is to note that the dominating contribution to the integral occurs when the imaginary part of the complex
wave vector Q[ω] is smallest. Since the real and imaginary parts of Q[ω],

Q[ω] = k[ω] + iR[ω], (D9)

are not independent, it will be convenient to first make a change of variables ω → k in the integral. Comparing the dispersion
Eq. (D5) and the definition of Eq. (D9), while also requiring that R[k] is negative, we obtain

dω

| sin Q[ω]|2 = J2dk√
s2± + (J sin k)2

, (D10)

eR[k] =
√

s2± + (J sin k)2 − s±

J sin k
, (D11)

where the integration variable k goes from 0 to π . We can interpret −R[k] as a sort of momentum-dependent inverse decay length
(even though we have open boundary conditions and momentum is not a good quantum number). That is, −R[k] corresponds
to how far can a particle with momentum k can propagate in the lattice before decaying. This damping is minimal when the
magnitude of the group velocity |J sin k| is maximal, i.e., at k = π/2. Conversely, when the group velocity vanishes at k = 0, π ,
there is no propagation −R[k] → ∞.

The formal expression for the steady-state occupation then reads

〈ĉ†
j ĉ j〉ss = 8�

N∑
p=1

e2A( j−l )
∫ π

0

dk

2π

| sin Q[k] min( j, p)|2| sin Q[k](N + 1 − max( j, p))|2√
s2± + (J sin k)2| sin Q[k](N + 1)|2

, (D12)
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where Q[k] = k + iR[k]. We now make our first approxima-
tion and assume that the time it takes for a particle to traverse
the chain, i.e., the length N divided by the group velocity J ,
is much larger than its lifetime 1/s±. This is equivalent to the
requirement in the main text that the spacing of the modes are
much smaller than their widths J/N � s±. Expanding Q[k]
to lowest order in s±/J , it follows that this condition implies
|e−iQ[k]N | � 1 for all k. Consequently, we approximate the
response by keeping only the leading order term in e−iQ[k].
From Eq. (D7), this is exactly equivalent to taking the no-
bounce limit GR

obc[ j, p; ω] ≈ GR
∞[ j, p; ω]. We thus expect this

approximation to worsen when j or p are near a boundary.
Note that the condition J/N � s± is easily satisfied in the
limit of strong nonreciprocity κ ≈ w since J = √

w2 − κ2.
Within the no-bounce approximation, we obtain

〈ĉ†
j ĉ j〉ss ≈ 2�

N∑
p=1

e2A( j−p)
∫ π

0

dk

2π

e2R[k]| j−p|√
s2± + (J sin k)2

. (D13)

In the limit of strong nonreciprocity J � s±, the p = j term
can be approximated as �/s±. For p �= j, we use Laplace’s
method to compute the integral. We approximate R[k] by
expanding to second order near its maximum at k = π/2 and
compute the Gaussian integral by extending the bounds of
integration to infinity. We are left with

〈ĉ†
j ĉ j〉ss ≈ �

s±

⎛
⎜⎝1 +

√√√√ s±

π

√
s2± + J2

∑
p�= j

e2A( j−p)−2A′ | j−p|
√| j − p|

⎞
⎟⎠,

(D14)

where

A′ ≡ −R
[π

2

]
= ln

⎛
⎝
√

s2± + J2 + s±

J

⎞
⎠

= A + ln

(
1 ± �

w

)
+ O

(
(w − κ )�2

w3

)
. (D15)

Comparing with Eq. (26), we have

C1 =
√√√√ s±

π

√
s2± + J2

. (D16)

In the limit of perfect nonreciprocity κ → w, we have A →
∞ and J → 0. Only pump baths to the left of a given site
contribute to its population and thus

〈ĉ†
j ĉ j〉ss ≈ �

s±

(
1 + 1√

π

∑
p< j

e∓ | j−p|
ξobc√| j − p|

)
, (D17)

where

ξobc =
∣∣∣∣∣
(

2 ln

(
1 ± �

w

))−1
∣∣∣∣∣. (D18)

Approximating the sum as an integral, we obtain

〈ĉ†
j ĉ j〉ss ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�
κ+�

(
1 +

erf
(√

j
ξobc

)
−erf
(

1√
ξobc

)
√

ξ−1
obc

)
, fermions

�
κ−�

(
1 +

erfi
(√

j
ξobc

)
−erfi
(

1√
ξobc

)
√

ξ−1
obc

)
, bosons

(D19)

j�ξobc= �

κ ± �

(
1 + 2√

π
(
√

j − 1)

)
, (D20)

where we recover the results in the main text by setting

C2 = 1 −
erf
(

1√
ξobc

)
ξ−1

obc

, (D21)

C3 = 1 −
erfi
(

1√
ξobc

)
ξ−1

obc

. (D22)

We emphasize that the exact solution of Eq. (D1) could not
have easily predicted these analytic results. Further, we have
shown that bulk dynamics alone, by making the no-bounce
approximation GR

obc[ j, l; ω] ≈ GR
∞[ j, l; ω], was sufficient to

correctly capture the steady-state occupation.

APPENDIX E: PERTURBATION THEORY FOR ORBITALS

We now use perturbation theory to find the second-order
correction in w to the standing-wave orbitals. This is unlike
standard perturbation theory in that the steady-state correla-
tion matrix F depends on w to all orders

F =
∞∑

r=0

wrFr . (E1)

Finding the orbitals to the correct order is then a two-step
process: We must first find Fr to the requisite order and only
then solve for the corrected eigenstates. As discussed in the
main text, the zeroeth order term is

F0 =
∑
Kq

nKq |Kq〉〈Kq|. (E2)

To find Fr to any other order r � 1, we insert F into Eq. (12)
and equate terms at each order in w on both sides. We are
left with a recursive relation between Fr and Fr+1 whose
solution is

Fr = i

w

∑
Kq,Kq′

( 〈Kq|(Fr−1H − HFr−1)|Kq′ 〉
LKq + GKq + LKq′ + LKq′

)
|Kq〉〈Kq′ |.

(E3)

For instance, using Eq. (E2) we recover Eq. (33) in the
main text.

Once we have computed these corrections to the steady-
state correlation matrix to the desired order, we can then
compute the orbitals to that same order. This proceeds
more like standard perturbation theory. For instance, the
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unnormalized corrected orbital is given by∣∣Kpert
q

〉 = |Kq〉 + w
∑

Kq′ �=Kq

〈Kq′ |F1|Kq〉
nKq − nKq′

|Kq′ 〉

+ w2
∑

Kq′ �=Kq

〈Kq′ |F2|Kq〉
nKq − nKq′

|Kq′ 〉

+ w2
∑

Kq′ �=Kq

Kq′′ �=Kq

〈Kq′ |F1|Kq′′ 〉〈Kq′′ |F1|Kq′ 〉(
nKq − nKq′

)(
nKq − nKq′′

) |Kq′ 〉, (E4)

which are the states we use when comparing the numerically
computed orbitals |ψr〉 in Fig. 4.

We also note that, with these corrected orbitals, one can
also compute the correction to perturbative corrections to the
occupation nr . Suppose we were able to find the exact orbital
states |ψr〉, which are by definition eigenvectors of F. Then
taking the expectation value of both sides of Eq. (12), we
obtain

nr = 〈ψr |G|ψr〉
〈ψr |G|ψr〉 + 〈ψr |L|ψr〉. (E5)

Replacing |ψr〉 with its perturbative correction gives the occu-
pation to the desired order.

APPENDIX F: TWO ADDITIONAL NON-HERMITIAN
TIGHT-BINDING MODELS

1. Non-Hermitian SSH model

In this Appendix, we will briefly study one version of the
non-Hermitian SSH model initially considered in Ref. [6].
We will restrict ourselves to the fermionic case, since the
analysis for the bosonic case essentially follows the same
logic. To obtain a quantum-mechanically consistent effective
Hamiltonian, we will follow method 2 and add a minimal
amount of loss. The effective non-Hermitian Hamiltonian
reads

ĤSSH
eff =

∑
j

(
w − κ

2
ĉ†

A, j ĉB, j + w + κ

2
ĉ†

B, j ĉA, j

)

+
∑

j

(
u + γ

2
ĉ†

A, j+1ĉB, j + u − γ

2
ĉ†

B, j ĉA, j+1

)

− i
∑

j

(
� + κ + γ

2

)
(ĉ†

A, j ĉA, j + ĉ†
B, j ĉB, j ), (F1)

where A and B label the two sites in a unit cell, w ± κ are the
intracell hopping, and u ± γ the intercell hopping. This model

is known to exhibit the NHSE for any value of nonreciprocal
hopping (in the sense that the spectrum collapses to a line
in the complex plane). Note that if u = w and γ = κ , we
recover the Hatano-Nelson model. We first wish to describe
this model for an infinitely large lattice. Fourier transforming
to momentum space, we obtain

ĤSSH
eff =

∑
k

Ĉ
†
kHeff (k)Ĉk, (F2)

where Ĉ
†
k = (ĉ†

A,k, ĉ†
B,k ) and

Heff (k) =
(−i
(
� + κ+γ

2

)
w−κ

2 + u+γ

2 e−ik

w+κ
2 + u−γ

2 eik −i
(
� + κ+γ

2

)
)

(F3)

is the effective Hamiltonian. There are two bands, and the
complex energies are

E±(k) = ± 1

2

√
J2 + J̃2 + 2JJ̃ cos (k + i(A + Ã))

− i

(
� + κ + γ

2

)
, (F4)

where J = √
w2 − κ2, 2A = ln(w + κ )/(w − κ ) as

before and we have introduced J̃ =
√

u2 − γ 2, 2Ã =
ln(u + γ )/(u − γ ). Despite the potentially interesting
band structure, the steady state is completely determined
by the anti-Hermitian part of the effective Hamiltonian. As
discussed in the main text, the baths cannot cause transitions
between momentum eigenstates. In the infinite time limit,
the only structure that remains in the incoherent pumping
and decay. As before, the most interesting feature of this
model is the open-boundary steady-state occupation. We
would like to argue that the most interesting feature we see
in the Hatano-Nelson model, namely, the existence of a large
length scale that is directly tied to real-space propagation
dynamics, is still present in this generalized model. To this
end, we will compare two different methods for computing
〈ĉ†

A/B, j ĉA/B, j〉ss under open boundary conditions. We first
numerically solve the Lyaponov equation Eq. (12), which
is straightforward. For the second method, we will use the
formal solution Eq. (13) except we will approximate the
open-boundary Green’s function by that of an infinite chain
(just as we did in Appendix D). We therefore first need to find
the real-space Green’s function for an infinite-sized lattice.
The momentum-space retarded Green’s function is simply

(
GR

∞,AA[k; ω] GR
∞,AB[k; ω]

GR
∞,BA[k; ω] GR

∞,BB[k; ω]

)

= 1

ω1 − Heff (k)

= 1[
(ω + is)2 − 1

4 (J2 + J̃2) − 1
2 JJ̃ cos(k + i(A + Ã))

]
(

ω + is 1
2 (Je−A + e−ik J̃eÃ)

1
2 (JeA + eik J̃e−Ã) ω + is

)
, (F5)
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where s = � + (κ + γ )/2. Taking the Fourier transform to
real space, we obtain(

GR
∞,AA[ j, p; ω] GR

∞,AB[ j, p; ω]
GR

∞,BA[ j, p; ω] GR
∞,BB[ j, p; ω]

)

=
∫ π

−π

dk

2π

eik( j−p)

ω1 − Heff (k)
.

The integral can be computed analytically using the residue
theorem. We have

GR
∞,AA[ j, p; ω] = −2ie( j−p)(A+Ã)

JJ̃ sin Q̃[ω]
(ω + is)e−iQ̃[ω]| j−p|, (F6)

GR
∞,BB[ j, p; ω] = −2ie( j−p)(A+Ã)

JJ̃ sin Q̃[ω]
(ω + is)e−iQ̃[ω]| j−p|, (F7)

GR
∞,AB[ j, p; ω] = −ie( j−p)(A+Ã)−A

JJ̃ sin Q̃[ω]
(Je−iQ̃[ω]| j−p|

+ J̃e−iQ̃[ω]| j−p−1|), (F8)

GR
∞,BA[ j, p; ω] = −ie( j−p)(A+Ã)+A

JJ̃ sin Q̃[ω]
(Je−iQ̃[ω]| j−p|

+ J̃e−iQ̃[ω]| j−p+1|). (F9)

Using these expressions, we can then approximate the real-
space steady-state occupation of this non-Hermitian SSH
model as

〈ĉ†
A, j ĉA, j〉ss ≈ 2�

∑
p

∫ ∞

−∞

dω

2π

(∣∣GR
∞,AA[ j, p; ω]

∣∣2
+ ∣∣GR

∞,AB[ j, p; ω]
∣∣2), (F10)

〈ĉ†
B, j ĉB, j〉ss ≈ 2�

∑
p

∫ ∞

−∞

dω

2π

(∣∣GR
∞,BA[ j, p; ω]

∣∣2
+ ∣∣GR

∞,BB[ j, p; ω]
∣∣2), (F11)

by numerically computing the integrals over frequency. In
Fig. 5, we plot the numerically exact result [which comes
from directly solving Eq. (12)], the approximate solution
Eqs. (F10) and (F11) in addition to the open and periodic
spectrum for a given choice of parameters. There are two
salient features. First, note that there is still a large length
scale which describes the steady-state occupation, despite the
existence of a dissipative gap of order (κ + γ )/2. The length
scale associated with this gap would only be on the order of a
few lattice sites, which is evidently not how 〈ĉ†

j ĉ j〉ss behaves.
Further, seeing as the approximate and exact solutions are
nearly identical, it follows that this length scale is encoded
in the the Green’s function for an infinite system and has
nothing to do with the open-boundary geometry. This once
again justifies the approximation that, in the bulk, the retarded
Green’s function is largely unaffected by the NHSE, even
though the eigenvalues and eigenvectors change dramatically
depending on boundary conditions.

2. Hatano-Nelson with next-nearest-neighbor hopping

We now analyze another non-Hermitian tight-binding
model: the Hatano-Nelson model with an additional next-

FIG. 5. Top: Periodic (orange) and open (blue) boundary spec-
trum of the SSH model described in Eq. (F1) for w = u = 1, κ =
0, γ = 0.99, and � = 0.01 (i.e., only nonreciprocal hopping on every
second bond). The model is known to exhibit the NHSE: all the
energies to collapse to the real line and all right eigenvectors are
localized to one side of the chain. The periodic boundary system
has a gap of order �, whereas the open chain has a gap of order
(κ + γ )/2. Bottom: Plot of the real-space steady-state occupation
〈ĉ†

j ĉ j〉ss for the parameters above with N = 200 total sites (100 unit
cells). Even and odd sites correspond to the A and B sublattice
degrees of freedom, respectively. Despite the large damping gap,
there is still a large length scale which characterizes the steady-state
occupation. The numerically exact method, which we obtain by
directly solving the matrix equation Eq. (12), is essentially identi-
cal to the solution obtained by approximating the open-boundary
Green’s function by its infinite-system counterpart [see Eqs. (F10)
and (F11)].

nearest-neighbor (NNN) Hermitian hopping term. Since the
anti-Hermitian part of the effective Hamiltonian is the same
as the Hatano-Nelson model, we can use the same set of
dissipators. The effective Hamiltonian reads

ĤNNN
eff =

∑
j

(
w + κ

2
ĉ†

j+1ĉ j + w − κ

2
ĉ†

j ĉ j+1

)

+ T

2

∑
j

(eiφ ĉ j+2ĉ j + e−iφ ĉ j ĉ j+2)

− i(� + κ )
∑

j

ĉ†
j ĉ j, (F12)
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FIG. 6. Top: Periodic (orange) and open (blue) boundary spec-
trum of the Hatano-Nelson model with NNN hopping described
in Eq. (F12) for w = T = 1, κ = 0.99, φ = π/2 and � = 0.01.
Note that the open chain spectrum is only using N = 70 sites,
due to numerical stability issues in computing the eigenvalues.
The periodic boundary system has a gap of order �, whereas the
open chain gap is of order of magnitude smaller than κ . The
system exhibits the NHSE, with nearly 60% of all right eigen-
vectors localized to the right and 40% localized to the left of the
chain under open boundary conditions. Bottom: Plot of the real-
space steady-state occupation 〈ĉ†

j ĉ j〉ss for the Hatano-Nelson model
and the Hatano-Nelson model with NNN hopping with the parame-
ters above for a chain with N = 200 sites. The two models share the
same large length scale ξobc ≈ w/(2�) despite having very different
eigenvalues and eigenvectors.

where T is the real hopping amplitude and φ an arbitrary real
phase. Note that if φ �= 0, π we have broken time-reversal
symmetry, as the phase φ cannot be gauged away. We once
again stress that for periodic boundary conditions, only the
dissipation determines the steady state which is characterized
by the momentum-space occupation, see Eq. (21). We
therefore only consider the open boundary case. We know
that if the NNN hopping is zero, the propagation dynamics
favors rightward propagation. The naive assumption is that
this still holds for arbitrary T and φ, since the added NNN
hopping does not a priori favor left or right propagation as
it is Hermitian. Using this line of thinking, we would expect
particles to pile up on the right side, just like the original
Hatano-Nelson model. In Fig. 6, we show that there exists a

set of parameters for which the opposite is true: In the steady
state, particles pile up on the left side, but with the same
long length scale ξobc ≈ w/(2�) as in the Hatano-Nelson
model. There is still a dissipative gap, and thus the naive
expectation is that the associated length scale is very small.
Further, the periodic and open boundary spectrum looks
nothing like the original Hatnao-Nelson model. How are
we to understand this behavior? The answer is to consider
the dispersion of an infinite-sized chain, which can be
readily found from Eq. (F12) and gives E (k) = w cos(k) +
T cos(2k − φ) − iκ (1 + sin k) − i�. The least-damped mode
is at k = −π/2, and the corresponding group velocity for the
chosen parameters T = w and φ = π/2 is
w∂k (cos k)|k=−π/2 + w∂k cos(2k − π/2)|k=−π/2 = −w < 0.
Thus, with the inclusion of the NNN hopping, the
least-damped mode now propagates to the left instead of
the right. Further, we can once again estimate the relevant
decay length as the group velocity divided by the residual
decay rate � and recover ξobc ≈ w/(2�). Note that the right
and left eigenvectors of the open chain also resemble nothing
like the steady-state occupation 〈ĉ†

j ĉ j〉ss. With the chosen
parameters, about 60% are localized to the right of the chain,
and nearly 40% are localized to the left.

APPENDIX G: STEADY STATE FOR NOISE WITH
REAL-SPACE CORRELATIONS

Here we briefly study a model whose noise matrix G has
nontrivial spatial correlations. As we have shown in the main
text, nonreciprocal dynamics can lead to an interesting steady
state even when the noise is uniform. To disentangle the
effects of nonreciprocity and the possibly interesting conse-
quences of real-space fluctuation correlations, we seek a set
of dissipators and coherent Hamiltonian which give rise to
an effective reciprocal Hamiltonian. Working with fermionic
particles, this can be achieved by choosing

Ĥ = w

2

∑
j

(ĉ†
j+1ĉ j + H.c.), (G1)

L̂ j = √
κ (ĉ j − iĉ j+1), (G2)

Ĝ j =
√

�(ĉ†
j − iĉ†

j+1), (G3)

and setting the decay and pumping rate to be the same κ = �.
The effective Hamiltonian and noise matrix are

Heff = H − i2�1, (G4)

G = −i�
∑

j

(| j + 1〉〈 j| − | j〉〈 j + 1|) + 2�1. (G5)

The effective Hamiltonian corresponds to a reciprocal tight-
binding model with a uniform decay rate �. The noise matrix
also has a similar structure, except the hopping matrix element
is purely imaginary. This leads to an incompatibility between
the dynamics and the noise, which can formally be written as
[H, G] �= 0: H and G cannot be diagonalized by a common
set of eigenvectors. Consequently, the dynamics can cause
transitions between particles added by the gain baths to any
eigenstate of G as is made clear by the formal solution to the
steady-state correlation matrix F in Eq. (14).
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FIG. 7. Steady-state occupation 〈ĉ†
j ĉ j〉ss of a reciprocal tight-

binding model with a nontrivial noise correlation matrix. The
effective Hamiltonian and noise are realized with the coherent
Hamiltonian and dissipators Eqs. (G1)–(G3). Despite the lack of
nonreciprocity, there is an accumulation and depletion of particles
on opposite ends of the chain. This can be attributed to nonuniform
pumping, which adds right movers to the chain at a higher rate than
left movers.

The discord between the noise and the dynamics leads to
a nontrivial steady-state occupation 〈ĉ†

j ĉ j〉ss as we show in
Fig. 7. In the bulk, we recover the expected occupation of
half filling, seeing as we have set κ = �. The occupation
at the boundaries, however, is nontrivial, with an excess of
particles at one edge and an equivalently depleted number
at the opposite edge. We stress that this effect cannot be at-
tributed to nonreciprocity, as there is none. In a similar vain, it

cannot be explained by any novel non-Hermitian phenomena
such as the NHSE: the dynamical matrix H is only trivially
non-Hermitian in that it has a uniform decay.

The goal of this Appendix is not to fully characterize
the steady state of this model, but rather to point out how
structured fluctuations can lead to interesting behavior even
when the dynamics are reciprocal. That being said, we can
provide a simple intuitive reason as to why there is an accumu-
lation of particles on one edge and a lack of them on the other.
We first note that the eigenvectors of G are standing-wave
states with a center of mass momentum π/2,

〈 j|Kq〉 =
√

2

N + 1
ei π

2 j sin Kq j, (G6)

with corresponding eigenvalues:

GKq = 2�(1 − cos Kq). (G7)

Using the dispersion our system, Eq. (G6) tells us that
the group velocity of a standing wave with momentum Kq

is ∂k (w cos k)|k= π
2 ±Kq = −w cos Kq. Further, recall that the

eigenvalues of G correspond to the rate at which the baths
add particles to the corresponding eigenstate. Together with
Eq. (G7), we thus see that the baths adds right-moving
particles −w cos Kq > 0 at a higher rate than left-moving
particles −w cos Kq < 0. This succinctly explains why, at
least qualitatively, there is an population imbalance in the
steady state. The only dimensionless parameter in the prob-
lem, w/�, also controls a length scale which determines how
the boundary occupation deviates from half-filling. As we
increase �, particles decay more quickly out of the system and
the number disparity between left-movers and right-movers
because immaterial.
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