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Negative group velocity and Kelvin-like wake pattern

Eugene B. Kolomeisky ,1 Jonathan Colen ,2 and Joseph P. Straley3

1Department of Physics, University of Virginia, P. O. Box 400714, Charlottesville, Virginia 22904-4714, USA
2Department of Physics, University of Chicago, 5720 South Ellis Avenue, Chicago, Illinois 60637, USA
3Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506-0055, USA

(Received 18 June 2021; revised 30 November 2021; accepted 2 February 2022; published 10 February 2022)

Wake patterns due to a uniformly traveling source are a result of the resonant emission of the medium’s
collective excitations. When there exists a frequency range where such excitations possess a negative group
velocity, their interference leads to a wake pattern resembling the Kelvin ship wake: while there are “transverse”
and “divergent” wave fronts trailing the source, they are oriented oppositely to Kelvin’s. This is illustrated by
an explicit calculation of “roton” wake patterns in superfluid 4He where a Kelvin-like wake emerges when the
speed of the source marginally exceeds the Landau critical roton velocity.
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Physics experiments typically measure a response of a sys-
tem to an external disturbance. A familiar type of disturbance
is an object traveling uniformly relative to a medium. This can
give rise to a range of effects including Mach waves behind
a supersonic projectile [1], Cherenkov radiation emitted by
a rapidly moving charge [2], and ship waves [3,4], all of
which are examples of coherent generation of the medium’s
collective excitations [5].

If the disturbance is weak, the response is proportional to it
and dictated by the properties of the medium. This is the case
for far-field wake patterns that are governed by the frequency
spectrum �(k) of the relevant collective excitations of the
medium (here k is the wave vector). For any physical system,
a wake is present whenever there is a wave mode whose phase
velocity k�/k2 (here k = |k|) matches the projection of the
velocity of the source v onto the direction of radiation k/k
[4,5]. This implies that the wave pattern is stationary relative
to the source. For a source moving in the +x direction with
velocity v, this requires the existence of a wave vector k
satisfying

�(k) = k · v ≡ kv cos ϕ ≡ kxv, (1)

where v = |v| and ϕ is the angle between the vectors k
and v. Equation (1) is the Mach-Cherenkov-Landau (MCL)
resonant radiation condition, which also describes the onset
of Landau damping in a plasma [6] and the breakdown of
superfluidity [7].

When the excitation spectrum is linear,

� = uk, (2)

where u is the speed of sound (or light), the MCL condition
(1) becomes cos ϕ = u/v. It can be satisfied only if u � v, i.e.,
if the source is supersonic (or superluminal).

Contrarily, the spectrum of gravity waves is [1,4]

�2 = gk, (3)

where g is the free fall acceleration. Now the MCL condition
(1) becomes cos ϕ =

√
g/kv2 and can always be satisfied for

sufficiently large wave number k. As a result, the wake ap-
pears for any velocity.

The complexity of wake patterns is governed by the spa-
tial dispersion, i.e., by the difference between the group and
the phase velocities. Specifically, the simple cone geome-
try of Mach-Cherenkov wakes is due to the dispersionless
spectrum (2) while the “feathered” appearance of ship
wakes has its origin in the dispersive character of gravity
waves (3).

Here we show that when the group velocity is negative
(i.e., it is opposite in direction to the phase velocity) in a
range of the wave vectors satisfying Eq. (1), the corresponding
excitations interfere and create a wake pattern that resembles
the Kelvin ship wake. This effect does not rely on the specific
form of the dispersion law �(k) as long as the latter contains
region(s) with negative group velocity. It is also different from
a reversed Cherenkov effect in “left-handed” materials [8] that
we do not consider.

Several physical systems possess excitations which in cer-
tain frequency ranges are characterized by negative group
velocity. A classic example is the optical branch of vibra-
tions in crystals [9]. We will illustrate the impact of negative
group velocity on wake patterns both generally for an arbitrary
isotropic medium and explicitly using the example of super-
fluid 4He. Past studies of wakes in a superfluid 4He [10,11]
overlooked this effect.

For small wave numbers k the collective (or elementary)
excitations in Bose liquids correspond to hydrodynamic sound
waves with a linear spectrum (2) [7]. In liquid 4He the function
�(k) ≡ �(k) reaches a maximum after an initial increase,
followed by a “roton” minimum at some k0 [7] (inciden-
tally, this is also the case in a dipolar quantum gas [12]).
The excitations with wave numbers sandwiched between
these extrema are characterized by a negative group velocity
d�/dk ≡ �′(k) < 0.

2469-9950/2022/105(5)/054509(5) 054509-1 ©2022 American Physical Society

https://orcid.org/0000-0002-1522-3894
https://orcid.org/0000-0003-4162-0276
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.054509&domain=pdf&date_stamp=2022-02-10
https://doi.org/10.1103/PhysRevB.105.054509


KOLOMEISKY, COLEN, AND STRALEY PHYSICAL REVIEW B 105, 054509 (2022)

In the vicinity of k = k0 it is customary to expand the
function �(k) in powers of k − k0:

� = �

h̄
+ h̄(k − k0)2

2μ
, (4)

where �, μ, and k0 are empirically known parameters which
depend on the pressure [13]. Hereafter for illustration pur-
poses and without the loss of generality we employ their
values extrapolated to zero pressure [7]. The parameters of the
roton part of the spectrum (4) can be conveniently assembled
into a dimensionless combination,

a = h̄2k2
0

μ�
≈ 31. (5)

Additionally, it is useful to introduce a velocity scale

v0 = �

h̄k0
≈ 60 m/s, (6)

which is the slope of the straight line connecting the origin
�(0) = 0 to the roton minimum �(k0) = �/h̄.

The excitation spectrum of superfluid 4He ends at � =
2�/h̄, k = ke ≈ 3 × 108 cm−1 [7]. Below we largely focus
on the source velocities v � 2�/h̄ke ≈ 76 m/s so that the end
part of the spectrum does not contribute into the wake pattern.

Hereafter it is convenient to measure the wave number and
the source velocity in units of k0 and v0, respectively. The
roton part of the spectrum (4) will then be given by

� = 1 + 1
2 a(k − 1)2. (7)

The MCL requirement (1) is satisfied above a critical velocity
vc such as � = kv and �′ = v. Subjecting Eq. (7) to these
conditions determines the threshold velocity to generate a
wake which is also Landau’s critical roton velocity to destroy
superfluidity in 4He:

vc = a

(√
1 + 2

a
− 1

)
≈ 0.98 (59 m/s, original units). (8)

These conditions also define a critical wave number where the
group and the phase velocities coincide, �′ = �/k,

kc =
√

1 + 2

a
≈ 1.03. (9)

Thanks to the very large parameter a (5) (which further in-
creases with the pressure [13]) the velocities v0 (6) and vc (8),
and respective wave numbers k0 and kc, are extremely close to
each other.

Superfluidity can also be destroyed by vortex loop excita-
tions above a velocity that depends on the specific conditions
of the flow. In the past this made it impossible to attain
the Landau critical velocity (8) in practice. Subsequent ex-
periments with isotopically pure 4He [14] indicated that the
critical velocity of vortex nucleation uc is significantly larger
than the Landau value (8) (at a pressure of 12 bars and larger).
There also is numerical indication [11] relating uc to the
speed of sound u > vc (2). Hereafter vortex loop excitations
are omitted since already at a moderate pressure their role is
negligible.

When v > vc, the MCL condition (1) holds within a range
of the wave numbers [k−, k+]. In the roton approximation (7)

the bounds k± are given by

k± = 1 + 1

a
(v ±

√
v2 + 2a(v − 1)). (10)

This shows the significance of the velocity v0 (6): if vc <

v < v0(=1), one has k− > k0(=1) and all the waves with
wave numbers in the [k−, k+] range have positive group ve-
locity [inset to Fig. 1(a)]. As the source velocity increases,
the [k−, k+] interval widens and at v = v0(=1) one finds that
k− = k0(=1). For v > v0 the wave numbers in the [k−, k0]
segment correspond to waves with negative group velocity
[inset to Fig. 1(b)].

The resulting wake patterns can be understood through
linear response theory [15–18]. We suppose that every particle
of the medium is perturbed by a traveling external field of
the potential energy U (r − vt ). Then the average value of the
Fourier transform of induced density due to the perturbation is
given by δn̄(ω, k) = −2πα(k · v, k)U (k)δ(ω − k · v) where
α(ω, k) is a generalized susceptibility [7,15,16] and U (k) is
the Fourier transform of U (r). Inverting the Fourier transform
and changing the frame of reference to that of the source,
r − vt → r, the induced density is given by

δn̄(r) = −
∫

dd k

(2π )d
α(k · v, k)U (k)eik·r, (11)

where d is the space dimensionality. The susceptibility
α(ω, k) has a pole at ω ≡ k · v = �(k) [7,16] which is the
MCL condition (1).

The wake pattern due to a point source [U (k) = const] will
be determined by a combination of Kelvin’s stationary phase
argument [3–5] and numerical evaluation of the integral (11)
[18], with generalized susceptibility

α(ω, k) ∝ 1

(ω + i0)2 − �2(k)
. (12)

Far from the source, the phase f = k · r is large and the
exponential in (11) is highly oscillatory. This is where con-
tributions of elementary plane waves interfere destructively
leaving almost no net result, unless their wave vectors satisfy
the MCL condition (1) and have a phase which is stationary
with respect to k. This is the condition of constructive inter-
ference leading to a wake.

We start by discussing two-dimensional wake patterns. The
wake is formed by interference of plane waves with positive x
components of the wave vector, kx > 0. We also take ky > 0
(ky < 0 contributions can be found via reflection y → −y).
Then the wake is found at y > 0 if the group velocity is
positive or at y < 0 if the group velocity is negative. The phase
is given by

f = k · r = kxx + kyy = �(k)

v
x +

√
k2 − �2(k)

v2
y, (13)

where we used the MCL condition (1) and k2 = k2
x + k2

y to
re-express kx,y in terms of k. Therefore the stationary phase
condition df /dk = 0 becomes

y

x
= �′√v2k2 − �2

��′ − v2k
. (14)

Since the phase f is constant along the wave front,
Eqs. (13) and (14) can be solved to give equations of the wave
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FIG. 1. The right-hand side of the equation of the stationary phase (14) in the roton approximation (7) with v and k measured in units of
v0 (6) and k0. (a) Source velocity v = 0.99 (vc < v < 1) versus (b) source velocity v = 1.15 (v > 1). Insets illustrate the spectrum �(k) and
the origin of the critical wave number kc (orange) (9) and boundary values k± (10) as solutions to �(k) = kv. (b) includes waves with negative
group velocity whose interference is responsible for transverse (t) and divergent (d) parts of the Kelvin-like wake in Fig. 2(b).

fronts in the parametric form:

x(k) = ��′ − v2k

vk(�′k − �)
f , y(k) = �′√v2k2 − �2

vk(�′k − �)
f . (15)

Not only do Eqs. (13)–(15) describe wake patterns in
two dimensions ([3–5,17,18]), they also apply to the three-
dimensional case. The main difference is that the xy plane
becomes a plane intersecting the three-dimensional wake
pattern along the path of the source. Indeed, the different
dimensionality does not change the phase function. The way
that the amplitude of the d = 3 wake pattern falls off with
distance will be different but the wave pattern itself will be
the same, according to the stationary phase argument.

The right-hand side (rhs) of Eq. (14) diverges at a
wave number kv that can be bounded by evaluating
�(kc)�′(kc) − v2kc = kc(v2

c − v2) � 0 and �(k+)�′(k+) −
v2k+ = k+v[�′(k+) − v] � 0, meaning that kc � kv � k+.

If the source velocity belongs to the [vc, v0] interval, the
group velocity �′ is positive in the [k−, k+] range. In the
roton approximation (7) the behavior of the rhs of Eq. (14)
is shown in Fig. 1(a). Here y/x is a monotonically decreasing
function of k both in the [k−, kv] range where y/x < 0 and in
the [kv, k+] interval where y/x > 0. Thus the wake is present
both ahead (x > 0) and behind (x < 0) the source.

Moreover, since for k > kc the group velocity �′ is larger
than the phase velocity �/k, while for k < kc, the opposite is
true, �′ < �/k, and signs of y and �′ coincide, the second
of Eqs. (15) implies that there are two families of wave fronts
distinguished by the choice of the phase:

f = 2πn, if k ∈ [kc, k+] (�′ > �/k), (16)

f = −2πn, if k ∈ [k−, kc] (�′ < �/k), (17)

where n takes on positive integers. Since for the first of these
the rhs of the stationary phase condition (14) can be both

positive and negative [blue-colored parts of the curves in
Fig. 1(a)], the wave fronts (15) and (16) are found both at
x < 0 and x > 0. Specifically, k = kv , the point of divergence
of y/x, corresponds to x = 0. On the other hand, the wave
fronts described by Eqs. (15) and (17) are only found at x < 0
because in the range of wave numbers (17) the rhs of Eq. (14)
is negative [green-colored part of the curves in Fig. 1(a)].

The spatial periodicities along the central line y = 0 can be
found by setting k = k± in the first of Eqs. (15):

�x± = 2π

k±
, (18)

The two wave-front families are separated by a marginal
wave front that can be obtained by evaluating Eq. (14) at k =
kc [orange dot in Fig. 1(a)]:

y

x
= − vc√

v2 − v2
c

. (19)

This is a Mach-Cherenkov cone with the critical velocity vc

playing a role of the limiting velocity. The same equation de-
scribes the asymptotic behavior of the wave fronts (15)–(17)
far away from the source.

In the roton approximation (7) the resulting wake pattern is
shown in Fig. 2(a) where predictions of the stationary phase
analysis, Eqs. (15)–(17) and (19) [color matching Fig. 1(a)]
are overlaid (for y > 0) with results of numerical evaluation
of the integral (11) for d = 2. The latter additionally supplies
the information about the size of the waves (in arbitrary units)
varying from crests (deep red) to troughs (deep blue).

A wake pattern of this kind will be found in any system that
has an analog of the Landau velocity if the source velocity
only slightly exceeds vc. The pattern can be deduced via an
expansion of a dispersion law �(k) about k = kc up to the
second order in (k − kc). Such a wake is indeed observed in
water where due to the effects of capillarity omitted in Eq. (3),
one finds vc ≈ 23 cm/s [4].
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FIG. 2. Numerically evaluated two-dimensional roton wake patterns (11) and (12) due to a point source traveling to the right for different
velocities measured in units of v0 (6). The unit of length is 1/k0, and the color field indicates the size of the waves (arbitrary units). The
predictions of the stationary phase argument, Eqs. (15)–(17) and (19), color matching Fig. 1, are overlaid for y > 0 where the wake pattern is
made more transparent for visibility. The source velocities in (a) and (b) match Figs. 1(a) and 1(b). Kelvin-like wakes, highlighted by a series
of red triangles tracing wave crests, are visible in (b) and (c) for x < 0.

As v → vc + 0, the wake in Fig. 2(a) transforms into a one-
dimensional periodic pattern of induced density δn(x) with
the period �x = 2π/kc, which was also predicted to occur
when the velocity of a bulk uniform flow slightly exceeds the
Landau critical roton velocity [19].

If v > v0, the conclusions found for the vc < v < v0

regime carry over for waves in the range [k0, k+] where
the group velocity �′ remains positive. This is illustrated in
Fig. 1(b) where we plotted Eq. (14) for v > v0 in the roton
approximation (7). The behavior of y/x in the [k0, k+] range is
qualitatively the same as that in Fig. 1(a). This explains a part
of the wake pattern in Fig. 2(b) that is qualitatively similar to
that in Fig. 2(a).

For waves in the range [k−, k0], the group velocity �′ is
negative, and the rhs of Eq. (14) is positive. Since the signs
of �′ and y coincide, part of the wake described by Eqs. (15)
and (17) due to excitations of the [k−, k0] range will still be
found behind the source, x < 0, but at y < 0. Moreover, a
function y/x positive in the [k−, k0] interval and vanishing
at its ends must have at least one maximum within it. This
general reasoning is illustrated in Fig. 1(b) which shows that
in the roton approximation the rhs of Eq. (14) is positive in
the [k−, k0] range (red curve) and has a maximum at a wave
number k∗.

If 0 � y/x < (y/x)∗ ≡ (y/x)(k∗) [shown in Fig. 1(b) as
a dashed horizontal line] Eq. (14) has three solutions. One
of them immediately to the left of k = k+ corresponds to
already discussed wave fronts (15) and (16). The remaining
two solutions within the [k−, k0] interval, one to the left and
one to the right of k = k∗, are new. As y/x increases ap-
proaching (y/x)∗ the two solutions tend to each other, join at
y/x = (y/x)∗, and none are found if y/x > (y/x)∗. This part
of the wake pattern confined within an angle 2 arctan(y/x)∗
is represented in Figs. 2(b) and 2(c) by a series of curved red
triangles.

There is a substantial similarity between this pattern and
the classic Kelvin ship wake formed behind a point pres-
sure source uniformly traveling a calm water surface [3,4].

Specifically, Kelvin’s terminology of “transverse” and “di-
vergent” [3] wave fronts applies: interfering excitations with
wave numbers in the [k−, k∗] ([k∗, k0]) range produce the
transverse (divergent) wave fronts which smoothly (discontin-
uously) connect the edges of the pattern y/x = ±(y/x)∗ across
the central line y = 0. The notable difference from Kelvin’s is
that the pattern is reversed (i.e., it faces away from the source)
as the wake is formed by elementary waves with negative
group velocity.

Like the Landau critical roton velocity v = vc, the instant
v = v0 where elementary waves having negative group veloc-
ity start participating in forming wake pattern, represents a
critical phenomenon. It is expected that it will be accompanied
by an increase in the wave resistance which we are planning
to study in the future.

As the source velocity increases beyond v = v0, the size of
the waves increases, the opening angle of the Kelvin-like wake
grows, and the roton approximation (4) eventually breaks
down. However, qualitatively the wake pattern will not change
as long as v � 76 m/s; the pattern in Fig. 2(c) corresponds
to v = 76 m/s. At larger velocities the wake pattern will
acquire new elements due to contributions coming from the
end part of the spectrum. At the same time the Kelvin-like
feature will persist and widen with v until the source velocity
exceeds about 167 m/s. This is when the lower bound of
the MCL interval k− coincides with location of the maxi-
mum of �(k) and the range of wave numbers with �′ < 0 is
largest.

To summarize, we demonstrated that if in response to a
small heavy uniformly traveling source a medium radiates ex-
citations possessing negative group velocity, their interference
leads to a reversed Kelvin-like wake. In superfluid 4He this
effect should be commonplace because the Landau critical
roton velocity of vc = 59 m/s is extremely close to the Kelvin
threshold of v0 = 60 m/s. At the same time the details of the
Kelvin feature may be somewhat obscured due to interference
with overlapping “green” family of wave fronts, Figs. 2(b)
and 2(c). A Kelvin-like wedge should be observable by light
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scattering techniques while the fine structure of all the dis-
cussed wake patterns can be only resolved with the help of
x-ray or neutron scattering.
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Physics, supported by National Science Foundation Grant No.
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