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Topological continuum charges of acoustic phonons in two dimensions
and the Nambu-Goldstone theorem
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We analyze the band topology of acoustic phonons in 2D materials by considering the interplay between
spatial/internal symmetries and additional constraints that arise from the physical context. These supplemental
constraints trace back to the Nambu-Goldstone theorem and the requirements of structural stability. We show
that this interplay can give rise to previously unaddressed nontrivial nodal charges that are associated with the
crossing of the acoustic phonon branches at the center (� point) of the phononic Brillouin zone. We moreover
apply our perspective to the concrete context of graphene, where we demonstrate that the phonon spectrum
harbors these kinds of nontrivial nodal charges. Apart from its fundamental appeal, this analysis is physically
consequential and dictates how the phonon dispersion is affected when graphene is grown on a substrate. Given
the generality of our framework, we anticipate that our strategy, which thrives on combining physical context
with insights from topology, should be widely applicable in characterizing systems beyond electronic band
theory.
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I. INTRODUCTION

The interplay between symmetry and topology has been
well studied in electronic band structures for a long time,
culminating in classification schemes that predict topology
based only on the space group and the internal symmetries of
the system [1–23]. The same machinery has also recently been
applied to phononic systems [24–27], where the Bloch Hamil-
tonian of electrons is replaced with the dynamical matrix of
phonons. The band topology of phononic systems is then
described using spinless space groups, that is, the phonons
are modeled using the symmetries of spinless electrons.
As the dynamical matrix naturally includes time-reversal
symmetry (TRS), this corresponds to the Altland-Zirnbauer
(AZ) [28–30] class AI.

However, phonons are not just spinless electrons. While
AZ class AI (possibly augmented by spatial symmetries) cor-
rectly captures the symmetry content of phonons, there are
additional physical properties that set phonons apart from
electrons. The most relevant of these [31–33] are

(1) Phonon frequencies of stable structures are non-
negative, so the dynamical matrix is positive semidefinite.

(2) Phonons (being bosons) do not couple directly to
magnetic fields, so TRS is not easily broken (however, see
Appendix A 2),
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(3) Phonons satisfy the acoustic sum rule, e.g., they sup-
port long-wavelength excitations with vanishing frequency.
These arise as a consequence of the Nambu-Goldstone (NG)
theorem [34–42].

We will refer to these as additional physical constraints.
Earlier work on phononic topology [31–33,43–59] usually
incorporates these constraints by moving away from a di-
rect dynamical matrix formulation. One strategy, introduced
in Ref. [31], is to map the bosonic phonon problem to a
fermionic problem [32] by considering the square root of the
dynamical matrix. This replaces the positive semidefiniteness
condition with a particle-hole symmetry, leading to AZ class
BDI, and also gives a natural way to include TRS break-
ing [33,57].

Here, by contrast, we deal directly with the dynamical
matrix and discuss how the additional physical constraints
modify the conventional symmetry analysis. Concretely, we
study the nodal charge of acoustic phonons in a 2D material at
the � point [q = (0, 0)] of the Brillouin zone (BZ). Allowing
the material to flex out of plane, the NG theorem [34–42,60]
predicts that three acoustic bands will be degenerate at �,
forming a triple point. We assume the presence of spinless
TRS T throughout (discussed in Appendix A 2), e.g., T 2 =
+1 so we are in AZ class AI. As a result, the spatial symme-
tries of our system are described by the 80 layer groups with
spinless TRS [61].

However, none of these layer groups have a three-
dimensional irreducible representation (IR) [62,63], so triply
degenerate points are not stabilized by internal or spatial sym-
metries in AZ class AI in 2D. Such triple points are therefore
not anticipated from a pure symmetry analysis and arise from
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the NG theorem. Imposing such a triple point, we can then
use the machinery of homotopy theory to compute the nodal
charge of the triple point. This computation is simplified if the
system has a unitary symmetry P taking q → −q and satis-
fying (PT )2 = +1, because this allows us to restrict to real
topology [2,11,64–71], as discussed in Sec. II B. We will refer
to P as a generalized inversion symmetry. Such a symmetry
does not necessarily exist globally in ph ononic systems, but
we show in Appendix A that the physical constraints above
force such a symmetry to exist close to the � point. In 2D, P
is given by a twofold rotation.

We find that, with this additional symmetry, there is a nodal
charge associated with the acoustic phonons in 2D. However,
this charge is only associated with two of the bands, the third
band being degenerate only by virtue of the NG theorem. This
nodal charge assignment explains why, in 2D materials, one of
the acoustic bands can gap out when the material is grown on
a substrate, as confirmed experimentally for graphene [72,73].
This also follows from the NG theorem for nonrelativistic sys-
tems: The substrate allows for a violation of the NG theorem,
splitting off one of the bands, whereas the other two bands
are stabilized by the nodal charge. The relationship between
the NG theorem and topology is discussed in Sec. V. This
effect is shown explicitly in graphene in Sec. VI. Due to the
generality of our approach, we emphasize that graphene is
nonetheless just a specific example of this universal perspec-
tive. We note that a similar analysis was recently carried out
in 3D in Ref. [74], and we comment on the connection of their
results to ours throughout.

We stress the uniqueness of the retrieved 2D charges. The
crossings are, as we explain, not protected by symmetry per
se. In fact, a naive counting would suggest the absence of such
crossings.

This paper is structured as follows: In Sec. II, we introduce
the model for 2D acoustic phonons and discuss some general
symmetry considerations. In Sec. III, we discuss the possi-
ble topology and apply it to the 2D system in Sec. IV. The
relation between our topological results and the NG theorem
are discussed in Sec. V. We then exemplify these concepts
by applying the machinery to graphene in Sec. VI, discussing
how a substrate modifies the phonon dispersion. We conclude
in Sec. VII.

II. CONTINUUM MODELS FROM ELASTICITY THEORY

A. Flexural phonons in 2D

We begin by introducing a continuum model for acoustic
phonons based on classical elasticity theory in 2D [75]. The

analogous model in 3D was studied in Ref. [74], and we
include it for completeness in Appendix B 1 where we also
discuss the model in 1D and show that it is trivial.

Classical continuum theory describes a 2D material as an
elastic membrane in the xy plane which can flex in the z plane,
giving rise to flexural modes [76]. The Lagrangian density for
such a system is written in terms of the in-plane displacement
field u(x, y) = (u1(x, y), u2(x, y)) and the out-of plane dis-
placement field h(x, y). These fields are defined, respectively,
as the in-plane and out-of-plane deviations of the atoms from
their equilibrium position. Explicitly, the Lagrangian density
for a flexible membrane is given by [75,77,78]

L = ρ0

2
(u̇2 + ḣ2) − 1

2
κ0(∇2h)2 − μ

↔
u

2

i j − 1

2
λ

↔
u

2

kk, (1)

where μ and λ are Lamé parameters and ρ0 and κ0 are the
stiffness in and out of plane, respectively. The strain tensor
↔
u i j is defined as

↔
u i j = 1

2 (∂iu j + ∂ jui + ∂ih∂ jh). (2)

Expanding Eq. (1) to quadratic order in the displacements
defines what we will refer to as the harmonic approximation.
This is valid whenever phonon-phonon interactions are negli-
gible, which we assume throughout (for a discussion of such
terms, see Ref. [78]). Note that we do not restrict our model
to be quadratic in the wave vectors q. Looking for plane-wave
solutions to the equations of motion gives the classical wave
equation with general form

D(q)v(q) = ω2(q)v(q), (3)

where q = (qx, qy) is the wave vector of the plane wave,
D(q) is the dynamical matrix, whose topology we investigate,
ω2(q) are the eigenfrequencies, and v(q) = (u, h). Note that
a continuum model can never capture optical branches in the
phonon spectrum, as they depend on the internal motion of
atoms which we neglect. As we are only interested in the
topology of the acoustic phonons close to � [e.g., q = (0, 0)],
the optical branches will have no impact on our analysis. A
more realistic model describing the phonons of graphene is
analyzed in Sec. VI. For now, we think of D(q) as a k · p ex-
pansion of the full (many-band) phonon band structure around
�, describing the lowest three bands.

For stable structures, D(q) is positive semidefinite, so ω

is real. A more careful analysis of the constraints on D(q) is
performed in Appendix A. For the Lagrangian in Eq. (1), we
find

D(q) =

⎛
⎜⎜⎝

v2
l q2

x + v2
t q2

y

(
v2

l − v2
t

)
qxqy 0(

v2
l − v2

t

)
qxqy v2

l q2
y + v2

t q2
x 0

0 0 v2
h

(
q4

x + 2q2
x q2

y + q4
y

)
⎞
⎟⎟⎠. (4)

Solving the eigenvalue problem in Eq. (3) gives explicitly

ω2
1 = v2

hq4, ω2
2 = v2

t q2, ω2
3 = v2

l q2. (5)

064301-2



TOPOLOGICAL CONTINUUM CHARGES OF ACOUSTIC … PHYSICAL REVIEW B 105, 064301 (2022)

The associated eigenvectors then read

v1 =

⎛
⎜⎝

0

0

1

⎞
⎟⎠, v2 = 1

|q|

⎛
⎜⎝

−qy

qx

0,

⎞
⎟⎠, v3 = 1

|q|

⎛
⎜⎝

qx

qy

0

⎞
⎟⎠, (6)

where vl = √
(2μ + λ)/ρ0, vt = √

μ/ρ0, and vh = √
κ0/ρ0

are the longitudinal, transverse and out-of plane velocities,
respectively. We therefore get a triple degeneracy at q = (0, 0)
with ω = 0, and with two linear bands and one quadratic band
crossing as shown in Fig. 1. The quadratic band corresponds to
the out-of plane flexural mode and it is well-known [76,79,80]
that such bands are generically present in 2D materials. This
quadratic band distinguishes the 2D case from the 3D case
studied in Ref. [74]. We note that the flexural band is com-
pletely decoupled from the in-plane modes. This is not just a
feature of our simplified model: the bands remain decoupled
as long as the harmonic approximation remains valid (e.g.,
we can ignore phonon-phonon couplings). The more realistic
model for graphene considered in Sec. VI exhibits the same
decoupling. In graphene, this can also be understood as arising
from the fact that the flexural and in-plane bands have oppo-
site eigenvalues under the horizontal mirror operation [24].
We will argue below that this decoupling, a feature of the 2D
case, is intimately tied to the nodal charge of the triple point.

We finally note that the bands v2 and v3, respectively,
correspond to a divergence-free angular vector field and
a curl-free radial vector field, as illustrated in Figs. 1(c)
and 1(d). This simplifies computation but is not a generic
feature of flexural phonons.

FIG. 1. Summary of the dynamical matrix specified in Eq. (4).
(a) Band structure in 3D with vt = vh = 1 and vl = 2, (b) same as
(a) but along the line qx = qy, where the lowest band (blue) is the
flexural band, (c) vector field corresponding to the eigenvector v2 =
|q|−1(−qy, qx, 0), see Eq. (4), (d) vector field corresponding to the
eigenvector v3 = |q|−1(qx, qy, 0).

B. Symmetry considerations in 2D

As mentioned in the Introduction, we assume throughout
that our models are nonmagnetic (have spinless time-reversal
symmetry T ) and have a generalized inversion symmetry P ,
which satisfy (PT )2 = +1. The physical constraints make
these assumptions valid close to � quite generally, as dis-
cussed in Appendix A. We represent the antiunitary symmetry
T as T = UK, where U is the (unitary) orbital action and K
is complex conjugation. Acting with P and T on D(q) gives
that D(q) must satisfy

UD∗(−q)U−1 = D(q), PD(−q)P−1 = D(q). (7)

This, together with the assumption that (PT )2 = +1, implies
that there exists a basis in which PT = K, so D(q) can be
chosen to be a real symmetric matrix [65]. In the language of
Ref. [68], we are in AZ+I class AI. For the model in Eq. (4),
U = P = 1.

In addition to this symmetry class, however, we are also
impacted by the NG theorem [34,35], which in essence states
that whenever a continuous symmetry is spontaneously bro-
ken, massless bosons must appear. Generically, one expects
the number of Goldstone bosons to be equal to the number
of broken symmetries. By imposing a lattice, we are break-
ing both continuous translational and rotational symmetries.
However, these symmetries are linked [36–42] so that we only
get three massless bosons, as discussed further in Sec. V.

As remarked in the Introduction, there are no 3D irre-
ducible representations (IRs) in the 2D layer groups in AZ
class AI. Therefore, the triple point at � must consist of at
least two IRs, which are glued together by the NG theorem.
This gluing of IRs is not protected by symmetry in 2D. This
can also be seen from a codimension argument [68]: PT
symmetry forces D(q) to be an element of SO(3), which is
generated by the three rotation matrices Li=x,y,z, The triple
band touching then requires tuning three independent param-
eters, but there are only two momentum components available
to tune. Therefore, this triple crossing cannot be stable, in
general, and only arises due to the NG theorem. We confirm
this in Secs. V and VI by showing that when the NG theorem
is modified by adding a substrate, the triple degeneracy is
lifted to a double degeneracy. This agrees with our analysis
in Sec. IV, where we show that this double degeneracy has an
associated nontrivial nodal charge. This illustrates that the NG
theorem can impose constraints on the band structure beyond
any symmetry formulation.

III. TOPOLOGICAL ANALYSIS FROM A HOMOTOPY
PERSPECTIVE

In this section, we investigate the topology associated
with the nodal point between the acoustic bands at q = 0.
Topological charges of nodal points can generally be diag-
nosed by considering the homotopy group of the classifying
space [81].

To find the classifying space of our model, we note that
the first Lamé parameter in Eq. (1) satisfies μ > 0 [75]. The
second Lamé parameter λ can be negative, but is positive
for most materials [82,83]. We therefore generically expect
vl > vt . As we are working with an elastic continuum model,
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TABLE I. Possible charge of triple point for acoustic phonons of
various dimensions. Q denotes the quaternion group. The Z2 charge
corresponds to the first Stiefel-Whitney class on a loop around the
nodal point [87] and the 2Z charge corresponds to the Euler class on
a sphere surrounding the nodal point (discussed in Ref. [74]).

Name M π0(M) π1(M) π2(M)

FlR1,1,1 SO(3)/D2 0 Q 0

GrR2,3 RP2 0 Z2 2Z

our model is only valid when the wavelengths we are con-
sidering are much larger than the interatomic spacing, which
corresponds to small q. In this limit, we expect ω1 < ω2 < ω3

away from q = 0, so we are considering three separate phonon
branches (a 1 ⊕ 1 ⊕ 1 split). This should be contrasted with
the continuum model in 3D (see Ref. [74] and Appendix B 1),
where there are three linear bands, two of which are degener-
ate (a 2 ⊕ 1 split). In 2D, additional symmetries may force the
two linear bands to become degenerate along high-symmetry
lines, resulting in a 2 ⊕ 1 split.

Because of our assumed PT symmetry, we can always
choose D(q) to be a real symmetric matrix (see Sec. II B and
Appendix A), such that its eigenvectors (v1, v2, v3) are real
and their collection, i.e., the frame of eigenvectors, forms an
element of O(3). Under the reality condition, each eigenvector
has a ±1 sign as a gauge freedom. We can thus always locally
choose a gauge where the frame has positive determinant,
i.e., it is an element of SO(3). Dividing out by the group of
gauge transformations that preserve the energy ordering of the
bands, as well as the handedness of the frame, we obtain the
classifying space FlR1,1,1 = SO(3)/S[O(1) × O(1) × O(1)] for
the 1 ⊕ 1 ⊕ 1 split [11]. This is the (unoriented) real complete
Flag variety. It is also convenient to consider the group of
gauge transformations as the sign-exchange of each pair of
eigenvectors, i.e., the group of π rotations along each of the
three eigenvectors. This corresponds to the point group D2 =
{E ,C2,v1 ,C2,v2 ,C2,v3}, and the classifying space then takes
the compact form FlR1,1,1 = SO(3)/D2 [70]. For the 2 ⊕ 1
split, the classifying space reduces to the real (unoriented)
Grassmannian GrR2,3 = SO(3)/S[O(2) × O(1)], which is iso-
morphic to the real projective plane, i.e., GrR2,3 � RP2.

The topological charge of a nodal point in D dimensions
for a system with classifying space M is generically cap-
tured by the homotopy group πD−1(M ) [68]. These groups
can be computed using long exact sequences, as described in
Ref. [84]. The results given in Refs. [68,70] are summarized
in Table I. As we are only interested in the local topology
of the node, we only need to consider base loops and base
spheres, such that the homotopy groups are sufficient to clas-
sify the topological nodal phases. Indeed, global topologies,
i.e., over the whole BZ TD, requires the consideration of
homotopy equivalence classes [TD, M] which can have more
structure, such as nontrivial lower dimensional topologies
over the noncontractible cycles of the BZ torus, as e.g., the
first Stiefel-Whitney class [85], computed along a full lattice
vector, and the action of the generators of π1[M] on the second
homotopy group [11,67,86]. It follows that the question of
orientability for d > 1-dimensional topologies is not relevant

for us since the continuous maps Sd>1 → M always induce an
orientation, e.g., any mapping S2 → RP2 can be decomposed
into a winding component S2 → S2 and an orientable double
cover S2 → RP2 [11].

We note that some entries in Table I capture fragile
topology, in the sense that adding additional trivial bands
can change their value. The Z2 charge (corresponding to
the first Stiefel-Whitney class [85,87]) is stable under the
addition of trivial bands. The quaternion charge Q turns
into the N th Salingaros group under addition of further
bands [65,70]. Finally, the 2Z charge (corresponding to the
Euler class [11,65,85,88], see below) turns into a Z2 charge,
the second Stiefel-Whitney class, under the addition of ad-
ditional bands [85,87]. As we are only concerned with the
acoustic bands, this low-band limit is justified.

We finally note that the 3D topology of a nodal point,
characterized by the topology over a sphere wrapping the
node, was considered in Ref. [74] for the 2 ⊕ 1 split, in which
case it was classified by the Euler class. Note that, as discussed
there, the presence of this split requires that the condition
vl > vt be satisfied along the high-symmetry lines emanating
from �. Otherwise, the three bands cannot be split on any
sphere surrounding �, so there is no nodal charge (since then
SO(3) gauge transformations are allowed, thus trivializing
the classifying space SO(3)/SO(3) = 1 [89]). In contrast,
for 2D phonons, the topology is always well-defined. Suffi-
ciently close to �, the flexural mode will always be at lower
frequency than the in-plane modes, owing to the quadratic
dispersion. Thus, violating the condition that vl > vt along
high-symmetry lines can only change the split from 1 ⊕ 1 ⊕ 1
to 2 ⊕ 1 in 2D. As can be seen in Table I, this results in
a reduction of the nodal charge from Q to Z2, but it does
not a priori completely remove the topology (however, see
Sec. IV B for a caveat to this). Therefore, the nodal charge
in 2D is actually more stable than its 3D counterpart as can
be defined in all 2D systems with PT symmetry. In 1D,
discussed briefly in Appendix B 2, the situation is slightly dif-
ferent as there is a fourth, torsional, acoustic mode. However,
the π0(M ) charge of the relevant classifying spaces M, listed
in Appendix B 2, is still trivial, so there is no topological nodal
charge in 1D.

IV. TOPOLOGY OF 2D ACOUSTIC PHONONS

We now consider the topology of the 2D case in further
detail. In 2D, the only possible homotopy classifications are
πp(X ) for p ∈ {0, 1, 2} [68]. π2 charges correspond to con-
sidering monopoles encapsulated by a surface, e.g., the BZ
or patches thereof. These are therefore irrelevant to the nodal
charges in 2D as they are classified by loops around nodes.
Furthermore, as can be seen in Table I, the π0 charge is zero
in all symmetry settings. Thus, the only relevant invariant is
the π1 charge, which corresponds to taking a circle around
the triple point at �. Depending on whether the bands split
as 2 ⊕ 1 or 1 ⊕ 1 ⊕ 1 over this circle, the relevant groups
are either Z2 or the quaternion group Q (see Table I). We
investigate both charges in this section. We assume throughout
that the three acoustic bands are separated in energy from all
other bands on a circle around the triple point at �, and on the
entire disk enclosed by this circle.
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A. Quaternion charge of the complete Flag variety

When the bands split as 1 ⊕ 1 ⊕ 1, the relevant π1 charge
is the quaternion group Q. We are therefore a priori deal-
ing with non-Abelian nodal charges. Non-Abelian charges
in band structures is a novel but quickly growing field
[11,65–68,70,71,90,91,93,94]. For the quaternion group,
there are five conjugacy classes of stable nodal charges:
{1,−1,±i,± j,±k}, which correspond to combinations of
nodes in various gaps [67,90]. Here i, j, k satisfy i2 = j2 =
k2 = i jk = −1. In general, the charges i, j, k are only defined
up to equivalence because their sign is gauge dependent [90],
as discussed further in Sec. IV A 2.

We discuss below two approaches to compute the topo-
logical charge of the crossing at �. We first determine the
frame-rotation phase on a loop encircling the node. We then
split the threefold degeneracy into two-band nodes and com-
pute their Euler class [65,88,90]. Such a splitting is physically
relevant for 2D systems on a substrate, as we discuss in
Sec. VI. We find that both charges agree with the quaternion
charge −1. Finally, we also relate to the more familiar notion
of Berry phase in Sec. IV A 3 and show that it is insufficient
to capture the topology.

1. Frame rotation charge

We here compute the frame rotation charge of the node,
i.e., the geometric angle of the rotation of the parallel-
transported frame on the base loop around the node. The
frame rotation charge measures the ability of a pair of nodes
to annihilate inside the disk bounded by the base loop. It
derives from π1[SO(N )] = Z2 for N � 3. For the specific case
of N = 3, consider a matrix of three ordered orthonormal
vectors (usually called a frame) F = (v1, v2, v3). In our case,
these vectors correspond to the eigenstates of the acoustic
bands. Thanks to the analytical expression of the eigenvectors
in Eq. (6), we know an unambiguous global gauge and the
frame rotation charge can be readily obtained as in Ref. [95].
Moving along a closed trajectory 	 in the BZ, we induce a
mapping R(q) = F (q)T F (q0), with q0 a fixed reference point,
and q traversing 	. By deforming 	 to a loop parametrized
by an angle θ ∈ [0, 2π ], this becomes a map from S1 to the
space of frames. This mapping can be decomposed into the
basis elements {Li}i=x,y,z of the Lie algebra SO(3), as R(θ ) =
exp[

∑
i=x,y,z ϕi(θ )Li]. The accumulated frame rotation charge

is then

ϕ(θ ) =
√ ∑

i=x,y,z

ϕi(θ )2. (8)

If we require the frames to be completely equivalent after
traversing 	, then the entire trajectory R(θ ) lies in SO(3)
and ϕ(2π ) = 2πn for n ∈ Z. By using the connection to the
spin group, one can show [65,95] that ϕ is periodic mod-
ulo 4π , in analogy to the Dirac belt trick. This agrees with
π1[SO(3)] = Z2 and shows that there are two possible charges
ϕ(2π ) = {0, 2π} mod 4π . If, however, we allow the final
frame to differ from the initial frame by a sign change of two
eigenvectors (as allowed by the gauge degree of freedom),
then the frame modulo the gauge transformation describes a
closed loop in SO(3)/D2, and ϕ(2π ) = π mod 4π becomes a

possible solution [ϕ(2π ) = 3π only differs from ϕ(2π ) = π

by a gauge transformation].
To discuss the physical interpretations of ϕ, we introduce

some standard terminology for three-band systems [65,70].
We refer to the gap between the lowest-energy band and the
middle band as the principal gap, and a node in this gap is
therefore a principal node. Similarly, the gap between the
middle band and the highest-energy band is referred to as the
adjacent gap, and nodes in this gap are adjacent nodes. Note
that these concepts are ill-defined for the triple degeneracy but
become well-defined once we imagine infinitesimally, split-
ting the triple degeneracy as discussed in Sec. IV A 2. If there
are no stable nodes between the eigenstates that constitute
F (q) on or inside the trajectory 	, then the frame is smooth
everywhere and ϕ(2π ) = 0 mod 4π . This corresponds to the
trivial quaternion charge +1. If there is a stable double node
in either the principal or the adjacent gap, then the frame must
perform a 2π rotation around the node, so ϕ(2π ) = 2π mod
4π corresponds to quaternion charge −1. Finally, if there is
a simple node in the principal gap, or the adjacent gap, or
in both gaps, the frame performs a π rotation so ϕ(2π ) = π

mod 4π corresponds to quaternion charges i, j, k [by resolv-
ing R(θ ) in the three angular momentum matrices, we can
determine the corresponding quaternion charge]. Thus, the
frame rotation charge captures the stability of a pair of nodes
or of single nodes. This is addressed further in Sec. IV A 2 and
Appendix C.

Concretely, for the continuum model in Eq. (4), the map-
ping R, formed by the eigenstates of the model with fixed base
point q0 = (r, 0), for some r > 0, is given by

R(q) = F T (q)F (q0) = 1

|q|

⎛
⎜⎝

|q| 0 0

0 qx qy

0 −qy qx

⎞
⎟⎠, (9)

where we have ordered the eigenstates by frequency ω and
we have chosen a smooth gauge. Parameterizing R by planar
polar coordinates (r, θ ) then gives

R(θ ) = eθLx . (10)

Note that this corresponds to a rotation around a fixed axis.
This is something we expect to hold more generally, due to the
decoupling of the flexural mode from the in-plane modes, dis-
cussed in Sec. II A. When traversing the entire loop, Eq. (10)
gives ϕ(2π ) = 2π mod 4π , which gives a quaternion charge
of −1, indicating that there is a stable pair of nodes forming a
double node at � in the continuum model.

We briefly discuss the computation of the quaternion
charges when a global analytical expression of the eigen-
vectors is not known, i.e., when they must be computed
numerically. In that case, one starts with the discretization of
the base loop, one regularizes the gauge signs of the eigenvec-
tors, and one lifts the projections R(qi ) = F (qi )

T · F (qi−1) to
the double spin cover SU(2) [70,91,92], see also Appendix C.
The lift to the spin group permits the use of the log function to
obtain the accumulated phase components in the Lie algebra
(indeed, the radius of convergence for the log function is
doubled from SO(3) to SU(2)). One can alternatively compute
the Lie algebra components in SO(3) directly, by using the
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log of the Baker-Campbell-Hausdorff formula, as given in
Ref. [70].

2. Quaternionic charge and Euler class

While the frame rotation charge suffices to determine
whether or not there is a protected nodal charge associated
with the bands, it does not distinguish nodes in different gaps.
This is significant, as the flexural mode at � can be gapped
away from zero frequency under certain conditions [72,73].
This happens for graphene grown on certain substrates, and
the magnitude of this splitting is sometimes used as a rough
indicator of the interaction between the substrate and the
graphene layers [73,96,97]. The substrate modifies the out-
of-plane symmetry breaking, so the NG theorem cannot be
straightforwardly applied, as discussed in Sec. V, and there-
fore the triple degeneracy is not required. Note that if the
interaction with the substrate is sufficiently weak and the
acoustic bands remain separated from all other bands, then
the nodal charge of free-standing graphene should still be
applicable to the case of graphene on a substrate. We show
in Sec. VI that this nodal charge is nontrivial, suggesting that
the nodal charge only protects the crossing of the in-plane
bands. To investigate this further, we now discuss how to
distinguish the charge of nodes in different gaps using the
Euler class [65,81,84,88].

The Euler class is defined for two-band subspaces of three-
band real Hamiltonians, in analogy to the more familiar Chern
class for complex Hamiltonians. The Chern class is an integer
obtained by integrating the Berry curvature (a differential two-
form) over closed, even dimensional manifolds. Similarly,
the Euler class between states |v1(q)〉 and |v2(q)〉 is an even
integer obtained by integrating the Euler form,

Eu(q) = 〈∇v1(q)| × |∇v2(q)〉, (11)

over closed even dimensional manifolds. In fact, the Euler
form can be understood as the Berry curvature of the state
|v1(q)〉 + i|v2(q)〉 [65]. The Euler class is only defined for
orientable vector bundles, i.e., for band subspaces with triv-
ial first Stiefel Whitney class (equivalently, with zero Berry
phase), but this is not a problem for the continuum model as
there are no noncontractible loops in the plane.

Note that the only closed, even-dimensional manifold
available in 2D is the whole BZ, which makes it difficult to
compute these quantities in a continuum model (where the
BZ corresponds to all of R2). However, for the Euler class,
a patch formulation exists (e.g., it is possible to compute it on
a subset of R2) as discussed in Refs. [65,66,88,90–92]. The
patch Euler class over a patch D is defined as

χ (D) = 1

2π

[∫
D

Eu −
∮

∂D
a

]
∈ Z, (12)

where ∂D is the boundary of D. Furthermore, Eu is the Euler
two-form in Eq. (11) which can alternatively be defined as
Eu = da = dPfA, where Ai j = 〈vi(q)|dv j (q)〉 = Ai j · dq =∑

α=x,y〈vi(q)|∂qα
v j (q)〉dqα in terms of the band indices i, j ∈

{1, 2}. The second term in Eq. (12) then amounts to the
integral of the Euler connection one-form a = PfA · dq. We
note that this definition intimately profits from the reality
conditions of the two-band Berry connections ensuring that it

takes values in the orthogonal Lie algebra SO(2). The integer
χ (D) equals half the number of stable nodes between the
two bands inside D [88]. This should be contrasted with the
Chern class, where no patch formulation is readily obtainable
without gauge fixing, showing that the Euler class is an ideal
tool for analyzing continuum models.

One characteristic feature of Euler class topology is that
there can be multiple nodes in the same gap that are unable
to annihilate. To correctly capture this property, a consistent
gauge assignment must be made. This is done by drawing
Dirac strings between any pair of nodes, which correspond
to branch cuts across which the gauge must change. Detailed
rules for assigning such strings can be found in Refs. [90–92].
Most importantly, whenever a principal node (see previous
section) crosses the Dirac string of an adjacent node, or vice
versa, its chirality must flip. This leads to nontrivial braiding
statistics and non-Abelian charges. Knowing which gap hosts
stable nodes, one can then assign quaternion charge i for
single nodes in the principal gap, j for nodes in the adjacent
gap, k for one node in both gaps, and −1 for a double node in
either gap [70]. Note that the signs of i, j, k flip when crossing
a Dirac string [88], which explains the assertion made above
that the i, j, k are only defined modulo a sign. The charge −1
corresponds to a double node and is therefore unaffected by
crossing a Dirac string, giving rise to the aforementioned five
equivalence classes.

The patch Euler class is only well-defined for two-band
subspaces, so the patch must be chosen so as to only contain
either principal or adjacent nodes. This is clearly not possible
for the triple point. This can be circumvented by artificially
adding a term to our dynamical matrix which splits the triple
degeneracy into principal and adjacent nodes. If this splitting
can be adiabatically mapped back to the original triple point,
then the charge of the principal/adjacent nodes should reflect
the charge of the triple point.

To make this concrete, we consider the continuum model
of Eq. (4). If we wanted to capture the physics of graphene on
a substrate discussed in Refs. [72,73] and Sec. VI, we should
lift the flexural band up in frequency. However, this leads to
nodal lines rather than nodal points. We perform this lifting for
graphene in Sec. VI. Here, we instead add an onsite energy
to one of the orbitals contributing to the linearly dispersing
bands, modifying D(q) from Eq. (4) as

D̃(q) = D(q) + diag{ε, 0, 0}. (13)

Note that because vl �= vt in our model, this will break C4

invariance, but maintain C2T invariance (as well as C2 and
T separately), and therefore the reality condition. This splits
the triple point into two adjacent nodes on the qy axis and
a single principal node at �. This is illustrated in Fig. 2(b).
Computing the Euler class over an annulus/disk avoiding the
principal/adjacent node, using the code in Ref. [98], we find
that the principal node at the center has χ = 0, corresponding
to quaternion charge +1. The adjacent nodes on the qy-axis
have a combined Euler class of χ = −1, giving a correspond-
ing quaternion charge of −1. Combining the nodes by taking
ε → 0 gives that the total quaternionic charge is −1, in agree-
ment with what was found using the frame rotation charge
in the previous section. However, knowing the gap structure,
we now know that this charge is associated only with the
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FIG. 2. (a) Schematic of the Euler class computation, following
the graphical notation from Ref. [90]. Perturbing the dynamical
matrix in Eq. (4) by an on-site term of magnitude ε creates two
nodes in the adjacent gap (blue triangles) with opposite chirality
(empty/filled) connected by a Dirac string and one principal node
in the center (red cirlce) with trivial charge. This is confirmed by
computing the patch Euler class over the orange annulus (χ = −1)
and over the green circle (χ = 0). (b) The band structure correspond-
ing to the situation sketched in (a). The code used is available at
Ref. [98].

crossing between the linear bands [99]. Thus, the crossing
between the quadratic and the linear bands is not topologically
protected, whereas the crossing between the linear bands is
protected. Note that because the nodal charge represents the
generator of π1[SO(3)] = Z2, and that π1[SO(N )] = Z2 for
all N � 3, this charge is actually stable in the many-band
limit. We emphasize that this node cannot be obtained from an
irreducible representation (IR analysis), as it is present even in
layer groups without 2D IRs.

This result can be understood straightforwardly by not-
ing that adding any perturbation of the form diag{0, δ, 0}
to D̃(q) (with δ > 0, e.g., adding another on-site term) will
completely remove the principal node. This is therefore an
accidental node, in the sense that it is not symmetry protected.
It is, however, protected by the NG theorem as it cannot be
removed without modifying the conditions of the theorem
(i.e., by adding a substrate). This also implies that there are
strong constraints preventing the lifting of the in-plane acous-
tic modes, e.g., if the NG theorem is broken adiabatically, we
only expect the flexural band to gap out (though the crossing
point between the linear bands may shift in frequency).

We now argue why we generically expect nodal charges
of {+1,−1} for acoustic phonons in systems that have P
and T symmetry separately (rather than just their product).
As discussed in Sec. II B and elaborated on in Appendix A,
this is in fact a very general condition when sufficiently close
to �, as a consequence of the physical constraints on the
phonons.

Time-reversal symmetry T implies that if there is a band
touching at q, then there will also be a band touching, between
the same bands, at −q. Let us assume without loss of gener-
ality that the node at q has charge +i. Then the node at −q
has charge ±i (the sign depends on the location of the Dirac
strings from the adjacent nodes). Now imagine splitting the
triple point into two pairs of nodes in each gap (as required
by the presence of T ). Let us assign charge ±i to nodes in the
first gap and ± j to nodes in the second gap. The total node
configuration at the triple point will then have charge Q =

(±i)(±i)(± j)(± j), where the order of the factors depends on
the details of how the nodes are adiabatically brought together.
Regardless of the order, however, the only possible result is
Q = ±1. Thus, generically (that is, unless there is a symmetry
beyond the NG theorem pinning the nodes at �), we expect
the quaternionic charge to reduce to ±1. Thus, the physical
constraints can give topology beyond what is expected from
symmetry analysis but they also constrain the nodal charge
beyond the symmetry analysis.

3. Relating to Berry phase

We now relate the above findings to the more conventional
Berry phase formulation of nodal charges and show that Berry
phases are insufficient to capture this topology.

For a single band in a system with generalized PT symme-
try, the only gauge freedom is a choice of sign. If the sign of
the eigenvector necessarily flips as it is transported around the
loop, there must be a discontinuity in the gauge somewhere
along the loop due to the discreteness of the gauge group (this
corresponds to the Dirac string discussed above). This indi-
cates that the band under consideration forms an odd number
of topologically protected nodes within the loop. As discussed
in Refs. [85,87], such a discontinuity can be analyzed by using
a smooth complex gauge, where a Berry phase of π indicates a
sign reversal. Thus, along the loop, each band can (in a smooth
complex gauge) have a Berry phase of 0 or π .

As we assume the acoustic bands to be separated from all
other bands on the loop and the disk it encloses, the sum of
the Berry phases of the three acoustic bands must be 0 mod
2π (because a single node induces a Berry phase of π in both
bands forming the node). We write the Berry phases of the
bands as ϕ = (ϕ1, ϕ2, ϕ3), where we have ordered the bands
by frequency ω on the loop. Thus, e.g., the phases (π, π, 0)
indicate a principal node, (0, π, π ) indicate an adjacent node,
and (π, 0, π ) indicate one principal and one adjacent node.
These, respectively, correspond to quaternion charge i, j, k.
Note that the Berry phase (0,0,0) can correspond to quaternion
charge +1 or −1, as the Berry phase is oblivious to the
presence of double nodes.

In the specific case of flexural phonons, we expect the low-
est energy flexural band to be accidentally coupled to the other
two bands, as discussed in Sec. IV A 2, so it necessarily has a
trivial Berry phase. Therefore, the only possible assignments
of Berry phase are ϕ = {(0, 0, 0), (0, π, π )}. From the above
discussion, we generically expect a quaternion charge of ±1 in
systems with TRS, leaving only ϕ = (0, 0, 0). Thus, the nodal
charge of acoustic phonons in 2D is completely invisible to the
Berry phase.

B. Z2 charge of the real Grassmannian in 2D

The above discussion applies when all three bands can
be split on a loop around �. If there is a symmetry which
forces the two linear bands to be degenerate, either along high-
symmetry lines or everywhere, then any loop around the triple
point will necessarily contain a node between the linear bands.
Thus, the classifying space is the real Grassmannian and the
associated π1 charge in Table I is Z2, which corresponds to the
first Stiefel-Whitney class as discussed in Ref. [87]. This in-
variant measures the orientability of the real wave function as
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one traverses a loop. Specifically, this corresponds to whether
or not there is (necessarily) a sign reversal of the subframe
spanned by the bands under consideration. This number can
be defined for either the flexural mode or the two linearly
dispersing modes. For the flexural mode, it corresponds to the
Berry phase computed in a smooth complex gauge as also dis-
cussed in Sec. IV A 3. Because there is no coupling between
the flexural and the linearly dispersing bands in the harmonic
approximation, the flexural mode is trivial and therefore there
exists an obvious gauge in which the orientation is constant.
Thus, the first Stiefel-Whitney invariant is trivial for the flex-
ural band.

To conclude, we rely on a global cancellation condition: the
Berry phase of all three bands must be zero, since these bands
are disconnected from all other bands at higher frequency ω

(indeed, a resultant π -Berry phase indicates an unavoidable
node with the other bands). This is to be contrasted with the
quaternion charges of the frame, since the nontrivial frame
charges indicate stable nodes among the three bands of the
frame and not with the other bands. We furthermore note
that a nontrivial quaternion charge of −1 (Euler class of ±1)
around a region of the BZ is not required to be canceled
by compensating nodes in any other region of the BZ, con-
trary to the Berry phase and the quaternion charges i, j, k.
This directly implies that only an even number of nodes
are allowed within each gap when considering the whole
BZ. Thus, if the Stiefel-Whitney invariant of the flexural
band is trivial, then it must also be trivial for the other two
bands and there is no protected π1 charge for this symmetry
setting.

Note that this argument holds generally for dynamical ma-
trices, not just in the continuum model, due to the decoupling
of the flexural band in the harmonic (noninteracting) approxi-
mation discussed in Sec. II A.

V. RELATION TO NAMBU-GOLDSTONE THEOREM

In this section, we discuss more carefully the interplay of
the NG theorem and our topological results which we briefly
introduced above.

The NG theorem was initially studied for the breaking of
internal continuous symmetries in relativistic systems [34,35],
where one finds the well-known result that whenever the vac-
uum of a theory spontaneously breaks a continuous symmetry
of the system, massless bosonic excitation (Nambu-Goldstone
bosons, NGBs) with linear dispersion appear. The number
of NGBs is given by the number of the broken symmetry
generator. The generalization of these result to the breaking of
space-time symmetries in nonrelativistic theories is discussed
in Refs. [36–41]. The main results are that there, in general,
are less NGBs than the number of broken generators, due to
dependencies amongst the generators and that NGBs arising
from such dependent generators will generically have a dis-
persion scaling with an even power of momentum |q|. These
insights were applied to D-dimensional systems embedded in
a d-dimensional space in Ref. [100]. They find the expected
number of NGBs only when explicitly taking the lattice struc-
ture of the D-dimensional system into account. In particular,
they predict two linear and one quadratic band when the sym-
metry breaking pattern is ISO(3)→ C× O(1), where ISO(3) is

the group of isometries in 3D, C is the relevant 2D crystalline
group and O(1) = ±1 corresponds to the out-of-plane z →
−z symmetry [note that both C and O(1) are discrete groups].
The symmetry-breaking pattern ISO(3)→ ISO(2)× O(1), on
the other hand, corresponding to keeping continuous symme-
tries in the plane, results in only a single, linear, NGB [100].
Note that this symmetry-breaking pattern is not directly evi-
dent in our Lagrangian Eq. (1), as this is only a local expansion
around �. We now consider what happens if the 2D material
is grown on a substrate, which we investigate explicitly for
graphene in Sec. VI. Adding a substrate amounts to includ-
ing a term breaking the O(1) symmetry in the Lagrangian
directly. This therefore amounts to an explicit breaking of
a discrete symmetry (as opposed to a spontaneous breaking
of a continuous symmetry), and we therefore do not expect
additional Goldstone modes. Instead, this converts the flexural
mode to pseudo-Goldstone bosons, which will, in general, be
gapped. Such pseudo-Goldstone modes arise when a symme-
try is explicitly broken, as discussed in Refs. [101,102]. This is
analogous to a ferromagnetic spin chain: The ground state of
a ferromagnetic spin chain violates spin-rotation invariance,
resulting in a spontaneously broken symmetry and a single
linear NGB (a magnon). However, applying a magnetic field
in the z direction amounts to explicitly breaking this sym-
metry, which gaps the magnon [102]. We therefore expect
that growing the material on a substrate should result in the
quadratic band (associated with the out-of-plane symmetry)
gapping out. This is consistent with our topological analysis,
which showed that this band is not protected by a topological
invariant and can therefore be gapped from the other bands by
small perturbations.

VI. APPLICATION: GRAPHENE

In this section, we apply the above ideas to the paradig-
matic 2D material graphene. We show that the nodal charge
described in the previous section is nontrivial in this system
and that this charge predicts how phonons in graphene will
react to the presence of a substrate.

Previous work on phonon topology in free-standing
graphene [103,104] have identified various topological nodal
points and lines in the spectrum away from �. Using methods
from topological quantum chemistry (TQC) [8], Ref. [24]
studied the symmetry decomposition of the in-plane phonon
modes in graphene and found that these modes are globally
trivial from the perspective of TQC, though they are close to
a fragile phase.

The previous topological analyses do not address the
acoustic triple point at �. However, we now show that this
triple point crossing with the flexural band actually possesses
a nontrivial nodal charge (the frame-rotation charge).

There exist a variety of models for graphene, includ-
ing valence force-field models (VFFMs) [72,76], spring
models [103] and symmetry-based tight binding mod-
els [105,106]. We implement a VFFM for graphene as
described in Ref. [72]. This model explicitly considers six
terms: nearest- and next-nearest-neighbor bond stretching,
in-plane and out-of plane bending, bond twisting, and inter-
actions with the substrate. The energy associated with each
of these terms is written in terms of the displacement of
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FIG. 3. Phonon band structure and frame rotation charge on a
circle around � for graphene, based on a valence force-field model
from Ref. [72]. (a) Phonon bands along high-symmetry lines for free-
standing graphene. (b) Frame rotation charge on a loop around � for
free-standing graphene. (c), (d) Same as (a) and (b) for graphene on
a TaC(111) substrate.

the various atoms in the unit cell, giving a total energy V .
In the harmonic approximation, this is differentiated twice
with respect to the possible displacements of the atoms in
the unit cell. As there are two atoms in the unit cell, which
can displaced in three independent directions, this gives a
total of six phonon branches. The strength of the various
terms in the energy are then treated as fitting parameters to
the experimental dispersion, as discussed in Ref. [72]. The
term describing interaction with the substrate is zero for free-
standing graphene, but nonzero when coupling to a substrate.
When this term is nonzero, the acoustic flexural bands gaps
out from the other acoustic bands [72,73,96,97].

We consider the case of free-standing graphene as well
as graphene on the substrate TaC(111). For both cases, we
implement the model described above and solve it on a loop
encircling �, ensuring that none of the three lower bands touch
on the loop and that we are sufficiently close to � to avoid
any interference from the three upper bands. Before solving,
we rotate the dynamical matrix to a real basis. We choose the
gauge of the initial point so the matrix F (q) in Sec. IV A 1
has determinant +1. We can then choose a smooth gauge
by choosing the sign of each eigenvector on the loop so it
maximizes the overlap with the previous eigenvector. Decom-
posing the matrix R(q) in Sec. IV A 1 into rotation generators,
we can then plot the accumulated angle, as shown in Fig. 3,
where we also plot the band structure. The model in Ref. [72]
is fitted only on the line �M, but as we are only interested in a
circle around �, this suffices for our purposes. Note that there
appears to be an additional triple point in the optical phonons
at K , but this is an artifact of using a model which is fit only on
the line �M. In the full first-principle phonon spectrum [107],
this triple point is absent. Figures 3(b) and 3(d) show that
the nodal charge for free-standing graphene and graphene on
TaC(111) is −1. We therefore conclude that this charge is
associated with the degeneracy between the linear bands, as
the nodal charge does not change when gapping the flexural
band. We corroborate these results by repeating the above cal-
culation for free-standing graphene using the symmetry-based
model found in Ref. [105], which leads to the same charge.

VII. CONCLUSIONS

We have discussed how physical constraints for phonons
interplay with symmetry analysis. We summarized the possi-
ble nodal charges of acoustic phonons with a reality condition
in up to three dimensions in Table I, and discussed in detail
how to compute and analyze these charges in 2D.

We have found that acoustic phonons in 2D have an ef-
fective inversion symmetry close to �, imposed by physical
constraints (see Appendix A). This leads to acoustic phonons
generically having a quaternionic charge, which, however, is
further modified by the physical constraints to be {+1,−1}.
Additionally, the physics dictates that one of the acoustic
bands (the flexural band) is completely decoupled from the
other bands in the noninteracting limit, which allowed us to
identify the nodal charge as belonging to only two of the
bands.

Applying the above machinery to graphene, we showed
that acoustic phonons in graphene have a nontrivial nodal
charge which has not been previously addressed. Knowing
that this charge is associated with only two of the bands ex-
plains, from a purely topological perspective, the well-known
fact that the flexural band of graphene on a substrate can gap
from the other acoustic bands.

These points illustrate that symmetry constraints must in
certain cases be augmented by physical constraints for band-
structure analysis. We anticipate that similar effects could
arise in other physical contexts. One example may be photonic
lattices. In this context, optical responses necessarily feature
a Bosonic spectrum with an inherent particle-hole symmetry,
as well as persistent zero modes that are rather similar to
an acoustic mode. This can also lead to triple nodes at zero
frequency that are not rooted in symmetry (in fact, irreducible
representations cannot formally be assigned in this case).

Finally, from a theoretical perspective it could be inter-
esting to relate the above types of analyses to topological
charges of nonlinear sigma models. Such sigma models have
recently also been evaluated from a Flag manifold perspective,
as in this paper (see, e.g., Ref [108]). It would therefore be
interesting to investigate whether these mathematical results
find solid ground in the context we have considered.
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APPENDIX A: FURTHER CONSTRAINTS
ON THE DYNAMICAL MATRIX

In this section, we analyze the restrictions on the dynamical
matrix around � (q = 0), which arise from constraints that
are not intrinsically captured by a pure space group anal-
ysis. These constraints set the phonon problem apart from
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the corresponding electronic problem. We mostly discuss the
case with TRS but briefly comment on the magnetic case in
Appendix A 2.

1. Constraints with time-reversal symmetry

Let us begin by briefly reviewing the constraints that the
Bloch Hamiltonian H (k) of a nonmagnetic electronic system
on a lattice should satisfy. The only required symmetry oper-
ations in this setting are lattice translations and time reversal.
Working perturbatively close to �, we can work with an ef-
fective continuum (local) model H̃ (k). The only constraints on
permissible local Hamiltonians are then unitarity, i.e., H (k) =
H†(k) and TRS, i.e., UH∗(−k)U † = H (k) for some unitary
operator U . Depending on whether spin-orbit coupling can be
discarded or not, the TRS operator may square to +1 (−1),
corresponding, respectively, to AZ class AI or AII. Additional
constraints on the Bloch Hamiltonian may arise from spatial
symmetries. Such constraints have been extensively analyzed
in the literature [1,7–10,62] and form the symmetry classifica-
tion of the Bloch Hamiltonian, based on an analysis of space
groups.

We now turn to describing phononic systems and show that
the same constraints emerge but that they are supplemented by
additional conditions due to the physical constraints discussed
in Sec. I. We consider the dynamical matrix in the harmonic
approximation which, in any dimension, is given by [109,110]

Dαβ (ss′|q) = 1√
msm′

s

∑
l

�αβ (0s; ls′)eiq·x(l ), (A1)

where α, β label the Cartesian coordinates; s, s′ label the
atoms in the unit cell with masses ms, ms′ ; l enumerates the
unit cells with coordinate x(l ) and �αβ (0s; ls′) is the force
constant matrix in the harmonic approximation:

�αβ (ls; l ′s′) = ∂2V

∂uα (ls)∂uβ (l ′s′)

∣∣∣∣
u=0

. (A2)

Here V is the total potential energy, uα (ls) is the displacement
along α of atom s in unit cell l , and the matrix is evaluated at
the equilibrium position of the atoms. Because we expect that
� is real, we immediately find

Dαβ (ss′|q) = D∗
αβ (ss′| − q). (A3)

Thus, we automatically satisfy spinless TRS in this formal-
ism. (We provide a brief overview of how to break TRS in
phononic systems in Appendix A 2. A more detailed discus-
sion can be found in Ref. [33].) Furthermore, by commuting
the partial derivatives, we find

�αβ (ls, l ′s′) = �βα (l ′s′; ls), (A4)

which implies that Dαβ (ss′|q) = Dβα (s′s|q). As shown in
Ref. [110], it follows that D is Hermitian. We note that it is
not generally true that D(q) = UD(−q)U † for some unitary
U (this condition is what we refer to in the main text as
generalized inversion symmetry). Therefore, D(q) is not, in
general, unitarily equivalent to a real matrix.

So far, all results are analogous to the nonmagnetic elec-
tronic case and, just like the electronic case, additional

constraints can now arise from crystalline symmetries. How-
ever, even without additional symmetries, there are further
constraints (for stable structures) on the form of D(q) which
are not present for the Bloch Hamiltonian H (k). As dis-
cussed in Sec. I, D(q) must be positive semidefinite to avoid
imaginary frequencies, which correspond to an unstable struc-
ture. Furthermore, there should be an appropriate number of
zero-energy acoustic bands at q = 0, as dictated by the NG
theorem. We here assume that the NG theorem is not mod-
ified by any substrate. It turns out that these constraints are
sufficient to guarantee that the nodal charge of the acoustic
bands at � is always captured by real topology.

To show this, let us focus on some region around � in
the BZ. Sufficiently close to �, we can construct an effective
dynamical matrix D̃(q) containing only the acoustic bands,
e.g., if there are N acoustic bands then D̃(q) is an N × N
matrix. This is guaranteed from the fact that the acoustic
modes all go to zero, allowing the decoupling from the op-
tical modes [111]. We require that all eigenvalues of D̃(0)
are zero, so D̃(0) = 0. As this is an effective model, we do
not require it to be positive semidefinite everywhere. Instead,
we only require that it should be positive semidefinite on a
ball Bε of radius ε in q space surrounding �, where we also
assume that the acoustic bands stay detached from all optical
bands on Bε . We assume throughout that ε > 0. We can now
expand D̃(q) in powers of q in Bε , where we note that the
condition D̃(q) = 0 precludes a constant term. We denote
the (fixed) basis matrices for N × N Hermitian matrices by
{�i}N2

i=1 (these can be chosen to be the identity and the Pauli
matrices for N = 2 and the identity and the Gell-Mann matrics
for N = 3). The most general form of the dynamical matrix is
then

D̃(q) = α
jk
1 q j�k + αlmn

2 qlqm�n + O(q3), (A5)

where the summation convention for repeated indices has
been assumed. Positive semidefiniteness requires that

zD̃(q)z∗ � 0 ∀z ∈ CN . (A6)

Let us now assume that the lowest order term that appears in
the expansion is of order k, and assume that D̃(q) is positive
definite for q ∈ Bε . Then, sufficiently close to �,

α
i1...ikn
k qi1 . . . qik z�nz∗ � 0 ∀z ∈ CN . (A7)

Fixing a z ∈ CN\{0}, the same equation must hold at −q,
which by assumption is also in Bε . This clearly requires that
k be even, which gives the kth order term an effective PT
symmetry. Sufficiently close to �, only the term of order k
will matter. Therefore, there will always be an effective PT
symmetry sufficiently close to �.

We note finally that the positive semidefinite condition
does not further constrain the number of permissible matrices
{�i} that can appear in D̃(q) as it is always possible to choose
a basis for Hermitian matrices consisting exclusively of posi-
tive semidefinite matrices. TRS will, in general, constrain the
number of basis matrices, but this feature is shared between
the phononic and the electronic case.
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2. Breaking time-reversal symmetry in phononic systems

Phonons, as opposed to electrons, are electrically neutral.
We therefore, a priori, do not expect them to couple strongly
to an external magnetic field, and therefore breaking of TRS
is a much more exotic effect in phonons than it is in electrons.
There are, however, various proposals to break TRS. Some
ideas include Raman spin-phonon couplings [44,112], pseu-
domagnetic fields induced by the Coriolis force [48,49,58],
and optomechanical interactions [52]. This clearly goes be-
yond the standard formulation of the dynamical matrix
discussed in the previous section, which automatically incor-
porates TRS [see Eq. (A3)].

The way around this is to introduce extra terms in the
Lagrangian. A summary of these effects can be found in

Ref. [33]. However, for noninteracting phononic band struc-
tures in the 80 layer groups in AZ class AI, such effects do
not occur. We therefore do not discuss the breaking of TRS
further in this paper.

APPENDIX B: ACOUSTIC PHONONS IN 3D AND 1D

1. Acoustic phonons in 3D

The continuum model for acoustic phonons in 3D can be
derived in a similar fashion as the 2D model [75]. There
are no flexural modes and in the continuum model, two of
the linearly dispersing bands are degenerate. Concretely, the
dynamical matrix (with q = [qx, qy, qz]) is

D
(
q) =

⎛
⎜⎜⎝

v2
3,T q2

(
v2

3,L − v2
3,T

)
qxqy

(
v2

3,L − v2
3,T

)
qxqz(

v2
3,L − v2

3,T

)
qxqy v2

3,T q2
(
v2

3,L − v2
3,T

)
qyqz(

v2
3,L − v2

3,T

)
qxqz

(
v2

3,L − v2
3,T

)
qyqz v2

3,T q2

⎞
⎟⎟⎠, (B1)

where v3,T and v3,L are the transverse and longitudinal
velocities in 3D, respectively. In terms of elastic param-
eters, these are given by vl = √

(λ + 2μ)/ρ0 and vt =√
μ/ρ0. The explicit eigenfrequencies of this model are given

by

ω2
1 = v2

3,Lq2, (B2)

ω2
2 = v2

3,T q2, (B3)

ω2
3 = v2

3,T q2. (B4)

The topology of this model was considered in Ref. [74].
In agreement with Table I, they find that it is characterized
by a Euler charge over a closed surface, as long as there
is a gap between ω2 and ω3 away from �. Adding sym-
metry constraints can force the three bands to cross along
high-symmetry lines emanating from �, which prevents the
definition of a topological charge. As discussed in Ref. [74],
this happens when vL and vT become q dependent and change
relative magnitude along high-symmetry lines. By building
more complicated models, it may also be possible to lift
the two-band degeneracy away from �, allowing a multigap
partitioning not discussed in Ref. [74]. However, as can be
seen in Table I, such a multigap system would have trivial
charge.

2. Acoustic phonons in 1D

To study 1D materials, we choose a rod geometry where
the material is extended in the z direction, with a very small
radius in the xy plane. There are then two flexural modes,
with velocities vh,x, vh,y dependent on the moment of mass
in the x and y directions, respectively [75]. If the material has
radial symmetry around the z axis (the extended axis), then
vh,x = vh,y, and we get a doubly degenerate flexural mode
with quadratic dispersion. There is, however, one subtlety
in the 1D case: the displacement field u(z) can be large

even if the strain tensor
↔
u i j is small. This is the case for

torsional modes, which correspond to a twisting of the 1D
material. Torsional acoustic modes have a linear dispersion
relation [75]. Such modes have frequently been studied in
carbon nanotubes [113–115], but have also been seen in other
materials [116]. Thus, in rod geometries, we expect two linear
and two quadratic modes, where the quadratic modes are
degenerate if the system has radial symmetry. There may
also be other symmetries which make the two linear bands
degenerate. We note further that we still expect the argu-
ments in Appendix A to hold, so the dynamical matrix can
be chosen to be (locally) real. The relevant homotopy groups
(see Sec. III) are then π0(M ), where the classifying space
M can be FlR1,1,1,1 = SO(4)/S[O(1) × O(1) × O(1) × O(1)],
corresponding to a 1 ⊕ 1 ⊕ 1 ⊕ 1 split, or the partial Flag
variety FlR2,1,1 = SO(4)/S[O(1)×O(1) × O(2)] corresponding
to a 2 ⊕ 1 ⊕ 1 split (equivalent to a 1 ⊕ 1 ⊕ 2 split) or GrR2,4 =
SO(4)/S[O(2)×O(2)], corresponding to a 2 ⊕ 2 split. How-
ever, the homotopy charge π0(M ) is trivial for all of these
classifying spaces, so it does not seem possible to stabilize this
fourfold crossing by using a topological argument. We leave
the investigation of the stability of such a fourfold crossing to
future work.

APPENDIX C: NON-ABELIAN WILSON LOOPS
AND THE LIFTING MAP

1. The lifting map

For completeness, we also include a method for distin-
guishing all five conjugacy classes of the quaternion group
Q, {1,−1,±i,± j,±k} without having to split the nodes as
done in Sec. IV A 2. This method was introduced in Ref. [70].
The idea is to lift the SO(3) valued Wilson loop to an SU(2)
valued version, being isomorphic to the quaternions with unit
norm. We start with the SO(3) valued Berry connection which
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in component reads

[A(q)a]i
j = 〈

ui
q

∣∣∂qa

∣∣u j
q

〉
, (C1)

with a ∈ {x, y} and i, j ∈ {1, 2, 3}. Being SO(3) valued, A(q)
can be decomposed into the basis matrices of the Lie algebra
{Li}i=x,y,z. These can then be lifted to the Lie algebra of the
double cover SU(2) by replacing {Li}i=x,y,z with the corre-
sponding Dirac matrices, which in this case equals − i

2σx,y,z.
This gives the lifted connection Ã(q) which is SU(2) valued.
Then, computing the standard Wilson loop,

n	 = exp

(∮
	

Ã(q) · dq
)

, (C2)

along a contour 	, gives n	 ∈ SU(2), which is isomorphic
to the quaternionic group Q with unit norm. We remark
that care must be taken when computing the exponential,
as the different matrices in the exponent do not generically
commute.

For the simple model in Eq. (4), this quantity is eas-
ily computed and we show in the next section that we get
n	 = −1, in agreement with what was found by the other
computations in Sec. IV. For more complicated systems, an
approximation of this expression, using the Baker-Campbell-
Hausdorff formula, is given in Ref. [70]. We numerically
compute this quantity for the graphene system considered
in Sec. VI and find that it always agrees with our observed
frame rotation charge when only considering the lower three
bands. However, considering all six bands [e.g., lifting SO(6)
to spin(6)� SU(4)] gives a trivial charge, which shows that
the three optical bands also carry a nontrivial frame rotation

charge. This originates from the degeneracy of the optical
bands at �, visible in Fig. 3.

2. Computing n� for the continuum model

In this section, we compute the non-Abelian Wilson loop
charge n	 explicitly for the simple model in Eq. (4). Once
again, ordering by frequency, we get

Ax = 〈ui|∂qx |u j〉 = 1

|q|2

⎛
⎜⎝

0 0 0

0 0 −qy

0 qy 0

⎞
⎟⎠ = qy

|q|2 Lx,

Ay = 〈ui|∂qy |u j〉 = 1

|q|2

⎛
⎜⎝

0 0 0

0 0 qx

0 −qx 0

⎞
⎟⎠ = − qx

|q|2 Lx.

We note that this agrees with our observation from Sec. IV A 1
that, because one band is decoupled, the eigenvectors are
rotated around a fixed axis. We perform the lift by replacing
Lx → − i

2σx. Then, letting q be along a loop away from the
origin gives

Ã(q) · dq = i

2
σxdθ. (C3)

This is independent of q, so every matrix in the exponential
commutes. Letting 	 be a circle in the BZ, we then find

n	 = exp

(∮
	

Ã(q) · dq
)

= exp(iπσx ) = −1, (C4)

in agreement with what we found in Sec. IV.
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[60] R.-J. Slager, V. Juričić, V. Lahtinen, and J. Zaanen, Self-
organized pseudo-graphene on grain boundaries in topological
band insulators, Phys. Rev. B 93, 245406 (2016).

[61] V. Kopský (Editor) and D. B. Litvin (Editor), International Ta-
bles for Crystallography Volume E, 2nd Edition, Subperiodic
Groups (Wiley, Hoboken, NJ, 2010).

[62] C. J. Bradley and A. P. Cracknell, The Mathematical Theory of
Symmetry in Solids (Oxford University Press, Oxford, 1972).

[63] M. I. Aroyo, A. Kirov, C. Capillas, J. M. Perez-Mato,
and H. Wondratschek, Bilbao Crystallographic Server. II.

064301-13

https://doi.org/10.1103/PhysRevB.97.115143
https://doi.org/10.1103/PhysRevX.10.031001
https://doi.org/10.1103/PhysRevB.90.241403
https://doi.org/10.1126/science.aaz7654
https://doi.org/10.1103/PhysRevLett.124.226401
https://doi.org/10.1103/PhysRevB.102.024307
https://doi.org/10.1126/sciadv.abd1618
https://doi.org/10.1063/5.0043623
https://doi.org/10.1038/s41467-021-21293-2
https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1063/1.3149495
https://doi.org/10.1038/nphys2835
https://doi.org/10.1103/PhysRevB.93.205158
https://doi.org/10.1002/adfm.201904784
https://doi.org/10.1103/PhysRev.117.648
https://doi.org/10.1007/BF02812722
https://doi.org/10.1016/0550-3213(76)90025-0
https://doi.org/10.1103/PhysRevD.84.125013
https://doi.org/10.1103/PhysRevLett.110.181601
https://doi.org/10.1103/PhysRevLett.110.091601
https://doi.org/10.1142/S0217751X17501275
https://doi.org/10.1146/annurev-conmatphys-031119-050644
https://doi.org/10.1103/PhysRevB.104.115129
https://doi.org/10.1103/PhysRevLett.103.248101
https://doi.org/10.1103/PhysRevLett.105.225901
https://doi.org/10.1103/RevModPhys.84.1045
https://doi.org/10.1038/nature12608
https://doi.org/10.1126/science.aab0239
https://doi.org/10.1103/PhysRevLett.115.104302
https://doi.org/10.1088/1367-2630/17/7/073031
https://doi.org/10.1103/PhysRevLett.114.114301
https://doi.org/10.1073/pnas.1507413112
https://doi.org/10.1103/PhysRevX.5.031011
https://doi.org/10.1038/nphys3801
https://doi.org/10.1073/pnas.1605462113
https://doi.org/10.1103/PhysRevResearch.1.032027
https://doi.org/10.1103/PhysRevResearch.3.L032035
https://doi.org/10.1103/PhysRevB.96.064106
http://arxiv.org/abs/arXiv:2108.11856
http://arxiv.org/abs/arXiv:2108.10875
https://doi.org/10.1103/PhysRevB.93.245406


LANGE, BOUHON, MONSERRAT, AND SLAGER PHYSICAL REVIEW B 105, 064301 (2022)

Representations of crystallographic point groups and space
groups, Acta Crystallogr. Sec. A 62, 115 (2006).

[64] V. Könye, A. Bouhon, I. C. Fulga, R.-J. Slager, J. van den
Brink, and J. I. Facio, Chirality flip of Weyl nodes and its
manifestation in strained MoTe2, Phys. Rev. Res. 3, L042017
(2021).

[65] A. Bouhon, Q. Wu, R.-J. Slager, H. Weng, O. V. Yazyev, and
T. Bzdušek, Non-Abelian reciprocal braiding of Weyl points
and its manifestation in ZrTe, Nat. Phys. 16, 1137 (2020).

[66] S. Chen, A. Bouhon, R.-J. Slager, and B. Monserrat, Manipu-
lation and braiding of Weyl nodes using symmetry-constrained
phase transitions, arXiv:2108.10330.

[67] A. Tiwari and T. Bzdušek, Non-Abelian topology of nodal-
line rings in PT-symmetric systems, Phys. Rev. B 101, 195130
(2020).

[68] T. Bzdušek and M. Sigrist, Robust doubly charged nodal lines
and nodal surfaces in centrosymmetric systems, Phys. Rev. B
96, 155105 (2017).

[69] A. Bouhon, A. M. Black-Schaffer, and R.-J. Slager, Wilson
loop approach to fragile topology of split elementary band
representations and topological crystalline insulators with
time-reversal symmetry, Phys. Rev. B 100, 195135 (2019).

[70] Q. Wu, A. A. Soluyanov, and T. Bzdušek, Non-Abelian band
topology in noninteracting metals, Science 365, 1273 (2019).

[71] F. N. Ünal, A. Bouhon, and R.-J. Slager, Topological Euler
Class as a Dynamical Observable in Optical Lattices, Phys.
Rev. Lett. 125, 053601 (2020).

[72] T. Aizawa, R. Souda, S. Otani, Y. Ishizawa, and C. Oshima,
Bond softening in monolayer graphite formed on transition-
metal carbide surfaces, Phys. Rev. B 42, 11469 (1990).

[73] A. Al Taleb and D. Farías, Phonon dynamics of graphene on
metals, J. Phys. Condens. Matter 28, 103005 (2016).

[74] S. Park, Y. Hwang, H. C. Choi, and B. J. Yang, Topological
acoustic triple point, Nat. Commun. 12, 6781 (2021).

[75] L. D. Landau, E. M. Lifshits, A. M. Kosevich, and L. P.
Pitaevskii, Theory of Elasticity (Butterworth-Heinemann, Ox-
ford, 1986).

[76] J. W. Jiang, B. S. Wang, J. S. Wang, and H. S. Park, A review
on the flexural mode of graphene: Lattice dynamics, thermal
conduction, thermal expansion, elasticity and nanomechanical
resonance, J. Phys.: Condens. Matter 27, 083001 (2015).

[77] E. Mariani and F. von Oppen, Flexural Phonons in Free-
Standing Graphene, Phys. Rev. Lett. 100, 076801 (2008).

[78] S. Sachdev and D. R. Nelson, Crystalline and fluid order on
a random topography, J. Phys. C: Solid State Phys. 17, 5473
(1984).

[79] A. N. Rudenko, A. V. Lugovskoi, A. Mauri, G. Yu, S. Yuan,
and M. I. Katsnelson, Interplay between in-plane and flexural
phonons in electronic transport of two-dimensional semicon-
ductors, Phys. Rev. B 100, 075417 (2019).

[80] A. Taheri, S. Pisana, and C. V. Singh, Importance of quadratic
dispersion in acoustic flexural phonons for thermal trans-
port of two-dimensional materials, Phys. Rev. B 103, 235426
(2021).

[81] M. Nakahara, Geometry, Topology and Physics (CRC Press,
Boca Raton, 2003).

[82] C. Chicone, Elasticity: Basic theory and equations of motion,
in An Invitation to Applied Mathematics (Academic Press,
Cambridge, MA, 2017), Chap. 18, pp. 577–670.

[83] M. H. Sadd, Material behavior-linear elastic solids, in Elas-
ticity, 4th ed., edited by Martin H. Sadd (Academic Press,
Oxford, 2021), Chap. 4, pp. 83–96.

[84] A. Hatcher, Algebraic Topology (Cambridge University Press,
Cambridge, 2001).

[85] J. Ahn, D. Kim, Y. Kim, and B.-J. Yang, Band Topology
and Linking Structure of Nodal Line Semimetals with Z2

Monopole Charges, Phys. Rev. Lett. 121, 106403 (2018).
[86] C. C. Wojcik, X.-Q. Sun, T. Bzdušek, and S. Fan, Homotopy

characterization of non-hermitian Hamiltonians, Phys. Rev. B
101, 205417 (2020).

[87] J. Ahn, S. Park, D. Kim, Y. Kim, and B.-J. Yang, Stiefel-
whitney classes and topological phases in band theory, Chin.
Phys. B 28, 117101 (2019).

[88] J. Ahn, S. Park, and B.-J. Yang, Failure of Nielsen-Ninomiya
Theorem and Fragile Topology in Two-Dimensional Systems
with Space-Time Inversion Symmetry: Application to Twisted
Bilayer Graphene at Magic Angle, Phys. Rev. X 9, 021013
(2019).

[89] We note that the nontrivial element of π1[GrR3,N�4] = Z2 [68]
would correspond to a nodal point with a π -Berry phase con-
necting the three acoustic bands with higher bands, contrary to
the assumption that the acoustic bands are separated from all
the other bands in the vicinity of �.

[90] B. Jiang, A. Bouhon, Z.-K. Lin, X. Zhou, B. Hou, F. Li,
R.-J. Slager, and J.-H. Jiang, Experimental observation of
non-Abelian topological acoustic semimetals and their phase
transitions, Nat. Phys. 17, 1239 (2021).

[91] B. Peng, A. Bouhon, B. Monserrat, and R.-J. Slager, Phonons
as a platform for non-Abelian braiding and its manifestation in
layered silicates, Nat. Commun. 13, 423 (2022).

[92] B. Peng, A. Bouhon, R.-J. Slager, and B. Monserrat, Multi-
gap topology and non-Abelian braiding of phonons from first
principles arXiv:2111.05872.

[93] Q. Guo, T. Jiang, R.-Y. Zhang, L. Zhang, Z.-Q. Zhang, B.
Yang, S. Zhang, and C. T. Chan, Experimental observation
of non-Abelian topological charges and edge states, Nature
(London) 594, 195 (2021).

[94] A. J. Beekman, J. Nissinen, K. Wu, K. Liu, R.-J. Slager,
Z. Nussinov, V. Cvetkovic, and J. Zaanen, Dual gauge field
theory of quantum liquid crystals in two dimensions, Phys.
Rep. 683, 1 (2017).

[95] N. Johansson and E. Sjöqvist, Optimal Topological Test for
Degeneracies of Real Hamiltonians, Phys. Rev. Lett. 92,
060406 (2004).

[96] W. L. Z. Zhao, K. S. Tikhonov, and A. M. Finkel’stein,
Flexural phonons in supported graphene: From pinning to
localization, Sci. Rep. 8, 16256 (2018).

[97] C. Zhang, L. Cheng, and Y. Liu, Role of flexural phonons
in carrier mobility of two-dimensional semiconductors: Free
standing vs on substrate, J. Phys.: Condens. Matter 33, 234003
(2021).

[98] T. Bzdusek, Euler class of a pair of energy bands on a manifold
with a boundary, (2020), doi: 10.13140/RG.2.2.29803.69928.

[99] Note that double nodes generically have quadratic band touch-
ings associated with them [90]. However, the eigenvalues of
the dynamical matrix D(q) correspond to ω2, so a quadratic
eigenmode in D(q) corresponds to a linear dispersion as a
function of ω.

064301-14

https://doi.org/10.1107/S0108767305040286
https://doi.org/10.1103/PhysRevResearch.3.L042017
https://doi.org/10.1038/s41567-020-0967-9
http://arxiv.org/abs/arXiv:2108.10330
https://doi.org/10.1103/PhysRevB.101.195130
https://doi.org/10.1103/PhysRevB.96.155105
https://doi.org/10.1103/PhysRevB.100.195135
https://doi.org/10.1126/science.aau8740
https://doi.org/10.1103/PhysRevLett.125.053601
https://doi.org/10.1103/PhysRevB.42.11469
https://doi.org/10.1088/0953-8984/28/10/103005
https://doi.org/10.1038/s41467-021-27158-y
https://doi.org/10.1088/0953-8984/27/8/083001
https://doi.org/10.1103/PhysRevLett.100.076801
https://doi.org/10.1088/0022-3719/17/30/019
https://doi.org/10.1103/PhysRevB.100.075417
https://doi.org/10.1103/PhysRevB.103.235426
https://doi.org/10.1103/PhysRevLett.121.106403
https://doi.org/10.1103/PhysRevB.101.205417
https://doi.org/10.1088/1674-1056/ab4d3b
https://doi.org/10.1103/PhysRevX.9.021013
https://doi.org/10.1038/s41567-021-01340-x
https://doi.org/10.1038/s41467-022-28046-9
http://arxiv.org/abs/arXiv:2111.05872
https://doi.org/10.1038/s41586-021-03521-3
https://doi.org/10.1016/j.physrep.2017.03.004
https://doi.org/10.1103/PhysRevLett.92.060406
https://doi.org/10.1038/s41598-018-34426-3
https://doi.org/10.1088/1361-648X/abe8fa
https://doi.org/10.13140/RG.2.2.29803.69928


TOPOLOGICAL CONTINUUM CHARGES OF ACOUSTIC … PHYSICAL REVIEW B 105, 064301 (2022)

[100] O. Coquand, Spontaneous symmetry breaking and the flat
phase of crystalline membranes, Phys. Rev. B 100, 125406
(2019).

[101] S. Weinberg, Approximate Symmetries and Pseudo-Goldstone
Bosons, Phys. Rev. Lett. 29, 1698 (1972).

[102] H. Watanabe, T. Brauner, and H. Murayama, Massive Nambu-
Goldstone Bosons, Phys. Rev. Lett. 111, 021601 (2013).

[103] T. Kariyado and Y. Hatsugai, Manipulation of Dirac cones in
mechanical graphene, Sci. Rep. 5, 18107 (2015).

[104] J. Li, L. Wang, J. Liu, R. Li, Z. Zhang, and X.-Q. Chen, Topo-
logical phonons in graphene, Phys. Rev. B 101, 081403(R)
(2020).

[105] L. A. Falkovsky, Phonon dispersion in graphene, J. Exp.
Theor. Phys. 105, 397 (2007).

[106] K. H. Michel and B. Verberck, Theory of the evolution
of phonon spectra and elastic constants from graphene to
graphite, Phys. Rev. B 78, 085424 (2008).

[107] N. Mounet and N. Marzari, First-principles determination of
the structural, vibrational and thermodynamic properties of
diamond, graphite, and derivatives, Phys. Rev. B 71, 205214
(2005).

[108] R. Kobayashi, Y. Lee, K. Shiozaki, and Y. Tanizaki, Topo-
logical terms of (2+1)d flag-manifold sigma models, J. High
Energy Phys. 08 (2021) 075.

[109] A. A. Maradudin and S. H. Vosko, Symmetry properties of
the normal vibrations of a crystal, Rev. Mod. Phys. 40, 1
(1968).

[110] P. Brüesch, Phonons: Theory and Experiments I, Springer
Series in Solid-State Sciences (Springer, Berlin, 1982),
Vol. 34.

[111] Note that this construction is not guaranteed to work for the
substrate case considered in Sec. VI which breaks basal mirror
symmetry. Nevertheless, if the lifted flexural band does not
cross any of the other acoustic bands close to �, then such
an effective D̃(q) still exists for the remaining acoustic bands
at �.

[112] A. S. Ioselevich and H. Capellmann, Strongly correlated spin-
phonon systems: A scenario for heavy fermions, Phys. Rev. B
51, 11446 (1995).

[113] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical
Properties Of Carbon Nanotubes (Imperial College Press,
London, 1998).

[114] H. M. Lawler, J. W. Mintmire, and C. T. White, Helical strain
in carbon nanotubes: Speed of sound and poisson ratio from
first principles, Phys. Rev. B 74, 125415 (2006).

[115] D. Liu, A. G. Every, and D. Tománek, Long-wavelength de-
formations and vibrational modes in empty and liquid-filled
microtubules and nanotubes: A theoretical study, Phys. Rev. B
95, 205407 (2017).

[116] B. Peng, K. Xu, H. Zhang, Z. Ning, H. Shao, G. Ni, J. Li, Y.
Zhu, H. Zhu, and C. M. Soukoulis, 1D SbSeI, SbSI, and SbSBr
with high stability and novel properties for microelectronic,
optoelectronic, and thermoelectric applications, Adv. Theory
Simul. 1, 1700005 (2018).

064301-15

https://doi.org/10.1103/PhysRevB.100.125406
https://doi.org/10.1103/PhysRevLett.29.1698
https://doi.org/10.1103/PhysRevLett.111.021601
https://doi.org/10.1038/srep18107
https://doi.org/10.1103/PhysRevB.101.081403
https://doi.org/10.1134/S1063776107080122
https://doi.org/10.1103/PhysRevB.78.085424
https://doi.org/10.1103/PhysRevB.71.205214
https://doi.org/10.1007/JHEP08(2021)075
https://doi.org/10.1103/RevModPhys.40.1
https://doi.org/10.1103/PhysRevB.51.11446
https://doi.org/10.1103/PhysRevB.74.125415
https://doi.org/10.1103/PhysRevB.95.205407
https://doi.org/10.1002/adts.201700005

