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Unusual dynamical properties of disordered polaritons in microcavities
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The collective light-matter interaction in microcavities gives rise to the intriguing phenomena of cavity-
mediated transport that can potentially overcome the Anderson localization. Yet, an accurate theoretical treatment
is challenging as the matter (e.g., molecules) is subject to large energetic disorder. In this paper, we develop the
Green’s function solution to the Fano-Anderson model and use the exact analytical solution to quantify the effects
of energetic disorder on the spectral and dynamical properties in microcavities. Starting from the microscopic
equations of motion, we derive an effective non-Hermitian Hamiltonian and predict a set of scaling laws: (i) The
complex eigenenergies of the effective Hamiltonian exhibit an exceptional point, which leads to underdamped
coherent dynamics in the weak disorder regime, where the decay rate increases with disorder, and overdamped
incoherent dynamics in the strong disorder regime, where the slow decay rate decreases with disorder. (ii)
The total density of states of disordered ensembles can be exactly partitioned into the cavity, bright-state, and
dark-state local density of states, which are determined by the complex eigensolutions and can be measured via
spectroscopy. (iii) The cavity-mediated relaxation and transport dynamics are intimately related such that both
the energy-resolved relaxation and transport rates are proportional to the cavity local density of states. The ratio
of the disorder-averaged relaxation and transport rates equals the molecule number, which can be interpreted as
a result of a quantum random walk. (iv) A turnover in the rates as a function of disorder or molecule density can
be explained in terms of the overlap of the disorder distribution function and the cavity local density of states.
These findings reveal the significant impact of the dark states on the local density of states and consequently
their crucial role in optimizing spectroscopic and transport properties of disordered ensembles in cavities.
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I. INTRODUCTION

The control of polaritons in microcavities has seen rapid
experimental and theoretical progress in recent years, in
particular, in the field of molecular polaritons [1]. Experi-
ments have revealed intriguing phenomena such as large Rabi
splittings [2–4] and enhanced transport properties in organic
semiconductors [5]. The intriguing physics originates from
the collective light-matter interaction, which is induced by
the strong photon confinement in the cavity. This leads to an
effective Rabi splitting proportional to the square root of the
total number of quantum emitters (e.g., molecules as specified
in this paper)

√
N . The large Rabi splitting is a consequence

of the formation of a collective bright state, which couples
coherently to the light field, resulting in two polaritonic states.
Yet, the overwhelming number of states are decoupled from
the light field. These states are denoted as “dark states” and
“dark-state reservoir” in the literature.

Bright and dark states are theoretically well understood for
homogeneous systems without disorder. In the presence of
disorder, the nature of these states is qualitatively understood
in terms of photon borrowing, i.e., a mixing of the dark states
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and the cavity mode mediated by disorder [6–13]. While the
physical properties of polaritons have been characterized in
the weak disorder regime [14–16], the nature of the bright
and dark states for arbitrary disorder has not been investigated
quantitatively and rigorously.

For systems with only local couplings, disorder gives rise
to Anderson localization, which is particularly prominent in
low-dimensional systems [17]. For a one-dimensional system,
an infinitesimal amount of disorder induces a localization of
the wave function, which results in an exponentially sup-
pressed conductivity. It is well known that the coupling of a
quantum system to a thermal bath gives rise to environment-
assisted transport, which can help to overcome the localization
of an excitation or charge such that the energy mismatch be-
tween different sites can be compensated by a noise-induced
level broadening of the local site energies [18]. This mech-
anism is relevant in excitation transport in light-harvesting
systems and molecular semiconductors [19–25]. In the latter
case, charge mobility or exciton diffusion shows a turnover
as a function of the system-environment coupling, where
quantum transport is enhanced by spatial coherence at small
couplings but exponentially suppressed by dynamic localiza-
tion (i.e., the polaron effect) at strong couplings. In contrast,
static disorder has predominately a detrimental effect on
the transport properties even in the presence of long-range
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hopping [26]. The disorder-assisted transport in cavities stud-
ied here is a rare exception.

For matter interacting with the electromagnetic field in a
microcavity, enhanced [27–29] and unaffected transport effi-
ciency [30] for molecular excitations and charges has been
observed depending on the experimental setup. Theoretical
studies using numerical and analytical methods have also
been reported [31–35]. However, a thorough theoretical un-
derstanding of the cavity-mediated transport properties based
on simple concepts is lacking, as the theoretical treatment of
disorder is challenging.

This paper has two major objectives. First, we introduce a
nonperturbative theoretical framework to investigate polariton
dynamics using the Green’s functions in Laplace space. Sec-
ond, we use this framework to establish a simple and unified
picture describing the spectroscopic, relaxation, and transport
properties of disordered ensembles.

Theoretical framework. We employ Green’s functions
based on the equations of motion and generalize methods
developed in Refs. [36,37]. The treatment in the Laplace space
enables a microscopic derivation of an effective Hamiltonian
describing the cavity mode and the bright state. Its non-
Hermitian structure incorporates the effect of the dark states,
and its complex eigenvalues give insight into the polariton
dynamics. We consider a Lorentzian energetic disorder, which
allows for compact expressions for spectroscopic and trans-
port properties. Moreover, we develop two analytical meth-
ods: (i) The first method is the polynomial perturbation theory
(PPT), which unifies the standard degenerate and nondegen-
erate perturbation theories. This unified perturbation theory
is thus suitable for systems with a continuous energy spec-
trum as considered here. (ii) The second method is the exact
stochastic mapping (ESM). It maps one system configuration
to another, which has the same stochastical properties but a
more convenient structure for further analytical calculations.

Physical picture. The central quantity of this unified physi-
cal picture is the cavity local density of states (LDOS), which
reveals the mixing of bright and dark states in the presence
of disorder and can be measured by cavity absorption as
shown in Fig. 1(a). The linewidth of the cavity LDOS exhibits
a turnover: The width first increases with small disorder as
more dark states become coupled to the cavity field, and then
decreases with large disorder as more dark states move out of
resonance with the cavity field.

The second half of the paper explores the effects of disor-
der on the cavity-mediated relaxation and transport processes
for the experimental setups sketched in Figs. 1(b) and 1(c),
respectively. As a key result, both the energy-resolved relax-
ation rate and the resonant transport rate can be expressed in
terms of the cavity LDOS. The two processes are intimately
related as the ratio of the disorder-averaged relaxation rate and
transport rates exactly equals the number of molecules, which
can be interpreted in terms of a quantum random walk. Inter-
estingly, the rate can be optimized as a function of disorder
or molecular density, which is a consequence of the overlap
of the cavity LDOS and the disorder distribution. This type
of turnover has been observed as a function of dephasing rate
in noise-assisted quantum transport, where disorder usually
suppresses coherence and transport [19,21–25,38–40]. Now,
due to the collective coupling to the cavity field, the disorder-
assisted transport can also exhibit the intriguing turnover
behavior.

FIG. 1. Sketches of the system which consists of N molecules
(or atoms, etc.) labeled by j, which are coupled to a single-cavity
mode (C). The blue arrows depict the treelike coupling structure of
the model. (a) Depicts two spectroscopic experiments which mea-
sure the cavity absorption χC (ω) and the matter absorption χM (ω).
(b) Depicts a relaxation process, where an initial excitation on the
donor j = 1 spreads over all molecules as illustrated by the red
arrows. (c) Depicts a transport process, where an initial excitation
on the donor is transported to the reservoir (R), which is coupled to
the acceptor molecule j = N . As illustrated by the red arrows, the
excitation will spread over the molecules first before being finally
transported to the reservoir.

Layout. This paper is organized as follows. In Sec. II, we
explain the system and introduce the Green’s function based
on the exact equations of motion. In Sec. III, we investigate
the LDOS of different constituents and relate them to spec-
troscopic properties as sketched in Fig. 1(a). In Sec. IV, we
investigate the relaxation dynamics sketched in Fig. 1(b). In
Sec. V, we analyze the transport process sketched in Fig. 1(c).
In Sec. VI, we summarize the results and provide future re-
search perspectives. In the Appendixes, we provide detailed
derivations. In particular, the PPT and the ESM, which are
applied in the calculations of the relaxation and transport
properties, are explained in detail in Appendix C.

II. SYSTEM AND METHODS

A. Hamiltonian

We consider a microcavity containing N quantum emitters
labeled by j as sketched in Fig. 1. To enable analytical calcula-
tions, we describe the electromagnetic field in the cavity with
a single mode labeled by (C). The Hamiltonian describing the
system reads as

Ĥ = ĤL + ĤM + ĤLM, (1)

where the light, matter, and light-matter interaction Hamilto-
nians are given as

ĤL = ECâ†â,

ĤM =
N∑

j=1

EjB̂
†
j B̂ j,

ĤLM =
N∑

j=1

g jâB̂†
j + H.c., (2)
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respectively. The cavity mode is quantized by the photonic
operator â and has energy EC . The two-level systems, which
are described by the operators B̂ j , refer to general quantum
emitters, such as atoms, charges, excitons, spins, electronic
or vibrational levels of molecules. In the following, we focus
on molecular excitations because of their experimental rele-
vance, but our findings are generally valid for the other before
mentioned systems. The excitation energies Ej are distributed
according to the Lorentz function

P(Ej ) = 1

π

σ

(Ej − EM )2 + σ 2
, (3)

where EM is the center of the probability distribution and σ is
its width, i.e., the disorder parameter. We emphasize that many
of our results hold for arbitrary disorder distributions. The
light-matter couplings can be expressed in terms of physical
quantities as g j = ( h̄EC

2ε0V )(1/2)d j · Ê, where V is the volume of
the cavity, d j is the dipole moment of the jth molecule, and
Ê is the polarization of the cavity mode. For simplicity, we
assume here a homogeneous coupling g j = g, but generaliza-
tions to the inhomogeneous case are straightforward. Many
calculations are performed in a thermodynamic limit which
is defined as g → 0 and N → ∞ such that g

√
N is constant.

As g ∝ V −1/2, the thermodynamic limit implies a large cavity
volume, but a constant molecule density.

The Hamiltonian in Eq. (1) is the celebrated Fano-
Anderson model, which has been originally developed to
understand the impact of continua on discrete levels and
asymmetries in absorption spectra [41]. Aside from other
applications, this and generalized Fano-Anderson models are
also deployed to investigate transport through nanoscopic and
mesoscopic systems [42–45]. A multimode version of this
model has been numerically studied in Ref. [46]. A recent
investigation of the spectral and transport properties for a
disorder distribution with compact support can be found in
Refs. [47,48], which make use of the exact expression of the
eigenstates instead of the unifying Green’s function approach
considered here. We note that the transport setup investigated
in Refs. [47] is different from the one considered in our work
in Sec. V.

B. Bright and dark states in the homogeneous system

The homogeneous system is defined for vanishing disor-
der σ = 0. For simplicity, we focus here on the resonant
system EM = EC . Using the excited states of the molecules
|e j〉M = B̂†

j |g〉, where |g〉 is the collective ground state of
the molecule ensemble, we define the collective excita-
tions |ek〉M = 1√

N

∑
j eik j |e j〉M with k = 2π l/N and l =

0, . . . , N − 1. The Fock states of the cavity mode are denoted
by |n〉L. In terms of these states, the two special eigenstates of
the Hamiltonian

|ψup/down〉 = 1√
2

(|g〉M |1〉L ± |ek=0〉M |0〉L ), (4)

with energies ε0,1 = EM ± g
√

N are called the upper and
lower polaritons, respectively. Their energy difference �R =
2g

√
N , which increases with the square root of the molecule

number, can be measured as a collective Rabi splitting �R in
spectroscopic experiments. The homogeneous state |BS〉M =

|ek=0〉M , which mixes with the cavity light field, is commonly
denoted as the bright state. In contrast, the states |DSk〉M =
|ek �=0〉M , which have energy εk = EM , completely decouple
from the cavity light field and are denoted as dark states. We
note that the bright and dark states can be also defined for an
inhomogeneous coupling g j . In this case, the bright state reads
as |BS〉M ∝∑ j g j |e j〉M , and the dark states are orthogonal to
this state.

For the disordered system, the dark states are no longer
eigenstates of the system, but all eigenstates have contribu-
tions of the cavity mode, the bright state and the dark states, as
the matrix elements 〈BS|ĤM |DSk〉 �= 0 of the matter Hamilto-
nian in Eq. (2) become finite. The respective contributions of
the cavity mode, the bright state, and the dark states to the
eigenstate are given, respectively, by the bright-state LDOS
and the dark-state LDOS, which will be introduced in Sec. III.
The mixing of bright and dark states influences the spectro-
scopic spectra in Sec. III and leads to the turnover in the
relaxation and transport rates in Secs. IV and V.

C. Single-molecule Green’s function

As shown in Fig. 1, the Fano-Anderson model has a tree-
shaped coupling structure, which can be solved analytically in
Laplace space as shown in Appendix A. In doing so, we find
an explicit expression of the single-particle retarded Green’s
functions

GX,Y (t ) ≡ i	(t )〈ÂX (t ), Â†
Y 〉, (5)

where X ∈ {C, j, BS, DSk}, and 	(t ) denotes the Heaviside
step function. Thereby, Â†

C = â†, Â†
j = B̂†

j , and Â†
BS (Â†

DSk
)

creates a bright-state (dark-state) excitation. In Laplace space,
the Green’s functions read as [36,37]

GC,C (z) = 1

[z + iEC (z)]
,

GC, j (z) = −i
g

[z + iEC (z)](z + iE j )
= Gj,C (z),

Gi, j (z) = δi, j

z + iE j
− g2

(z + iEi )[z + iEC (z)](z + iE j )
, (6)

with the auxiliary function

EC (z) = EC − i
N∑

j=1

g2

z + iE j
. (7)

Up to factors (z + iE j ), the nominator of the third term in
Eq. (6) defines a polynomial P (z) of order N + 1,

P (z) = [z + iEC (z)]
N∏
j

(z + iE j ), (8)

which is equivalent to the characteristic polynomial of
the Hamiltonian (1) when replacing z → −iE . The inverse
Laplace transformation can be expressed in terms of the roots
of the characteristic polynomial, i.e., the poles of the Green’s
function, as

GX,Y (t ) =
N+1∑
α=1

Aαezαt , (9)
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where Aα = 2π i limz→zα
(z − zα )GX,Y (z). Note that the pole of

the first term in Gj, j (z) of Eq. (6) is not a pole of Gj, j (z), as it
cancels with a pole of the second term.

D. Thermodynamic limit and effective Hamiltonian

Here, we consider the system in the thermodynamic limit
N → ∞ and g → 0 such that g2N = const, and derive an
effective Hamiltonian which exactly reproduces the dynamics
of the single-particle Green’s function. The disorder-averaged
Green’s function in the thermodynamic limit is defined by

GX,Y (z) ≡
∫

dE1 . . .

∫
dEN GX,Y (z)P(E1) . . . P(EN ), (10)

where P(Ej ) is the disorder distribution function of Ej . When

evaluating GX,Y (z),
∑N

j=1
g2

z+iE j
→ �(z) in Eq. (7) becomes

a smooth function which depends on the statistics of Ej .
Moreover, Gi1, j1 (z) = Gi2, j2 (z) and GC, j1 (z) = GC, j2 (z) for all
i1, i2, j1, j2, i.e., the disorder-averaged Green’s function is ho-
mogeneous. As a consequence, the Green’s function is block
diagonal in the basis of bright and dark states introduced in
Sec. II B, i.e., Gek1 ,ek2

(z) ∝ δk1,k2 and GC,ek (z) ∝ δk,0. We use
the disorder-averaged Green’s function to define an effective
Hamiltonian by

G(z) ≡ 1

z + iHeff (z)
. (11)

Note that the effective Hamiltonian depends on z and the
distribution of Ej . The block structure of G(z) in the basis
of bright and dark states translates into a block structure of
Heff (z), i.e.,

Heff (z) =

⎡
⎢⎢⎢⎣

H (C,BS)
eff (z) (0, 0)0

H (DS)
eff (z)

. . .

(0, 0)0 H (DS)
eff (z)

⎤
⎥⎥⎥⎦, (12)

where H (C,BS)
eff (z) ∈ C2×2 describes the interaction of the cav-

ity mode and the bright state and H (DS)
eff (z) ∈ C describes

the dynamics of the dark states. As the effective dark-state
Hamiltonians are equal for all k �= 0, we have suppressed the
index k. The effective Hamiltonian (12) appears to suggest
that the dynamics of the bright and dark states is decoupled.
Yet, the influence of the dark states is incorporated in the
non-Hermitian nature of Heff (z), which effectively leads to a
dissipative dynamics.

E. Effective Hamiltonian for the Lorentz distribution

For the Lorentz distribution in Eq. (3), the evaluation
of the disorder-averaged Green’s function is straightforward
and is equivalent to simply replacing Ej → EM − iσ ≡ E (σ )

M
[49,50]. Because of this simple replacement rule, the thermo-
dynamic limit considered in Eq. (10) is actually equivalent
to the disorder average, such that the following results are
also valid for finite molecule numbers. The disorder-averaged

Green’s functions are explicitly given as

GC,C (z) = 1

[z + iEC (z)]
,

GC, j (z) = −i
g

[z + iEC (z)]
(
z + iE (σ )

M

) = Gj,C (z),

Gi, j (z) = δi, j

z + iE (σ )
M

− g2(
z + iE (σ )

M

)
[z + iEC (z)]

(
z + iE (σ )

M

) , (13)

where now EC (z) = EC + g2N/(z + E (σ )
M ). Transforming this

into the basis of the bright and dark states, the blocks of the
effective Hamiltonian in Eq. (12) are given as

H (C,BS)
eff =

[
EC

�
2

�
2 E (σ )

M

]
(14)

with the Rabi frequency of the homogeneous system � =
2g

√
N and H (DS)

eff = E (σ )
M . Note that the z independence of the

effective Hamiltonian is a consequence of the Lorentz distri-
bution of Ej . The complex-valued eigenenergies of H (C,BS)

eff in
Eq. (14)

ε1,2 = EC + E (σ )
M

2

± 1

2

√(
EC − E (σ )

M

)2
− �2 (15)

generalize the eigenenergies of the two polaritons for the
disordered case. As it will become more clear when discussing
spectral properties, the real part is related to the spectral
position and the imaginary part to the spectral width of the
absorption line shape. The Rabi splitting of the disordered
system can be thus defined as �R ≡ Re(ε2 − ε1). The finite
imaginary part appears due to the mixing of the bright and
dark states, which eventually gives rise to a decaying occu-
pation of the subsystem consisting of cavity mode and bright
state.

Resonant system. For the resonant system EC = EM , the
eigenenergies are given as

ε1,2 = EM − i
σ

2
± 1

2
(�2 − σ 2)

1
2 (16)

and are depicted in Figs. 2(a) and 2(c). For very small or very
large σ , they approximately read as

σ � � : εμ = EM − i
σ

2
±
(

�

2
− σ 2

�

)
, (17)

σ � � : εμ =
{

EM − iσ + i �2

2σ
, μ = 1

EM − i �2

4σ
, μ = 2.

(18)

These two limiting cases can be clearly seen in Figs. 2(a)
and 2(c). For small σ , the two roots have different real parts
and equal imaginary parts. For large σ , the real parts are
equal, but the imaginary parts differ. The agreement of either
the real or the imaginary part is a consequence of EC = EM .
Interestingly, for σ = � ≡ σEP ≈ 0.09 eV, we observe an
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FIG. 2. (a), (b) Real and (c), (d) imaginary parts of the eigenen-
ergies in Eq. (15) of the effective non-Hermitian Hamiltonian for
g = 0.001EM and N = 2000. (a), (c) Depicts the resonant system
with EC = EM = 1 eV and (b), (d) depicts the off-resonant system
with EC = 1.05 eV and EM = 0.95 eV.

exceptional point, which has been frequently investigated re-
cently [51]. In Secs. III A and III B, we discuss signatures
of the exceptional point in the absorption spectrum. In the
following, we denote the region before and after the excep-
tional point as the underdamped (small-σ ) and overdamped
(large-σ ) regime, respectively.

Off-resonant system. For the off-resonant system with
EM < EC in Figs. 2(b) and 2(d), the real and imaginary parts
of both eigenvalues are well separated for all values of σ .
Even for a small detuning of EM and EC , the exceptional
point observed in the resonant system does not exist. The
eigenvalue ε1 is dominated by the molecular excitations, while
ε2 is dominated by the cavity excitation. The imaginary part
(describing the spectral width) of ε2 is much smaller than
the imaginary part of ε1, as the light and matter become in-
creasingly decoupled for larger disorder due to the decreasing
density at Ej ≈ EC in the off-resonant system.

III. LOCAL DENSITY OF STATES AND SPECTROSCOPIC
PROPERTIES

Spectroscopic and transport observables can be expressed
in terms of the LDOS associated with system constituents
X ∈ {C, j, BS, DSk}. These LDOS are defined in terms of
the diagonal elements of the single-particle retarded Green’s
function

νX (ω) = − lim
δ→0+

Im
1

π
GX,X (−iω + δ), (19)

which quantifies how much a specific system state X con-
tributes to the eigenstates in the energy interval [ω,ω + dω].
The total density of states is given by ν(ω) =∑X∈{C, j} νX (ω).
As we explain in the following, the cavity and bright-state
LDOS can be measured with spectroscopic experiments.

A. Cavity absorption spectrum

First, we investigate the spectroscopic response of the cav-
ity related to the perturbation operator V̂ = â + â†, which will
be denoted as the cavity absorption spectrum in the following.

In terms of the Green’s function, the cavity absorption can be
expressed as

χC (ω) = −Im GC,C (−iω + 0+) = πνC (ω) (20)

and is thus directly proportional to the cavity LDOS. For the
Lorentz distribution in the thermodynamic limit, we evaluate
Eq. (20) using the disorder-averaged Green’s function GCC (z)
given in Eq. (13), which can be transformed into

χC (ω) =
∑

μ=1,2

−1

π
Im

[
Aμ

ω − εμ

]
,

Aμ = −iεμ + iEM + σ

−iεμ + iεμ

, (21)

where the coefficients Aμ can be evaluated in terms of the
energies εμ in Eq. (15). Details of the derivation can be found
in Appendix B 1. We have introduced μ as μ �= μ for a
compact notation. If Aμ is real valued, the cavity absorption
spectrum is given by two Lorentz functions centered at Re εμ

and having spectral width Im εμ. For complex valued Aμ, the
shape deviates from the pure Lorentzian function. As the finite
imaginary part of the eigenenergies describes the mixing of
the bright and dark states, the dark states thus determine the
functional form of the cavity LDOS.

In Figs. 3(a) and 3(d), we depict the cavity absorption
spectrum for the resonant case EM = EC in the underdamped
and overdamped regimes, respectively. In the underdamped
regime, we observe two Lorentzian peaks symmetrically
located around EM . Here, the eigenenergies fulfill (−ε1 +
EM ) = (ε2 − iEM )∗ as can be seen in Fig. 2, which explains
the symmetry of the peaks when evaluating Eq. (21). In the
overdamped regime, we observe a single peak with Lorentzian
shape. Here, the eigenenergies fulfill ε1 + iσ/2 = ε2 − iσ/2,
such that there are actually two Lorentzian peaks centered
at the same position EM . The eigenenergy ε2 with a small
imaginary part dominates the spectrum. Using Eq. (18) to
evaluate A1, we find that A1 → 0 for σ → ∞, such that the
signatures of the eigenenergy ε1 are strongly suppressed. A
physical interpretation of the eigenenergies in the overdamped
regime is given in the next section.

Figures 3(g) and 3(j) depict the cavity absorption spectrum
for the off-resonant system EM < EC in the underdamped
and overdamped regime, respectively. Similar to the resonant
system, we observe a peak close the position of the cavity
frequency EC ≈ Re ε2. In Fig. 3(g), we mark a second peak
related to the molecular eigenenergy ε1 located close to EM ,
which is very small as the corresponding A1 → 0 for large
|EC − EM |. The observations in the overdamped regime in
Fig. 3(j) are very similar, but the molecule peak is now com-
pletely suppressed.

B. Matter absorption spectrum

Next, we consider the absorption spectrum which is related
to the perturbation operator V̂ =∑ j D j (B̂ j + B̂†

j ), which we
denote as matter absorption in the following. The coupling
coefficients between the molecules and the probe field are
Dj = d j · Êp, where Êp is the probe field. It measures directly
the spectroscopic properties of the molecules instead of the
cavity field as in Sec. III A. Assuming a homogeneous Dj =
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FIG. 3. Analytical and numerical calculations of the cavity LDOS [(a), (d), (g), (j)], the bright-state LDOS [(b), (e), (h), (k)], and the total
density of states [(c), (f), (i), (l)] as a function of energy. Overall system parameters are g = 0.001 eV and N = 2000. Specific parameters are
EC = EM = 1 eV, σ = 0.04 eV < σEP in (a)–(c), EC = EM = 1 eV, σ = 0.15 eV > σEP, EC = 1.05 eV, EM = 0.95 eV, σ = 0.04 eV < σEP

in (d) and (e), EC = 1.05 eV, EM = 0.95 eV, σ = 0.04 eV in (g) and (h), and EC = 1.05 eV, EM = 0.95 eV, σ = 0.15 eV in (j)–(l). The LDOS
in all panels are depicted in units of 1/eV.

D, we can express the matter absorption spectrum in terms of
the single-particle Green’s functions as

χM (ω) = −D2
N∑

i, j=1

Im Gi, j (−iω + 0+)

= ND2πνBS(ω). (22)

In contrast to the absorption spectrum of uncorrelated
molecules, where only the diagonal elements of the Green’s
function are taken into account, the absorption of the molecu-
lar polaritons includes all elements of the Greens’ function as
the cavity induces strong coherences between the molecules.

The summations in Eq. (22) project the Green’s function
onto the bright state introduced in Sec. II B, such that the
matter absorption spectrum is directly proportional to the
bright-state LDOS. We note that the relation of the matter
absorption and the bright-state density of states in Eq. (22) is
also correct for inhomogeneous couplings as long as g j ∝ Dj ,
i.e., the polarizations of the cavity and the probe field are
parallel.

For the Lorentz distribution in the thermodynamic limit,
we can use the disorder-averaged Green’s function in Eq. (13)
to evaluate the matter absorption, such that we find after some
steps

χM (ω) =
∑

μ=1,2

−D2

π
Im

[
Aμ

ω − εμ

]
,

Aμ = g2

(−εμ + iEM + σ )(−iεμ + iεμ)
. (23)

As explicitly demonstrated in Appendix B 2, the matter ab-
sorption spectrum can be expressed in terms of the cavity
single-particle Green’s function as

χM (ω) = ND2Im GCC (iω + iEM + iEC + σ ), (24)

i.e., using a complex frequency ω → −ω + EM + EC + iσ .
Thus, the absorption spectra of the cavity mode and of the
matter are directly related to each other.

The molecular absorption is depicted in Figs. 3(b) and 3(e)
for the resonant system EM = EC . Because of Eq. (24), χM (ω)
has the same functional dependence as the cavity absorption
(21) except for the complex-valued frequency. The discus-
sions about the cavity absorption are thus also valid for the
matter absorption. In the underdamped regime in Fig. 3(b),
we find two peaks corresponding to the two polaritons which
approximately have a Lorentzian shape, similar to the cavity
absorption in Fig. 3(a). Interestingly, in Figs. 3(b), 3(e), 3(h),
and 3(k) the matter absorption vanishes completely at ω = EM

due to level repulsion of the molecules which are in resonance
with EC . In contrast, the level repulsion for the cavity LDOS
in Figs. 3(a), 3(d), 3(g), and 3(j) is not complete as the cavity
mode is interacting with a continuous spectrum which leads
to a coarse graining of the level repulsion.

The complete suppression of the absorption in Fig. 3 is
reminiscent of the electromagnetically induced transparency
[52] (EIT) and the related vacuum-induced transparency
(VIT) [49,53] appearing in atomic and molecular three-level
systems. In fact, the absorption suppression in Figs. 3(b),
3(e), 3(h), and 3(k) can be also understood as a destructive
interference between two excited states. However, in contrast
to the EIT and VIT, which considers individual three-level
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atoms or molecules coupled by a light field, in this paper,
the light field itself is also a quantum state and couples the
molecules collectively. Moreover, the suppressed absorption
observed here is based on a nonlocal superposition of the
quantum emitters (associated with the bright state) and is
thus a collective effect, while the EIT and VIT are based on
a destructive interference effect within individual atoms or
molecules.

In the overdamped regime depicted in Figs. 3(e) and
3(k), the matter absorption strongly deviates from the cavity
absorption despite their close relationship via Eq. (24). In
contrast to the cavity absorption, both eigenenergies depicted
in Fig. 2 are now relevant. The matter absorption is a super-
position of two Lorentz functions which have different widths
Im ε1 and Im ε2, but the same peak position of ω = EM = EC .
One peak has a positive amplitude, while the other has a nega-
tive amplitude, leading to a complete destructive interference
at the cavity energy EC . This complete destructive interference
is a consequence of the level repulsion of the cavity mode
and the molecular excitation energies with Ej = EC . While
the two peaks in the underdamped regime can be associated
with the two polaritons, this picture breaks down in the over-
damped regime. The distinct behavior can be understood in
terms of the imaginary parts in Fig. 2. For an increasing disor-
der σ , the molecular excitations and the cavity mode gradually
decouple. The spectral features of the molecular excitations
thus approach the original Lorentz distribution with width σ ,
while the spectral width of the cavity continuously vanishes.
In this regime, the polaritonic excitations are not well defined.

The off-resonant system EM < EC in the underdamped
regime depicted in Fig. 3(h) is not symmetric. The molecule
peak close to ω = EM is significantly broader than the cavity
peak close to ω = EC , which is directly related to the Im ε1,2

in Fig. 2. The cavity LDOS is thus only weakly influenced
by the energetic disorder because of the energy splitting. The
observations in the overdamped regime in Fig. 3(k) are similar
to Fig. 3(e) but not symmetric.

C. Density of states

Finally, we consider the total density of states to clarify the
role of the bright and dark states introduced in Sec. II B in
the presence of disorder. As the total density of states does
not depend on the basis, it can be expressed either in the local
basis of the molecules j or in the basis of bright and dark
states,

ν(ω) ≡ νC (ω) +
∑

j

ν j (ω)

= νC (ω) + νBS(ω) +
N−1∑
k=1

νDSk (ω), (25)

i.e., it can be partitioned in the cavity LDOS, νC (ω), the
bright-state LDOS, νBS(ω), and N − 1 terms of the dark-state
LDOS. In the thermodynamic limit, the cavity and bright-state
LDOS converge to their respective limits given in Secs. III A
and III B, while the dark-state LDOS converge to νDSk (ω) →
(N − 1)P(ω). Thus, from the LDOS of the molecules in the
noninteracting case g = 0, which is NP(ω), one molecule is
subtracted, which now forms the bright-state LDOS νBS(ω).

In the homogeneous and resonant systems discussed
in Sec. II B, we have νC (ω) = νBS(ω) = 1

2 (δ(ω − EM +
g
√

N ) + δ(ω − EM − g
√

N )) and νDS(ω) = (N − 1)δ(ω −
EM ). Comparing these expressions with the LDOS consid-
ered in this section, we find that the disorder turns the delta
functions into distribution functions with finite widths. In the
homogeneous case the molecular excitations can be either
classified as bright or dark states. Because of the disorder,
bright and dark states are now mixed and both contribute to the
formation of the eigenstates. On the average, the contributions
are thereby proportional to νBS(ω) or νDS(ω), respectively. We
recall that the dark states determine the functional shape of
νC (ω) and νBS(ω), as the dark states are coupled to the bright
state for a finite disorder.

In realistic spectroscopic experiments, one simultaneously
measures the cavity and matter absorption, i.e., χ (ω) =
αCχC (ω) + αMχM (ω) with coefficients αC and αM . For a fixed
Rabi frequency �2 = 4g2N ∝ N/V , one can thus harness
the scaling χC ∝ νC and χM ∝ NνBS ∝ V νBS to distinguish
experimentally between both contributions via changing the
cavity volume V while keeping the molecule density constant.

IV. RELAXATION DYNAMICS

In this section, we evaluate the relaxation dynamics of an
excitation, which is initially located on the donor molecule
j = 1 and finally spreads over all molecules. The process is
sketched in Fig. 1(b). In the thermodynamic limit, the donor
will be finally completely depleted. As we demonstrate in the
following, the relaxation dynamics of the cavity system is
proportional to the cavity LDOS considered in Sec. III A. In
Sec. IV A, we derive the relaxation rate. Readers interested in
the physical interpretation can proceed directly to Sec. IV B.

A. Derivation of the relaxation rate

To begin with, the occupation of the donor is given as

n1(t ) = |G1,1(t )|2, (26)

where the Green’s function is defined in Eq. (6). To facilitate
an analytical treatment, we apply the disorder average in the
thermodynamic limit defined in Eq. (10). Yet, to account cor-
rectly for the microscopic dynamics of the donor occupation,
the average is not applied to E1. Specifying for the Lorentzian
disorder, the Green’s function can be written in Laplace space
as

G1,1(z) = 1

z + iE1
− g2(z + iEM + σ )

(z + iE1)P (z)
. (27)

Thereby, the roots of the polynomial P (z) = P0(z) + P1(z)
with

P0(z) = (z + iEC )(z + iEM + σ )(z + iE1) + g2N (z + iE1),

P1(z) = g2(zα + iEM + σ )

determine the inverse Laplace transformation in Eq. (9). Note
that z = −iE1 is not a root of G1,1(z) as the corresponding
terms cancel exactly. The third-order polynomial is parti-
tioned into the two parts P0(z) and P1(z). The first part can
be solved analytically and we obtain the unperturbed roots
z(0)

1 = −iε1 and z(0)
2 = −iε2 and z(0)

3 = −iE1, with ε1,2 given
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in Eq. (15). The perturbative part P1(z) gives a correction to
z(0)
μ in leading order of g2 and is found by applying the PPT in

Eq. (C4) introduced in Appendix C 1. In doing so, we find that
the two roots z1 = z(0)

1 = −iε1 and z2 = z(0)
1 = −iε2 remain

unchanged in leading order, while the third root obtains a fi-
nite real part such that z3 = −iE1 − γ (E1) + iO(g2) + O(g4)
with

γ (ω) = g2νC (ω), (28)

where the cavity LDOS in Eq. (21) can be explicitly written
as

νC (ω) = 1

π

κσ

[−ω + EC − κ (−ω + EM )]2 + κ2σ 2
,

κ = g2N

(−ω + EM )2 + σ 2
. (29)

We note that Eq. (28) agrees with the result in Ref. [47].
The imaginary-part shift ∝g2 (i.e., the energy shift) can be
neglected as it is not the leading-order term. Using the roots
to perform the inverse Laplace transformation, the Green’s
function becomes as a function of time

G1,1(t ) = A1ez1t + A2ez2t + A3ez3t ,

A1 = g2(z1 + iEM + σ )

(z1 + iE1)2(z1 − z2)
→ 0,

A2 = g2(z2 + iEM + σ )

(z2 + iE1)2(z2 − z1)
→ 0,

A3 = g2(−iE1 + iEM + σ )

γ (E )(−iE1 − z1)(−iE1 − z2)
→ 1. (30)

In the thermodynamic limit N → ∞, g → 0, which we have
assumed throughout the calculation, the amplitudes A1, A2 →
0, such that the occupation of n1(t ) is solely determined by
the real part of the root z3. For consistency, we finally av-
erage γ (E1) in Eq. (29) over the donor energy E1, which is
distributed according to the Lorentz distribution in Eq. (3),
such that the disorder-averaged relaxation rate reads as

γ =
∫

dE1γ (E1)P(E1)

= g2

π

σ + g2N
2σ

(EM − EC )2 + (σ + g2N
2σ

)2 , (31)

whose physical behavior will be discussed in the next section.
We note that the relaxation rate in Eq. (28) is exact in

the thermodynamic limit g → 0, N → ∞ and holds also for
general disorder distributions. The derivation is still valid for
a Green’s function with an arbitrary number of poles. Possible
branch cuts of the Green’s function vanish in the thermody-
namic limit as the second term in Eq. (27) is proportional
to g2.

B. Discussion of the relaxation dynamics

The energy-resolved relaxation rate in Eq. (29) and the
disorder-averaged relaxation rate in Eq. (31) are depicted
in Figs. 4 and 5. The solid lines depict the analytical re-
sults, while the symbols depict the numerical results of

FIG. 4. (a), (b) Energy-resolved relaxation rate γ (E1) for the res-
onant system EC = EM = 1 eV (a), and for the off-resonant system
EC = 1.05 eV, EM = 0.95 eV (b). In both (a) and (b), g = 0.001 eV
and N = 2000. (c), (d) Disorder-averaged relaxation rate γ for the
same parameters as in (a) and (b) for different molecule numbers.
Symbols represent the finite-size simulation to verify the analytical
treatment, where the number of disorder samples MS is such that
MSN = 106.

the finite-size simulations, which are described in details in
Appendix D. Several points are worthwhile to be discussed:

Disorder dependence. The energy-resolved relaxation rate
γ (E1) is shown in Figs. 4(a) and 4(b) as a function of disorder
σ for different values of E1 for the resonant EM = EC and
off-resonant EM < EC systems. We observe a turnover as a
function of σ for all values of E1. For E1 �= EM and/or EM �=
EC , we find from Eq. (29) in the limiting cases

γ (E1) ∝
{

σ
N , σ � g

√
N

N
σ
, σ � g

√
N .

(32)

Only in the special case E1 = EM = EC , γ (E1) is monotoni-
cally decreasing as a function of σ (not shown). As γ (E1) ∝
νC (E1), the relaxation rate depends on the distance from the
peak γ (E1) ∝ (E1 − Re εμ)2 and the peak width γ (E1) ∝
Im εμ of the peaks in Figs. 3(a), 3(d), 3(g), and 3(j).

For example, in the resonant case EM = EC for an energy
E1 > EM and E1 − EM � �R, the right peak in Figs. 3(a) and
3(d) related to the eigenenergy ε2 determines γ (E1) ∝ νC (E1).
For small σ , we find from Eq. (18) that Re εμ − EM ∝ √

N
and Im εμ ∝ σ , which explains the behavior for small σ in
Eq. (32). Likewise for large σ , we find from Eq. (18) that
Re εμ = EM = const and Im εμ ∝ N/σ , which explains the
behavior for large σ in Eq. (32).

Energy dependence. Overall, the relaxation rate is larger for
energies |E1 − EC | ≈ 0. For the selected energies in Figs. 4(a)
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FIG. 5. Same as in Fig. 4 but as a function for molecule number
N . The disorder in (a) and (c) is σ = 0.04 eV and in (b) and (d) σ =
0.15 eV.

and 4(b), the energies E1 = 0.9375 and 1.025 eV exhibit the
largest relaxation rates, while the energies E1 = 0.85 and
1.2 eV exhibit the smallest relaxation rates. This is due to
the shape of νC (E1), which decays with 1/(E1 − EC )2 away
from the peaks according to Eq. (28). We further observe that
the maximum position in Figs. 4(a) and 4(b) as a function
of σ depends on the value of E1. For the resonant system,
the maxima are located around the same value, while for the
off-resonant system, the maximum for the E1 = 0.9375 eV
curve is reached earlier than the other curves.

Disorder-averaged relaxation rate. The disorder-averaged
relaxation rate is depicted in Figs. 4(c) and 4(d) as a function
of σ for different molecule numbers. In Fig. 4(c) for the
resonant case, we observe a turnover which is a consequence
of the turnovers of the energy-resolved relaxation rates in
Fig. 4(a). According to the exact expression in Eq. (31), the
disorder-averaged relaxation rate scales as

γ ∝
{

σ
N , σ � g

√
N

1
σ
, σ � g

√
N

(33)

in the two limiting cases, which is similar to Eq. (32) except
for a factor N for large disorder and can be clearly recognized
in Fig. 4(c). For small σ , the width of the Lorentzian distribu-
tion increases with σ , which results in an increasing overlap
with the cavity LDOS, whose spectral width also increases
according to the imaginary part of the eigenvalues in Fig. 2.
For large σ , the cavity LDOS νC (E1) becomes very narrow
as discussed in Sec. III A and shown in Fig. 3(d), while the
Lorentz distribution broadens and scales as P(E1) ∝ 1/σ for
E1 ≈ EM . As a defining property, the integral of νC (E1) over
all energies equals one, such that the overall relaxation rate
scales as in Eq. (33).

The off-resonant case depicted in Fig. 4(d) exhibits two
maxima for N = 100 and 1000. This is a consequence of the
energy-resolved relaxation rate, whose peak position depends
on the donor energy as can be seen in Fig. 4(b). Overall, the
exact shape of the disorder-averaged dissipation rate sensi-
tively depends on the shape of νC (E1) and thus on the system
parameters.

Molecule-number dependence. The energy-resolved relax-
ation rate is depicted in Figs. 5(a) and 5(b) as a function
of molecule number in the underdamped and overdamped
regimes for the resonant system EM = EC . In both panels we
observe a similar behavior. Interestingly, the rates exhibit a
turnover in both regimes. The maximum position sensitively
depends on the donor energy E1, where the maximum for
small |E1 − EC | is reached earlier than for large |E1 − EC |.
The limiting cases of γ (Ej ) ∝ N for small N and γ (Ej ) ∝
1/N for large N can be directly inferred from Eq. (29). For
large N , the relaxation rate γ (E1) becomes independent off E1

as this limit is equivalent to a rescaling of the system energies
E1/g

√
N → 0.

The disorder-averaged relaxation rate γ is depicted in
Figs. 5(c) and 5(d). For small N , the rate γ is approximately
constant in agreement with Eq. (33). For large N (i.e., g

√
N �

σ ), the factor 1/N can be explained by the shape of νC (ω)
discussed in Sec. III A: for the resonant system, the polariton
peaks in Fig. 3(a) are located around Epeak = EM ± g

√
N and

decay as νC (E ) ∝ 1/(E − Epeak )2 with increasing distance
from the peak center. When the donor energy is distributed
around EM for small σ/g

√
N , then the cavity-mode overlap

contributes the extra factor 1/N .
Finite-size simulation. In Figs. 4 and 5, the analytical so-

lutions are compared with finite-size simulations, which are
represented as symbols. Overall, both calculations agree very
well with each other, except for deviations for very small σ in
Figs. 4(a) and 4(b). The deviations occur for donor energies
E1 away from the center of the Lorenz distribution EM . For
these energies, the density of states is very low, such that the
continuum limit, which has been applied in the derivation, is
not justified. This problem is even more prominent when the
donor energy E1 is close to EC as can be seen for E1 = 1.125
and 2.0 eV in Fig. 4(b), as the level repulsion leads to a
depletion of the cavity LDOS in this region. However, these
deviations are not visible in the disorder-averaged rate as the
energies in the sparse spectral regime hardly contribute to
the disorder average. In Fig. 5 we clearly observe the im-
provement of the analytical calculation when approaching the
thermodynamic limit N → ∞.

V. TRANSPORT

Here, we consider the transport of an excitation which is
initially located at the donor j = 1 to the reservoir which
is coupled to the acceptor molecule j = N . The transport
process is sketched in Fig. 1(c) and consists of three phases:
excitation of the donor, relaxation as considered in Sec. IV,
and trapping at the reservoir. The first two steps are fast com-
pared to the trapping process, as the excitation has to find the
acceptor in a random-walk fashion, i.e., it scales with number
of molecules N . The transport rate, which we consider in the
following, is defined as the inverse of the mean first-passage
time of the trapping process.
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The derivation involves the following two steps: In
Sec. V A, we introduce the transport Hamiltonian, which is
amended by the acceptor reservoir, and derive an effective
characteristic polynomial describing the transport dynamics.
In Sec. V B, we determine the roots of the effective charac-
teristic polynomial, whose real parts determine the transport
rate. For the analytic treatment, we apply the PPT and the
ESM introduced in Appendix C. Readers only interested in the
physical content can skip the derivations and directly proceed
to the discussion in Sec. V C.

A. Transport Hamiltonian and Green’s function

To calculate the transport dynamics, we couple the Hamil-
tonian in Eq. (1) to an additional reservoir at the acceptor
j = N as depicted in Fig. 1(c). The amended Hamiltonian is
then given by

Htr = H + ĤR + ĤAR,

ĤR =
∑

k

εk ĉ†
k ĉk, (34)

ĤAR =
NR∑

k=1

gRB̂†
N ĉk + H.c.,

where the reservoir is described by the operators ĉk , which are
coupled with strengths gR to the acceptor. The transport be-
havior of this and similar Hamiltonians has been numerically
investigated in Refs. [32–35,54].

Initially, the system is excited at the donor j = 1 such that
the relevant Green’s functions are

GC,1(z) = −i
g

[z + iEC (z)](z + iE1)

+ i
g3

[z + iEC (z)]2[z + iEN (z)](z + iE1)
,

Gj �=N,1(z) = δ j,1

z + iE1

− g2

(z + iE j )[z + iEC (z)](z + iE1)

+ g4

(z + iE j )[z + iEC (z)]2[z + iEN (z)](z + iE1)
,

GN,1(z) = − g2

[z + iEN (z)][z + iEC (z)](z + iE1)
, (35)

where the two auxiliary functions are defined by

EC (z) = EC +
N−1∑
j=1

g2

z + iE j
, (36)

EN (z) = EN +
∑

k

g2
R

z + iEk
+ g2

z + iEC (z)
. (37)

For an appropriate multiplication with the factors (z + iE j )
and (z + iEk ), the denominators of the respective last terms in
Eq. (35) define the polynomial

P (z) = [z + iEN (z)][z + iEC (z)]

×
N∏
j

(z + iE j )
NR∏
k

(z + iEk ), (38)

which is equivalent to the characteristic polynomial of the
Hamiltonian in Eq. (34) (with a replacement of z → −iE ).
It is not possible to find all roots of this polynomial, which
has order N + NR + 1. As in Sec. II D, we can take the ther-
modynamic limit in the second term of Eq. (37). Under the
assumption that Ek is distributed according to the Lorentz
distribution, we can simply replace Ek → ER + �, where ER

denotes the center of the reservoir distribution and � is its
width. Yet, as the transport rate is determined by the micro-
scopic dynamics of the molecular excitations, the disorder
average is not applied to the auxiliary function EC (z). After
the disorder average of the reservoir states, the effective char-
acteristic polynomial reads as

P (z) = [z + iEC (z)][z + iEN (z)](z + iER + �)
N−1∏

j

(z + iE j ),

(39)

whose N + 2 complex roots zμ determine the inverse Laplace
transformation in Eq. (9).

B. Transport rate

To determine the transport rate, it is not necessary to
calculate the exact time evolution of the Green’s functions
in Eq. (35), as the coherent dynamics does not change the
occupation within the system Ĥ . The roots of Eq. (39) de-
termine the transport rates �μ = −Re zμ corresponding to
the energies Eμ = −Im zμ. In the thermodynamic limit g →
0, N → ∞, the transport rate �(E ) is a smooth function (after
an appropriate disorder average over the eigenstates in an in-
finitesimal energy interval [E , E + dE ]). Because of the weak
coupling g, the donor state is a superposition of eigenstates
with E ≈ E1, such that the energy-resolved transport rate is
given by �(E1).

The roots zμ of the characteristic polynomial in Eq. (39)
cannot be determined analytically as the order of the poly-
nomial is N + 2. However, we can evaluate the roots in a
stochastic fashion, which is sufficient to calculate the transport
rate in the thermodynamic limit. To this end, we apply the
ESM and the PPT introduced in Appendix C: we partition the
effective characteristic polynomial in Eq. (39) as

P (z) = P0(z) + P1(z),

P0(z) =
N∏

μ=1

(z + iEμ),

× [[z + iEN (z)](z + iER + �) + NRg2
R

]
,

P1(z) =
[

g2
∑

μ

sμ

z + iEμ

]∏
μ

(z + iEμ)(z + iER + �),

(40)

which defines the unperturbed and perturbation parts of the
characteristic polynomial. The term

N∏
μ=1

(z + iEμ) =
(

z + iEC +
N−1∑
j=1

g2

z + iE j

)
N−1∏
j=1

(z + iE j )

(41)
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represents the factorized characteristic polynomial of the
molecules j = 1, . . . , N − 1 and the cavity mode under the
assumption that gN → 0. This is a formal representation,
where the corresponding roots −iEμ are assumed to be given.
The second factor of P0(z) represents the acceptor j = N and
its coupling to the reservoir. The unperturbed roots of P0(z)
are thus given by

z(0)
μ = −iEμ,

z(0)
(N+1),(N+2) = −1

2

(
iEA + iE (�)

R

)
± 1

2

√(
iEA − iE (�)

R

)2 − 4g2
RNR, (42)

where E (�)
R = ER − i�. The perturbative polynomial term

P1(z) describes the coupling between the cavity system and
the acceptor. To enable an analytical treatment we have ap-
plied the ESM to the term

1

z + iEC (z)
→
∑

μ

sμ

z + iEμ

, (43)

appearing in the auxiliary function in Eq. (37). After identi-
fying the left-hand side of Eq. (43) with GC,C (z) in Eq. (6),
comparing with the definition of the LDOS in Eq. (19), and
applying the ESM rule in Eq. (C7), we find that the expansion
coefficients are sμ = νC (Eμ)/ν(E ). In Eq. (43) we have used
the same Eμ as in the formal expression of P0(z).

Using the PPT given in Eq. (C4) of Appendix C 1, we
can find the corrections δμ to the roots z(0)

μ resulting from the
perturbative polynomial. In the lowest order of g the roots of
P (z) then read as zμ = z(0)

μ + δμ, where

δμ = g2sμ

1

−iEμ + iEN + NRG2
R

−iEμ+iER+�

+ O(g4). (44)

Replacing sμ and identifying the fraction as the local density
of states of the acceptor νN (E ), we obtain the roots in the
thermodynamic limit

zμ = −iEμ − �(Eμ) + iO(g2) + O(g4),

z(N+1),(N+2) = z(0)
(N+1),(N+2) + iO(g2) + O(g2), (45)

where

�(E ) = g2 νC (E )

ν(E )
νN (E ) (46)

is the transport rate. We have neglected the correction in the
imaginary part in zμ and the complete shift in z(N+1),(N+2) as
they have a vanishing influence in the thermodynamic limit
g → 0. Yet, the finite real part �(E ) describes the exponential
decay of the system occupation and thus determines the trans-
port rate. We note that, even though a Lorentz distribution
of the reservoir state energies Ek is assumed, the derivation
can be straightforwardly generalized to more general disorder
distributions of the reservoir, for which additional roots and
possible branch cuts have no influence on the final outcome.

C. Discussion of the transport rate

We emphasize that the transport rate in Eq. (46) is exact
in the thermodynamic limit. We recall that the transport rate

FIG. 6. Resonant transport rate in Eq. (48) as a function of
disorder (a), (b) and molecule number (c), (d). The light-matter
coupling is g = 0.001 eV in all panels. The specific parame-
ters are (a) EC = EM = 1 eV, N = 2000, (b) EC = 1.05 eV, EM =
0.95 eV, N = 2000, (c) EC = EM = 1 eV, σ = 0.04 eV, (d) EC =
1.05 eV, EM = 0.95 eV, σ = 0.15 eV. The disorder-averaged trans-
port rate � has the same functional dependence as the disorder-
averaged relaxation rate γ in Figs. 4 and 5, i.e, � = γ /N .

has to be evaluated at the donor energy, i.e., �(E1). Its inverse
τ (E1) = 1/�(E1) denotes the time to deplete the correspond-
ing eigenstates, i.e., the mean first-passage time. Recalling
that νN (E ) and νC (E ) are proportional to the absorption of
the acceptor and the cavity, the transport rate thus resembles
the celebrated Förster rate, weighted by the inverse density of
states ν(E ). The following points are worthwhile to discuss in
details.

Resonant transport rate. For a weak reservoir coupling,
the acceptor LDOS is strongly peaked around EN . For the
following discussion, we consider a resonant donor-acceptor
configuration with E1 = EN and assume the acceptor LDOS
to be a constant νN (E1) = ν0 for simplicity. The resulting
resonant energy transport rate

�r (E1) = g2ν0
νC (E1)

ν(E1)
(47)

is proportional to the relaxation rate in Eq. (28), but renor-
malized with the total density of states. The renormalization
describes a competition of the eigenstates for the overlap
with the cavity mode. The more eigenstates exist at a given
energy, the smaller is the overlap with the cavity mode, which
suppresses the coherent coupling between donor and acceptor.

Disorder dependence of the resonant transport rate. Fig-
ures 6(a) and 6(b) plot �r (E1) as a function of the disorder
in the resonant EM = EC and off-resonant EM < EC systems.
In both cases, the overall behavior is qualitatively the same.
We observe that �r (E1) is independent off the disorder in
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the small- and large-disorder regimes. The limits of the total
density of states [which converges to a Lorentz function in
the thermodynamic limit, cf. Eq. (25)] are ν(E1 �= EM ) ∝ σ

for small σ and ν(E1 �= EM ) ≈ 1/σ for large σ . Combining
this with the limiting cases of νC (E1) given in Eq. (32) ex-
plains the disorder-independent regimes. Thus, the overlap of
the individual eigenstates with the cavity remains constant in
the small- (large-) disorder regime due to the cancellation of
the simultaneous increase (decrease) of the density of states
and the increase (decrease) of the cavity LDOS.

Molecule-number dependence of the resonant transport
rate. Figures 6(c) and 6(d) plot �r (E1) as a function of
the molecule number in the underdamped and overdamped
regimes. In both regimes, the resonant transport rate exhibits
a similar behavior. For small molecule numbers, �r (E1) is in-
dependent off N , while it decreases as N−2 for large molecule
numbers. Combining the scaling properties of the density of
states ν(E ) ∝ N with the limiting cases in Eq. (32), explains
these observations. Thus, for small molecule numbers the
scalings of the cavity LDOS and the total density of states can-
cel, while for large molecule numbers the scalings contribute
constructively.

Disorder-averaged transport rate. For a weak reservoir
coupling, the acceptor LDOS is strongly peaked such that
it converges to νN (E ) → δ(E − En) in the thermodynamic
limit. Assuming that E1 and EN are distributed accord-
ing to the Lorentz distribution in Eq. (3), we can average
the energy-resolved transport rate in Eq. (46) to obtain the
disorder-averaged transport rate

� =
∫

dE1

∫
dEN�(E1)P(EN )P(E1)

= 1

N

∫
dE1νC (E1)P(E1)

= 1

N
γ , (48)

which is thus direct proportional to the disorder-averaged
relaxation rate in Eq. (31). We note that the disorder-averaged
transport rate in Eq. (48) considers independent donor and
acceptor energies, which is different from the resonant trans-
port rate in Eq. (47). Formally, the factor 1/N appears because
of the factor ν(E ) → NP(E ) in Eq. (46). The inverse of the
rates τγ = 1

γ
and τ� = 1

�
are the mean first-passage times of

the relaxation and transport processes. In a classical picture,
a jump from one molecule to another takes τγ . In a random-
walk fashion, the number of jumps to reach the acceptor is
on the order of N , so the mean first-passage time is τ� ∝
Nτγ . The quantum calculation arrives at the exact relation
τ� = Nτγ . We note that the derivation in Sec. V B can be
straightforwardly generalized to a system with NA acceptors
as long as NA � N . In doing so, one finds that � = NA/Nγ ,
which underpins the interpretation of the transport picture as
a quantum random-walk process.

Because of the close relation of the disorder-averaged
relaxation and transfer rates in Eq. (48), the qualitative dis-
cussion in Sec. IV B is valid also for the transport process.
The turnover as a function of disorder in Fig. 4(c) ap-
pears to be reminiscent of the turnover as a function of
system-environment coupling or temperature, which is often

associated with environment-assisted transport [21–25,38–
40]. However, we emphasize that the underlying physical
mechanisms are different. For weak disorder, the cavity-
mediated transport observed in Fig. 4(c) is enhanced because
of an increasing overlap of the cavity local density of states
and the quantum emitter energy distribution. For large dis-
order, the cavity-mediated transport vanishes as the quantum
emitter energy is increasingly distributed over a larger energy
region, such that fewer quantum emitters are energetically res-
onant with the cavity mode. Consequently, quantum emitters
and cavity mode decouple such that the cavity mode is subject
to less decoherence.

VI. DISCUSSION AND OUTLOOK

A. Summary

Using the Green’s function method to analytically solve the
Fano-Anderson model, we have predicted the spectroscopic,
relaxation, and transport features of polaritons in microcavi-
ties in the presence of energetic disorder. The central physical
findings of this paper are summarized as follows:

(i) Complex eigenenergy. The average over energy dis-
order results in an effective Hamiltonian, which exhibits an
exceptional point in its eigensolutions in the resonance case
(i.e., EC = EM). This exceptional point defines two dynam-
ical regimes: underdamped coherent dynamics in the weak
disorder regime, where the decay rate increases linearly with
disorder and the collective Rabi frequency decreases quadrat-
ically with disorder, and overdamped biexponential dynamics
in the strong disorder regime, where the slow decay rate
decreases with disorder and the fast decay rate increase with
disorder.

(ii) Spectroscopy. The contributions of the cavity mode
and the bright state to the eigenstates of the disordered system
define the cavity LDOS, νC , and bright-state LDOS, νBS,
which can be measured via the cavity absorption and the
matter absorption, respectively. In the weak disorder regime,
the complex eigensolutions lead to two spectral peaks sep-
arated by the effective Rabi splitting. In the strong disorder
regime, the cavity spectrum exhibits a central peak dictated by
the slow eigensolution, whereas the matter spectrum results
from the destructive interference of the two eigensolutions.
Intriguingly, the matter spectrum exhibits a complete absorp-
tion suppression at the energy of the cavity mode which is
reminiscent of the electromagnetically induced transparency
[52,55] and the related vacuum-induced transparency effects
[49,53]. In contrast to these effects, which appear in individual
atoms or molecules, the absorption suppression observed in
νBS of Fig. 3 is a consequence of the collective destructive
interference of the two-level quantum emitters and the cavity
mode.

(iii) Energy-resolved relaxation rate. For all donor ener-
gies E1, the energy-resolved relaxation rate γ (E1) exhibits a
turnover as a function of disorder or molecule number. Specif-
ically, we have γ (E1) ∝ σ/N in the weak disorder regime of
σ � g

√
N and γ (E1) ∝ N/σ in the strong disorder regime of

σ � g
√

N .
(iv) Disorder-averaged relaxation rate. The turnover in

γ (E1) translates into a turnover in the disorder-averaged relax-
ation rate γ as a function of disorder but a monotonic decay of
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γ as a function of the molecule number. Further, the disorder
average modifies the scaling behavior. For σ � g

√
N we find

γ ∝ σ/N , while for σ � g
√

N we find γ ∝ 1/σ .
(v) Resonant transport rate. For the transport from a donor

to an acceptor which are in resonance E1 = EN , the rate is
proportional to �r (E1) ∝ νC (E1)/ν(E1). Because of the pres-
ence of the total density of states ν(E1), for σ � g

√
N , the

resonance transport rate decreases with the molecule number
as �r (E1) ∝ 1/N2, whereas for σ � g

√
N , �r (E1) is indepen-

dent of both disorder and molecule number.
(vi) Disorder-averaged transport rate. The disorder-

averaged relaxation rate γ and transport rate � are related
as � = γ /N . The relaxation process is from the donor to
molecule ensemble, whereas the transport process is from
donor to acceptor, one of the N molecules, which explains
the factor N . Overall, the relaxation and transport depend
quadratically on the light-matter interaction g when keeping
the Rabi frequency � = 2g

√
N constant.

B. Discussion

In the following, we elaborate on the methods and physical
pictures established in this paper.

Analytical methods. The Green’s functions approach is
a flexible tool which yields rich insight into the polarition
dynamics. The disorder average enables the derivation of an
effective Hamiltonian, which reduces a continuum of states to
a non-Hermitian two-state Hamiltonian. Its complex-valued
eigenenergies represent the damping dynamics of the two
polaritons. This non-Hermitian feature accurately describes
the mixing of the bright and dark states induced by the
disorder and predicts the spectroscopic properties in the ther-
modynamic limit. The Green’s function approach applied here
allows for compact derivations of various observables on an
equal footing, which clearly reveal the underlying physics.

The relaxation rate is calculated by evaluating the imag-
inary part of the complex eigenenergies. To this end, we
have developed the polynomial perturbation theory (PPT),
which unifies the degenerate and nondegenerate perturbation
theories. The calculation of the transport rate requires to eval-
uate N + 2 roots of an effective characteristic polynomial. As
this is analytically infeasible, we have developed the exact
stochastic mapping (ESM), which maps one sample of pa-
rameters to another sample of the same stochastic properties,
but with a more convenient structure for the further analytical
treatment.

Bright and dark states. We have shown that the total density
of states ν(E ) can be written as a sum of the cavity LDOS,
νC (ω), the bright-state LDOS, νBS(ω), and the dark-state
LDOS, νDS(ω), as explicitly given in Eq. (25). The bright-state
and dark-state LDOS quantify the contributions of the bright
and dark states of the homogeneous system to the eigenstates
of the disordered system. The spectral shape of νC (ω) and
νBS(ω) reflect the mixing of the bright state to the dark states
in the presence of disorder.

The components of the total density of states can be ac-
cessed via spectroscopy. A realistic spectroscopic experiment
simultaneously measures the cavity and matter absorption,
i.e., χ (ω) = αCχC (ω) + αMχM (ω) with coefficients αC and
αM . One can use the scaling properties χC (ω) ∝ νC (ω) and

χM (ω) ∝ V νBS(ω) to differentiate between the two contribu-
tions in a spectroscopic experiment by varying the volume V
while keeping the molecule density constant.

Relaxation and transport. The relaxation and transport
rates are primarily determined by the cavity LDOS. As the
functional shape of the cavity LDOS is strongly influenced by
the dark states, they have a substantial impact on the relax-
ation and transport properties. The analytic treatment predicts
a simple relation between the relaxation and transport pro-
cesses: �r (E1) ∝ γ (E1)/ν(E1), where �r (E1) is the resonant
transport rate and γ (E1) is the energy-resolved relaxation rate.
We have analytically explained the behavior of the relaxation
and transport processes in the limiting cases of σ � g

√
N

and σ � g
√

N , respectively. Interestingly, the resonant trans-
port rate is independent of disorder and molecular number
in the strong disorder regime σ � g

√
N as can be seen in

Fig. 6.
The disorder-averaged relaxation rate γ and the transport

rate � are related as � = γ /N . This relation can be classically
understood as a quantum random walk of the excitation, where
the dwell time of the excitation on a specific molecule is
1/γ . Consequently, the ratio of the relaxation and transport
rates increases linearly with the number of molecules N . The
quantum calculation, i.e., the quantum random walk, shows
that the ratio of these two rates is exactly N . The transport
rate exhibits a turnover as a function of disorder, which is a
consequence of the turnover of the energy-resolved relaxation
rate.

Our calculation thus explains the turnover in the transport
efficiency numerically observed in Ref. [32]. However, their
numerical investigation finds an overall scaling of ∝1/N2 for
all parameters of σ instead of two scaling behaviors for small-
(∝N−2) and large-disorder (∝N−1) regimes found in this
work. This discrepancy might be a consequence of the average
of the logarithmic transport efficiency adopted in Ref. [32].
We note that the resonant transport rate scales also with ∝N−2

for large disorder as shown in Fig. 6, which is weighted more
heavily by an average of the logarithm. Moreover, our findings
in Fig. 4(d) suggest that the disorder-independent regime ob-
served in Ref. [32] is a specific result of the chosen parameters
rather than a general feature.

The observed turnover is in strict contrast to the Ander-
son localization, for which the conductivity monotonically
decreases with increasing disorder. For charge and exciton
transport in molecules, it is known that noise can lead to a
turnover, yet, this is a different mechanism as the disorder
enhancement discussed here.

Finite-size simulations and thermodynamic limit. The
Green’s function solutions in Eqs. (6) and (35) are exact
expressions and thus valid for arbitrary molecule numbers. In
the derivation of the spectroscopic properties in Sec. III, the
disorder average of the Green’s functions with the Lorentz
disorder in Eq. (10) is formally equivalent to the thermo-
dynamic limit. Consequently, the expressions for the cavity
absorption (i.e., cavity LDOS) and the matter absorption (i.e.,
bright-state LDOS) are also valid for a finite molecule number.
In contrast, the relaxation rate and the transport rate are valid
only in the thermodynamic limit g → 0 and N → ∞, as we
have applied the PPT in the derivation. This can be seen in the
finite-size simulation in Figs. 4(a) and 4(b), which strongly
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deviate from the thermodynamic limit for low density of
states.

Implications. The turnover as a function of disorder is in
strong contrast to the Anderson localization, for which the
conductivity is monotonically decaying for increasing disor-
der. An experimental verification of this turnover will have a
strong technical impact on the design of photovoltaic devices
and photodetectors. In order to harness the full spectrum of the
sun light, photovoltaic devices usually work with a broad en-
ergy spectrum. This requires that the organic molecules, often
deployed in such devices, have either a broad spectral width or
a substantial energetic disorder, both have a detrimental influ-
ence on the transport efficiency [56]. An increasing efficiency
for larger disorder would thus circumvent this problem. We
note that, even though the paper focuses on energy transport,
our findings are also valid for charge transport via electron-
hole excitations such as in Ref. [29].

C. Outlook

The Green’s function solution in combination with the
PPT and the ESM methods is a comprehensive tool, which
can be applied to related problems of disordered ensembles.
For example, given the analytical expression for the single-
particle Green’s function, it is possible to deal with nonlinear
perturbations. The coherent potential approximation will be
an alternative approach and will be considered elsewhere
[57–59]. Due to the absence of local couplings, the Fano-
Anderson model lacks a spatial dimension. In Ref. [32] the
total flux is the sum of a cavity-induced contribution and a
local-coupling contribution. The latter vanishes exponentially
with the system size along with the Anderson localization.
A local coupling term justifies the random-walk picture on
a lattice. Further study along this line includes the multimode
generalization of the cavity field, dissipation due to the inter-
action with thermal baths, and long-range dipolar coupling,
i.e., Förster transport.
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APPENDIX A: SOLUTION OF THE EQUATION
OF MOTION IN LAPLACE SPACE

In this Appendix, we derive the Green’s function based on
the equations of motion in Laplace space, which is defined by

B̂(z) =
∫ ∞

0
B̂(t )e−zt dt (A1)

for operators in the Heisenberg picture B̂(t ). Transforming the
Heisenberg equation of motion of the operators â and B̂ j into

Laplace space, we find [36,37]

zâ(z) − â0 = −iECâ(z) − ig
N∑

j=1

B̂ j (z),

zB̂ j (z) − B̂0
j = −iE jB̂ j (z) − igâ(z), (A2)

where â0 = â(0) and B̂0
j = B̂ j (0) denote the Heisenberg

operators at time t = 0. Due to the tree structure of the Hamil-
tonian in Eq. (2), it is possible to directly write the solution

â(z) = â0

z + iEC
− i

gB̂0
j

[z + iEC (z)](z + iE j )
,

B̂ j (z) = B̂0
j

z + iE j
− i

gâ0

(z + iE j )[z + iEC (z)]

−
∑

j

g2B̂0
j1

(z + iE j )[z + iEC (z)](z + iE j1 )
, (A3)

where

EC (z) = EC − i
N∑

j=1

g2

z + iE j
(A4)

is an auxiliary function. After an appropriate multiplication
of factors (z + iE j ), the denominators in Eq. (A3) define the
polynomial

P (z) = [z + iEC (z)]
N+1∏

j

(z + iE j ), (A5)

which is equivalent to the characteristic polynomial of the
Hamiltonian in Eq. (1) (up to a replacement of z → −iE ).
Using the solution in Eq. (A3), it is straightforward to con-
struct the Green’s function in Laplace space given in Eq. (6) in
the main text. The inverse Laplace transformation is formally
defined by

B̂(t ) = lim
δ→0+

∫ δ+i∞

δ−i∞
B̂(z)ezt dz, (A6)

which thus denotes a contour integral along the imaginary
axis. Clearly, this definition is also valid for the inverse
Laplace transformation of the Green’s functions. If B(z) does
not contain any branch cuts, this integral can be evaluated in
terms of the residues of B(z). The generalization of this deriva-
tion to the Green’s functions of the transport Hamiltonian in
Eq. (35) is straightforward.

APPENDIX B: DETAILED DERIVATION OF THE
SPECTROSCOPIC PROPERTIES AND THE LOCAL

DENSITY OF STATES

In this Appendix, we provide the step-by-step calculations
of the spectroscopic properties considered in Sec. III.
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1. Cavity absorption spectrum

Up to physical constants, the cavity absorption spectrum is equivalent to the cavity LDOS, which reads as, according to the
definition in Eq. (19),

νC (ω) = − 1

π
Im

[
i

(z + iEC (z))

]
z→−iω

. (B1)

For the Lorentzian disorder, this can be expressed in terms of the eigenvalues of the effective Hamiltonian in Eq. (14), thus,

νC (ω) = − 1

π
Im

[
i

z + iEM + σ

(z + iε1)(z + iε2)

]
z→−iω

= − 1

π
Im

[
i

−iε1 + iEM + σ

(iε2 − iε1)(z + iε1)
+ i

−iε2 + iEM + σ

(iε1 − iε2)(z + iε2)

]
z→−iω

≡ − 1

π
Im

[
A(C)

1

i

(z + iε1)
+ A(C)

2

i

(z + iε2)

]
z→−iω

, (B2)

where

A(C)
1 = −iε1 + iEM + σ

(iε2 − iε1)
, (B3)

A(C)
2 = −iε2 + iEM + σ

(iε1 − iε2)
. (B4)

This is the form of the cavity LDOS in Eq. (21).

2. Matter absorption spectrum

Here, we explicitly evaluate the matter absorption in Eq. (23) for the Lorentzian disorder distribution. The step-by-step
calculation is

χM (ω) =
∑
i, j

Im [Gi, j (z)]z→−iω+0+

= Im

[∑
j

i

z + iE j
−
∑
i, j

ig2

(z + iEi )(z + iE j )[z + iEC (z)]

]
z→−iω+0+

= N Im

[∫
dE

i

z + iE
P(E )

]

− N2Im

[∫
dE1dE2

ig2

(z + iE1)(z + iE2)[z + iEC (z)]
P(E1)P(E2)

]
z→−iω+0+

= N Im

[
i

z + i(EM − iσ )

σ

π

−2π i

−2σ i

]
z→−iω+0+

− N2Im

[
ig2

[z + i(EM − iσ )][z + i(EM − iσ )][z + iEC (z)]

(
σ

π

−2π i

−2σ i

)2]
z→−iω+0+

= NIm
[ i

z + iEM + σ

]
z→−iω+0+

− N2

[
Im

ig2

(z + iEM + σ )2[z + iEC (z)]

]
z→−iω+0+

. (B5)

Next, we show how to express the matter absorption in terms of the Green’s function of the cavity mode given in Eq. (24). To
this end, we express the matter absorption in terms of the eigenvalues of the effective Hamiltonian in Eq. (15) as

χM (ω) = −N

π
Im

[
i

z + iEM + σ
− ig2N

(z + iEM + σ )2[z + iEC (z)]

]
z→−iω

= −N

π
Im

[
i

z + iEM + σ
− ig2N

(z + iEM + σ )(z + iε1)(z + iε2)

]
z→−iω
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= − 1

π
N Im

[
i

g2N

(−iε1 + iEM + σ )(iε2 − iε1)(z + iε1)
+ i

g2N

(−iε2 + iEM + σ )(iε1 − iε2)(z + iε2)

]
z→−iω

≡ N

π
Im

[
A(M )

1

i

(z + iε1)
+ A(M )

2

i

(z + iε2)

]
z→−iω

, (B6)

where

A(M )
1 = − g2N

(−iε1 + iEM + σ )(iε2 − iε1)
, (B7)

A(M )
2 = − g2N

(−iε2 + iEM + σ )(iε1 − iε2)
. (B8)

The eigenenergies of the effective Hamiltonian (15) fulfill

(ε1 − EM + iσ )(ε2 − EM + iσ ) = −g2N, (B9)

(ε2 − EM + iσ )(ε1 − EM + iσ ) = −g2N, (B10)

from which follows that A(M )
1 = −A(C)

2 and A(M )
2 = −A(C)

1 . Moreover, we can use the relation

ε1 + ε2 = EC + EM − iσ (B11)

to interchange the eigenenergies in the last line of (B6), i.e.,

χM (ω) ≡ −N

π
Im

[
A(C)

2

i

(z − iε2 + iEC + iEM + σ )
+ A(C)

1

i

(z − iε1 + iEC + iEM + σ )

]
z→−iω

= N

π
Im[GCC (−z − iEC − iEM − σ )]z→−iω, (B12)

where we have used Eq. (21) for the last step.

APPENDIX C: ANALYTICAL TECHNIQUES

Here, we introduce two analytical techniques, namely, the
PPT and the ESM, which are applied in the calculations in
Secs. IV and V.

1. Polynomial perturbation theory

Ordinary time-independent perturbation theory distin-
guishes between degenerate and nondegenerate perturbations.
PPT unifies both cases by deriving a perturbative expression
for the energies based on the characteristic polynomial. Let
us assume that the characteristic polynomial of a Hamiltonian
can be written as a sum of two terms as

P (z) = P0(z) + P1(z), (C1)

where P0(z) and P1(z) denote the unperturbed and per-
turbation polynomials, respectively. We intend to find an
approximate expression for the roots of P (z), which we write
formally as

zμ′ = z(0)
μ′ + δμ′ , (C2)

where z(0)
μ′ denotes the roots of the unperturbed polynomial

P0(z(0)
μ′ ) = 0 and δμ′ is the correction appearing due to P1(z).

Expanding Eq. (C1) at z = z(0)
μ′ for small δμ′ up to first order

we obtain

0 = P1
(
z(0)
μ′
)+ ∂zP

(
z(0)
μ′
)
δμ′ . (C3)

Resolving Eq. (C3) for δμ′ , we readily find the perturbative
correction of the roots

δμ′ = −P
(
z(0)
μ′
)

∂zP
(
z(0)
μ′
)

= −P1
(
z(0)
μ′
)

∏
μ �=μ′

(
z(0)
μ′ − z(0)

μ

)+ ∂zP1
(
z(0)
μ′
) . (C4)

This expression interpolates between the degenerate and
the nondegenerate perturbation theories. The product in the
denominator corresponds to the nondegenerate perturbation
theory, while the derivative terms are related to the degen-
erate perturbation theory. As the PPT unifies both standard
perturbation theories, it is perfectly suitable for the treatment
of systems with a continuous spectrum such as reservoirs.

2. Exact stochastic mapping

The ESM unravels an analytic function F (z) which has no
poles in either the lower or upper complex plane in terms of
an infinite series of poles, i.e.,

F (z) = lim
N→∞

N∑
j=1

i
r j

z − iEi
≡ lim

N→∞
FN (z). (C5)

As F (z) is analytic, the expansion coefficients r j and the poles
Ej ∈ R can be determined by considering z = iω + 0+ with
ω ∈ R such that

lim
N→∞

lim
δ→0+

|F (iω + δ) − FN (iω + δ)| = 0. (C6)

Using the imaginary part of the Dirac identity, we find

r j = 1

π

1

ν(Ej )
ImF (iE j ), (C7)
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where ν(Ej ) is the density of poles defined by

ν(ω) = lim
N→∞

lim
δ→0+

1

π
Im

N∑
j=1

i
1

iω + δ − iEi
. (C8)

Even though using only the imaginary part of F (z) to define
r j , the real part is fixed because of the Kramers-Kronig re-
lations. Since F (z) has no poles in either the upper or lower
complex plane, the real and imaginary parts of analytic func-
tions are related as

ReF (iω) = − 1

π

∫
dω′ ImF (iω′)

ω − ω′ ,

ImF (iω) = 1

π

∫
dω′ ReF (iω′)

ω − ω′ . (C9)

Using Eq. (C5) we can show that the Kramers-Kronig rela-
tions are fulfilled by the ESM:

ImF (iω) = lim
N→∞

ReFN (iω + δ)

= lim
N→∞

lim
δ↓0

Re
N∑

j=1

i
r j

iω + δ − iE j

= − lim
N→∞

1

π

N∑
j=1

ri

(ω − Ej )

= − lim
N→∞

1

π

N∑
j=1

Im
F (iε j )

ν(ε j )

1

(ω − Ej )

= − 1

π

∫
dω′ ImF (iω′)

(ω − ω′)
, (C10)

demonstrating that the ESM does not lead to any ambiguities
related to the definition of the real part of the expansion coef-
ficients r j . As both F (z) and F∞(z) are identical on an infinite
set of C, i.e., the imaginary axis, the functions are equal
everywhere where defined according to the basic properties
of analytical functions.

APPENDIX D: DETAILS ABOUT THE FINITE-SIZE
SIMULATION AND THE FITTING OF THE

RELAXATION RATES

We determine the relaxation rate γ (E1) by fitting the
Green’s function of the donor with an exponential decaying
function, i.e.,

G1,1(t ) = e(−iE1− γ (E1 )
2 )t . (D1)

We take advantage of the exact solution of the Green’s func-
tion in Eq. (6) and evaluate Eq. (D1) in Laplace space, i.e.,

G1,1(z) = 1

z + iE1 + γ (E1 )
2

. (D2)

Resolving this for the relaxation rate, we find

γ (E1) = −2
1 − (z + iE1)G1,1(z)

G1,1(z)
. (D3)

In principle, the right-hand side can be evaluated for arbitrary
z. For the disorder average, we find that z = −iE1 + δ for a
small δ with 1/ν(E1) � δ � � converges very fast.
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