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We introduce techniques for analyzing the structure of quantum states of many-body localized (MBL) spin
chains by identifying correlation clusters from pairwise correlations. These techniques proceed by interpreting
pairwise correlations in the state as a weighted graph, which we analyze using an established graph theoretic
clustering algorithm. We validate our approach by studying the eigenstates of a disordered XXZ spin chain across
the MBL to ergodic transition, as well as the nonequilibrium dynamics in the MBL phase following a global
quantum quench. We successfully reproduce theoretical predictions about the MBL transition obtained from
renormalization group schemes. Furthermore, we identify a clear signature of many-body dynamics analogous
to the logarithmic growth of entanglement. The techniques that we introduce are computationally inexpensive
and, in combination with matrix product state methods, allow for the study of large-scale localized systems.
Moreover, the correlation functions we use are directly accessible in a range of experimental settings, including
cold atoms.
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I. INTRODUCTION

Initiated by the seminal work of Anderson [1], many-body
localization (MBL) is now understood as a dynamical quan-
tum phase of matter [2,3], defined by the properties of its
highly excited many-body eigenstates. In particular, the en-
tanglement of eigenstates in the MBL phase has been found to
obey an area law even at finite energy densities [4–6] and to vi-
olate the eigenstate thermalization hypothesis [7,8] due to the
existence of quasilocal conserved quantities [4,6,9–11]. The
concept of MBL has since proven central to the understanding
of several aspects of nonequilibrium physics. For instance,
MBL is essential to stabilize various emergent Floquet phases
of matter, such as discrete time crystals [12,13].

The study of MBL has been driven by large-scale nu-
merics and experimental advances in the control of isolated
quantum systems. These efforts have identified characteristic
properties of MBL, such as the unbounded logarithmic growth
of entanglement following a global quench [14–18], which
distinguishes it from Anderson localization (AL), where the
entanglement saturates, and the presence of an eigenstates
transition to an ergodic phase at finite disorder strengths
[19–24]. A slow growth of entanglement-related quantities
has since been observed experimentally for small system sizes
in Rydberg atomic systems and in superconducting circuits
[25,26]. However, extracting the entanglement entropy exper-
imentally generically requires high-fidelity measurements of a
number of nonlocal observables that scale exponentially with
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system size. This makes experimental measurements of the
entanglement entropy prohibitively difficult for large systems.
In cold-atom setups, large systems and long times can be
reached, even in two dimensions, and clear signals of MBL
have been detected in local measurements [27–29].

In spite of the recent progress, the MBL transition is still
not fully understood. While we have powerful numerical and
analytical techniques that allow us to investigate the slightly
entangled eigenstates deep in the MBL phase [9,10,30–33],
the transition to the ergodic phase is much harder to study.
Phenomenological renormalization group (RG) approaches
have emerged as a promising theoretical description of the
transition [34–39]. Although the assumptions behind the var-
ious models differ, most of them describe the MBL transition
in terms of the proliferation of “thermal blocks” versus “insu-
lating blocks,” i.e., regions of the spin chain that look locally
thermal and fully localized, respectively. However, the in-
terpretation of these approaches rests on phenomenological
assumptions which could bias the results. Indeed, most mod-
els assume that each of these blocks is local, although the
existence of sparse thermal blocks spanning the whole chain
has also been suggested [38]. These RG studies suggest that
the MBL transition is of the Kosterlitz-Thouless type with a
delocalization mechanism called avalanche instability, also
sometimes referred as quantum avalanche [35,40].

Since RG approaches provide a clear mechanism for the
transition and allow for a prediction of scaling behavior close
to the transition, it is desirable to have a clear prescription
in order to identify these “blocks” from states obtained nu-
merically or experimentally. The first numerical validation of
this picture in a microscopic model was provided in Ref. [41],
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which proposed identifying these blocks by finding what the
authors denoted entanglement clusters. These are clusters of
spins that are more strongly entangled with each other than
the rest of the system. A numerical investigation using exact
diagonalization for small systems revealed that the average
block size of these entanglement clusters is, indeed, consistent
with the RG analysis of the transition. Entanglement entropy
is paramount for this approach, but it is costly to calculate both
numerically and from experimental measurements.

Motivated by that work, we propose an approach in which
we identify these structures in MBL systems in a scalable way
that is relevant for efficient matrix product state (MPS) based
simulations and is accessible in experiments. We focus on the
XXZ spin chain in the presence of a disordered z-directed field
defined by the Hamiltonian

Ĥ = −J
∑

i

[
Ŝx

i Ŝx
i+1 + Ŝy

i Ŝy
i+1 + �Ŝz

i Ŝz
i+1 + hiŜ

z
i

]
. (1)

The disordered field hi is sampled uniformly from the interval
[−W,W ], where W � 0 controls the strength of the disorder.
We consider the Anderson insulator at � = 0 as well as the
Heisenberg model at � = 1, which is believed to exhibit an
MBL transition at WC estimated to be between 2.7 and 3.8
[19,20,24,42–44].

In this paper, we present practical tools to efficiently
identify the ergodic clusters within MBL eigenstates using
pairwise correlations by applying methods originally devel-
oped in the context of graph theory [45–48]. We validate
our approach in two ways: First, we show that the two-site
mutual information (TSMI) is a useful proxy for analyzing
the structure of MBL eigenstates. Second, we demonstrate
in Sec. IV that our clustering algorithm applied during time
evolution, using the TSMI as well as the pairwise connected
correlation functions in the σz basis, indicates the logarithmic
spreading of entanglement.

II. FROM CORRELATIONS TO GRAPH THEORY

The quantum mutual information of two subsystems A and
B is a correlation measure defined as

I (A; B) = S(A) + S(B) − S(A ∪ B), (2)

where S(A) = −Tr[ρA ln(ρA)] is the von Neumann entangle-
ment entropy for subsystem A. The TSMI corresponds to the
case where subsystems A and B each consist of a single site,
and in this case we denote it I (i; j) for sites i and j. The TSMI
captures the classical and quantum correlations between two
sites and has already been shown to be a relevant probe of lo-
calization [49]. In particular, spatial fluctuations in the TSMI
grow logarithmically under nonequilibrium dynamics, mirror-
ing the entanglement entropy [49]. Another useful quantity
to study quantum correlations is the (connected) correlation
function C(ÔA, ÔB) of two operators ÔA and ÔB:

C(ÔA, ÔB) = 〈ÔAÔB〉 − 〈ÔA〉〈ÔB〉, (3)

where 〈Ô〉 denotes the expectation value of the operator Ô.
Although TSMI takes into account all pairwise correlations
[50,51], it is less accessible in experiments than certain cor-
relation functions. In this paper we introduce tools borrowed

from the field of graph theory to extract what we call correla-
tion clusters, in analogy to Ref. [41]. This provides an efficient
method for studying correlations in MBL systems. Graph
theory has been used in the past to detect quantum phase
transition in equilibrium settings [52–54]. Recently, another
work identified the so-called ergodic bubbles (i.e., regions of
space where the expectation values of local operators look
thermal) using neural network techniques [55].

Our starting point is to construct a matrix Mi j containing
the correlations between sites i and j, and to interpret it as an
adjacency matrix for a weighted graph, as illustrated in Fig. 1.
The vertices of this graph are the lattice sites of our system,
and the bonds connecting them are weighted by the matrix
element Mi j between that pair. Our goal to find the correla-
tion clusters in the state translates to finding “communities”
within this graph. We consider Mi j = I (i; j) in the case of
eigenstates, to which we add Mi j = C(σ̂ z

i , σ̂ z
j ) for dynamics.

The task of finding communities has received considerable
attention in the field of graph theory [45–48]. This is usually
achieved by splitting the graph into disjoint sets of vertices
which we refer to as clusters. A given decomposition of a
graph into clusters is referred to as a clustering. The goal
is to find a clustering that is optimal by some well-defined
measure. Inspired by the well-established Girvan-Newman
approach [45,47], we propose the following three-step pro-
cedure, shown schematically in Fig. 1, for finding the optimal
clustering from the correlation matrix Mi j :

1. We successively remove the weakest bonds of the graph.
2. When the removal of a bond results in two parts of the

graph becoming disconnected, we store the new clustering.
This clustering corresponds to a set of clusters, where a cluster
contains sites that are connected to each other.

3. Repeating steps 1 and 2 appropriately, we eventually
end up with a completely disconnected graph and have stored
a sequence of different clusterings. For each of these stored
clusterings we then compute the modularity:

Q = 1

2m

∑
i j

(
Mi j − kik j

2m

)
δ(ci, c j ), (4)

where ki = ∑
j Mi j and m = 1

2

∑
i j Mi j . The delta function

δ(ci, c j ) is 1 if sites i and j are connected for the given
clustering and 0 if they are not. The modularity takes values
Q ∈ [−1/2, 1] and quantifies how good the clustering is, with
close to 1 corresponding to a good clustering, or “community
structure.” We select the correct clustering as the one with the
highest modularity.

The first step differs from the original Girvan-Newman
approach. While in our case we are guided by the physical
intuition that two correlation clusters are connected by only
weak bonds, Girvan and Newman used a quantity called edge
betweenness to assess which bonds are most likely to link
separated communities [46].

III. CORRELATION CLUSTERS IN EIGENSTATES

We will now focus on the clustering in midspectrum
eigenstates for the Hamiltonian (1) for different values of
the disorder strength. We analyze the structure of the opti-
mal clustering for eigenstates across the MBL-ergodic phase
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FIG. 1. Schematic description of our graph theory approach using an example of the mutual information matrix Mi j . The full graph has
zero modularity [see Eq. (4)]. We then successively remove the weakest edges until the graph is broken into a larger number of clusters. These
steps where a new clustering is obtained are saved and are indicated by a ring around them, and the value of their modularity is given. In this
example we find a very low modularity of Q = −0.00023 for the first clustering, indicating no community structure. The next new clustering
occurs after removing several bonds (not all shown) and has a relatively high modularity of 0.32, which turns out to be the highest obtained
for this example. We identify this clustering as the physical one, and it is indicated by a green ring. The next steps of the decomposition yield
four clusters with a modularity of Q = 0.23, smaller than in the last step, indicating the community structure of a lower quality. The rest of the
procedure was not represented here, but the modularity decreased at each new step.

transition, using the TSMI to define the graph Mi j . Earlier
studies showed that the number of entanglement clusters can
be taken as a relevant scaling parameter for the MBL transi-
tion [41]. In order to validate our graph clustering approach,
we perform a similar scaling analysis. The average number
of correlation clusters n as a function of disorder is shown in
Fig. 2 for different system sizes. We select 50 eigenstates from
the middle of the spectrum of 700 disorder configurations and
then apply the algorithm outlined in the previous section to
extract the average number of clusters in the optimal clus-
tering. The critical disorder Wc is located at the crossing of
the curves at W = 3.8, in agreement with Ref. [41] (see the
inset in Fig. 2). The data collapse convincingly with scaling

FIG. 2. Scaling collapse of the average number of clusters n
divided by system size as a function of the disorder obtained us-
ing our modified Girvan-Newman approach. For the collapse, the
disorder strength was rescaled to take the form (W − Wc )L1/ν , with
Wc = 3.8 and ν = 1.26. When the modularity was lower than Qth =
α(1 − a/L), with α = 0.3 and a = 3.59, the state was considered
fully ergodic and was made of only one cluster. The coefficient a
has been fitted to take into account the finite-size effects at W =
6, according to the finite-size scaling: QL = q − a

L of the average
modularity QL obtained for system size L. Inset: average number of
clusters n divided by system size as a function of disorder strength
W .

n/L = f [(W − Wc)L1/ν], with the parameter ν = 1.26, taken
from Ref. [41]. It was pointed out that this scaling is consistent
with theoretical studies in which a Harris-type bound on the
exponents has been derived [56]. We note that if the system
is ergodic, then we would expect the mutual information to
be uniform on average between all pairs of sites [49]. In this
case, the optimal clustering is a single cluster containing all
sites, but the algorithm as defined will instead choose a clus-
tering with very low modularity. We therefore need to bypass
the graph theory algorithm by setting a threshold Qth below
which the states yielding modularity Q < Qth are considered
ergodic.

Since our numerics are performed on finite system sizes up
to L = 16, the modularity will be affected by finite-size effects
that we must take into account in Qth. To understand these ef-
fects we consider states deep in the MBL phase where we can
make statements about the optimal clustering. In particular,
MBL eigenstates are simultaneous eigenstates of an extensive
number of exponentially localized l bits with a characteristic
localization length [4]. This means that the structure of the
clustering should be independent of systems size, as long as it
is sufficiently large compared to the localization length. As
explained in Appendix E, this actually results in a system
size dependence of the modularity for similar clusterings. To
account for this we use the system size dependent threshold

Qth(L) = α
(

1 − a

L

)
, (5)

where α ∈ [0, 1]. In practice we obtain the coefficient a by
fitting Q(W = 6, L), where W = 6 is the maximum disorder
strength considered in our scaling analysis and is located deep
within the MBL phase. In the main text, we present results for
the overall cutoff parameter α = 0.3. We show in Appendix A
that as long as α gives the correct clustering behavior deep
in the MBL and ergodic phases, the scaling collapse is not
sensitive to the specific choice of this coefficient.

After focusing on the average number of clusters, we will
now investigate the structure of individual eigenstates using
the clustering algorithms. The TSMI matrix Mi j is shown
in Fig. 3 for a single midspectrum eigenstate in an L = 50
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FIG. 3. Example of the mutual information matrix and the as-
sociated communities (correlation clusters) of an eigenstate of a
MBL Hamiltonian obtained using the DMRG-X algorithm [30].
The disorder strength is W = 12, and the system size is L = 50.
In the top panel, we plot the mutual information matrix. We draw
boxes around the matrix elements belonging to the same “correlation
cluster.” We use a red box when a cluster is connected (i.e., no
leapfrogging), while we use orange and green boxes for the two
disconnected clusters. In the bottom panel, we present the bipartite
entanglement entropy as a function of sites. The boundary between
two clusters is signaled by a vertical red line. In the inset we show
the graph corresponding to the optimal clustering. The dashed red
line separates the first and last sites of the chain.

system with disorder strength W = 12, obtained using density
matrix renormalization group excited (DMRG-X) [30], and is
compared to the bipartite von Neumann entanglement entropy
for cuts along different bonds. Here we can see that the local-
ized state is decomposed into a sequence of small clusters (red
boxes) and there are only weak off-diagonal (long-range) cor-
relations in the matrix. However, we observe several examples
of clusters that contain sites that are not nearest neighbors,
a phenomenon which, following Ref. [41], we refer to as
“leapfrogging” (green and yellow boxes). Ideally, we would
like to be able to average over many eigenstates obtained
by MPS methods on the MBL side of the transition and to
therefore extrapolate its scaling. However, given the current
state of algorithms, we find this goal impossible to achieve
due to the bias in the sampling of the states [57].

A few comments are in order: First, the clustering algo-
rithm is a numerically very inexpensive procedure which is
easily scalable since only two-site correlations need to be
computed, allowing us to apply it to states in the MPS form.

Second, there is clear agreement between the strong cor-
relations and the increase in entanglement, as can be seen
by comparing the TSMI matrix with the bipartite von Neu-
mann entanglement entropy (see Fig. 3). Indeed, two local
communities are, in general, separated by a local minimum of
bipartite entanglement entropy, but not all local minima of en-
tanglement entropy signal a separation between two commu-
nities, which is the case, for example, between sites 19 and 20
in Fig. 3. Moreover, entanglement entropy is unable to detect
nonlocal clusters, i.e., leapfrogging, which we detect with our
graph theory approach, for example, at site 36 in Fig. 3. There-
fore, our approach give us insights into the structure of the
state different from the one provided by the bipartite entangle-
ment entropy alone. This brings us to our third point, namely,
that our approach does not rest on a priori physical assump-
tions, such as the locality of the clusters. for example. Indeed,
the graph theory algorithm does not know about the spatial
arrangements of the sites since its only input is the TSMI ma-
trix. However, we note that in all the cases we considered, the
clusters were still relatively local and did not extend through-
out the system, in accordance with the results of Ref. [41].

IV. NONEQUILIBRIUM DYNAMICS

We now turn to the behavior under nonequilibrium dynam-
ics in the localized phase and compare AL and MBL systems.
We now consider a global quantum quench protocol, starting
from an initial Néel state | · · · ↑↓↑↓ · · · 〉, and time evolve it
using the Hamiltonian (1) with � = 1 (MBL) or � = 0 (AL).
We can then analyze the correlations as a function of time and
identify the time dependence of the correlation clusters. We
compare results obtained using the TSMI, Mi j = I (i : j), and
the correlation functions, Mi j = C(σ̂ z

i , σ̂ z
j ).

Figures 4(a) and 4(b) show the numerical results for the av-
erage cluster length l as a function of time. When using Mi j =
I (i : j), l stays approximately constant throughout time, both
in the interacting and noninteracting cases. In contrast, when
using Mi j = C(σ̂ z

i , σ̂ z
j ), l decreases in the MBL case, while it

stays constant in the AL case.
In order to understand these results better and to be able

to distinguish MBL from AL further using graph theory, we
show the numerical results for the average modularity as a
function of time in Figs. 4(b) and 4(d). The offset of the mod-
ularity has been shifted so that the values for different system
sizes coincide at short times. Indeed, Appendix E shows that
the modularity scales with the system size as Q ∼ q − aL−1

for comparable clusters. The value of a is found by fitting
the data at short times, and we find it to be roughly the
same for both AL and MBL. In the noninteracting case, the
modularity Q stays constant throughout the time evolution.
On the contrary, Q decreases in the interacting case.

These observations can be explained as follows: at very
short times (of the order of 1

J ), correlation clusters appear
similarly for both AL and MBL. Due to dephasing in the
MBL case, these clusters interact exponentially slowly with
separation between them, leading to a slow decrease of the
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(a) (b)

(c) (d)

FIG. 4. (a) and (b) Average length of the clusters and (c) and
(d) average modularity as a function of time for different system
sizes, with disorder strength W = 8, for both an Anderson localized
Hamiltonian (AL; � = 0) and MBL Hamiltonian (� = 1). We start
from a Néel state, simulate a quench using exact time evolution, and
apply our graph theory approach to the TSMI matrix (left panels) and
to the pairwise correlation functions in the σz basis (right panels).
The fitting parameters are as follows: in (c) a = 3.69 (MBL) and
a = 3.63 (AL) and in (d) a = 3.76 (MBL) and a = 3.77 (AL).

modularity until it reaches a minimum set by the system size.
Over time, the correlations induced by this long-range dephas-
ing will build up until they are comparable to the weakest
correlations within a given cluster. At this point, those most
weakly correlated sites in the cluster will be excluded in favor
of forming a stronger, smaller cluster, as can be seen in the
example presented in Fig. 8 in Appendix D. This leads to a
decrease of the average cluster length as a function of time
in the interacting case, which is more pronounced with the
pairwise correlations in the σ z basis. This is consistent with
the fact that at early times, the average lengths of the clusters
are identical for MBL and AL, while at later times, due to the
dephasing of the l bits, the average length becomes smaller
for MBL. Nonetheless, due to the presence of l bits in the
MBL system, for the system sizes and timescales accessible to
us, these clusters are robust, as the modularity stays relatively
high and the clustering at long times is still reminiscent of the
structure found at early times.

The effects induced by the dephasing of the l bits are more
pronounced with the correlation functions than for the TSMI.
This difference in behavior stems from the lack of transport in
MBL [58], which implies that off-diagonal correlation func-
tions cannot build up beyond the localization length. Thus,
for our charge-conserving model, only the σ z component con-
tributes to the growth of the TSMI at long times. Numerical
evidence for the spreading of correlation functions in the σz

basis is presented in Appendix F. As a consequence, when us-
ing the TSMI, the information contained in the σ z correlation
functions is washed out by all the other correlations, which
necessarily decay for sufficiently large distances. This leads

to more robust clusters which interact less strongly with each
other. This is in line with findings in previous works [59–61],
which showed that quantities based on these correlators, in
particular certain types of quantum Fisher information, can
probe the logarithmic growth of entanglement in MBL sys-
tems.

These findings show that it is advantageous to consider
the σ z component in this context. In particular, the diagonal
σ z correlations are accessible in existing quantum gas micro-
scope experiments [27,62,63], and thus, our technique can be
directly applied in such settings.

V. CONCLUSION

In this work, we have shown how to efficiently investigate
the structure of MBL states using pairwise correlation func-
tions and TSMI. We focused on two applications. First, we
provided numerical techniques for probing the structure of
MBL eigenstates, scalable to large systems, which are partic-
ularly relevant for states obtained by MPS methods. Second,
we showed that our approach can provide a characterization of
dynamics in the MBL phase. We have demonstrated that our
clustering procedure yields results physically consistent with
previously known results. When looking at the eigenstates,
the scaling of the length of the clusters found in previous
works [41] was recovered. When looking at the dynamics, our
results were consistent with the dephasing process between
distant l bits which is observed in other quantities such as
the entanglement entropy or the quantum Fisher information.
Moreover, we found that the quality of the clustering at late
times was still high, a fact which underlines the relevance of
the clustering in the time evolution of MBL systems, for it
is the persistence of these relatively well separated clusters
which prevents full thermalization of the state and keeps the
saturation of entanglement entropy well below the Page value.

More broadly, we have demonstrated the possibility of
probing the structure of quantum states based solely on
pairwise correlations using a graph theory approach. Our ap-
proach is well suited to experiments, where correlations in the
diagonal σ z basis are typically easy to measure. Furthermore,
our approach is agnostic to the structure or dimensionality of
the underlying Hamiltonian or dynamics. It would therefore
be exciting to test this approach in the task of distinguishing
MBL systems from Anderson localized systems in experi-
ments in both one- and two-dimensional setups.
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FIG. 5. Scaling collapse of the average number of clusters n di-
vided by system size as a function of the disorder obtained using our
modified Girvan-Newman approach and α = 0.25. The parameters
used for the scaling collapse are the same as in the main text. Inset:
average number of clusters n divided by system size as a function of
disorder strength W .

APPENDIX A: SCALING WITH DIFFERENT
MODULARITY THRESHOLDS

In the main text, we presented the scaling collapse of the
number of clusters divided by system size. When the mod-
ularity obtained for one clustering is smaller than Qth(L) =
α(1 − a/L), we bypass our algorithm and consider that the
state is fully ergodic and therefore made of a single cluster. In
Figs. 5 and 6, we show that the scaling collapse is not sensitive
to the value of the coefficient α, as long as α is such that
the modularity of almost all eigenstates deep in the ergodic
(MBL) phase is below (above) Qth(L).

APPENDIX B: SCALING COLLAPSE OF THE NUMBER
OF CLUSTERS USING THE PAIRWISE CORRELATION

FUNCTIONS IN THE σz BASIS

In the main text, we presented in Fig. 2 a scaling collapse
of the average number of clusters divided by system size for

FIG. 6. Scaling collapse of the average number of clusters n di-
vided by system size as a function of the disorder obtained using our
modified Girvan-Newman approach and α = 0.4. The parameters
used for the scaling collapse are the same as in the main text. Inset:
average number of clusters n divided by system size as a function of
disorder strength W .

FIG. 7. Scaling collapse of the average number of clusters n
divided by system size as a function of the disorder obtained us-
ing our modified Girvan-Newman approach applied to the pairwise
correlation functions in the σ z basis, α = 0.15 and a = 3.01. The
parameters used for the scaling collapse are the same as in the main
text. Inset: average number of clusters n divided by system size as a
function of disorder strength W .

which we used the TSMI of the eigenstates as the adjacency
matrix in our graph theory approach. We show in Fig. 7 that
the same approach using the pairwise correlation functions
in the σ z basis yields the same scaling collapse. In order to
ensure that all states deep in the MBL phase are identified as
such, we need to choose a smaller coefficient α for Qth [see
Eq. (5)]. Here we choose α = 0.15.

APPENDIX C: DETAILS ABOUT THE MODULARITY

We would like to have a quantity that enables us to judge
the quality of a graph clustering in order to compare different
clusterings. In order to achieve this, a naive trial would be
to evaluate the fraction of weighted edges connecting vertices
belonging to the same community over the sum of all weights.
If M is the adjacency matrix and ci is the community to which
vertex i belongs, this ratio can be expressed as

R = 1

2m

∑
i j

Mi jδ(ci, c j ), (C1)

where m = 1
2

∑
i j Mi j and δ(ci, c j ) ensures that vertices i and

j are in the same community. Although any good clustering
of a given graph should yield a high value of R, this quantity
is not useful for gathering information about the community
structure. Indeed, considering only one community containing
all the vertices would result in a maximal value of R = 1
[45]. In order to overcome this limitation, the formula for
R was modified by following the idea that a random graph
is not expected to present a community structure. A good
measure of quality would be obtained when comparing the
fraction of weights belonging to the same community to the
one we would have if the weights had been assigned randomly.
This translates to the following expression for the modularity
[45,47,48] of a graph partition:

Q = 1

2m

∑
i j

(Mi j − Pi j )δ(ci, c j ), (C2)
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FIG. 8. Cluster decomposition for different times obtained for an initial Néel state, time evolved with the Hamiltonian (1) with periodic
boundary conditions for disorder strength W = 8 and L = 14. (a) and (d) t = 10, (b) and (e) t = 103, and (c) and (f) t = 107. (a)–(c) Mi j =
I (i : j). (d)–(f) Mi j = C(σ̂ z

i , σ̂
z
j ).

where Pi j is the expected adjacency matrix of the random
graph which has the same structural properties as the origi-
nal graph of interest without presenting the same community
structure. This random graph is also sometimes called the
“null model.” In order to determine the matrix P, we must first
specify a choice for the null model. Since it has to be similar
to the original graph, we impose that the vertex of the random
graph has to have the same degrees ki as the original one, that
is to say,

∑
j

Mi j =
∑

j

Pi j = ki. (C3)

In other words, every vertex of the null model shares as much
weight with the rest of thesystem as the graph of interest,
although the connections between vertices are assigned ran-
domly. On average, vertices i and j will be connected by an
edge of weight Pi j = kik j

2m [48], yielding [47]

Q = 1

2m

∑
i j

(
Mi j − kik j

2m

)
δ(ci, c j ). (C4)

We can see that this measure solves the issue initially en-
countered since the partition containing all vertices has zero
modularity. A value of modularity close to zero means that
the partition is not better than a random one, while a value
close to 1 indicates a strong community structure.

APPENDIX D: EXAMPLE OF THE EVOLUTION OF THE
CLUSTERING IN THE DYNAMICAL CASE

Figure 8 shows the evolution of the clustering for t = 10,
t = 103, and t = 107. At short times, correlations start to build
up locally, resulting in the formation of three large clusters.
At intermediary times these blocks start to break up as the
correlations become more nonlocal. Intercluster correlations
(corresponding to “off-diagonal” elements on the correlation

FIG. 9. 〈〈XZ〉〉 for W = 8 for various system sizes. The MBL
case is shown by dashed lines, while the AL case is plotted by solid
lines. All the curves for the AL case are superimposed. This demon-
strates that the pairwise correlations in the σz basis are sufficient to
probe the logarithmic propagation of information.
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matrix) are more important, resulting in a decrease in mod-
ularity. At long times, this process continues to unfold, with
a further fragmentation of the cluster structure. However we
note that, despite longer-range correlations, a clear cluster
structure is present, and the correlations are not completely
scrambled. Moreover, the intercluster interactions are more
pronounced in the case of the correlation functions than in
the case of the TSMI.

APPENDIX E: SCALING OF THE MODULARITY WITH
SYSTEM SIZE

For a system where the optimal decomposition yields N
clusters, the modularity can be written in the following way
[65]:

Q =
N∑

i=1

ei

m
−

(
di

2m

)2

, (E1)

where the sum runs over the clusters. In the formula above,
di denotes the total degree of nodes in the cluster i: di =∑

j k jδ(c j, ci ) in the notation of the main text, ei is the number
of edges in cluster i, and m is, as in the main text, the total
number of edges. Defining 〈e〉 = 1

N

∑
i ei and 〈d〉 = 1

N

∑
i di,

we obtain

Q =
N∑

i=1

〈e〉
m

− 〈d2〉
(2m)2

. (E2)

We now introduce the quantity 〈eout〉, which is the average
weight leaving each cluster:

〈eout〉 = 1

N

∑
i

∑
j

Mi, j[1 − δ(ci, c j )]. (E3)

Using the fact that 〈d〉 = 〈2e〉 + 〈eout〉 and m = 1
2 N〈d〉, we

obtain

Q =
N∑

i=1

〈e〉
N
2 (2〈e〉 + 〈eout〉)

− 〈(2e + eout )2〉
N2(2〈e〉 + 〈eout〉)2

. (E4)

Finally, noting that the number of clusters N is proportional
to the system size, we recover the scaling of the main text:

Q = 〈e〉
〈e〉 + 〈eout〉/2

− 1

N

〈(2e + eout )2〉
(2〈e〉 + 〈eout〉)2

. (E5)

APPENDIX F: INFORMATION PROPAGATION USING
PAIRWISE CORRELATION IN THE σz BASIS

Reference [49] showed that one can use the TSMI to de-
tect the MBL phase. More precisely, one has to monitor the
following quantity during a global quench:

〈〈X 2
I 〉〉(t ) =

∑
j

j2I j (t ) −
(∑

j

jI j (t )

)2

, (F1)

where I j (t ) = I (0; j)(t ). The MBL phase is characterized by
logarithmic growth of 〈〈X 2

I 〉〉 since this quantity measures the
spreading of information in the system. This is explained by
the fact that two separate portions of the system need a time
exponential with their distance to get entangled.

To demonstrate this, we perform exact time evolution with
the Hamiltonian (1) with open boundary conditions and cal-
culate the following disorder-averaged quantity:

〈〈X 2
Z 〉〉(t ) =

∑
j

j2C
(
σ̂ z

0 , σ̂ z
j , t

) −
(∑

j

jC
(
σ̂ z

0 , σ̂ z
j , t

))2

.

(F2)
This quantity also exhibits logarithmic growth, as demon-
strated on Fig. 9.
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