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Non-Abelian statistics of Majorana zero modes in the presence of an Andreev bound state
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Braiding Majorana zero modes (MZMs) is the key procedure toward topological quantum computation. We
show such braiding can be well performed in a parallel semiconductor-superconductor nanowire structure.
Considering the fact that the low-energy Andreev bound states (ABSs) usually mix with the MZMs in the
present setup, we further investigate the braiding properties of MZMs when an ABS is presented. Our numerical
simulation suggests that ABS can be regarded as a pair of weakly coupled MZMs. The dynamical hybridization
of MZMs plus the non-Abelian braiding of MZMs would induce an arbitrary rotation on the Bloch sphere of
a single qubit. Remarkably, such rotation is manipulable since the rotation parameters could be individually
modulated. Thus, the dynamic evolution can be eliminated and the non-Abelian braiding statistics, independent
of the braiding time, retrieves.
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I. INTRODUCTION

A Majorana zero mode (MZM) is deemed as the most
promising candidate for topological quantum computation
(TQC) [1,2] for its non-Abelian statistics. The exploration
for MZMs in topological superconductors (TSCs) has been
drawing extensive attention in the last decade [3–12]. To date,
TSCs have been realized in various experimental platforms
[13–26]. The semiconductor-superconductor heterostructure,
first experimentally realized one among these systems, is re-
garded as one of the most promising platforms to realize TQC.
However, in spite of the promising signs, other complications
such as the Andreev bound states (ABSs) still cannot be ruled
out [27–37]. The ABS, which is viewed as a pair of fake
MZMs, is widely observed in experiments and hard to get rid
off in the present setup [30,32,33,37]. Though various exper-
imental schemes have been proposed [30–33,38–48], there is
still no convincing way to completely distinguish these two
types of states.

The most likely way of distinguishing a MZM from the
ABS is certainly based on its non-Abelian statistics [49–52].
However, only a few studies have paid attention to this topic
thus far [53–55]. The main obstruction lies in two aspects.
First, the braiding protocols which have been proposed so
far are quite complicated and hard to realize experimentally
[50,51]. Recently, a parallel structure was deemed as the most
feasible way to achieve braiding operation [56–59]. However,
the projective-measurement-based braiding in such a structure
is not under control due to its probabilistic nature. Second,
since the ABSs are hard to get rid off with state-of-art nan-
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otechnology, it is necessary to study the braiding statistics in
the presence of both MZMs and ABSs. Such investigation will
also shed light on how to realize or modify TQC when an ABS
is engaged.

This paper is motivated by attempting to solve the above
two problems. First, we put forward a modified parallel struc-
ture [Fig. 1(d)] and show that the non-Abelian braiding of
MZMs can be conveniently performed in such structure in
a definite fashion. Second, we clarify the MZMs’ braiding
rule in the condition that one pair of MZMs is replaced by
an ABS. Our braiding results suggest that an ABS can be
decomposed into two weakly coupled MZMs. By combin-
ing the hybridization-induced evolution of the ABS and the
non-Abelian braiding of the MZMs, a rotation to an arbitrary
point on the single-qubit’s Bloch sphere can be implemented.
Such rotation is manipulable since each parameter can be
individually modulated in the corresponding braiding section.
In this way, the dynamic evolution can be eliminated and the
non-Abelian braiding statistics, independent of the braiding
time, retrieves. We conclude that though the presence of ABS
creates complication, the non-Abelian braiding properties of
the MZMs can still be observed.

II. MODIFIED TETRON STRUCTURE FOR NON-ABELIAN
BRAIDING

Since the magnetic field can only be oriented along one
direction, a parallel aligned structure tetron qubit is pro-
posed for realizing the braiding through a series of projective
measurements [53,56–58]. The tetron qubit consists of two
parallel nanowires which are connected through a trivial su-
perconductor. Hence the tetron qubit can be described by
the Hamiltonian as HT = ∑

i Hi + HS + HTc. Here Hi is the
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FIG. 1. (a) MZMs in a semiconductor-superconductor nanowire.
(b) ABS in the same nanowire with a QD confinement presented.
(c) The energy spectrum of the semiconductor-superconductor
nanowire (with the QD confinement) versus the Zeeman energy.
(d) The modified tetrom structure adopted for the braiding of the
MZMs; the bottom nanowires (W 3, W 4) are ancillary ones during the
braiding. All four arms are topologically nontrivial with Nx = 100a,
μ = −2t0, and Vx = 2� [vertical green line in (c)]. The central
region(S) is a trivial superconductor with length Nc = 5a, and other
parameters are the same as those in the nanowires. (e) The energy
spectrum of the system during the braiding with φ0 = 0.5π , in which
the gap is always open. (f) Evolution of the wave function ψ−

j (t )
during the braiding.

Hamiltonian for the ith nanowire whose explicit form is

Hi =
∑

R,d,α
−t0(ψ†

R+d,αψR,α + H.c.) − μψ
†
R,αψR,α

+
∑

R,d,α,β
−iURψ

†
R+d,α ẑ · (�σ × d)αβψR,β

+
∑

R,α
�eiφψ

†
R,αψ

†
R,−α + H.c.

+
∑

R,α,β
ψ

†
R,α (Vx �σx )αβψR,β , (1)

where R denotes the lattice site, d is the unit vector, α and
β are the spin indices, t0 denotes the hopping amplitude, μ is
the chemical potential, UR is the Rashba coupling strength,
and Vx is the Zeeman energy. The superconducting pairing
amplitude and the pairing phase are denoted as � and φ,
respectively. In addition, HS corresponds to the trivial super-
conductor which has the same form as Hi except for UR = 0.
HTc is the coupling term connecting the trivial superconduc-
tor and the four nanowires, which can be described by the

Hamiltonian of

HT c =
∑

i,d,α,β
[ticψ

†
iNx(1),αψcNc (1),α + H.c.]. (2)

Note that the term ticψ
†
iNx(1),αψcNc (1),α annihilates an electron

at the right (Nx ) or left end [Eq. (1)] of the ith nanowire
(i = 1, 2, 3, 4) and creates an electron at the top [Eq. (1)] or
bottom end (Nx ) of the trivial superconductor. In other words,
such a term describes the hopping between these two sites.
The electron hopping strengths tic can be modulated by gates
Gi as tic = git0 with gi = 0 means disconnection with each
other and gi = 1 means perfectly connection with each other.
The total parameters adopted here are specified referring to the
experiment [13] as � = 250 μeV, t0 = 10�, and UR = 2�.

To remove the probabilistic nature of the projective mea-
surement in the original tetron stucture, we propose a modified
tetron structure as illustrated in Fig. 1(d), in which four ad-
ditional gates (G1 ∼ G4) are located near the intersection of
the nanowires and the trivial superconductor. In such a struc-
ture, the braiding can be realized in a definite way through
tuning the gate voltages in the corresponding gates [60,61].
Before the braiding, all four arms (W 1 ∼ W 4) are topologi-
cally nontrivial, and gate voltages in G1 and G2 are turned on
while in G3 and G4 are turned off, hence three pairs of MZMs
(γ2 j−1 and γ2 j , j = 1, 2, 3) are localized at the ends of the
three divided sections. The braiding protocol takes three steps
(the time cost for each step is T ) to swap γ2 and γ3 spatially.
In step 1, G1 is turned off and then G3 is turned on, hence
γ2 is teleported to W 3. In step 2, G2 is turned off and then
G1 is turned on, so γ3 is teleported to the original position
of γ2. In step 3, G3 is turned off and then G2 is turned on.
Consequently, the spatial positions of γ2 and γ3 are swapped.

To obtain the correct braiding results, the topological gap
is required to remain open during the braiding. Therefore,
a finite superconducting phase difference φ0 should be kept
between the top and bottom nanowires as shown below. If
φ0 = 0, a domain wall (DW) structure [62] is formed when
only G2 and G3 are turned off [the magnetic fields are pointed
along one direction so the center region is twisted, see the
inset of Fig. 1(d)]. In such a case, an additional pair of end
modes which emerges from the bulk and collapses at the zero
energy will ruin the braiding. On the contrary, when φ0 �= 0,
the DW structure is smoothed out so the gap remains open
during the braiding [e.g., φ0 = 0.5π , see Fig. 1(e)] and the
braiding results remain valid. In addition, the topological gap
decreases exponentially with the increase of the length of the
trivial superconductor Nc. Hence, it is better to choose Nc in
the same order as the MZMs’ coherence length. The latter is
usually in the order of 102 nanometers and such length scale
is feasible in the state-of-art technology.

With the topological gap kept open, our numerical simula-
tion [Fig. 1(f)] confirms that the non-Abelian braiding can be
accomplished in such a structure. The braiding of MZMs can
be represented by the operator B(γi, γ j ) = exp( π

4 γiγ j ), which
transform the MZMs as γi → γ j and γ j → −γi [49]. The
effective low-energy Hamiltonian describing the MZMs in
each separated part of the tetron before braiding is in the form
of Hj,eff = iε jγ2 j−1γ2 j ( j = 1, 2, 3). Hence the eigenstates
are in the wave functions of ψ±

j (0) = (γ2 j−1 ± iγ2 j )/
√

2.
If γ2 and γ3 are swapped twice in succession, then the
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wave function will evolve into ψ±
1 (6T ) = (γ1 ∓ iγ2)/

√
2 =

ψ∓
1 (0) and ψ±

2 (6T ) = (−γ3 ± iγ4)/
√

2 = −ψ∓
2 (0). We sim-

ulate the wave-function evolution during the braiding as
|ψ±

j (t )〉 = U (t )|ψ±
j (0)〉, where U (t ) = T̂ exp[i

∫ t
0 dτH (τ )] is

the time-evolution operator and T̂ is the time-ordering opera-
tor [63–65]. The simulation results confirm that ψ+

j evolves
into ψ−

j ( j = 1, 2) after adiabatically swapping γ2 and γ3

twice in succession, which demonstrate the non-Abelian
braiding rules discussed above.

III. NON-ABELIAN BRAIDING IN THE PRESENCE OF ABS

We further investigate the braiding rule in the presence
of an ABS. ABS is usually induced by the inhomogeneity
at the interface, which can be modeled by a quantum dot
(QD) confinement at the end of the nanowire [18,30,37]. As
depicted in Fig. 1(b), a sinusoidal local chemical potential
in the form of Vd (R) = −VD cos(2π R−LD

2LD
) is presented at

the right end of the nanowire, where LD = 10a is the half
width of the QD and VD = 0.1t0 is the depth of the potential
well. When an external magnetic field is applied, as shown
in Fig. 1(c), a low-energy ABS will be trapped in the QD
before the topological phase transition point. In contrast to the
MZMs that distribute nonlocally at both ends [Fig. 1(a)], the
ABS is a bound state localized at one end of the nanowire
[Fig. 1(b)]. By replacing a pair of MZMs with an ABS in
the modified tetron, distinctly different braiding results will
be obtained. The final states after the same braiding process
are time dependent and oscillate with the braiding time cost
T , which is in stark contrast to the T -independent behavior
of the braiding with true MZMs. As shown in Figs. 2(a)–2(c),
ψ−

1 (6T ) is equal to ψ+
1 (0) at T = 400/�, and turns into a

superposition of ψ±
1 and ψ±

2 at T = 450/�, and then comes
back to ψ+

1 (0) at T = 500/�.
The local density of states (LDOS) distribution in

Figs. 2(d)–2(i) unveils the temporal and spatial profiles for
both the ABS and the MZMs during the braiding. At the
beginning, the LDOS of ABS exhibits a twin-peak structure,
implying that the ABS can be treated as a pair of coupled
MZMs γ1 and γ2, which are spatially separated with a finite
distance. Such results are consistent with the previous studies
[30,32,33]. From this point of view, the braiding in the pres-
ence of an ABS could be equivalent to the exchange between
one free MZM and another MZM bounded in the ABS [66].
This feature can be further illustrated in Fig. 2(j) with the
assistance of two ancillary MZMs γ ′

5 and γ ′
6. In the initial

stage, γ ′
5 and γ ′

6 are fused together due to the connection of
the gates and would separate with each other if G3 and G4 are
turned on. In this situation, the effective Hamiltonian can be
described as

Heff (t ) = iγ ′
6(�δ · �γ ) + iεd (t )γ1γ2. (3)

Here �γ = (γ2, γ3, γ
′
5) is defined as the Majorana vector and

�δ = (t1, t2, t3) is defined as the coupling vector, where t1, t2, t3
are effective coupling strengths between γ ′

6 and γ2, γ3, γ
′
5,

respectively. If εd (t ) keeps zero during the braiding process, �δ
can be visualized as a radius vector in a 3D parameter space in
analogy with the Bloch sphere shown in Fig. 2(k). Hence, the
instantaneous eigenstates are MZM γ2 = �γ · êθ , denoted as

FIG. 2. Evolution of the wave function ψ−
1 = (γ1 − iγ2)/

√
2

with braiding time cost (a) T = 400/�, (b) T = 450/�, and (c) T =
500/�. Here the Zeeman energy in the left arm (W 1) is Vx = 0.6�,
hence the left arm is in the trivial regime with an ABS presented [see
the blue vertical line in Fig. 1(c)]. All other parameters are the same
as those in Fig. 1(d). (d)–(f) Evolution of the LDOS for ABS. The
parameters correspond to (a)–(c), respectively. The MZMs are split
and fused as indicated by the LDOS. (g)–(i) Corresponding evolution
of the LDOS for MZMs. (j) A minimal sketch consisting of three
MZMs and one ABS that shows the MZM can only couple to the half
of ABS’s internal structure. By manipulating the coupling strengths,
MZMs can be moved out of and into the ABS due to geometric
evolution. (k) The geometric path of the MZMs γ2 = �γ · êθ and
γ3 = �γ · êφ . A geometric phase is accumulated after a solid angle
is spanned by the closed path of the coupling vector �δ.

the vector along the polar direction (θ direction) perpendicular
to �δ, and MZM γ3 = �γ · êφ , denoted as the vector along the
polar direction (θ direction) perpendicular to �δ. The braiding
of MZMs can be represented by the operator B(γ2, γ3) =
exp( �c

2 γ2γ3) [67], where �c is the solid angle spanned by
the loop of �δ as shown in Fig. 2(k). While if εd (t ) are not
zero during the braiding process, since we braid the MZMs
through ancillary MZM (γ ′

6), as illustrated in Fig. 2(j), it can
only couple to the half degree of the ABS’s internal structure.
From the effective Hamiltonian, we are able to distinguish
two simultaneous processes of evolution, the geometric one
and the dynamical one. Due to the first term of Heff (t ), the
geometric evolution of the instantaneous zero modes is that, as
shown in Fig. 2(j), the bounded MZM γ2(γθ ) is moved out of
ABS (splitting) in step 1, and the free MZM γ3(γφ ) is moved
into the ABS (fusion, reversion of splitting) in step 2. There-
fore, the geometric phase is still determined by the solid angle
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FIG. 3. (a) The eigenenergy of the ABS during the braiding.
(b) Braiding results as functions of the braiding time cost T . (c) An
illustration of the braiding process in the presence of an ABS. The
whole braiding operation swapping γ2 and γ3 twice composes of five
sections: Secs. 1, 3, and 5 are dynamical evolutions caused by the
nonvanishing hybridization energy; Secs. 2 and 4 are non-Abelian
braiding between two MZMs.

�c = π spanned by the loop of �δ in Fig. 2(k). It should be
very robust and insensitive to disorder or other perturbations,
while the dynamical evolution would cause the hybridization
of γ1 and γ2 in each step and induce the difference in splitting
process.

For the first step (t ∈ [0, T ]), as demonstrated in Fig. 3(a)
[68], the hybridization happens between the two MZMs
γ1 and γ2. The Hamiltonian for hybridization is Heff (t ) =
iε1(t )γ1γ2 and the corresponding evolution operator is U1 =
e

θ1
2 γ1γ2 , where θ1

2 = ∫ T
0 ε1(t )dt is the phase accumulated dur-

ing the evolution. Such hybridization is equivalent to a unitary
transformation on γ1 and γ2 [69]:

γ̃1 = U †
1 γ1U1 = cos(θ1)γ1 + sin(θ1)γ2,

γ̃2 = U †
1 γ2U1 = − sin(θ1)γ1 + cos(θ1)γ2. (4)

At time t = T , γ̃2 is fully separated from γ̃1. After that,
γ3 starts to move into the ABS and hybridize with γ̃1.
In the meantime, γ̃2 and γ3 are swapped and the cor-
responding braiding operator is B(γ̃2, γ3) = e

π
4 γ̃2γ3 . The

whole braiding operation can be decomposed into five
braiding sections as sketched in Fig. 3(c). The evolution
operator for such a whole braiding process can be ex-
pressed as the product of the evolution operator in each
of these five steps as UF = e

θ1
2 γ1γ2 e

π
4 γ̃2γ3 e

θ2
2 γ̃1γ3 e

π
4 γ̃2γ̃3 e− θ3

2
˜̃γ1γ̃2 ,

where ˜̃γ1 = e− θ2
2 γ̃1γ3 γ̃1e

θ2
2 γ̃1γ3 , γ̃3 = e− θ2

2 γ̃1γ3γ3e
θ2
2 γ̃1γ3 , θ2

2 =∫ 4T
T ε2(t )dt , and θ3

2 = ∫ 6T
4T ε3(t )dt [70]. Therefore, in con-

trast to the MZMs’ non-Abelian braiding, which merely
depends on the topology, the braiding in the presence of
an ABS is process dependent. Such braiding exhibits an ac-
cumulative behavior that the evolution in each step relies

FIG. 4. (a) Energy spectrum of the ABS in the presence of a si-
nusoidal magnetic field Vx = [0.59 + 0.02 cos(t/T · π )]� during the
braiding. The other parameters are the same as those in Fig. 3. In this
case, θ2 vanishes since the integration of the eigenenergy cancels out.
(b) Energy spectrum of the ABS with Vx = [0.57 + 0.02 cos(t/T ·
π )]� during t ∈ [4T, 6T ], the other parameters are the same as (a).
In this case, both θ2 and θ1 − θ3 vanish. (c) The braiding results for
(a), where the amplitude of ψ−

1 (6T ) is independent of T , while the
phase of ψ−

1 (6T ) oscillates with T . (d) The braiding results for (b).
Both the amplitude and the phase of ψ−

1 (6T ) are T independent,
which retrieves the original robust non-Abelian braiding properties.

on the evolution result in the previous step. For instance,
the state ψ−

1 (0) = (γ1 − iγ2)/
√

2 evolves into ψ−
1 (6T ) =

( ˜̃̃γ1 + i ˜̃γ2)/
√

2, in which both ˜̃̃γ1 = e
θ3
2

˜̃γ1γ̃2 ˜̃γ1e
θ3
2

˜̃γ1γ̃2 and ˜̃γ2 =
e

θ3
2

˜̃γ1γ̃2 γ̃2e− θ3
2

˜̃γ1γ̃2 depend on the evolution in the previous step
(the other states also show similar behaviors, see Ref. [71]).
Hence, the weight of ψ−

1 (6T ) on ψ∓
1 (0) oscillates in a sinu-

soidal behavior as [1 ∓ cos(θ2)]/2, and on ψ±
2 (0) oscillates

as sin(θ2)/2. The numerical results shown in Fig. 3(b) are
fully consistent with the analytical prediction. Moreover, ac-
cording to the peak positions and the oscillation period of
|〈ψ−

1 (6T )|ψ±
1 (0)〉| [see Fig. 3(b)], it can be concluded that

θ2 = 2πT/�T . Remarkably, the explicit form of θ2 suggests
that the non-Abelian braiding properties of the MZMs can
still be exhibited even when an ABS is involved. Specifically,
θ2 = 2πT/�T indicates that ψ−

1 (6T ) will evolve into ψ+
1 (0)

if the dynamic phase can be eliminated, implying the presence
of a geometric phase of π . In other words, if the geometric
phase is absent, then the explicit form of θ2 should be θ2 =
2π (T/�T + 1/2).

IV. MANIPULATING THE BRAIDING RESULTS

In the many-body basis (|0〉, �†
1 |0〉, �†

2 |0〉, �†
1�

†
2 |0〉), UF

has the matrix form of

i

⎡
⎢⎢⎢⎢⎢⎣

ei θ1+θ3
2 S θ2

2
0 0 ei θ1−θ3

2 C θ2
2

0 −e−i θ1+θ3
2 S θ2

2
e−i θ1−θ3

2 C θ2
2

0

0 ei θ1−θ3
2 C θ2

2
−ei θ1+θ3

2 S θ2
2

0

e−i θ1−θ3
2 C θ2

2
0 0 e−i θ1+θ3

2 S θ2
2

⎤
⎥⎥⎥⎥⎥⎦

.

(5)
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FIG. 5. The braiding results with different oscillation ampli-
tudes of the weak sinusoidal magnetic field as (a) Vx = [0.59 +
0.01 cos(t/T · π )]�, and (b) Vx = [0.59 + 0.03 cos(t/T · π )]�. The
comparison between (a) and (b) shows that the MZMs’ braiding
result is independent of the oscillation amplitude of the magnetic
field, provided that the adiabatic condition is satisfied as T � 200/�.

where S θ2
2

≡ sin(θ2/2) and C θ2
2

≡ cos(θ2/2). This off-

diagonal form of the braiding matrix demonstrates the
non-Abelian nature of the braiding operation. Moreover, by
tuning θ2 and θ3, the corresponding qubit can be rotated into
any point on the Bloch sphere by such a braiding operation,
which is beyond the MZM-based braiding operation. Specif-
ically, the polar angle θ2 is the dynamic phase accumulated
during t ∈ [T, 4T ], and the azimuthal angle θ1 ± θ3 is deter-
mined by the period t ∈ [0, T ] and t ∈ [4T, 6T ]. Both these
phases can be modulated individually by tuning the parame-
ters in the corresponding braiding sections.

The manipulation of such phase angles can be assisted by
combining the technology in geometric quantum computation
(GQC) [72–75]. In GQC, the dynamic phase can be eliminated
through the spin-echo technique which reverses the sign of the
eigenenergy at the middle of the symmetric braiding protocol.
Noticing that the spectrum of the ABS [Fig. 1(c)] crosses
the zero energy in the vicinity of Vx = 0.6�. Hence, it is
possible to reverse the ABS’s eigenenergy by modulating the
Zeeman energy. For instance, by applying a sinusoidal mag-
netic field Vx = [Vx0 + Vx1 cos(tπ/T )], the eigenenergy will
cross the zero energy during the braiding. In such a situation,
the oscillation period will increase tenfold since the dynamic
phase is nearly eliminated. In the special case of Vx0 = 0.59�

and Vx1 = 0.02�, as shown in Fig. 4(a), the dynamic phase θ2

can be completely canceled out (actually, θ2 is also canceled
out if Vx1 = 0.01�, indicating Vx1 does not need fine-tuning),
so the braiding result ψ+

j → ψ−
j independent of the braiding

time cost T retrieves [Fig. 4(c)]. However, since the azimuthal

angle θ1 − θ3 does not vanish, Re〈ψ+
1 (6T )|ψ−

1 (0)〉 still oscil-
lates with T . Considering the fact that the modulation could
be individually performed in each braiding section, by tuning
Vx0 = 0.570� during t ∈ [4T, 6T ] while keeping the other pa-
rameters invariant, θ1 − θ3 can also be eliminated. Therefore,
the non-Abelian braiding recovers the T -independent form
[Fig. 4(d)] as in the case that only MZMs are involved.

We also find that the braiding results are insensitive to
the oscillation amplitude of such a sinusoidal magnetic field.
For instance, Fig. 5 shows the braiding results with re-
spect to the braiding time cost T in the conditions of Vx =
0.59 + 0.01 cos(tπ/T )]� [see Fig. 5(a)] and Vx = 0.59 +
0.03 cos(tπ/T )]� [see Fig. 5(b)], respectively. It can be seen
that the non-Abelian statistics is well preserved for different
oscillation amplitudes of the magnetic field, which implies
that imposing such an additional magnetic field is an efficient
way to eliminate the dynamic phase.

V. DISCUSSION

We have shown that the non-Abelian braiding of MZMs
can be well performed in a modified tetron structure. Fur-
thermore, we also investigate the MZMs’ braiding properties
when a low-energy ABS is presented. Although we have not
discussed the noise effect induced by the ABS [76,77], we
can rationally expect that its influence is quite small, since
the previous studies indicate that the spin-echo techniques
can largely reduce the noise effect [75]. Finally, we want to
point out that the phase elimination method discussed above
can also be performed for the finite-size-effect-induced par-
tially overlapped MZMs since the ABS is deemed as a pair
of weakly coupled MZMs with finite separation. In one of
our previous works [39], we revealed that the spectrum of
such partially overlapped MZMs will cross at zero energy
with definite parity by modulating the Zeeman field or the
gate voltage. It implies that the dynamic evolution can be
well manipulated by modulating either the Zeeman field or
the gate voltage. Therefore, the TQC can be realized in a
shorter TSC nanowire, which possesses advantages such as
supporting universal gate operation through modulating the
dynamical evolution.
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