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The purpose of this work is to understand the fundamental connection between structural correlations and
light localization in three-dimensional (3D) open scattering systems of finite size. We numerically investigate
the transport of vector electromagnetic waves scattered by resonant electric dipoles spatially arranged in 3D
space by stealthy hyperuniform disordered point patterns. Three-dimensional stealthy hyperuniform disordered
systems are engineered with different structural correlation properties determined by their degree of stealthiness
χ . Such fine control of exotic states of amorphous matter enables the systematic design of optical media that
interpolate in a tunable fashion between uncorrelated random structures and crystalline materials. By solving
the electromagnetic multiple scattering problem using Green’s matrix spectral method, we establish a transport
phase diagram that demonstrates a distinctive transition from a diffusive to a weak localization regime beyond
a critical scattering density that depends on χ . The transition is characterized by studying the Thouless number
and the spectral statistics of the scattering resonances. In particular, by tuning the χ parameter, we demonstrate
large spectral gaps and suppressed subradiant proximity resonances, facilitating light localization. Moreover,
consistently with previous studies, our results show a region of the transport phase diagram where the investigated
scattering systems become transparent. Our work provides a systematic description of the transport and weak
localization properties of light in stealthy hyperuniform structures and motivates the engineering of photonic
systems with enhanced light-matter interactions for applications to both classical and quantum devices.
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I. INTRODUCTION

Understanding the subtle mechanisms behind the con-
finement of optical waves in complex media is essential to
manipulate scattering and radiation phenomena. One of the
simplest examples to achieve such control is introducing a
defect in a periodic structure. Such a defect creates a localized
state in the band-gap region whose confinement properties
depend on the nature of the defect itself [1]. For example,
a point defect behaves like a microcavity, a line defect as
a waveguide, and a planar defect like a perfect mirror [1].
However, fabrication imperfections fundamentally limit the
spatial extent of defect-localized modes in photonic band-gap
structures [2], motivating the development of more robust
alternatives. Controlling highly localized optical states is also
essential for quantum science and technology. For example,
photonic environments capable of spatially confined light can
enable the preparation of qubits that are well isolated from the
environments reducing decoherence [3,4].

A promising approach to realize highly confined optical
modes relies on the design of strongly uncorrelated scattering
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materials where the propagation of light experiences coherent
effects due to multiple interference phenomena. One of the
most fascinating phenomena in the strong multiple scattering
regime is the breakdown of the classical diffusion picture and
the emergence of localized wave solutions [5]. Initially pro-
posed by Anderson in the context of electron waves transport
[6], disorder-induced localization of electromagnetic waves
drives the development of disordered photonics [7]. Since
Anderson’s Nobel-prize-winning discovery [8], the study of
how light propagates in uncorrelated materials unveiled a new
and efficient method of trapping light, leading to interest-
ing and unexpected physical phenomena [7,9]. In particular,
disorder-engineered optical devices enable the control of the
spectral, transport, and topological properties of light [9],
offering new perspectives for both fundamental physics and
technological applications [7,10]. For example, random lasers
have been developed with both uniform [11,12] and corre-
lated disorder [13–16], leading to remarkable innovations in
spectroscopy [17,18] and optical imaging [19–21]. Moreover,
localized optical patterns promise to open new avenues for the
encoding of both classical and quantum optical information
[22,23]. However, disorder-induced localization phenomena
depend critically on the dimensionality of the investigated
systems [5].
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In fact, while light localization always occurs in one-
and two-dimensional structures with sufficiently large size
[6,24–26], this is not the case for three-dimensional (3D)
disordered systems where Anderson localization has not been
unambiguously demonstrated. Although several claims have
been made [27–29], the debate is still ongoing [30–32]. From
the theoretical standpoint, it has been recently demonstrated
that the localization of electromagnetic waves cannot be
achieved in random ensembles of electric point scatterers,
irrespective of their scattering strength [33–35]. The near-
field dipole-dipole coupling between vector scatterers was
conjectured to be an important factor that prevents the onset
of a delocalization-localization transition [33–38]. Conse-
quently, alternative strategies have been developed to reduce
the detrimental effect of mediated dipole-dipole interactions.
For instance, the application of strong magnetic fields in
random media [39,40], the use of partially ordered media
[41], and complex aperiodic structures with ad hoc struc-
tural properties [38,42] have all been proposed as candidate
systems for the demonstration of 3D light localization. In
this context, disordered hyperuniform structures [43–45] have
attracted significant attention because they enable the design
of unique materials that flexibly interpolate between the two
extremes of ordered and disordered structures. These engi-
neered disordered media resulted in novel optical phenomena
in nanophotonics, such as the discovery of exotic amor-
phous materials with large, complete, photonic band gaps
[46], the design of free-form waveguides [47], and enhanced
directional extraction of the incoherent emission from light-
emitting diodes [48]. Moreover, 3D photonic hyperuniform
networks can be conveniently fabricated by silicon double
inversion of polymer templates [49]. The development of a
suitable platform for light localization provides opportunities
to enhance light-matter interactions in photonic materials with
engineered disorder as well as novel quantum simulation pro-
tocols that are inherently more resilient to decoherence effects
[50–54].

In this work, we study the transport and localization
properties of electromagnetic waves scattered by resonant
electric dipoles spatially arranged in 3D stealthy hyper-
uniform disordered configurations. These systems suppress
long-wavelength density fluctuations and the single scattering
of waves in a predefined spectral range around the origin
of their reciprocal space [55,56]. Motivated by the recent
discovery that the optical transmittance of 3D hyperuniform
systems can be strongly enhanced or suppressed depending on
the frequency of the incident waves [42,57], we ask how struc-
tural correlations in three-dimensional stealthy hyperuniform
disordered systems (3D-SHDS) more generally determine
their transport and localization properties. A similar approach
has been used to classify, both theoretically [58,59] and
experimentally [60], the optical transport properties of two-
dimensional SHDS, unveiling disorder-induced transparency,
Anderson localization, and band-gap formation. In this work,
we extend this analysis to the more complex situation of
electromagnetic vector waves scattered by a large number of
3D hyperuniform disordered point patterns characterized by
different degrees of stealthiness χ . To rigorously investigate
wave localization in these 3D scattering open environments,
we use the Green’s matrix spectral method to study their

complex scattering resonances systematically [61]. Moreover,
we establish a characteristic transport phase diagram by com-
puting the minimum value of the Thouless number [62] as a
function of χ and the scattering strength of the investigated
systems. Our results unveil the presence of a transition from a
diffusive to subdiffusive transport regime (weak localization)
controlled by the stealthiness χ parameter and demonstrate
the fundamental connection between hyperuniform structural
correlations and light localization in 3D open scattering sys-
tems of finite size.

II. CHARACTERIZATION OF DISORDERED
HYPERUNIFORM STRUCTURES

Hyperuniform systems are structures with suppressed
infinite-wavelength density fluctuations [43]. This large-scale
property implies vanishing of the structure factor S(k) when
|k| → 0 in the thermodynamic limit [43]. Because S(k) is
proportional to the scattering intensity [63], hyperuniformity
results in the complete suppression of wave scattering as
|k| → 0 [44]. All crystals and quasicrystals are hyperuni-
form [44] as well as certain exotic amorphous structures
[26,43,55,56,64,65]. Hyperuniform disorder enables one to
engineer materials [7,9] with singular features, such as the
control of the spectral (i.e., photonic band gap) [46,47] and
momentum (i.e., directivity) [48] responses of light. More-
over, stealthy hyperuniform structures are characterized by the
fact that their structure factor vanishes over an entire domain
� with size K , i.e., S(k) = 0 for all |k| < K [44,55,56].
Stealthy hyperuniformity is a stronger condition than what
achieved in standard hyperuniform media because single scat-
tering events are prohibited for a large range of wavelengths.
Therefore, stealthy hyperuniform systems provide unprece-
dented opportunities to engineer amorphous materials with
tunable structural properties governed by their degree of
stealthiness [9,43,44].

In this work, we have generated stealthy 3D disorder
hyperuniform structures using the collective coordinate nu-
merical optimization procedure to tailor the small-k behavior
of the structure factor [55,56]. Specifically, this method is
characterized by an initial uniform random distribution of
N points in a cubic simulation box of side length L. Then,
the points are collectively moved, under periodic boundary
conditions, to minimize a pair potential � within an ex-
ceedingly small numerical tolerance. In this way, the final
structure factor is stealthy up to a finite cutoff wave num-
ber K . More details on this optimization procedure, as well
as the definition of the pair potential �, can be found in
Refs. [43,44,48,55,56,66].

In three spatial dimensions, an ensemble of N points repre-
sents a total of 3N degrees of freedom (DOF). The number
of constrained points M(K) depends on the size K of the
reciprocal domain �. The structural order in hyperuniform
structures is controlled through the parameter χ that rep-
resents the degree of stealthiness, which is defined as the
ratio M(K )/3N [56]. For χ = 0%, the system is uncorre-
lated, while for χ = 100%, the system is a perfect crystal.
The degree of short-range order in these structures increases
with χ , inducing a transition from a disordered ground state
to a crystalline phase when χ > 50% [56,66]. Moreover,
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FIG. 1. Structural properties of 3D-SHDS composed by 1000
scattering elements and characterized by different χ values. In par-
ticular, χ is equal to 0.1% (black lines), 20% (red lines), 40% (gray
lines), and 60% (green lines), respectively. (a) Shows the ensemble-
averaged two-point correlation function 〈g2(r)〉e, while the scaling
of the number variance of variance μ2 within a spherical observation
window of radius R, averaged with respect to 10 different disordered
realizations, is reported in (b). The inset of (b) shows the 〈μ2〉e data
in a log-log scale. Moreover, the inset shows the prediction of the
number of variance of uniform random point processes in the blue
line. (c) Displays 〈γ2〉e along with the analytical prediction related to
uncorrelated Poisson processes in blue line. The probability density
functions of the ensemble-averaged nearest spacing distances 〈d1〉e

normalized by 〈d1〉e are reported in (d). The error bars are the statis-
tical errors associated with the average ensemble operation.

increasing χ tends to increase the net repulsion of the poten-
tial �. This feature is visible in Fig. 1(a), where we report
the ensemble average of the two-point correlation function
g2(r) performed over 10 different disorder realizations with
N = 1000 particles. This function describes how the particle’s
density varies as a function of distance, and it is proportional
to the probability of finding two particles separated by a dis-
tance r [67]. In what follows, we will use the symbol 〈. . . 〉e

to identify this ensemble-averaged operation. Representative
examples of generated 3D-SHDS point patterns, with a tol-
erance in the minimization process of 10−12, are shown in
Appendix A. We have carefully checked that the tolerance
threshold and different stealthy hyperuniform optimization
processes do not influence the main results of our paper, as
discussed in Appendix B. While for χ = 0.1%, the 〈g2(r)〉e

fluctuates around one (i.e., uncorrelated disorder), it develops
an exclusion region when χ > 20% where 〈g2(r)〉e is exactly
zero for a domain near the origin. The extent of this exclusion
region (i.e., r/〈d1〉 → 0) increases with χ . This feature is
clearly visible in Fig. 1 by comparing the red curve (relative
to χ = 20%) with respect to the gray line (corresponding
to χ = 40%). The symbol 〈d1〉e corresponds to the mean
value of the ensemble-averaged nearest spacing distances of
the investigated structures. At χ = 60% (i.e., green curve),
the peaks demonstrate crystallinity. This analysis shows that
the investigated structures display the same features as the

3D stealthy hyperuniform point patterns already reported in
literature [55,56].

Hyperuniformity can also be identified by analyzing the
scaling of the fluctuations of the number of points NR con-
tained within a spherical window of radius R [43]. This scaling
is quantified by the growth of the variance μ2 = 〈N2

R〉 − 〈NR〉
with respect to R [44,68]. If μ2 grows more slowly than the
volume of the window in the large-R limit, then the structure
is hyperuniform [44]. This feature is shown in Fig. 1(b), where
we found that the density fluctuations of 3D-SHDS with χ �
20% scale proportionally to R2.03±0.25. On the contrary, for
lower χ values, μ2 scales as 〈NR〉e (orange line), which is
proportional to R3 [see also Fig. 5(f)].

In hyperuniform systems, the total correlation function
h(r) = g2(r) − 1, which is zero when there are no spatial
correlations, must become negative for some r values [26,69].
A general approach to identify regions of negative structural
correlations is based on the study of information contained in
high-order correlation functions. This study can be performed
by considering the moments of the number of points within
a spherical window of radius R, i.e., μ j = 〈(NR − 〈NR〉 j〉)
[38,70]. Specifically, the high-order correlation function γ2,
also named kurtosis, is defined through the three-point (i.e.,
μ3) and fourth-point (i.e., μ4) moments as μ4μ

−2
3 − 3 [71].

Figure 1(c) displays the behavior of 〈γ2〉e as a function of
R/〈d1〉e. 3D-SHDS with χ � 20% exhibit a range where
〈γ2〉e is oscillatory and negative, indicating the presence of
strong structural correlations with a repulsive behavior. On the
contrary, point patterns generated with smaller χ values are
well described by the analytical trends predicted for uniform
random point patterns (blue line) [38,72]. Finally, we show the
probability density function P(〈d1〉e/〈d1〉e) of the normalized
ensemble-averaged nearest-neighbor distances in Fig. 1(d).
We found that, independently of the degree of stealthiness,
P(〈d1〉e/〈d1〉e) are well reproduced by a Gaussian distribu-
tion, which describes the spatial arrangement of hyperuniform
scatterers within a spherical window of radius R theoreti-
cally [70]. Interestingly, the quantities P(〈d1〉e/〈d1〉e) become
more peaked around their averaged values 〈d1〉e for χ larger
than 20%. As recently observed in 3D deterministic hyper-
uniform structures generated from subrandom sequences, the
probability of finding particles with a normalized separation
larger than 0.5 facilitates light localization [38]. In turn, this
structural feature reduces the excitation of proximity reso-
nances (i.e., dark subradiant modes spatially extended over
just a few scatterers [73]) and promote the formation of
spectral gaps due to multiple wave interference [38,74]. This
is so because the fraction of scatterers that are strongly
coupled by the dipole-dipole near-field interaction, which
scales with their relative distance as 1/r3

i j , is drastically
reduced.

Mathematically, hyperuniformity is defined in the ther-
modynamic limit (i.e., for infinite structures) [44]. However,
samples that are generated experimentally [48,49,60] or com-
putationally [38,43,44] have necessarily finite size. Recently,
quantitative criteria have been established to ascertain the
crossover distance of the hyperuniform and nonhyperuniform
regimes in finite systems [68]. According to the analysis
provided in this section and in the Appendixes, the inves-
tigated structures are sufficiently large to manifest robust
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stealthy hyperuniform behavior [44]. Consequently, the pro-
posed analysis enables the general understanding of the
physical mechanisms behind the light transport in the con-
sidered correlated disordered media. In particular, this paper
is concerned with the systematic study of optical transport
and localization phenomena depending on the type and degree
of structural correlations achieved in finite-size 3D media. In
order to address this complex problem for the investigated 3D-
SHDS we introduce in the next section the multiple-scattering
framework within the Green’s matrix spectral method [61,75].

III. SCATTERING AND LOCALIZATION
PROPERTIES OF 3D-SHDS

The 3N × 3N Green’s matrix composed of the elements

Gi j = iδi j + 3i

2
(1 − δi j )

eik0ri j

ik0ri j

{
[U − r̂i j r̂i j]

− (U − 3r̂i j r̂i j )

[
1

(k0ri j )2
+ 1

ik0ri j

]}
(1)

describes the electromagnetic vector coupling among N point
scatterers, spatially arranged to form the different 3D-SHDS
investigated in this work. Here, k0 is the wave vector of light,
the integer indices i, j ∈ 1, . . . , N label the different particles,
U is the 3 × 3 identity matrix, r̂i j is the unit-vector position
from the ith and jth scatter while ri j identifies its magnitude.
The complex eigenvalues �n (n ∈ 1, 2, . . . 3N) of the matrix
(1) have a physical interpretation in scattering theory, where
they correspond to the scattering resonances of the system.
Specifically, their real parts are equal to the normalized de-
tuned frequencies (ω0 − ωn), while their imaginary parts are
the decay rate 	n of the scattering resonances, both normal-
ized by the decay rate 	0 of a bare dipole in free space [61,75].

The predictions of Green’s matrix spectral method capture
the physics of the multiple-scattering problem in the limit of
small electric dipole scatterers [33,38,74–76]. This approx-
imation is valid for particles with a small size parameter
x = ka � 1 (k is the wave number and a is the particle radius)
[61,77,78]. This approach has been extensively utilized to
study the scattering properties of large-scale aperiodic media,
providing access to robust transport and spectral information
that cannot otherwise be accessed using traditional numeri-
cal methods such as finite-difference time domain (FDTD)
or finite elements (FEM) [74,78–80]. The main feature of
this methodology is that it allows one to treat multiple light
scattering exactly in a scalable and computationally efficient
way, abstracting from the material properties and sizes of
the individual particles that are separately captured by a re-
tarded polarizability [61,78]. Moreover, the Green’s matrix
spectral method can be extended to include external magnetic
[39,40] or electric [81] fields and higher-order multipolar
resonances [78], which are outside the scope of this work.
Finally, it is worth noting that the non-Hermitian Green ma-
trix (1) is also an excellent tool to describe the behavior of
atomic clouds. In particular, cold atoms spatially arranged
in aperiodic atomic lattices [82] are a suitable alternative to
dielectric materials to demonstrate vector wave localization
in 3D environments. Recently, quantum-gas microscopes [83]
enabled the engineering of one- [84], two- [50], and even

three-dimensional [85–88] optical potentials with arbitrary
shape while keeping single-atom control to simulate models
from condensed matter physics in highly controlled environ-
ments [89]. Therefore, 3D optical atomic lattices based on
hyperuniform disordered potentials with a tunable degree of
long-range spatial correlations are also suitable platforms to
experimentally demonstrate the results of this paper.

A. Low optical scattering regime

In order to unveil the physical mechanisms behind light
propagation in correlated disordered media, we have analyzed
the scattering resonances, the level-spacing statistics, and the
Thouless number of representative 3D-SHDS in the low and
large optical density regime. The optical density is defined as
ρ/k3

0 , where ρ denotes the dipole volume density N/V . At
low optical density ρ/k3

0 = 10−6, we found that all the inves-
tigated structures are in the diffusive regime, independently
on the value of χ . The complex distributions of �n, color
coded in Figs. 2(a)–2(d) according to the log10 values of the
modal spatial extent (MSE) [90], do not indicate the pres-
ence of long-lived scattering resonances with 	n � 	0. The
MSE quantifies the spatial extension of a given scattering
resonance �i of an arbitrary scattering system and it is defined
as [90]

MSE =
(

3N∑
i=1

|�i|2
)2/ 3N∑

i=1

|�i|4, (2)

where N indicates the total number of scattering parti-
cles. The ensemble-averaged probability density functions of
the first-neighbor level-spacing distribution of the complex
eigenvalues of the Green’s matrix 〈P(ŝ)〉e are reported in
Figs. 2(e)–2(h). The quantity 〈P(ŝ)〉e is consistently modeled
by the Ginibre distribution for all the investigated χ . One of
the most crucial features of this statistical distribution, which
is defined as [91]

P(ŝ) = 34π2

27
ŝ3 exp

(
−32π

24
ŝ2

)
(3)

with ŝ the nearest-neighbor eigenvalue spacing |
�| =
|�n+1 − �n| normalized to the average spacing |
�|, is the
so-called level repulsion behavior: P(ŝ) → 0 when ŝ → 0.
The level repulsion is related to the extended nature of eigen-
modes due to the mutual orthogonality of eigenvectors that
forbids that two extended eigenvectors are degenerate [39].
Our analysis based on the Ginibre distribution demonstrates
that the level spacing of disorder hyperuniform arrays ex-
hibits cubic level repulsion in the weak scattering regime.
Interestingly, cubic level repulsion is a quantum signature
of chaos in dissipative systems irrespective of whether their
Hamiltonians obey time-reversal invariance [92]. Finally, the
diffusive nature of 3D-SHDS in the weak scattering regime
(i.e., at low optical density) is also corroborated by the be-
havior of the Thouless number that remains larger than unity
independently on the frequency ω, as shown in Figs. 2(i)–
2(l). The Thouless number g as a function of ω is evaluated
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FIG. 2. Spectral properties of 3D-SHDS when ρ/k3
0 = 10−6. (a)–(d) Show the eigenvalues of the Green’s matrix associated with the

structures discussed in Fig. 1 color coded according to the logarithmic of the MSE parameter. (e)–(h) Display the ensemble-averaged
probability distribution functions of the level-spacing statistic of the Green’s eigenvalues reported on top of each panel. The prediction from
Ginibre’s ensemble of random matrices is reported with the yellow lines for comparison. (i)–(l) Show the corresponding Thouless numbers
as a function of the frequency ω̂, ensemble averaged over 10 different realizations. The dashed black lines identify the threshold of the
diffusion-localization transition. The error bars are the statistical errors associated with the average ensemble operation.

as

〈g(ω̂)〉e =
〈

δω


ω

〉
e

=
〈

(1/Im[�n])−1

Re[�n] − Re[�n−1]

〉
e

(4)

following the same procedure as in our previous work
[26,38,74]. In particular, we have sampled the real part of
the Green’s matrix eigenvalues in equispaced intervals and we
have evaluated Eq. (4) in each frequency interval. The symbol
{. . . } in Eq. (4) denotes the interval averaging operation, while
ω̂ indicates the central frequency of each interval.

B. Large optical scattering regime

The situation is drastically different when we consider the
strong scattering regime. In fact, we found that at large scatter-
ing density ρ/k3

0 = 0.5, light transport is strongly influenced
by the degree of stealthiness χ , i.e., the degree of structural
correlations. As it is visible in Fig. 3, the 3D-SHDS with
χ = 0.1% shows a delocalized regime dominated by subra-
diant resonances [blue spiral arms in Fig. 3(a)], characterized
by a level-spacing distribution with level repulsion [Fig. 3(e)],
and by a Thouless number larger than unity independently of
ω [Fig. 3(i)]. Specifically, uncorrelated 3D configurations do
not show any signature of light localization, i.e., the Thouless
number is always larger than unity and the distribution 〈P(ŝ)〉e

is described by the phenomenological ensemble [93,94]

Pβ (ŝ) = B1(1 + B2βz) f (β ) exp

[
−1

4
βz2 −

(
1 − β

2

)
z

]
, (5)

where f (β ) = β−12β (1 − β/2) − 0.168 74, z = π ŝ/2, 0 �
β � ∞ is a fitting parameter, and B1 and B2 are determined
by normalization conditions [94]. Equation (5) describes the
entire evolution of the eigenvalue statistics of random ma-
trices as a function of the strength of disorder through the
β parameter. Notice that for β = 0, Eq. (5) is equal to the
Poisson statistics typically associated to noninteracting, expo-
nentially localized energy levels [91]. For configurations with
χ = 0.1%, our results indicate a β value equal to 0.5, indicat-
ing level repulsion and, therefore, the absence of localization
for small values of the stealthiness parameter.

In contrast, the 3D-SHDS with larger χ display completely
different features. Specifically, these structures are character-
ized by (i) the formation of spectral gaps in their complex
eigenvalue distributions in Figs. 3(b)–3(d); (ii) a reduction
of proximity resonances that disappear by increasing χ [see
Figs. 3(b)–3(d)]; (iii) a level-spacing distribution 〈P(ŝ)〉e that
features level clustering in Figs. 3(f) and 3(g) and, finally, a
Thouless number that becomes smaller than unity depending
on frequency ω̂ in Figs. 3(j)–3(l). Interestingly, the spatial
extension of long-lived scattering resonances increases by
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FIG. 3. Spectral properties of 3D-SHDS when ρ/k3
0 = 0.5. (a)–(d) Show the eigenvalues of the Green’s matrix associated with the

structures introduced in Fig. 1 color coded according to the logarithmic of the MSE parameter. Inset in (b) is an enlarged view of the spectral
gap region when χ = 20%. (e)–(h) Display the ensemble-averaged probability distribution functions of the level-spacing statistic of the Green’s
eigenvalues reported on top of each panel. Inset in (e) shows the data in a log-log scale. While the most disordered structures characterized by
χ = 0.1% show level repulsion (rose line), the other configurations display level clustering with an inverse power law ŝ−β (blue lines). (i)–(l)
Show the corresponding Thouless numbers as a function of the frequency ω, ensemble averaged over 10 different realizations. The dashed
black lines identify the threshold of the diffusion-localization transition. The error bars are the statistical errors associated with the average
ensemble operation.

raising the degree of short-range order of the structures, as
a consequence of the more ordered geometrical nature. At
the same time, the spectral gaps, visible in Figs. 3(b)–3(d),
widen by increasing χ . As introduced in Sec. II, this dis-
tinctive spectral feature is directly related to the reduction of
proximity resonances, weakening near-field interactions that
are detrimental to vector waves localization [33–38].

These results unveil a link between the structural proper-
ties, reported in Fig. 1, and the transport ones, analyzed in
Figs. 2 and 3. Three-dimensional disordered structures with
suppressed large-scale density fluctuations display a transi-
tion from a diffusive to a weak localization regime because
g drops below unity [5,33,38,40,41,59,60,74] and the level
spacing switches from a cubic-type level repulsion to level
clustering [38,39,94,95]. The discovered localization mech-
anism is different from the Anderson localization transition
that occurs in random systems with Gaussian statistics, which
are homogeneous and isotropic disorder media supporting
exponentially localized modes (i.e., characterized by a level-
spacing distribution with a Poisson statistics). On the contrary,
as visible in Figs. 3(f)–3(h), the level-spacing distributions
of 3D-SHDS are well reproduced by the inverse power-law
scaling 〈P(ŝ)〉e ∼ ŝ−γ , with values of the exponent γ equal

to 1.68 ± 0.21, 1.59 ± 0.10, and 1.62 ± 0.12, respectively.
Level clustering with power-law scaling indicates anomalous
transport within a subdiffusive regime in which the width
of a wave packet σ 2 increases in time with power-law scal-
ing t2ν and ν ∈ [0, 1], as shown in [38,96–98]. Interestingly,
subdiffusive transport has been theoretically predicted and
experimentally observed in 3D random media and associated
with the occurrence of recurrent scattering loops in the trans-
port of waves [36,37]. The anomalous exponent ν is related
to the parameter γ through the relation ν = (γ − 1)/d , where
d is the system dimensionality [96–98]. By substituting the
γ values extrapolated by using a least-square method, we
find that the exponent ν is equal to 0.23 ± 0.07, 0.19 ± 0.03,
and 0.21 ± 0.04 for 3D-SHDS with a degree of stealthiness
equal to 20%, 40%, and 60%, respectively. The fact that ν is
lower than 0.5 suggests that the propagation of wave packets
throughout the investigated structures is subdiffusive, indi-
cating a significant wave interference correction to classical
diffusion and a transition to the weak localization regime [99].
Our findings establish a clear transition from a diffusive to a
weak localization subdiffusive regime for vector waves that
propagate in finite-size three-dimensional stealthy hyperuni-
form random media.
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FIG. 4. Structural correlations and wave transport properties of
3D-SHDS. (a) Shows the (χ ; ρ/k3

0 ) transport phase diagram when the
vector nature of light is taken into account. Specifically, the minimum
Thouless number, ensemble averaged over 10 different disorder real-
izations for each configuration, is reported as a function of ρ/k3

0 and
for several degrees of stealthiness χ . The probability of the formation
of proximity resonances as a function of ρ/k3

0 for different χ values
is reported in (b). The white dotted line in (a) and (b) predicts the
minimum density (ρ/k3

0 )c needed to reach localization in the ISA
model. (c), (d) Summarize the transport properties by employing
the scalar approximation. (c) Shows the (χ ; ρ/k3

0 ) transport phase
diagram, while (d) compares the frequency values corresponding to
the minimum value of Thouless number of selected χ structures
with respect to the predictions of the Ioffe-Regel criterion in the
independent scattering approximation for scalar waves (blue dashed
lines).

C. Transport phase diagram

An important aspect of our work is the classification of
different transport regimes in 3D disordered photonic ma-
terials based on their structural correlations. We can now
address this problem by generating 75 different 3D struc-
tures characterized by a χ parameter in-between uncorrelated
(i.e., 0.1%) and crystalline (i.e., 60%) regimes and solv-
ing the electromagnetic multiple-scattering problem using the
Green’s matrix method. An overview of the structural prop-
erties of the generated arrays is presented in Appendix A.
These results confirm the stealthy hyperuniform character of
the investigated structures and demonstrate that relevant struc-
tural correlation effects start to occur when χ is larger than
10%.

Figure 4(a) displays the minimum value of the Thouless
number, ensemble averaged to different disorder realizations,
as a function of ρ/k3

0 and χ . This transport phase diagram
clearly shows that localization (i.e., negative ln[〈min[g]〉e]
values) strongly depends on the structural correlation param-
eter χ . Interestingly, we discover a direct connection between
these findings and the probability of the formation of prox-
imity resonances P(�PR) as a function ρ/k3

0 for different
degrees of stealthiness, as reported in Fig. 4(b). P(�PR) is
evaluated as the ratio between the sum of all the proxim-
ity resonances, identified by the condition MSE = 2, over

the number of all the scattering resonances of the system.
Since proximity resonances arise when few identical scat-
terers are placed close together, these states are dominated
by dipole-dipole near-field interactions [33,73]. Figure 4(b)
shows a strong reduction in the number of proximity reso-
nances forming in 3D-SHDS as a function of χ , reflecting a
decreasing of near-field effects. In the investigated structures,
weak localization occurs when χ > 10%. Specifically, our
results suggest that this regime takes place when the near-field
mediated dipole-dipole interactions are sufficiently reduced
by the degree of hyperuniform stealthiness of the systems.
Moreover, such localization regime cannot be observed un-
less a specific value of the optical density is reached (i.e.,
ρ/k3

0 < 0.1). This fact is evident by comparing Fig. 4(a) with
Fig. 4(b), despite the low probability of proximity resonances
in the systems. Even though the discovered transition into
the weak localization regime is different from Anderson light
localization, it can be qualitatively understood based on the
Ioffe-Regel (IR) criterion k� = 1 evaluated in the indepen-
dent scattering approximation (ISA) [100]. Here, k = 2π/λ

is the wave number and � is the transport mean-free path
that is equal to 1/ρσext in the ISA approximation [61]. Under
the conditions of this study, the extinction cross section σext

coincides with the scattering cross section σsca [101]. The
IR criterion provides a critical value of the optical density
(ρ/k3

0 )c equal to (
√

5 − 2)/2π [61] for the occurrence of a
DLT [dotted white line in Figs. 4(a) and 4(b)]. The IR criterion
also qualitatively explains why the investigated 3D-SHDS are
in the diffusive regime for values of the optical density smaller
than (ρ/k3

0 )c, although P(�PR) is almost zero in this spectral
range. Interestingly, the data in Fig. 4(a) show a region in the
transport phase diagram where ln[〈min g〉e] > 0 for values of
optical densities larger than (ρ/k3

0 )c and for 20% < χ < 35%.
This indicates the presence of a spectral region where trans-
port occurs through the system despite a simple estimate based
on the IR criterion and the strongly reduced probability of
proximity resonances would suggest localization instead. We
note that the existence of a transparency range in 3D-SHDS
with specific χ parameters compatible with the data reported
in Fig. 4(a) was also recently predicted in the strong-contrast
approximation of the effective dynamic dielectric constant
using nonlocal homogenization theory [57].

Interestingly, the transport behavior of 3D-SHDS is
completely different if we neglect the near-field mediated
dipole-dipole interactions. To neglect this term, we have con-
sidered the scalar approximation of the matrix (1), defined as
follows [33]:

G̃i j = iδi j + (1 − δi j )
eik0ri j

k0ri j
. (6)

Figure 4(c) displays the phase transport diagram of the mini-
mum value of the Thouless number, ensemble averaged over
different disorder realizations, as a function of (χ ; ρ/k3

0 ). As
expected [33], localization now takes place, independently
of the value of χ , when the minimum density (ρ/k3

0 )c pre-
dicted by the IR criterion for scalar waves and within the
ISA approximation has been reached [102]. We remark that
for scalar waves, the IR criterion predicts a smaller (ρ/k3

0 )c

threshold than for vector waves [40,61,102], as also shown in
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Fig. 4 by comparing the white dotted lines in Fig. 4(c) with
respect to the one in Fig. 4(a). Moreover, it is evident that
localization effects are much stronger (i.e., lower values of
Thouless number) in the scalar than the vector case, which
shows instead a smoother transition, as discussed in the pre-
vious Sec. III B. This fact is not surprising considering that
the near-field and intermediate-field mediated dipole-dipole
interactions are absent [74]. However, it is possible to identify
a region of the transport phase diagram where the investigated
systems are also transparent within the scalar approximation.
This region starts for χ values larger than 20% and for optical
densities larger than (ρ/k3

0 )c. This transport area increases
with the degree of stealthiness and it extends up to ρ/k3

0 < 0.4
for the largest χ value that we have considered in this work
[i.e., the blue/cyan region visible in Fig. 4(c) that increases
with χ ]. Interestingly, this result is similar to what was ob-
served in the light transport properties of scalar waves (i.e.,
TM-polarized waves) in two-dimensional disordered stealthy
hyperuniform structures, where a transparency region appears
for small frequencies and only for the structures with χ values
larger than 20% [59]. Moreover, the area of this transparent
region also increases with the degree of stealthiness in two-
dimensional arrays [59]. Finally, the IR criterion for scalar
waves enables the identification of a spectral region where all
the states are localized, i.e., k� = 1 [102]. Because both k and
� depend on the frequency ω, the IR criterion defines a spectral
region that separates the frequencies for which the transport is
diffusive from the ones for which light is localized [102]. This
localization region is contained within the blue dotted line
shown in Fig. 4(d). Figure 4(d) compares the frequency values
corresponding to the minimum value of Thouless number of
selected χ structures as a function of ρ/k3

0 with respect to the
predictions of the IR criterion. Specifically, the black, red,
gray, and green curves refer to structures with χ equal to
0.1%, 20%, 40%, and 60%, respectively. Interestingly, our
data fall within the ISA predictions for the less correlated
configurations with χ < 20%. On the other hand, this the-
ory fails, as expected, to describe more correlated 3D-SHDS,
underlining the necessity of deeper theoretical investigations
beyond the scope of this work.

IV. CONCLUSIONS

In conclusion, we have systematically investigated the
properties of electromagnetic waves scattered by 3D stealthy
disordered hyperuniform structures systematically. In partic-
ular, we have considered a large number of 3D-SHDS with
a broad range of structural features in-between crystalline
and uncorrelated random materials. We have established a
transport phase diagram based on the structural correlation
and scattering strength properties by solving the electro-
magnetic multiple-scattering problem using Green’s matrix
spectral theory. The minimum value of the Thouless number
as a function of (χ ; ρ/k3

0 ) clearly shows that weak localiza-
tion critically depends on the structural correlation properties
of the investigated systems. Moreover, we have revealed a
direct connection between the mechanism of light localiza-
tion and the probability of proximity resonance formation.
Reducing this probability promotes the formation of spec-
tral gaps, facilitating the onset of the discovered transition.

Our numerical results demonstrate that the engineering of
structural correlations is the cornerstone to understand how
electromagnetic waves propagate in 3D stealthy hyperuniform
environments. This work introduces a suitable platform to
experimentally test the predictions of mesoscopic physics by
studying the transport of light inside 3D hyperuniform scat-
tering environments [103]. Beyond the fundamental interest
in understanding the light transport properties throughout 3D-
SHDS, our findings suggest photonic media with enhanced
light-matter coupling for quantum simulation protocols that
are more resilient to decoherence effects [3,88].
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APPENDIX A: STRUCTURAL CHARACTERIZATION
OF 3D-SHDS

We have considered 75 different 3D-SHDS characterized
by different degrees of stealthiness to address the connection
between structural correlation and wave transport. Figure 5
shows an overview of their structural properties, ensemble
averaged over 10 different realizations for each χ value
(i.e., a total of 750 structures are considered). In particular,
Figs. 5(a)–5(d) show 1000 scattering elements with different
degrees of stealthiness χ equal to 0.1% (black points), 20%
(red points), 40% (gray points), and 60% (green points). These
structures are the ones discussed in Figs. 1, 2, and 3. Instead,
Figs. 5(e)–5(h) display the quantities 〈g2(r)〉e, 〈μ2〉e, 〈γ2〉e,
and P(〈d1〉e/〈d1〉e). These quantities are useful to characterize
the hyperuniformity of the generated structures [38,68]. In
particular, they allow us to identify the χ value after which the
investigated structures possess long-range structural correla-
tions. It is evident from Fig. 5(e) that the generated structures
interpolate in a tunable fashion between uncorrelated random
media and crystalline materials. The r/〈r〉e dependence of the
ensemble-averaged two-point correlation function shows clear
peaks for χ values larger than 10% that become more pro-
nounced as the value of the degree of stealthiness increases.
Specifically, the evolution of three distinctive peaks is visible
in Fig. 5(e) by increasing χ . The appearance of peaks in the
two-point correlation function indicates the transition from the
fully disordered [i.e., see the gray area in Fig. 5(e)] to the
crystalline regime [44]. Moreover, Fig. 5(e) also displays an
exclusion region that increases with χ where the two-point
correlation function vanishes (i.e., the blue area nearby the
origin). Consistently, the variance of the number of points
contained within a spherical window of radius R [see Fig. 5(f)]
shows a gradual and a smooth change of its scaling law as
a function of χ . We observe a change from a volumetric to
a surface growth when χ is larger than 10%, demonstrating
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FIG. 5. (a) Representative stealthy hyperuniform point patterns with χ equal to 0.1% (black), 20% (red), 40% (gray), and 60% (green).
Overview of the structural properties of 75 different 3D-SHDS. In particular, (e)–(h) display the ensemble-averaged two-point correlation
function 〈g2(r)〉e, the scaling of the number of variance 〈μ2〉e, and the scaling of the 〈γ2〉e function within a spherical observation window
of radius R, and the probability density functions of the ensemble-averaged nearest spacing distances 〈d1〉e normalized by the the ensemble
average of its mean value 〈d1〉e. For each χ value, 10 different disordered realizations are considered. Markers identify the structural properties
of the representative 3D-SHDS shown in (a)–(d). Gray-shaded area in (e) identifies the surface g2(r, χ ) = 1, i.e., the uncorrelated region.

the hyperuniform nature of the generated structures [44]. As
discussed in Sec. II, negative values in the kurtosis function
are associated to the presence of hyperuniformity. Figure 5(g)
displays the formation of a region around R/〈d1〉e = 0.8 that
starts from χ equal to 10% where 〈γ2〉e becomes negative,
indicating the presence of strong structural correlations with
repulsive behavior [38,70]. Finally, Fig. 5(h) shows the prob-
ability density function of the normalized ensemble-averaged
nearest-neighbor distances 〈d1〉e/〈d1〉e for different χ values.
By increasing χ , these Gaussian distributions become more
peaked around their averaged values. As discussed in Sec. III,
this structural feature is associated to the reduction of the
proximity resonances (i.e., reduction of the near-field medi-
ated dipole-dipole interactions) and facilitates the occurrence
of localization effects when the vector nature of light is taken
into account.

APPENDIX B: STABILITY OF THE SPECTRAL
PROPERTIES

In this Appendix, we discuss the stability of the spectral
properties of the investigated arrays with respect to both the
system size and the tolerance value used during the point-
pattern optimization process. The outcomes of this study are
summarized in Figs. 6(a)–6(d) for different optical density
values, as specified in the caption, and in Figs. 7(a) and
7(b). Specifically, Figs. 6(a)–6(d) display the Green’s matrix
eigenvalue distributions obtained by diagonalizing the matrix
(1) relative to 10 different realizations of 3D-SHDS with
χ = 40%. The red, green, and blue points refer to structures
with 3000 scatterers generated with a tolerance value equal to
10−12, 10−15, and 10−20 during the point-pattern optimization
process. These eigenvalue distributions almost coincide. This
finding demonstrates the robustness of the spectral properties
of the investigated structures with respect to this optimization
parameter. Figure 6 also shows that the overall distributions

of the complex eigenvalues of the matrix (1) for N = 1000
(i.e., black markers in Fig. 6) already capture the spectral fea-
tures of larger systems comprising of 3000 electric dipoles. In
particular, these distributions are not influenced by proximity
resonances, have the same shape independently of the optical
density, and are characterized by spectral gaps in Figs. 6(b)–
6(d), which widen as ρ/k3

0 increases. As demonstrated in
Refs. [38,74] and discussed in Sec. III B, the formation of

FIG. 6. (a)–(d) Show the Green’s matrix eigenvalue distributions
for different optical densities, i.e., ρ/k3

0 equal to 10−4, 0.3, 0.5, and
0.7, respectively. Black markers refer to systems with 1000 particles,
while the red, green, and blue points refer to structures characterized
by 3000 scatterers but generated with a tolerance value equal to
10−12, 10−15, and 10−20 during the point-pattern optimization pro-
cess. These distributions are generated by 3D-SHDS with χ = 40%.
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FIG. 7. (a) Shows the eigenvalues of the Green’s matrix color
coded according to the logarithmic of the MSE parameter. (b) Shows
the Thouless number as a function of the frequency ω̂ corresponding
to 15 different disorder realizations (dark pastel blue markers) and
their corresponding ensemble-average values (pastel blue markers).

these spectral gaps drastically reduces the appearance of prox-
imity resonances and substantially attenuates the near-field
mediated dipole-dipole interactions that are detrimental to
the localization of light waves in uncorrelated random media
[33]. To study the spectral properties of larger systems, we
have generated 15 different realizations of 3D-SHDS with
χ = 40% and 8000 elements. Moreover, to test the stability
of our findings with respect to different approaches utilized
for engineering stealthy hyperuniform states of matter, we
have generated these structures starting from “entropically”
favored states very near-zero temperature using the algorithm
described in Ref. [104]. Figure 7(a) shows their complex
eigenvalue distributions when ρ/k3

0 = 0.5. Interestingly, these

results are consistent with the ones in Fig. 3(c). In par-
ticular, the eigenvalue distributions of larger 3D-SHDS are
characterized by a substantial reduction of proximity reso-
nances. Moreover, much more structured spectral gaps form
with more delocalized optical resonances. This fact is not
surprising because the spatial extension of the extended
scattering resonances scales with the system dimension. In-
terestingly, the width of these spectral gaps is also consistent
with the ones visible in Fig. 3(c). In summary, the dis-
tributions of Fig. 7(a) have the same features as the ones
characterizing smaller finite 3D-SHDS with the difference
of a larger portion of scattering resonances with slightly
lower decay rate values forming close to the left edge of
the spectral gaps. Notably, these optical modes also have
smaller modal spatial extent values indicating the formation
of Efimov-type few-body scattering resonances. The effect of
these resonances in the interaction of vector waves with these
structures is visible in Fig. 7(b) that shows the Thouless num-
ber of 15 different realizations (dark pastel blue markers) over
imposed with their ensemble-averaged values (pastel blue
markers). These data display slightly lower Thouless numbers
of the ones reported in Fig. 3(k) demonstrating the validity
of the results presented in the main part of this paper. The
shift of the minimum position of the Thouless number is
due to slightly different geometrical parameters utilized in
the generation of larger structures. Therefore, this analysis
demonstrates that the structures investigated in this work are
sufficiently large to manifest the important effects of hyper-
uniformity in the transport and weak localization behavior of
vector waves in stealthy three-dimensional environments.
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