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Anharmonic Grüneisen theory based on self-consistent phonon theory:
Impact of phonon-phonon interactions neglected in the quasiharmonic theory
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We formulate a theory of thermal expansion based on the self-consistent phonon (SCP) theory, which
nonperturbatively considers the anharmonic effect. We show that the Grüneisen formula holds within the SCP
theory by replacing the phonon frequency by the SCP frequency. By comparing it with the quasiharmonic
approximation (QHA), we derive explicit formulas of the correction to the QHA result. We show that the phonon
anharmonicity gives a small correction of O(〈Û4〉/〈Û2〉) to the thermal expansion coefficient α, where Û2 and
Û4 are the harmonic and the quartic terms of the potential energy surface. On the other hand, we show that
the phonon anharmonicity gives two correction terms to the temperature (T )-dependent phonon frequency shift
which are comparable to the original QHA term. In strongly anharmonic materials such as NaCl and MgO, these
two correction terms tend to cancel out each other, which explains why QHA sometimes gives reasonable values
for the T -dependent phonon frequency shift while it fails for thermal expansion.
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I. INTRODUCTION

Controlling thermal expansion is one of the most crucial
goals in material science because the volume change of ma-
terials is often problematic in various situations. Recently,
materials that show negative thermal expansion have been
intensively studied for their potential application to cancel
out the total thermal expansion of objects [1–6]. Therefore,
understanding the physics of thermal expansion and clarifying
the application limit of the approximations in the calculation
are essential for the effective search for materials with desired
properties, as well as interesting as a problem of fundamental
science.

The quasiharmonic approximation (QHA) is the most
widely used approximation in the first-principles calculation
of thermal expansion of materials since it gives reasonable
results for the thermal expansion coefficient α = 1

V (∂V/∂T )P

of many materials with relatively small computational cost
[7–11]. QHA is based on the assumption that the potential
energy surface (PES) is nearly harmonic and disregards all the
anharmonic effects except for the volume (V ) dependence of
the phonon frequency. However, the effect of the neglected
intrinsic anharmonicity, i.e., phonon-phonon interaction, on
thermal expansion is still unclear, which needs to be clari-
fied for understanding the physics of thermal expansion and
rationalizing the assumption of QHA [12,13].

In this research, we start from the microscopic anharmonic
Hamiltonian and formulate a theory for thermal expansion
based on the self-consistent phonon (SCP) theory [14–21],
which incorporates the effect of the lattice anharmonicity in

*masuki-ryota774@g.ecc.u-tokyo.ac.jp

a nonperturbative way. While SCP theory has been employed
for the numerical calculation of stress tensor, pressure, and
thermal expansion of materials [22,23], the effect of phonon
anharmonicity to the thermal expansion and related phenom-
ena has not been fully clarified by analytical calculation. We
prove that the Grüneisen formula exactly holds within the
SCP theory by redefining the Grüneisen parameter using the
SCP phonon frequency. This result also applies to strongly
anharmonic materials for which QHA breaks down. We com-
pare the theory with the quasiharmonic theory and derive an
explicit form of the correction that the lattice anharmonicity
gives to the physical quantities. We show that the lattice an-
harmonicity gives a correction of O(〈Û4〉/〈Û2〉) to the thermal
expansion coefficient α, where Û2 and Û4 are the harmonic
and the quartic terms of the PES. On the other hand, we
show that the anharmonicity gives a correction that consists of
two different contributions to the temperature (T )-dependent
phonon frequency shift, which are both comparable to the
QHA term.

Our theory explains why QHA often fails to correctly
describe the T -dependent phonon frequency shift even for
harmonic materials. For example, the optical mode of silicon
softens around seven times more rapidly than the prediction
of QHA when the temperature rises. In addition, QHA gives
the wrong sign for the T -dependent shift of the transverse
acoustic (TA) mode of silicon [11,24,25]. It has seemed like
a paradox that QHA quantitatively reproduces thermal expan-
sion although QHA fails to accurately calculate the phonon
frequency shift because the thermal expansion coefficient α

can be rewritten by using the Grüneisen parameter

γ
QHA
kλ

(V ) = − V

ωkλ

dωkλ

dV
, (1)
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TABLE I. The summary of the analytical formulas and the results of the perturbation expansion of QHA and SCP that are derived in Sec. II.

QHA SCP

Grüneisen parameter γ
QHA
kλ

= − V
ωkλ (V )

( dωkλ (V )
dV

)
γkλ = − V

�kλ (V,T )

( d�kλ (V,T )
dV

) � γ
QHA
kλ

× [
1 − (2 + C) 〈Û4〉

〈Û2〉 + P4
P2

]
Mode specific heat cQHA

v,kλ
= h̄ωkλ

∂nB (h̄ωkλ )
∂T cv,kλ = h̄�kλ

(
∂nB (h̄�kλ )

∂T

)
�

� cQHA
v,kλ

× (
1 − 1

6
〈Û4〉
〈Û2〉

)
Thermal expansion coefficient αQHA = 1

BQHA
T

1
V

∑
kλ cQHA

v,kλ
γ

QHA
kλ

α = 1
BT

1
V

∑
kλ cv,kλγkλ � αQHA × (

1 − (
13
6 + C

) 〈Û4〉
〈Û2〉 + P4

P2

)
Phonon frequency shift ∂ωkλ

∂T = −αQHAωkλγ
QHA
kλ

( ∂�Hes
kλ

∂T

)
P

= −α�kλγkλ + (
∂�kλ

∂T

)
V

+ ( ∂��Hes
kλ

∂T

)
P

according to the Grüneisen theory [11,26], which is based
on the same assumption as the QHA. Here, ωkλ(V ) is the
volume (V ) dependent frequency of the λth phonon with
wave number k. This Grüneisen parameter γkλ describes the
phonon frequency shift when the system undergoes ther-
mal expansion. Our theory validates that QHA successfully
applies to the thermal expansion of weakly anharmonic ma-
terials that satisfy |〈Û4〉/〈Û2〉| � 1, even when QHA fails
to correctly reproduce the T -dependent phonon frequency
shift.

Furthermore, we perform the first-principles calculations
on several insulators such as silicon and diamond (covalent
crystals), NaCl (ionic crystal), and MgO (oxide) to numeri-
cally test our theory and quantify the applicable limit of QHA.
Notably, the QHA works better for the phonon frequency
shift than for the thermal expansion in NaCl and MgO, which
have strong anharmonicity. This is because the two terms
of the anharmonic correction to the phonon frequency shift
have opposite signs when 〈Û4〉 > 0, and they cancel out each
other. We speculate that this fortuitous cancellation occurs in
a broad range of anharmonic materials. On the other hand,
our results make it clear that the agreement of the phonon
frequency shift with the experimental result does not the-
oretically justify the use of QHA to materials with strong
anharmonicity.

II. THEORY

In this paper, we consider the isotropic case, in which the
expansion of the system is parametrized by a single parameter
V (the system volume) or a (the lattice constant). It is straight-
forward to extend the discussion below to the anisotropic
cases. The formulas we derive in this section are summarized
in Table I.

A. The Grüneisen theory of thermal expansion and the
quasiharmonic approximation (QHA)

We first review the Grüneisen theory of thermal expansion
[11,26] and the quasiharmonic approximation (QHA), which
are equivalent theories. See Appendix A for the details of the
derivation.

In the Grüneisen theory and QHA, it is assumed that the
PES is nearly harmonic at each volume, i.e., we disregard all
the lattice anharmonicity except for the volume dependence of
the phonon frequency ωkλ(V ). Then, the corresponding free

energy is

FQHA(V, T ) = Egnd(V ) +
∑
kλ

[
1

2
h̄ωkλ(V )

+ kBT log(1 − e−β h̄ωkλ(V ) )

]
, (2)

where Egnd(V ) is the V -dependent electron ground state en-
ergy, and kB is the Boltzmann constant.

In the QHA, the T dependence of the volume is determined
by minimizing FQHA(V, T ) at each temperature as V (T ) =
arg minV FQHA(V, T ). The FQHA is calculated by using the
Egnd(V ) and ωkλ(V ), which can be obtained using the first-
principles calculation.

In the Grüneisen theory, we continue the analytical calcu-
lation to get the Grüneisen formula

αQHA = 1

BQHA
T

1

V

∑
kλ

cQHA
v,kλ

γ
QHA
kλ

, (3)

where BT is the bulk modulus. cQHA
v,kλ

is the mode specific heat

cQHA
v,kλ

(V, T ) = h̄ωkλ

∂nB(h̄ωkλ)

∂T
, (4)

with nB(h̄ω) being the Bose–Einstein distribution function,
and γ

QHA
kλ

is the Grüneisen parameter

γ
QHA
kλ

(V ) = − V

ωkλ(V )

(
dωkλ(V )

dV

)
. (5)

From the assumption of the theory, the T -dependent phonon
frequency shift is

dωkλ

dT
= dωkλ(V )

dV

dV

dT
= −αQHAωkλγ

QHA
kλ

. (6)

B. The self-consistent phonon (SCP) theory

The self-consistent phonon (SCP) theory is based on the
variational principle of the free energy. The effective harmonic
Hamiltonian

Ĥ0 =
∑
kλ

h̄�kλ

(
n̂kλ + 1

2

)
(7)

is employed as the trial Hamiltonian, where the frequencies
�kλ are the variational parameters. We assume that the change
of the polarization vectors by the anharmonic renormalization
can be neglected and use the fixed-mode approximation. The
variational free energy is

F1(V, T,�) = F0 + 〈Ĥ − Ĥ0〉Ĥ0
, (8)

064112-2



ANHARMONIC GRÜNEISEN THEORY BASED ON … PHYSICAL REVIEW B 105, 064112 (2022)

where F0 = −kBT log Tre−βH0 . By calculating the stationary
condition of the variational free energy with respect to the
variational parameters, we get the SCP equation

�2
kλ = ω2

kλ +
∞∑

n=2

1

(n − 1)!Nn−1

∑
k1λ1,··· ,kn−1λn−1

× 
̃(kλ,−kλ, k1λ1,−k1λ1,

× · · · , kn−1λn−1,−kn−1λn−1)

× g
(
�k1λ1

) · · · g
(
�kn−1λn−1

)
, (9)

where 
̃(kλ,−kλ, · · · , kn−1λn−1,−kn−1λn−1) is the recipro-
cal space representation of the 2nth order interatomic force
constant (IFC), which is defined in Appendix B. Here, we
define g(�) = h̄

2�
(nB(h̄�) + 1

2 ) for notational simplicity. For
the detailed derivation of the SCP equation, see Appendix C.
We call the �kλ, which is the solution of the SCP equation,
the SCP frequency. This SCP equation, which is based on
the Taylor expansion of the PES, is a generalization of the
previous results [18] to infinite orders and is equivalent to the
other forms of the SCP equation [15,20].

However, this SCP frequency is not necessarily inter-
preted as the experimentally observed T -dependent phonon
frequency. Instead, one should use the Hessian of the SCP
free energy [21]. Here, we consider the diagonal part of the
Hessian of the SCP free energy because we fix the polarization
vector. When a static atomic displacement is introduced in
the system, the expectation values of the normal coordinate
operators q̂kλ, which is defined in Appendix B, become finite;
we denote this as qkλ, without the hat on q. We calculate the
Hessian for the uniform displacement (k = 0) in Appendix C,
which gives

∂2F1

∂q2
0λ

� �2
0λ +

∑
kλ1

h̄

4

|
̃(−kλ1, kλ1, 0λ)|2
�kλ2

1

×
(

∂nB
(
h̄�kλ1

)
�kλ1

− 2nB
(
h̄�kλ1

) + 1

2�kλ1

)
+

∑
kλ1λ2(�kλ1 �=�kλ2 )

h̄

4

|
̃(−kλ1, kλ2, 0λ)|2
�kλ1�kλ2

×
(

nB
(
h̄�kλ1

) − nB
(
h̄�kλ2

)
�kλ1 − �kλ2

− nB
(
h̄�kλ1

) + nB
(
h̄�kλ2

) + 1

�kλ1 + �kλ2

)
. (10)

This result reproduces the k = 0 case of the SCP+QP[0]
theory [27] implemented in the ALAMODE package, which
adds the static (ω = 0) part of the bubble self-energy to the
quasiparticle (QP) phonon frequencies and is consistent with
the previous result that uses another formalism of the SCP
theory [21]. While the SCP free energy incorporates only the
even-order anharmonicity, this Hessian frequency includes the
odd-order anharmonicity as well. We can derive the more
general result of the Hessian for finite k in a similar way by
considering a commensurate supercell. When the Hessian is
positive semidefinite, we define the frequency calculated from

this Hessian as

�Hes
kλ =

√
∂2F1

∂qkλ∂q∗
kλ

, (11)

where the right-hand side (RHS) can be calculated similar to
Eq. (10). For later convenience, we define the frequency shift
from the SCP frequency as

��Hes
kλ = �Hes

kλ − �kλ. (12)

It should be noted again that we interpret this �Hes
kλ , not the

SCP frequency �kλ, as the frequency measured by the exper-
iments such as the inelastic neutron scattering.

C. SCP theory of thermal expansion

In the SCP theory of thermal expansion, the optimum vol-
ume is calculated by minimizing the SCP free energy, as in
QHA. In this subsection, we derive an analytical formula for
the thermal expansion coefficient based on the SCP theory, in
analogy with the Grüneisen theory.

We start with the SCP entropy, which is calculated by
differentiating the SCP free energy F1 and organizing the
result using the SCP equation,

S(V, T ) = −
∑
kλ

[
kB log(1 − e−β h̄�kλ ) − h̄�kλ

T
nB(h̄�kλ)

]
,

(13)

which is consistent with the results derived from the different
formalisms of SCP [16,28]. See Appendix D for the detailed
derivation of the SCP entropy. The SCP entropy has the same
form as the entropy of the harmonic Hamiltonian except that
the phonon frequency is replaced by �kλ. Starting from this
SCP entropy, we follow the scheme of the derivation of the
Grüneisen theory, which is explained in detail in Appendix A.
Then, we prove that the Grüneisen formula [Eq. (3)] rigor-
ously holds for the SCP theory of the thermal expansion

α = 1

BT

1

V

∑
kλ

cv,kλγkλ, (14)

which have been overlooked in the previous research. Note
that the mode specific heat cv,kλ and the Grüneisen parameter
γkλ are redefined using the SCP frequency �kλ as

cv,kλ(V, T ) = h̄�kλ

(
∂nB(h̄�kλ)

∂T

)
�

= (h̄�kλ)2

kBT 2
nB(h̄�kλ)(nB(h̄�kλ) + 1), (15)

γkλ(V, T ) = − V

�kλ(V, T )

(
∂�kλ(V, T )

∂V

)
. (16)

It should be noted that cv,kλ here is not the mode specific heat
in a rigorous sense because 1

Nk

∑
kλ cv,kλ �= CV where CV is the

total heat capacity of SCP. However, we conventionally call
cv,kλ the mode specific heat. This result applies to the strongly
anharmonic cases. The T -dependent shift of the anharmonic
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phonon frequency is(
∂�Hes

kλ

∂T

)
P

= −α�kλγkλ +
(

∂�kλ

∂T

)
V

+
(

∂��Hes
kλ

∂T

)
P

,

(17)

where additional two term appear compared to Eq. (6). This
gives us insight that the QHA is a good approximation for
calculating the thermal expansion but not for the frequency
shift. In the following subsection, we perform perturbation
expansion to examine this idea.

D. The perturbation expansion

We consider the case in which we can treat the lattice
anharmonicity as a perturbation and investigate how the lat-
tice anharmonicity affects the thermal expansion and the
T -dependent phonon frequency shift. In this subsection, we
implicitly assume that the system volume V at which we
calculate ωkλ and �kλ are the same when comparing QHA
and SCP. However, this is not exactly true because the former,
which we call the QHA volume VQHA, is determined by mini-
mizing the FQHA and the latter, which we call the SCP volume
VSCP, is determined by minimizing the SCP free energy F1.
We later show that the effect of this difference is negligible in
Appendix E 3.

1. The SCP frequency

From the SCP equation, the lowest order term of �kλ − ωkλ

is

�kλ − ωkλ � 1

N

1

2ωkλ

∑
k′λ′


̃(kλ,−kλ, k′λ′,−k′λ′)g(ωk′λ′ ),

(18)

where g(ω) = h̄
2ω

(nB(h̄ω) + 1
2 ). Because the lowest order

terms of the expectation values of the harmonic and the quartic
terms of the potential are

〈Û2〉 �
∑
kλ

1

2
h̄ωkλ

(
nB(h̄ωkλ) + 1

2

)
(19)

〈Û4〉 �
∑
kλ

[
1

2

(
nB(h̄ωkλ) + 1

2

)

× 1

N

h̄

2ωkλ

∑
k′λ′


̃(kλ,−kλ, k′λ′,−k′λ′)g(ωk′λ′ )

]
,

we get the average estimate of the frequency difference as

�kλ − ωkλ � ωkλ × 〈Û4〉
〈Û2〉

. (20)

This is a reasonable estimate because the sign of �kλ − ωkλ is
the same for all the phonon modes in each material which we
calculated. The next dominant contribution to �kλ − ωkλ can
be calculated as

�kλ − ωkλ = ωkλ ×
[

〈Û4〉
〈Û2〉

+ O

(
〈Û4〉2

〈Û2〉2

)
+ 3〈Û6〉

2〈Û2〉
+ · · ·

]
(21)

in the same manner, which is shown in Appendix (E 1).

2. The Grüneisen parameter, the mode specific heat, and the
thermal expansion coefficient

Using the result of �kλ − ωkλ, we can perform the pertur-
bation expansion for other quantities because the SCP free
energy can be calculated from �kλ. Differentiating the SCP
equation [Eq. (9)] by the system volume V , we calculate the
anharmonic correction to the Grüneisen parameter γkλ as

γkλ � γ
QHA
kλ

×
[

1 − (2 + C)
〈Û4〉
〈Û2〉

+ P4

P2

]
, (22)

where γ
QHA
kλ

is the Grüneisen parameter calculated in
QHA. The detailed derivation of this result is explained in
Appendix E 2. C is weakly temperature dependent and takes
the value of 1 ∼ 2. P2 and P4 are defined as

P2 = 1

2
×

∑
kλ

−h̄
∂ωkλ

∂V

(
nB(h̄�kλ) + 1

2

)
(23)

P4 �−1

2N

∑
kλ,k′λ′

∂
̃(kλ,−kλ, k′λ′,−k′λ′)
∂V

g(�kλ)g(�k′λ′ ).

(24)

We call these terms P2 and P4 because they are related to the
SCP pressure, which we explain in Appendix (E 2). We then
calculate the correction to the cv,kλ. At high temperature,

cv,kλ � kB

[
1 − 1

12

(
h̄�kλ

kBT

)2]
. (25)

Thus

�cv,kλ = cv,kλ − cQHA
v,kλ

� −1

6
kB

(
h̄ωkλ

kBT

)2
�ωkλ

ωkλ

� −cQHA
v,kλ

× 1

6

(
h̄ωkλ

kBT

)2 〈Û4〉
〈Û2〉

. (26)

In the low-temperature range of T < �D, where �D is the
Debye temperature, the modes with high frequency (kBT �
h̄ωkλ) do not contribute to the thermal properties. Thus, we
can consider that

�cv,kλ � −cQHA
v,kλ

× 1

6

〈Û4〉
〈Û2〉

(27)

holds for the modes that contribute to the thermal proper-
ties. The anharmonic correction to the bulk modulus can be
neglected when considering the correction to the thermal ex-
pansion coefficient, which we discuss in Appendix E 2.

Substituting Eqs. (22) and (27) into the Grüneisen formula
[Eq. (14)], we get

α � αQHA ×
(

1 −
(

13

6
+ C

) 〈Û4〉
〈Û2〉

+ P4

P2

)
. (28)

In a fairly rough estimation, P4/P2 ∼ O(〈Û4〉/〈Û2〉) because
P2 and P4 are proportional to the derivatives of the harmonic
and the quartic IFCs in the definition. Therefore, QHA gives
an accurate result for the thermal expansion coefficient if
|〈Û4〉/〈Û2〉| � 1, which weakly anharmonic materials satisfy
at ambient conditions.
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TABLE II. The range of applicability of the QHA.

Weakly harmonic materials Strongly anharmonic materials

Thermal expansion coefficient always good deviation of O
( 〈Û4〉

〈Û2〉
)

Phonon frequency shift poor when 〈Û4〉 < 0 empirically good because 〈Û4〉 is usually positive

3. The temperature-dependent phonon frequency shift

We have shown that the anharmonic corrections to α and
γkλ are of order O(〈Û4〉/〈Û2〉). Thus, from Eq. (17), the
condition for QHA to give an accurate result of the phonon
frequency shift is

|α�kλγkλ| �
∣∣∣∣(∂�kλ

∂T

)
V

+
(

∂��Hes
kλ

∂T

)
P

∣∣∣∣ (29)

There is no guarantee that the two terms in the RHS of Eq. (29)
cancel out each other because (∂��Hes

kλ /∂T )P is always neg-
ative while the sign of (∂�kλ/∂T )V depends on materials.
Therefore, for QHA to accurately reproduce the T -dependent
phonon frequency shift not by an accidental cancellation, the
system must satisfy both

|α�kλγkλ| �
∣∣∣∣(∂�kλ

∂T

)
V

∣∣∣∣ (30)

|α�kλγkλ| �
∣∣∣∣(∂��Hes

kλ

∂T

)
P

∣∣∣∣. (31)

The order estimation of the phonon frequency shift is difficult
because it is not a thermodynamic quantity, so we focus on
the condition of Eq. (30) and show that it is hard to sat-
isfy for ordinary harmonic materials. As for the condition of
Eq. (31), we note that the magnitude of |(∂�kλ/∂T )V | and

|(∂��Hes
kλ /∂T )P| is comparable according to the results of

our first-principles calculation. For silicon and diamond, the
two terms of the RHS of Eq. (29) have the same sign and
|α�kλγkλ| is smaller than |(∂�kλ/∂T )V + (∂��Hes

kλ /∂T )P|.
As a result, QHA gives a bad estimate of the T -dependent
phonon frequency shift for these materials. For NaCl and
MgO, (∂�kλ/∂T )V is positive, for which the positivity of 〈Û4〉
is important because of Eq. (20) and because �kλ(V, T ) −
ωkλ(V ) is roughly proportional to the temperature. For these
materials, an accidental cancellation occur in the RHS of
Eq. (29) and QHA accidentally gives a good result for the
phonon frequency shift even though the conditions Eqs. (30)
and (31) are not satisfied. Thus, QHA seems to produce a
better result for the phonon frequency shift than for the ther-
mal expansion coefficient because |〈Û4〉/〈Û2〉| of NaCl and
MgO are not so small. We infer this applies to many materials
with strong anharmonicity because 〈Û4〉 is usually positive in
these materials, which makes them stable when the bottom
of the potential well is nearly flat. For the order estimation
of Eq. (30), we use the following typical orders of physical
quantities

γkλ ∼ O(1), (32)

α ∼ 10−5–10−6 K−1. (33)

The lowest order contribution to |(∂�kλ/∂T )V | is estimated as

(
∂�kλ

∂T

)
V

� 1

N

∑
k′λ′

h̄

4


̃(kλ,−kλ, k′λ′,−k′λ′)
ωkλωk′λ′

∂

∂T

(
nB

(
h̄�k1λ1

) + 1

2

)

∼ 1

T

1

N

∑
k′λ′

h̄

4


̃(kλ,−kλ, k′λ′,−k′λ′)
ωkλωk′λ′

(
nB

(
h̄�k1λ1

) + 1

2

)

∼ ωkλ

T
× 〈Û4〉

〈Û2〉
, (34)

Substituting Eqs. (32)–(34) into Eq. (30), the condition that
Eq. (30) is satisfied is

∣∣∣∣ 〈Û4〉
〈Û2〉

∣∣∣∣ � 10−3 ∼ 10−4 (35)

at T � 102 K. This condition is much more strict than the
condition for QHA to be an accurate approximation for the
thermal expansion and is not satisfied even by weakly an-
harmonic materials such as silicon. The discussion on the
accuracy of QHA is summarized in Table II, in conjunction
with the analysis of the numerical calculation in the later
section.

III. SIMULATION METHODS

A. QHA and SCP calculation of thermal expansion

We perform the first-principles calculation on silicon, di-
amond (covalent crystals), NaCl (ionic crystal), and MgO
(oxide). We use the Vienna ab initio simulation package
(VASP) [29] for the electronic structure calculation and
ALAMODE [18,19,30] for calculating the phonon properties.

In the QHA calculation, we calculate the harmonic phonon
dispersion by using the small displacement method. We dis-
place the atoms from their equilibrium positions by 0.01 Å
and extract the harmonic IFCs from the force-displacement
patterns by using the least-square method implemented in
the ALAMODE package [30]. The free energy is calculated
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by using Eq. (2) for 10–20 different lattice constants, and
the optimum lattice constant is determined by fitting the free
energy by the Birch–Murnaghan equation of state [31,32] at
each temperature.

For the SCP calculation, we truncate the Taylor expan-
sion of the PES at the quartic order and fit the potential
by Û2 + Û3 + Û4. We fix the harmonic IFCs at the values
calculated by the small displacement method and optimize
the cubic and quartic IFCs. The optimization is performed by
the compressive sensing method [18,33], which enables us to
efficiently extract the IFCs from a small number of displace-
ment patterns. We run the SCP calculation and calculate the
SCP free energy for several lattice constants, which is again
fitted by the Birch-Murnaghan equation of state to determine
the optimum lattice constant at each temperature. The VASP
package is used for the force calculations of the displace-
ment patterns and for calculating the electronic ground state
energies.

B. Expectation values of the harmonic and quartic terms in the
potential energy surface

We calculate the T dependence of 〈Û4〉/〈Û2〉. As the
lowest-order approximation, the expectation value is taken
with respect to the density matrix of the harmonic potential
Û2. 〈Û2〉 is calculated using the analytic formula from the har-
monic phonon dispersion. 〈Û4〉 is estimated using a stochastic
method. We generate random configurations that obey the
density matrix of the harmonic Hamiltonian [20], and calcu-
late the DFT energy for each configuration. Assuming that the
contribution from the higher-order terms are negligible, 〈Û4〉
is estimated as

〈Û4〉 � 1

Ni

∑
i: configurations

(Ui − Uharm,i ), (36)

where Ui and Uharm,i are the DFT energy and the energy in
the harmonic approximation of the potential of the ith con-
figuration, respectively. To remove the contributions from the
odd-order terms of the PES, the configurations are generated
so that the displacements in the 2ith configuration and those
in the 2i + 1th configuration are in the opposite direction with
the same magnitude.

C. Simulation details

We use 2 × 2 × 2 cubic supercell, which is generated from
the conventional cell, for the phonon calculation. The super-
cell of each material contains 64 atoms. In order to check
the convergence with respect to the supercell size, we also
calculated the harmonic IFCs, which tend to be more long
ranged than the anharmonic IFCs, using a 3 × 3 × 3 supercell.
The calculation results of the harmonic phonon dispersion are
well converged for all the materials we calculate.

For the electronic structure calculations, we use the VASP
implementation of the PBEsol exchange-correlation func-
tional [34] and PAW pseudopotentials [35,36]. For NaCl and
MgO, the Born effective charge is calculated by density func-
tional perturbation theory [37,38] to get the nonanalytic part
of the dynamical matrix. The Brillouin zone integration is per-
formed over the 4 × 4 × 4 Monkhorst-Pack k mesh, which we
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FIG. 1. Linear thermal expansion coefficient αL of silicon cal-
culated by SCP and QHA. The experimental results are taken from
Refs. [39–41].

checked is sufficient for the convergence of the total energy.
We set the convergence criteria of the SCF loop as 10−8 eV
and use the accurate precision mode, which reduces egg-box
effects and errors. The basis cutoff we use are 500 eV for
silicon and 600 eV for diamond, MgO, and NaCl.

IV. RESULT AND DISCUSSION

A. Silicon

The calculation result of the thermal expansion coefficient
of silicon is shown in Fig. 1. We find that both the SCP
result and the QHA result are in reasonable agreement with
the experimental results. It should be noted that we plot
the linear thermal expansion coefficient αL = 1

a (∂a/∂T )P for
direct comparison with the experiments. The linear thermal
expansion coefficient can be written as αL = α/3 for isotropic
materials, where α is the volume thermal expansion coeffi-
cient. In Fig. 2, we compare (αL,SCP − αL,QHA)/αL,QHA and
〈Û4〉/〈Û2〉 of silicon. The spiky structure in Fig. 2(a) occurs
because the thermal expansion coefficient changes its sign at
∼200 K. At higher temperatures, (αL,SCP − αL,QHA)/αL,QHA

and 〈Û4〉/〈Û2〉 are in the same order, which is consistent with
our theoretical considerations [Eq. (28)].

Figure 3 shows the frequency shift of the transverse opti-
cal (TO) phonon of silicon at high-symmetry points. As the
temperature rises, the SCP frequency of silicon softens more
rapidly than the QHA frequency, which is consistent with the
negativity of 〈Û4〉 [see Fig. 2(b)]. ��Hes

kλ further softens the
frequency because ��Hes

kλ is always negative and its magni-
tude gets larger at higher temperature. Consequently, the TO
mode of silicon softens much faster than the QHA prediction,
which was also pointed out in the previous research [24]. We
plot the frequency shift of the TA mode of silicon in Fig. 4.
The QHA frequency gets larger when the temperature rises
because its Grüneisen parameter is negative. However, the
experimentally measured frequency gets softer [25]. This dis-
crepancy is resolved in �kλ or �Hes

kλ which correctly consider
the effect of phonon-phonon interaction.

B. diamond

As shown in Fig. 5, SCP and QHA produce almost the
same result for the thermal expansion coefficient, which
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FIG. 2. (a) Relative difference of the QHA result and the SCP re-
sult of the linear thermal expansion coefficient αL of silicon. (b) The
calculation result of 〈Û4〉/〈Û2〉 of silicon.

agrees very well with the experimental results. This is be-
cause the effect of the lattice anharmonicity is small in
diamond.

Figure 6 represents the T -dependent phonon frequency
shift of diamond. In diamond, both the �kλ − ωkλ and ��Hes

kλ

are negative, which resembles the tendency in silicon. Al-
though the agreement with the experiment is not perfect, the
�kλ and �Hes

kλ explain the fact that the frequency softens more
rapidly than the QHA result. We also calculated the T depen-
dence of 〈Û4〉/〈Û2〉 for diamond, but we could not obtain a
meaningful result for 〈Û4〉 within our method because |〈Û4〉|
was smaller than the statistical error.

C. NaCl

As is depicted in Fig. 7, there is a clear deviation be-
tween the thermal expansion coefficient calculated by QHA
and SCP, which signifies that the lattice anharmonicity plays
a significant role in NaCl. QHA overestimates the thermal
expansion coefficient from low temperatures, but this trend
is suppressed in SCP. In a previous work by Ravichandran
and Broido [46], they additionally consider another term of
the free energy, which consists of squared cubic IFCs. We
consider that the volume dependence, which is essential for
the term to affect the thermal expansion, of this term is small
because our calculation result is consistent with theirs in the
temperature range of our calculation. In Fig. 8, we can see
that (αL,QHA − αL,SCP)/αL,QHA ∼ 3.3 × 〈Û4〉/〈Û2〉, which is
in very good agreement with Eq. (28) when we assume that
P4/P2 is relatively small.

As for the phonon frequency shift, we plot the T -dependent
frequency shift of the TO mode of NaCl at the � point in
Fig. 9. We can see that �kλ − ωkλ and ��Hes

kλ cancel almost
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FIG. 3. Temperature-dependent frequency shift of the TO modes
of silicon at the � point (top), the L point (middle), and the X point
(bottom). The frequency shift is measured from the frequency at zero
temperature in the same calculation method or experiment. �Hes

kλ and
�kλ are defined by Eq. (11) and Eq. (9), respectively. Note that �Hes

kλ

is considered to correspond to the experimentally measured phonon
frequency. ωkλ is the QHA frequency, which is explained in Sec. II A.
The experimental data is taken from Ref. [42] (black open triangle)
and Ref. [43] (magenta open diamond).

entirely with each other. As a result, the QHA result agrees
well with the �Hes

kλ and accidentally explains the experimental
trend. This cancellation occurs because 〈Û4〉 is positive, which
makes �kλ − ωkλ positive. For a detailed discussion on the
sign of the phonon frequency shift, see Sec. II D 3. Conse-
quently, the QHA works better for the phonon frequency shift
than for the thermal expansion coefficient in this material. We
consider that this trend is common to a wide range materials
with strong anharmonicity because 〈Û4〉 tends to be positive
when the curvature of the PES at the potential minimum is
small, which we present in Table II. However, special care
must be taken when applying QHA to anharmonic materi-
als because this cancellation is not theoretically ensured. In
addition, this result shows that we cannot necessarily justify
the use of QHA when the phonon frequency shift agrees with
experiments.
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FIG. 4. Temperature-dependent frequency shift of the TA modes
of silicon at the L point (top) and the X point (bottom). The frequency
shift is measured from the frequency at zero temperature in the same
method or experiment. �Hes

kλ and �kλ are defined in Eq. (11) and
Eq. (9), respectively. Note that �Hes

kλ is considered to correspond
to the experimentally measured phonon frequency. ωkλ is the QHA
frequency, which is explained in Sec. II A. The experimental data is
taken from Ref. [42].

D. MgO

According to Fig. 10, the thermal expansion coefficient
calculated by SCP agrees well with the experimental results
while QHA overestimates the thermal expansion coefficient.
From Fig. 11, (αL,QHA − αL,SCP)/αL,QHA ∼ 4 × 〈Û4〉/〈Û2〉,
which is consistent with our estimation of Eq. (28). Figure 12
is the T -dependent frequency shift of the optical modes of
MgO at the � point. The effect of the quartic anharmonicity
in SCP is positive and cancels with ��Hes

kλ . This explains why
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FIG. 5. The linear thermal expansion coefficient αL of diamond
calculated by SCP and QHA. The experimental results are taken from
Refs. [41,44].

0 200 400 600 800 1000

Temperature [K]

−20

−15

−10

−5

0

fr
eq

u
en

cy
sh

if
t

[c
m

− 1
]

ΩHes
kλ

Ωkλ

ωkλ

FIG. 6. Temperature-dependent frequency shift of the optical
mode of diamond at the � point. The frequency shift is measured
from the frequency at zero temperature in the same calculation
method or experiment. �Hes

kλ and �kλare defined in Eq. (11) and
Eq. (9), respectively. Note that �Hes

kλ is considered to correspond
to the experimentally measured phonon frequency. ωkλ is the QHA
frequency, which is explained in Sec. II A. The experimental data is
taken from Ref. [45].

the QHA works well for the phonon frequency shift in this
material.

V. CONCLUSION

We formulate a theory of thermal expansion based on
the self-consistent phonon (SCP) theory to take into account
the effect of the intrinsic lattice anharmonicity, i.e., phonon-
phonon interaction, in a nonperturbative way. We compare the
theory with QHA to derive the explicit formulas for the an-
harmonic corrections to the physical quantities regarding the
thermal expansion. We show that the Grüneisen formula rigor-
ously holds within the SCP theory by replacing the frequency
in the original Grüneisen theory with the SCP frequency. In
addition to the QHA term, the phonon frequency shift have
additional two contributions that come from �kλ − ωkλ and
��Hes

kλ . By performing perturbation expansion, we show that
the QHA can calculate the thermal expansion coefficient with
an accuracy of O(〈Û4〉/〈Û2〉), while |〈Û4〉/〈Û2〉| have to be
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FIG. 7. Linear thermal expansion coefficient αL of NaCl calcu-
lated by SCP and QHA. The experimental results are taken from
Refs. [47,48].
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FIG. 8. (a) Relative difference of the QHA result and the SCP
result of the linear thermal expansion coefficient αL of NaCl. (b) The
calculation result of 〈Û4〉/〈Û2〉 of NaCl.

much smaller than 10−3 ∼ 10−4 for �kλ − ωkλ to be much
smaller than the corresponding QHA term, which is too strict
a condition for many existing materials.

Furthermore, we verified our theory by performing the
first-principles calculations on silicon, diamond, NaCl, and
MgO by utilizing the VASP and the ALAMODE package.
We numerically showed that the two main anharmonic contri-
butions of the phonon frequency shift �kλ − ωkλ and ��Hes

kλ
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FIG. 9. Temperature-dependent frequency shift of the transverse
optical (TO) modes of NaCl at the � point. The frequency shift is
measured from the frequency at zero temperature in the same cal-
culation method or experiment. �Hes

kλ and �kλare defined in Eq. (11)
and Eq. (9), respectively. Note that �Hes

kλ is considered to correspond
to the experimentally measured phonon frequency. ωkλ is the QHA
frequency, which is explained in Sec. II A. The experimental data is
taken from Ref. [49].
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Refs. [50,51].

are in the same order. When 〈Û4〉 is positive, the two terms
tend to accidentally cancel with each other, which can explain
why the QHA correctly reproduces the T -dependent phonon
frequency shift in some materials. We infer that this cancella-
tion occurs in a wide range of anharmonic materials because
〈Û4〉 is usually positive. On the other hand, this cancellation
also shows that the QHA does not necessarily give reliable
results for thermal expansion even when it appears to repro-
duce experimental T dependence of phonon frequencies. We
summarize the above discussion on the applicable limit of the
QHA in Table II.
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(b) The calculation result of 〈Û4〉/〈Û2〉 of MgO.
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APPENDIX A: THE DERIVATION OF THE GRÜNEISEN
FORMULA FOR THERMAL EXPANSION

We review the derivation of the Grüneisen formula [26] by
following the derivation in Ref. [11]. By using Maxwell’s rela-
tion, the product of the volume thermal expansion coefficient

α = 1
V (∂V/∂T )P and the bulk modulus BT = −V (∂P/∂V )T

can be written as

αBT =
(

∂P

∂T

)
V

=
(

∂S

∂V

)
T

. (A1)

In the Grüneisen theory or QHA, we neglect all the anhar-
monic effect except for the V dependence of the phonon
frequency. Differentiating the QHA free energy

FQHA(V, T ) = Egnd(V ) +
∑
kλ

[
1

2
h̄ωkλ(V )

+ kBT log(1 − e−β h̄ωkλ(V ) )

]
, (A2)

we get the entropy in this theory as

S(T,V ) = −
(

∂F

∂T

)
V

= −
∑
kλ

[
kB log(1 − e−β h̄ωkλ ) − h̄ωkλ

T
nB(h̄ωkλ)

]
.

(A3)

By substituting Eq. (A3) into Eq. (A1), we get

αQHA = 1

BQHA
T

1

V

∑
kλ

cQHA
v,kλ

γ
QHA
kλ

, (A4)

where the mode specific heat cQHA
v,kλ

and the Grüneisen param-

eter γ
QHA
kλ

are defined as

cQHA
v,kλ

(V, T ) = (h̄ωkλ)2

kBT 2
nB(h̄ωkλ)(nB(h̄ωkλ) + 1)

= h̄ωkλ

∂nB(h̄ωkλ)

∂T
, (A5)

γ
QHA
kλ

(V ) = − V

ωkλ(V )

(
dωkλ(V )

dV

)
. (A6)

APPENDIX B: THE TAYLOR EXPANSION OF THE
POTENTIAL ENERGY SURFACE (PES)

To formulate a theory that can incorporate the effects of
lattice anharmonicity beyond QHA, we start from the Taylor
expansion of the PES:

Û =
∞∑

n=0

Ûn, (B1)

where

Ûn = 1

n!

∑
{Rαμ}


μ1···μn (R1α1, · · · , Rnαn)ûR1α1μ1 · · · ûRnαnμn = 1

n!

1

Nn/2−1

∑
kλ

δk1+···+kn
̃(k1λ1, · · · , knλn)q̂k1λ1 · · · q̂knλn . (B2)

Here, ûRαμ is the μ(=x, y, z) component of the displacement of the atom α in the unit cell R. The quantities defined as


μ1···μn (R1α1, · · · , Rnαn) = ∂nU

∂uR1α1μ1 · · · ∂uRnαnμn

∣∣∣∣∣
u=0

(B3)

are called the nth order interatomic force constants (IFCs) in real-space representation. In particular, the second-order IFCs are
called the harmonic IFCs, the third-order IFCs as the cubic IFCs, and the fourth-order IFCs as the quartic IFCs. The Fourier
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transformation to the reciprocal space can be readily performed using the normal coordinate defined as

q̂kλ = 1

N

∑
Rαμ

e−ik·Rε∗
kλ,αμ

√
Mα ûRαμ, (B4)

where Mα is the atomic mass of atom α, and εkλ,αμ is the μ component of the polarization vector. Then, the IFCs in the
reciprocal-space (k-space) representation become


̃(k1λ1, · · · , knλn) = 1

N

∑
{Rαμ}


μ1···μn (R1α1, · · · , Rnαn)
εk1λ1,α1μ1√

Mα1

eik1·R1 · · · εknλn,αnμn√
Mαn

eikn·Rn

=
∑
{αμ}

εk1λ1,α1μ1√
Mα1

· · · εknλn,αnμn√
Mαn

∑
R1···Rn−1


μ1···μn (R1α1, · · · , Rn−1αn−1, 0αn)ei(k1·R1+···kn−1·Rn−1 ).

Note that λ is the index of the phonon mode, which diagonal-
izes the harmonic part of the PES as∑

βν


μν (−kα, kβ )√
MαMβ

εkλ,βν = ωkλεkλ,αμ, (B5)


μν (−kα, kβ ) =
∑

R


μν (Rα, 0β )e−ik·R. (B6)

APPENDIX C: THE SELF-CONSISTENT
PHONON(SCP) THEORY

In this Appendix, we show the detailed calculation of the
SCP equation and the Hessian of the SCP free energy. The
self-consistent phonon (SCP) theory is based on the varia-
tional principle of the free energy. The effective harmonic

Hamiltonian

Ĥ0 =
∑
kλ

h̄�kλ

(
n̂kλ + 1

2

)
(C1)

is employed as the trial Hamiltonian, where the frequencies
�kλ are the variational parameters. We assume that the change
of the polarization vectors by the anharmonic renormalization
can be neglected and use fixed mode approximation. It should
be noted that the definition of n̂kλ or âkλ and â†

kλ
depend on

the value of �kλ. The variational free energy is calculated
analytically as

F1(V, T,�) = F0 + 〈Ĥ − Ĥ0〉Ĥ0
= U0 +

∑
kλ

[
1

2
h̄�kλ + kBT log(1 − e−β h̄�kλ )

]
+ 〈Ĥ − Ĥ0〉Ĥ0

= 
0 +
[

1

2
h̄�kλ + kBT log(1 − e−β h̄�kλ )

]

+
∑
kλ

(
ω2

kλ − �2
kλ

)
g(h̄�kλ) +

∞∑
n=2

1

n!Nn−1

∑
k1λ1,··· ,nλn


̃(k1λ1,−k1λ1, · · · , knλn,−knλn)g
(
h̄�k1λ1

) · · · g
(
h̄�knλn

)
,

(C2)

where g(�) = h̄
2�

(nB(h̄�) + 1
2 ). By calculating the stationary condition with respect to the variational parameters, we get the

SCP equation

�2
kλ = ω2

kλ +
∞∑

n=2

1

(n − 1)!Nn−1

∑
k1λ1,··· ,kn−1λn−1


̃(kλ,−kλ, k1λ1,−k1λ1, · · · , kn−1λn−1,−kn−1λn−1)g
(
�k1λ1

) · · · g
(
�kn−1λn−1

)
,

(C3)

Here, we move on to the calculation of the Hessian of the
SCP free energy. We calculate the Hessian of the SCP free
energy because it is interpreted as the renormalized anhar-
monic phonon frequency [21], instead of the SCP frequency
�kλ. We consider the diagonal part of the Hessian because
we use the fixed-mode approximation. When a static atomic
displacement is introduced in the system, the expectation val-
ues of the normal coordinate operators q̂kλ become finite; we
denote this as qkλ, without the hat on q. Taylor expanding the

PES with respect to the atomic displacements from the new
static positions corresponds to replacing the q̂kλ in Eq. (B2) by
qkλ + q̂kλ. The SCP free energy F1 is a function of V , T , and
q = {qkλ}, where F1 is calculated by using the SCP frequency
that satisfies the SCP equation at each point in the (V, T, q)
space.

We calculate the Hessian for the k = 0 case. The final
result, which is equivalent to the SCP+QP[0] theory [27] im-
plemented in the ALAMODE package, is shown in Eq. (10).
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The result can be extended to finite k by considering a com-
mensurate supercell.

∂2F1(V, T, q)

∂q2
0λ

=
(

∂

∂q0λ

+
∑
kλ3λ4

∂
(
�2

kλ3λ4

)
∂q0λ

∂

∂
(
�2

kλ3λ4

))

×
(

∂

∂q0λ

+
∑
kλ1λ2

∂
(
�2

kλ1λ2

)
∂q0λ

∂

∂
(
�2

kλ1λ2

))
F1(V, T, q,�),

(C4)

where �2
kλ1λ2

are the components of the �2 matrix, which
extend the SCP frequency to include the off-diagonal terms,
whose dominant contribution is given by 
̃(−kλ1, kλ2). The
off-diagonal terms appear because the atomic displacements
change the harmonic IFC and the polarization vector. Be-

cause ( ∂
∂q0λ

+ ∑
kλ3λ4

∂ (�2
kλ3λ4

)

∂q0λ

∂

∂ (�2
kλ3λ4

)
) is a derivative along

the solution of the SCP equation in the (V, T, q,�) space,
the variational condition is maintained along this direction.
Therefore,

∑
kλ1λ2

∂
(
�2

kλ1λ2

)
∂q0λ

(
∂

∂q0λ

+
∑
kλ3λ4

∂
(
�2

kλ3λ4

)
∂q0λ

∂

∂
(
�2

kλ3λ4

))

×∂F1(V, T, q,�)

∂
(
�2

kλ1λ2

) (C5)

� 0, (C6)

where we used that the diagonal part of ∂F1(V,T,q,�)
∂ (�2

kλ1λ2
)

vanishes

due to the variational condition. Thus, we get

∂2F1(V, T, q)

∂q2
0λ

� ∂2F1(V, T, q,�)

∂q2
0λ

+
∑
kλ3λ4

∂
(
�2

kλ3λ4

)
∂q0λ

∂2F1(V, T, q,�)

∂q0λ∂
(
�2

kλ3λ4

) .

(C7)

The first term of the RHS of Eq. (C7) is calculated as

∂2F1(V, T, q,�)

∂q2
0λ

= ω2
0λ +

∞∑
n=1

1

n!

1

Nn

∑
k1λ1,··· ,knλn

×
̃(−0λ, 0λ, k1λ1,−k1λ1, · · · ,−knλn)

× g
(
�k1λ1

) · · · g
(
�knλn

)
= �2

0λ (C8)

by using the SCP equation.
Because the dominant contribution to �2

kλ1λ2
is


̃(−kλ1, kλ2), its derivative is approximated as

∂
(
�2

k1λ3λ4

)
∂q0λ

� 1√
N


̃(−k1λ3, k1λ4, 0λ). (C9)

Thus, we get

∂2F1

∂q0λ∂
(
�2

kλ3λ4

) = ∂

∂
(
�2

kλ3λ4

) ∂

∂q0λ

∑
k1λ′λ1λ2

g(�k1λ′ )

× C∗
k1λ1λ′
̃(−k1λ1, k1λ2)Ck1λ2λ′

= ∂

∂
(
�2

kλ3λ4

) ∑
k1λ′λ1λ2

g(�k1λ′ )

× 1√
N

C∗
k1λ1λ′
̃(−k1λ1, k1λ2, 0λ)Ck1λ2λ′

= 1√
N

∑
λ′λ1λ2

δλ3λ′δλ4λ′
h̄

2

∂

∂
(
�2

kλ′
)

×
(

nB(h̄�kλ′ ) + 1/2

�kλ′

)
× C∗

k1λ1λ′
̃(−k1λ1, k1λ2, 0λ)Ck1λ2λ′

+ 1√
N

∑
λ′λ1λ2

g(�kλ′ )
∂C∗

k1λ1λ′

∂
(
�2

kλ3λ4

)
× 
̃(−k1λ1, k1λ2, 0λ)Ck1λ2λ′

+ 1√
N

∑
λ′λ1λ2

g(�kλ′ )C∗
k1λ1λ′

× 
̃(−k1λ1, k1λ2, 0λ)

× ∂Ck1λ2λ′

∂
(
�2

kλ3λ4

) , (C10)

where Ckλλ′ = ∑
αμ ε∗

kλ,αμεkλ′,αμ describes the change of po-
larization vector induced by the static atomic displacements.
The λ(without prime) denotes the modes with the fixed po-
larization vector, and the λ′(with prime) denotes the new
polarization vector which is changed by the atomic displace-
ments. Note that the summations in the last two terms in the
RHS of Eq. (C10) are taken for modes that satisfy �kλ1 �=
�kλ2 because it is possible to eliminate the contribution from
the degenerate modes due to the freedom in the choice of
polarization vectors. Because εkλ′ diagonalizes �2

kλ1λ2
, we can

show that

∂C∗
kλ1λ′

∂
(
�2

kλ3λ4

) =
∑
λ′

1

C∗
kλ3λ′Ckλ4λ1

′

�2
kλ′ − �2

kλ′
1

C∗
kλ1λ

′
1

= δλ3λ′δλ4λ1

�2
kλ′ − �2

kλ4

(C11)

∂Ckλ2λ′

∂
(
�2

kλ3λ4

) =
∑
λ′

1

Ckλ2λ
′
1

C∗
kλ3λ1

′Ckλ4λ′

�2
kλ′ − �2

kλ′
1

= δλ2λ3δkλ4λ′

�2
kλ′ − �2

kλ2

. (C12)

Note that Ckλλ′ = δλλ′ at q = 0, which we are considering.
Substituting Eqs. (C10)–(C12) into Eq. (C7), we get

∂2F1

∂q2
0λ

= �2
0λ +

∑
kλ1

h̄

4

|
̃(−kλ1, kλ1, 0λ)|2
�kλ2

1
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×
(

∂nB
(
h̄�kλ1

)
�kλ1

− 2nB
(
h̄�kλ1

) + 1

2�kλ1

)
+

∑
kλ1λ2(�kλ1 �=�kλ2 )

h̄

4

|
̃(−kλ1, kλ2, 0λ)|2
�kλ1�kλ2

×
(

nB
(
h̄�kλ1

) − nB
(
h̄�kλ2

)
�kλ1 − �kλ2

− nB
(
h̄�kλ1

) + nB
(
h̄�kλ2

) + 1

�kλ1 + �kλ2

)
. (C13)

APPENDIX D: THE DERIVATION OF THE SCP ENTROPY

The SCP entropy is calculated by differentiating the SCP
free energy F1. Because the final form of the SCP entropy has
been derived in the previous research that uses different for-
malisms of SCP [16,28], we show another derivation that uses
the direct expansion to infinite orders. Using the variational
condition with respect to �kλ,

S(V, T ) = −
(

∂F1(V, T )

∂T

)
V

= −
(

∂F1(V, T,�)

∂T

)
V,�

−
∑
kλ

(
∂�kλ

∂T

)
V

(
∂F1(V, T,�)

∂�kλ

)
V,T

= −
(

∂F1(V, T,�)

∂T

)
V,�

. (D1)

By differentiating Eq. (C2) and using the SCP equation, we
get

S(V, T ) = −
∑
kλ

[
kB log(1 − e−β h̄�kλ ) − h̄�kλ

T
nB(h̄�kλ)

]

−
∑
kλ

[
h̄�kλ

2

(
∂nB(h̄�kλ)

∂T

)
�

×
{
ω2

kλ − �2
kλ +

∞∑
n=2

1

(n − 1)!Nn−1

∑
k1λ1···kn−1λn−1

× 
̃(kλ,−kλ, k1λ1,−k1λ1, · · · , knλn,−knλn)

× g
(
�k1λ1

) · · · g
(
�kn−1λn−1

)}]
= −

∑
kλ

[
kB log(1 − e−β h̄�kλ ) − h̄�kλ

T
nB(h̄�kλ)

]
.

(D2)

It should be noted that the SCP entropy has the same form
as the entropy of the harmonic Hamiltonian except that the
phonon frequency is replaced by �kλ.

APPENDIX E: THE PERTURBATION EXPANSION

In this Appendix, we show the details of the derivations or
the calculations that are skipped in Sec. II D.

1. The SCP frequency

In Sec. II D 1, we showed that the lowest-order estimate of
�kλ − ωkλ is given by

�kλ − ωkλ � ωkλ × 〈Û4〉
〈Û2〉

. (E1)

In this Appendix, we consider the higher-order terms of the
expansion of �kλ − ωkλ. The next dominant contribution can
be the following two terms. The first one is the correction by
that we displaced �kλ in the RHS of the SCP equation by �kλ

in the estimation of Eq. (18).

�1(�kλ − ωkλ)

= 1

N

∑
k′λ′


̃(kλ,−kλ, k′λ′,−k′λ′)
(�kλ + ωkλ)

g(�k′λ′ )

− 1

N

∑
k′λ′

1

2


̃(kλ,−kλ, k′λ′,−k′λ′)
ωkλ

g(ωk′λ′ )

∼ ωkλ × O

(( 〈Û4〉
〈Û2〉

)2)
. (E2)

The second one is the next lowest-order term of the RHS of
the SCP equation:

�2(�kλ − ωkλ)

= 1

2

1

2N2

∑
k1λ1,k2λ2


̃(kλ,−kλ, k1λ1,−k1λ1, k2λ2,−k2λ2)

ωkλ

× g
(
ωk1λ1

)
g
(
ωk2λ2

)
. (E3)

By using

〈Û6〉 � 1

6N2

∑
{kλ}


̃(k1λ1,−k1λ1, · · · , k3λ3,−k3λ3)

× g
(
ωk1λ1

)
g
(
ωk2λ2

)
g
(
ωk3λ3

)
=

∑
kλ

[
1

2

(
nB(h̄ωkλ) + 1

2

)
× h̄

6N2

∑
k1λ1,k2λ2

× 
̃(kλ,−kλ, k1λ1,−k1λ1, k2λ2,−k2λ2)

ωkλ

× g
(
ωk1λ1

)
g
(
ωk2λ2

)
, (E4)

we get the average estimation of this �2 as

�2(�kλ − ωkλ) � ωkλ × 3〈Û6〉
2〈Û2〉

. (E5)

To summarize the above discussion, we get

�kλ − ωkλ = ωkλ ×
[

〈Û4〉
〈Û2〉

+ O

(
〈Û4〉2

〈Û2〉2

)
+ 3〈Û6〉

2〈Û2〉
+ · · ·

]
.
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The higher-order expansion can be performed in a similar
way, but the result will get extremely complicated as we go
to the higher orders.

2. The Grüneisen parameter, the mode specific heat, the bulk
modulus, and the thermal expansion coefficient

Differentiating the SCP equation by the system volume, we
get

2�kλ

∂�kλ

∂V
− 2ωkλ

∂ωkλ

∂V
=

∞∑
n=2

1

(n − 1)!Nn−1

∑
k1λ1···kn−1λn−1

∂
̃(kλ,−kλ, k1λ1,−k1λ1, · · · , kn−1λn−1,−kn−1λn−1)

∂V

×g
(
�k1λ1

) · · · g
(
�kn−1λn−1

) +
∞∑

n=2

1

(n − 2)!Nn−1

∑
k1λ1···kn−1λn−1̃


(kλ,−kλ, k1λ1,−k1λ1, · · · , kn−1λn−1,−kn−1λn−1)

×g
(
�k2λ2

) · · · g
(
�kn−1λn−1

) ∂

∂�k1λ1

[
h̄

2�k1λ1

(
nB

(
h̄�k1λ1

) + 1

2

)]
∂�k1λ1

∂V
. (E6)

Thus, the dominant correction to the Grüneisen parameter is

γkλ � ω2
kλ

�2
kλ

γ
QHA
kλ

− V

2�2
kλ

1

N

∑
k′λ′

∂
̃(kλ,−kλ, k′λ′,−k′λ′)
∂V

g(�k′λ′ )

− V

2�2
kλ

∑
k′λ′

h̄

2

̃(kλ,−kλ, k′λ′,−k′λ′)

× ∂

∂�k′λ′

[
1

�k′λ′

(
nB(h̄�k′λ′ ) + 1

2

)]
∂�k′λ′

∂V

= γ
QHA
kλ

+ �1γkλ + �2γkλ + �3γkλ, (E7)

where γ
QHA
kλ

is the Grüneisen parameter calculated in the
QHA. We investigate each term in the RHS of Eq. (E7).

γ
QHA
kλ

+ �1γkλ = ω2
kλ

�2
kλ

γ
QHA
kλ

�
(

1 − 2〈Û4〉
〈Û2〉

)
γ

QHA
kλ

(E8)

To get an estimation for the �2γkλ, we calculate the SCP
pressure from the SCP free energy.

P = −
(

∂F1(T,V )

∂V

)
T

= −
[(

∂

∂V

)
T,�

+
∑
kλ

(
∂�kλ

∂V

)
T

(
∂

∂�kλ

)
V,T

]
× F1(T,V,�)

=
(

∂F1(T,V,�)

∂V

)
T,�

(variational principle)

= − ∂
0

∂V
−

∑
kλ

2ωkλ

(
∂ωkλ

∂V

)
g(�kλ)

−
∞∑

n=2

1

n!Nn−1

∑
k1λ1,··· ,knλn

× ∂
̃(k1λ1,−k1λ1, · · · , knλn,−knλn)

∂V

× g
(
�k1λ1

) · · · g
(
�knλn

)
. (E9)

This formula is equivalent to the previous result that uses
another formalism of SCP theory [23]. We define

P2 = 1

2
×

∑
kλ

−h̄
∂ωkλ

∂V

(
nB(h̄�kλ) + 1

2

)
(E10)

P4 � −1

2N

∑
kλ,k′λ′

∂
̃(kλ,−kλ, k′λ′,−k′λ′)
∂V

g(�kλ)g(�k′λ′ )

(E11)

from the RHS of Eq. (E9). Note that P2 is half of the second
term in the RHS of Eq. (E9) because the second term includes
the contributions from the kinetic energy and the harmonic
term of the potential. Thus, the average estimation of �2γkλ is

�2γkλ � γ
QHA
kλ

× P4

P2
. (E12)

Next, we continue with �3γkλ.

�3γkλ = − V

2�2
kλ

∑
k′λ′

h̄

2

̃(kλ,−kλ, k′λ′,−k′λ′)

× ∂

∂�k′λ′

[
1

�k′λ′

(
nB(h̄�k′λ′ ) + 1

2

)]
∂�k′λ′

∂V
(E13)

� − V

2ωkλ

∑
k′λ′

h̄

2

̃(kλ,−kλ, k′λ′,−k′λ′)

× ∂

∂ωk′λ′

[
1

ωk′λ′

(
nB(h̄ωk′λ′ ) + 1

2

)]
γ

QHA
k′λ′ (E14)

Using the low-temperature and high-temperature form of the
Bose distribution function nB

nB(h̄ω) + 1

2
�

{ 1
2 + e−β h̄ω (h̄ω � kBT )
kBT
h̄ω

(h̄ω � kBT ),
(E15)

we get

∂

∂ωkλ

[
1

ωkλ

(
nB(h̄ωkλ) + 1

2

)]
�− 1

ω2
kλ

(
nB(h̄ωkλ) + 1

2

)
× C,

(E16)

where C � 1 ∼ 2 is a constant which is dependent on the
mode and the temperature. Therefore, the estimation for the
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�3γkλ is

�3γkλ � γ
QHA
kλ

×
(

− C
〈Û4〉
〈Û2〉

)
, (E17)

where C is the average value over all the phonon modes. To
summarize the above discussion, the anharmonic correction to
the Grüneisen parameter is given by

γkλ � γ
QHA
kλ

×
[

1 − (2 + C)
〈Û4〉
〈Û2〉

+ P4

P2

]
(E18)

The calculation of the anharmonic correction to the mode
specific heat cv,kλ is as shown in Sec. II D 2.

�cv,kλ � −cQHA
v,kλ

× 1

6

〈Û4〉
〈Û2〉

(E19)

Before we calculate the correction to the thermal expansion
coefficient, we consider the bulk modulus. We start with the
QHA case. The QHA free energy is

FQHA = 
0 +
∑
kλ

[
1

2
h̄ωkλ + kBT log(1 − e−β h̄ωkλ )

]
.

(E20)

Thus the pressure and the bulk modulus can be derived as

PQHA = −∂FQHA

∂V

= −∂
0

∂V
−

∑
kλ

h̄
∂ωkλ

∂V

(
nB(h̄ωkλ) + 1

2

)
(E21)

BQHA
T = V

∂2
0

∂V 2
+ V

∂

∂V

[∑
kλ

h̄
∂ωkλ

∂V

(
nB(h̄ωkλ) + 1

2

)]
= BT,0 + �BQHA

T . (E22)

The correction to the bulk modulus from the vibrational free
energy is known to be much smaller than the dominant term
which comes from the electronic ground state energy, i.e.,
|BT,0| � |�BQHA

T | [53]. Here, we calculate the SCP bulk mod-
ulus. By differentiating Eq. (E9), we get

BT =V

[(
∂

∂V

)
T,�

+
∑
kλ

(
∂�kλ

∂V

)
T

∂

∂�kλ

]

×
[
∂
0

∂V
+

∑
kλ

2ωkλ

(
∂ωkλ

∂V

)
g(�kλ)

+
∞∑

n=2

1

n!Nn−1

∑
k1λ1···knλn

× ∂
̃(k1λ1,−k1λ1, · · · , knλn,−knλn)

∂V

× g
(
�k1λ1

) · · · g
(
�knλn

)]
. (E23)

Thus,

�BT = BT − BQHA
T

=V

(
∂

∂V

)
T

∑
kλ

[
h̄

ωkλ

�kλ

∂ωkλ

∂V

(
nB(h̄�kλ) + 1

2

)

− h̄
∂ωkλ

∂V

(
nB(h̄ωkλ) + 1

2

)]

+ V

(
∂

∂V

)
T

[ ∞∑
n=2

1

n!Nn−1

∑
k1λ1,··· ,knλn

× ∂
̃(k1λ1,−k1λ1, · · · , knλn,−knλn)

∂V

× g
(
�k1λ1

) · · · g
(
�knλn

)]
= �BT,1 + �BT,2. (E24)

The two terms in the RHS of Eq. (E24) are estimated as
follows:

�BT,1 � V

(
∂

∂V

)
T

∑
kλ

[
h̄

(
ωkλ

�kλ

− 1

)
∂ωkλ

∂V

(
nB(h̄�kλ)+ 1

2

)

+ h̄
∂ωkλ

∂V

(
nB(h̄�kλ) − nB(h̄ωkλ)

)]
. (E25)

Because it is possible to use the relation

nB(h̄�kλ) − nB(h̄ωkλ) � −nB(h̄ωkλ) × 〈Û4〉
〈Û2〉

(E26)

for the phonon modes that contribute to the sum, we get

�BT,1 � − 2V

(
∂

∂V

)
T

∑
kλ

[ 〈Û4〉
〈Û2〉

× h̄
∂ωkλ

∂V

(
nB(h̄�kλ) − nB(h̄ωkλ)

)]
� 4

〈Û4〉
〈Û2〉

V
∂P2

∂V
� −2

〈Û4〉
〈Û2〉

�BQHA
T , (E27)

where we assumed that ∂
∂V

〈Û4〉
〈Û2〉 is not very large. The other

term in the RHS of Eq. (E24) is estimated as

�BT,2 � V

(
∂

∂V

)
T

[
1

2N

∑
k1λ1,k2λ2

×∂
̃(k1λ1,−k1λ1, k2λ2,−k2λ2)

∂V

×g
(
�k1λ1

)
g
(
�k2λ2

)] � −V

(
∂P4

∂V

)
T

. (E28)

Thus,

�BT � �BQHA
T ×

(
− 2

〈Û4〉
〈Û2〉

+ 1

2

∂P4/∂V

∂P2/∂V

)
� ∣∣�BQHA

T

∣∣ � |BT |. (E29)

Therefore, the anharmonic correction to the bulk modulus
is much more minor than the correction to the other physi-
cal variables and thus is negligible in the calculation of the
thermal expansion. Therefore, as explained in Sec. II D 2,
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we get

α � αQHA ×
(

1 −
(

13

6
+ C

) 〈Û4〉
〈Û2〉

+ P4

P2

)
. (E30)

3. The difference between the QHA volume and the SCP volume

Because the difference of the VQHA and VSCP can affect the
calculation result through the change of IFCs, we consider the
V -dependent change of the IFC 
.


(VSCP) = 
(V0) +
∫ VSCP

V0

dV
∂


∂V
(E31)

= 
(V0) +
∫ VQHA

V0

dV
∂


∂V
+

∫ VSCP

VQHA

dV
∂


∂V
, (E32)

where V0 is the volume at the zero temperature, at which
the difference of VQHA and VSCP can be neglected. When the
thermal expansion coefficient is calculated with accuracy of

O(〈Û4〉/〈Û2〉), it is possible to estimate the IFC at VSCP as


(VSCP) ∼ 
(V0) + δ
QHA + δ
QHA × O

( 〈Û4〉
〈Û2〉

)
,

(E33)

where δ
QHA = ∫ VQHA

V0
dV ∂


∂V . Since the harmonic phonon dis-
persion of materials in ambient condition does not drastically
change with the temperature, we can conclude


(V0) � δ
QHA � δ
QHA × O

( 〈Û4〉
〈Û2〉

)
, (E34)

at least for the harmonic IFCs. This shows that the order of
the effect of the difference of VQHA and VSCP is smaller than
�kλ − ωkλ. Therefore, the above discussion of the leading cor-
rection by the lattice anharmonicity, which implicitly assumes
VQHA = VSCP, is justified.
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