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Controlling magnetism through Ising superconductivity in magnetic van der Waals heterostructures
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Van der Waals heterostructures have risen as a tunable platform to combine different electronic orders, due
to the flexibility in stacking different materials with competing symmetry broken states. Among them, van der
Waals ferromagnets such as CrI3, CrBr3, or CrCl3 and superconductors as NbSe2 provide a natural platform
to engineer novel phenomena at ferromagnet-superconductor interfaces. In particular, NbSe2 is well known for
hosting strong spin-orbit coupling effects that influence the properties of the superconducting state. Here we put
forward a ferromagnet/NbSe2/ferromagnet heterostructure where the interplay between Ising superconductivity
in NbSe2 and magnetism controls the magnetic alignment of the heterostructure. In particular, we show that
the interplay between spin-orbit coupling and superconductivity provides a new mechanism to control magnetic
ordering in van der Waals materials. We show that this coupling allows creating heterostructures featuring a
magnetic phase transition from in-plane to out-of-plane associated with the onset of superconductivity. Our
results show how a hybrid van der Waals ferromagnet/superconductor heterostructure can be used as a tunable
materials platform for superconducting spin-orbitronics.
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I. INTRODUCTION

Van der Waals (vdW) heterostructures have become one
of the paradigmatic platforms to engineer controllable quan-
tum materials [1,2]. This flexibility stems from the possibility
of combining in a single structure a variety of competing
electronic orders [3], including semimetals, insulators, semi-
conductors, superconductors, and ferromagnets among others
[1–3]. In particular, vdW heterostructures provide a natu-
ral platform to engineer novel phenomena at interfaces of
antagonist orders, including superconductivity [4–6] and fer-
romagnetism [7–11], that can potentially lead to a whole new
family of superconducting-spintronic devices [12–15].

Monolayer transition metal dichalcogenides (TMD)[16]
provide a rich playground to exploit spin-orbit driven phe-
nomena due to their large Ising spin-orbit coupling (SOC)
effects [17]. Their intrinsic spin-orbit couplings lead to a
momentum-dependent spin splitting generating robust spin-
momentum locking [17,18], a highly attractive feature for
spintronics and valleytronics [18–23]. In particular, NbSe2

develops a so-called Ising superconducting state [24,25] as
a direct consequence of the interplay of spin-singlet super-
conductivity and Ising spin-orbit coupling [18], leading to a
dramatic enhancement of the in-plane critical field [25–29].
As a result, NbSe2 provides a suggestive platform to explore
the novel interplay between magnetism, superconductivity,
and Ising spin-orbit coupling [14,30].

Here we put forward a magnet/superconductor van
der Waals heterostructure as a controllable system where
a magnetic transition is driven purely by Ising super-
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conductivity. Specifically, we show that a monolayer-
ferromagnet/NbSe2/monolayer-ferromagnet [Fig. 1(a)] leads
to an artificial system displaying magnetic transitions trig-
gered by Ising superconductivity. We demonstrate how the
interplay between the Ising superconductivity and the ferro-
magnetic proximity effect controls the magnetic alignment of
the heterostructure. In particular, we show that the Ising SOC
keeps the magnetic alignment of the heterostructure in-plane
in the normal state, and drives a transition from in-plane to
out-of-plane magnetic alignment in the superconducting state
[Fig. 1(b)]. Our results put forward Ising superconductivity as
a potential knob to control magnetism in artificial heterostruc-
tures, leading to a promising minimal building block for van
der Waals-based superconducting spintronics.

The manuscript is organized as follows. First, in Sec. II we
present the effective model used to capture the physics of the
ferromagnet/NbSe2/ferromagnet heterostructures. In Sec. III
we discuss the interplay between Ising spin-orbit coupling, ex-
change coupling, and superconductivity. In Sec. IV we show
the emergence of magnetic switching driven by Ising super-
conductivity. Finally, in Sec. V we summarize our results.

II. MODEL

In the following we consider a multilayer structure con-
sisting of a monolayer NbSe2 sandwiched between two
ferromagnets, as shown in Fig. 1(a). The proximity effect be-
tween the ferromagnets and the superconducting layer induces
an exchange field in the NbSe2. The direction of the induced
field depends on the magnetization directions in the two fer-
romagnets. Overall, the net Hamiltonian of the system is

H = H0 + HSC + HJ , (1)
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FIG. 1. (a) Schematic structure of the vdW heterostructure
considered in this paper, with a ferromagnet/NbSe2/ferromagnet
sequence. Here x and z axes are the Cartesian axes. (b) Schematic
illustration of the coupling between ferromagnetic layers through
an Ising superconductor. For T < T ∗ the ferromagnetic coupling is
out-of-plane, and for T > T ∗ the ferromagnetic coupling is in-plane,
where T ∗ is a temperature below the superconducting critical tem-
perature Tc.

where H0 is the single-particle Hamiltonian of NbSe2 includ-
ing spin-orbit coupling, HSC accounts for the superconducting
state, and HJ includes the effect of the ferromagnetic leads
obtained by integrating out the CrI3 degrees of freedom.

Let us first introduce the single-particle model H0 for the
NbSe2 layer [31,32]. To study the superconducting properties,
only the low-energy part of the band structure is sufficient for
consideration. The crystal structure of the monolayer NbSe2

has the D3h point-group symmetry, strongly constraining its
lowest energy model. Since a single band is located at the
Fermi energy [33], a Wannier Hamiltonian with a single or-
bital in the triangular lattice can be built [Fig. 2(a)]. The
Wannier low energy model for NbSe2 takes the form

H0 =
∑
αβss′

t ss′
αβc†

α,scβ,s′ , (2)

where t ss′
αβ are the spin-dependent hopping amplitudes [34],

and c†
i,s is the creation operator of a Wannier orbital centered

at each Nb site. This model captures the low-energy band
structure of the monolayer NbSe2. The SOC is included by a
Kane-Mele form [35] as a complex spin and bond dependent
first neighbor complex hopping parametrized by a phase φi.
We include up to sixth neighbor hopping between Wannier or-
bitals. The resulting electronic structure is shown in Fig. 2(c).

The magnetic proximity effect with the top and bottom
ferromagnets is included in the electronic structure of NbSe2

as [36,37]

HJ =
∑
k ss′

J · σss′c†
kscks′ . (3)

The superconducting term in the Hamiltonian is a conven-
tional s-wave superconducting order of the form

HSC =
∑

k

(�c†
k,↑c†

−k,↓ + �∗c−k,↓ck,↑) + K, (4)

where c(†)
k,s is the annihilation (creation) operator with spin s at

momentum k, σ is the vector of Pauli spin matrices, and J =
(Jx, Jy, Jz ) is the vector of induced exchange field in the NbSe2

FIG. 2. (a) Top view of the crystal (hexagonal) structure of
monolayer NbSe2. Due to the sublattice imbalance, it can be effec-
tively treated as a triangular lattice with one d orbital per site. The
shaded area is the unit cell of the triangular lattice and the black
arrows denote the unit vectors connecting nearest neighbors with
complex hopping parameters. The lattice constant a is the distance
between Nb atoms. The spin quantization axis is in the out-of-plane
direction. (b) Brillouin zone of monolayer NbSe2 together with the
energy bands at the Fermi level. (c) Band structure of the effective
single-band model around the Fermi level of monolayer NbSe2. The
band structure is along the high symmetry points denoted as the blue
arrows in (b). The red and the blue curves represent spin up and spin
down components, respectively.

layers. It can be expressed in the spherical coordinates as
Jx = J sin θ cos ϕ, Jy = J sin θ sin ϕ, and Jz = J cos θ, where
J is the strength of the induced exchange field in the supercon-
ductor layer, and θ and ϕ are the related polar and azimuthal
angles, respectively.

The superconducting pair potential is determined self-
consistently as � = g

∫ 〈c−k↑ck↓〉d2k, where g is the interac-
tion potential. The last term in Eq. (4) then can be written as

K = g
∫

〈c†
k↑c†

−k↓〉〈c−k↓ck↑〉d2k = |�|2
g

. (5)

The contribution of superconductivity to the energetics of
the system can be obtained by considering the free energy den-
sity. In general, the free energy density can be derived from the
partition function [38] Z = e−K/kBT

∏
k,n,σ (1 + e−εk,n,σ /kBT ),

where K is the constant term in the Hamiltonian in Eq. (4),
εk,n,σ are the eigenvalues (with spin σ ) of the Hamiltonian
of the system under consideration, T is the temperature, and
kB is the Boltzmann constant. We set kB = 1 hereafter. The
band index n runs only over the empty states. The free energy
density is defined as f = −T log Z . The detailed form of the
free energy density can be written as

f = |�|2
g

− T
∑
k,n

log
[
2 + 2 cosh

(εk,n

T

)]
. (6)

In the following we concentrate on the free energy density fs

of the superconducting state in the presence of exchange field
compared to the free energy density fn in the normal state in
the absence of the exchange field fsn = fs(J) − fn(J = 0).
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FIG. 3. (a) Free energy density as a function of polar and az-
imuthal angles for the exchange field J = 0.5HP and for the strength
of the SOC λsoc = 150�0. Here HP = �0/

√
2 is the Pauli paramag-

netic limit, and �0 is the superconducting pair potential of NbSe2

at T = 0 and J = 0. The yellow dashed line is the normal state
energy fsn(� = 0). (b) Spin susceptibility at T = 0 as a function of
the superconducting pair potential �0. Inset: Spin susceptibility as
a function of temperature for various strengths of SOC λsoc. Here
J = 0.1HP. (c) Free energy density as a function of J at T = 0
in the presence and absence of the SOC. The black curve is the
paramagnetic energy density fP in Eq. (8). (d) Critical temperature of
in- and out-of-plane exchange fields as a function of exchange field
strengths J , for λsoc = 150�0. The critical temperature is normalized
to the critical temperature at J = 0.

III. IMPACT OF EXCHANGE FIELD
ON ISING SUPERCONDUCTIVITY

Before the discussion of the magnetic vdW heterostructure,
it is instructive to summarize the properties of Ising super-
conductivity in the proximity of one ferromagnetic layer. The
free energy density difference between the superconducting
and normal state energy fsn has exchange field independent
and dependent parts. The exchange field dependent part f h

sn =
fsn(J) − fsn(J = 0) is plotted as a function of the angles of
the exchange field in Fig. 3(a) for T = 0. We can see that
the superconductor energetically prefers an in-plane exchange
field (θ = π/2). This is a direct consequence of Ising su-
perconductivity. For conventional superconductors, the free
energy density fsn is the same for both in-plane and out-of-
plane exchange fields below the Pauli paramagnetic limit. In
superconductors with a lack of inversion symmetry (such as
NbSe2), the Ising spin-orbit interaction gives rise to a nonzero
and anisotropic spin susceptibility even at T = 0 [39–41].

The free energy density fsn of an Ising superconductor in
the presence of an exchange field at T = 0 can be written as
[42]

fsn = − 1
2 N (0)�2

0 − 1
2χs(T = 0)J2 sin2 θ, (7)

where N (0) is the density of states at the Fermi level, �0 is
the superconducting pair potential at T = 0 and J = 0, and
χs is the spin susceptibility for an in-plane exchange field

describing the anisotropic spin response. For conventional
superconductors there is no such anisotropy, and the spin sus-
ceptibility vanishes at T = 0 in the absence of spin relaxation
[43].

The amount of anisotropy depends on the size of the
spin-orbit coupling λsoc so that for very large λsoc, the spin
susceptibility χs for an in-plane exchange field approaches the
normal-state spin susceptibility. This is shown in Fig. 3(b) as
a function of �0/λsoc at T = 0 and in the inset as a function
of temperature. On the other hand, for an exchange field
perpendicular to the plane, the spin susceptibility corresponds
to the case with λsoc = 0.

The anisotropic spin susceptibility in Ising superconduc-
tors also leads to an enhancement of the paramagnetic critical
field [28,44]. In the presence of an exchange field, the normal-
state free energy density is lowered by the term − 1

2χn(θ )J2.
When the exchange field breaks the superconducting order,
fsn equals the paramagnetic energy density fP in the normal
state

fP = − 1
2χn(θ )J2, (8)

where χn(θ ) is the spin susceptibility in the normal state.

Equating fsn and fP yields Jc =
√

N (0)
χn(θ )−χs (T =0) sin2 θ

�0. Here

χn(θ ) = χP cos2 θ + χ soc
n sin2 θ , where χP = 2N0 is the Pauli

paramagnetic susceptibility, and χ soc
n is the normal state spin

susceptibility caused by Ising SOC. For an out-of-plane field
(θ = 0), the spin susceptibility is χP and the superconduc-
tivity experiences a first-order transition to the normal state,
as shown in the red curve in Fig. 3(c). For θ = π/2, the
susceptibility is completely determined by χ soc

n and there is a
second-order transition to the normal state at Jc 	 HP. For the
case of monolayer TMDs, χ soc

n 	 χP. For weak SOC, χ soc
n →

χP, and the normal state susceptibility is isotropic [39]. The
critical temperature is also influenced by this anisotropic spin
susceptibility. In Fig. 3(d) the critical temperature Tc is shown
for in- and out-of-plane exchange fields as a function of the
exchange field strength J . One can see that Tc remains nearly
unchanged for increasing the in-plane exchange field, but the
superconductivity is destroyed at the Pauli paramagnetic limit
for the out-of-plane exchange field.

The strength of the induced exchange field in the super-
conductor depends on many factors [37,45,46]. If the induced
exchange field is out-of-plane and is larger than the Pauli
paramagnetic limit, J > HP, the monolayer TMD remains
in the normal state. However, the magnitude of J depends
on the chosen materials combination, and can also be below
the critical field HP. In what follows, we consider a case of
the induced exchange field J < HP in the monolayer TMD
[9,46,47] so that it becomes superconducting at low enough
temperature.

The direction of the exchange field is related to the mag-
netization direction of the ferromagnet, which is determined
by the anisotropy energy. A monolayer ferromagnet such as
CrI3 [9] and CrBr3 [47] shows a uniaxial anisotropy, and the
anisotropy energy density can be written as

Uaniso = Keff sin2 θ, (9)

where θ is the polar angle of the magnetization direction
with respect to the z axis, and Keff is the effective anisotropy
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constant with the unit of energy density. The main source of
the effective anisotropy constant Keff is the spin-orbit interac-
tion [48–50]. The positive Keff > 0 means the magnetization
direction is along the easy axis of the ferromagnet, and the
negative Keff < 0 would mean the magnetization direction is
in the plane.

In the normal state, the anisotropic spin susceptibility
caused by the spin-orbit interaction favors in-plane magnetic
alignment, see Fig. 3(a). In the superconducting state, this
tendency persists, but becomes weaker because the spin sus-
ceptibility is smaller in the superconducting state, as shown
in Fig. 3(b). Then the direction of the exchange field in the
Ising superconductor is determined by the competition of the
anisotropy energy of the ferromagnet and the contribution of
spin susceptibility to the free energy density of the supercon-
ductor. The part of total free energy density dependent on
magnetization configuration can be written as

faniso = (
Keff − 1

2χSJ2) sin2 θ. (10)

If the condition Keff < χSJ2/2 holds, then the direction of
the exchange field is in the plane. This relation is possible
as the anisotropy energy of a monolayer ferromagnet can be
tuned by various means. For example, the magnetic anisotropy
can be engineered by strain [51] and by controlling the SOC
via chemical tuning [47]. In other words, the anisotropic spin
susceptibility leads to the switching of an off-plane easy axis
anisotropy to the easy plane anisotropy if Keff < χSJ2/2. With
this mechanism in mind, let us now discuss how the interplay
between superconductivity driven-magnetic switching would
affect the coupling between two ferromagnets.

IV. ISING-MEDIATED MAGNETIC HYSTERESIS

In the following we consider a ferromagnet/
superconductor/ferromagnet (F/S/F) structure, in which
the easy axis of the ferromagnets is influenced by the
presence of superconductivity. The magnetic moments in
the ferromagnets are coupled through the superconducting
layer, and this coupling also determines the direction of the
induced exchange field. The full energetics of the system can
be written as

faniso = K1 sin2 θ1 + K2 sin2 θ2 + δ fsn, (11)

where K1/2 are the effective anisotropy constants of the two
ferromagnets, θ1/2 are the related polar angles, and δ fsn is
the contribution of superconductivity to the anisotropy energy
density.

It is first worth noting how this mechanism would work
in a conventional superconductor. For a conventional super-
conductor with a thickness smaller than the superconducting
coherence length, the coupling between the ferromagnets
through the superconducting layer gives rise to an antipar-
allel configuration of the magnetization directions [52–54].
The contribution of this coupling to the energetics of the
system δ fsn is evaluated as δ fsn = N (0)J̄2 cos2[ 1

2 (θ1 − θ2)],
where J̄ would be the strength of the induced exchange field
in the metallic film. Because of this term, the antiparallel
alignment of the magnetization directions is favored in the
system. However, and in stark contrast, for the case of a
vdW heterostructure containing a two-dimensional Ising su-

perconductor, the ferromagnetic layers couple through the
spin susceptibility [55]. We now write the components of the
exchange field as Jx = J (sin θ1 cos ψ1 + sin θ2 cos ψ2), Jy =
J (sin θ1 sin ψ1 + sin θ2 sin ψ2), Jz = J (cos θ1 + cos θ2) in the
Hamiltonian in Eq. (3), diagonalize the Hamiltonian in
Eq. (1), obtaining the contribution of this coupling to the
energetics of the system δ fsn = − 1

2χsJ2(sin θ1 + sin θ2)2. The
overall effect of this term is to lower the total anisotropy
energy. Hence a parallel alignment maximizes this effect.
This is opposite to the case of a thin metallic superconductor
discussed above, where an antiparallel alignment is energeti-
cally favored. Note that our discussion above neglects direct
Heisenberg coupling between the magnetic monolayers. The
nature of that coupling can be ferromagnetic or antiferro-
magnetic depending on the geometric details. A well known
example is the case of CrI3 bilayers [9,56–58], where depend-
ing on the relative alignment between layers the coupling can
be either ferromagnetic or antiferromagnetic. This contribu-
tion is a higher order superexchange depending on the valence
states of each element, can be only captured properly with
quantum chemistry density functional theory calculations, and
can potentially depend on the geometric alignment between
monolayers [9,56–58]. This contribution would determine the
relative orientation of the magnetization between the two
magnetic monolayers, and for the sake of concreteness in
Fig. 1 was taken as ferromagnetic.

The ferromagnetic coupling mediated by Ising supercon-
ductivity can be detected by a magnetic hysteresis measure-
ment. We use the Stoner-Wohlfarth (SW) model [59,60] to
calculate the hysteresis loop. In the SW model, the directions
of the magnetization density M and the external applied field
H are characterized by different angles with respect to the
easy axis (polar angles). In the system we are considering,
there is also the contribution of the superconductor to the
anisotropy energy. Then the magnetization density is sub-
jected to the competition between the anisotropy energy and
Zeeman energy caused by the external applied field. The total
anisotropy energy density is written as

faniso = K1 sin2 θ1 + K2 sin2 θ2 + δ fsn

− HMs1 cos (θ1 − ϑ ) − HMs2 cos (θ2 − ϑ ), (12)

where H is the external applied field, Ms1/2 is the saturation
magnetization density in the two ferromagnets, and ϑ is the
angle between the easy axis and the direction of the external
magnetic field. Substituting the value of δ fsn, we have

faniso = (
K1 − 1

2χsJ
2
)

sin2 θ1

+ (
K2 − 1

2χsJ
2
)

sin2 θ2 − χsJ
2 sin θ1 sin θ2

− HMs1 cos (θ1 − ϑ ) − HMs2 cos (θ2 − ϑ ). (13)

The hysteresis curve is then obtained by calculating the lon-
gitudinal and transverse components of the magnetization
density

Mz = Ms1 cos θ∗
1 + Ms2 cos θ∗

2 , (14)

Mx = Ms1 sin θ∗
1 + Ms2 sin θ∗

2 , (15)

where θ∗
1/2 are the angles for which the total anisotropy energy

density faniso is minimized.
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FIG. 4. (a) Hysteresis curve for K1 = 1.05χs(T = 0)J2 for
an out-of-plane external field. (b) Hysteresis curve for K1 =
0.95χs(T = 0)J2 for an out-of-plane external field. (c) Hysteresis
curve for K1 = 0.85χs(T = 0)J2 for an out-of-plane external field.
(d) Same with (c) but for in-plane external field.

For an easy axis ferromagnet such as CrBr3 or CrI3,
the induced exchange field is out-of-plane. In the absence
of the Ising superconductor, the magnetic alignment of the
system is ferromagnetic and two coercive fields appear in
the hysteresis curve at Hc1Ms = ±2K1 and Hc2Ms = ±2K2.
If the anisotropy energy of the ferromagnet is larger than
the contribution δ fsn of the superconductor, the net effect
of the Ising superconductor leads to a modification of the
anisotropy constants, as can be seen from Eq. (13). The mod-
ification shifts the coercive fields as Hc1Ms = ±2(K1 − χsJ2)
and Hc2Ms = ±2(K2 − χsJ2). We can see that, if the values
of K1 and K2 are comparable with χsJ2, the temperature
dependence of the anisotropic spin susceptibility causes sig-
nificant modifications to the hysteresis curves. In order to see
such modifications, the difference between K1 and K2 must
be smaller than the difference of the spin susceptibility χs

at Tc and T = 0. In the following calculations we set λsoc =
150�0, K1 = 1.12K2, and Ms1 = 1.12Ms2 = 1.12Ms to illus-
trate how superconductivity affects the magnetic hysteresis
in a temperature dependent manner. The hysteresis curve is
shown in Fig. 4. It is worth noting that, while λsoc/� can-
not be efficiently tuned in a specific material, specific ratios
can be obtained by taking different dichalcogenides including
1H-TaS2, 1H-TaSe2, 1H-NbS2, 1H-NbSe2, and potentially
continuously using dichalcogenide alloys [61].

The modified coercive fields for strong anisotropy fields
Ki > χsJ2 are shown in the hysteresis curve in Fig. 4(a).
Decreasing the temperature, χs becomes smaller, and the dif-
ference in the coercive fields becomes larger. In the opposite
case Ki < χsJ2, the induced field is in the plane, and there
is no hysteresis for an out-of-plane component of the mag-
netization density Mz, as shown in Fig. 4(c). The hysteresis
curve for Mx is shown in Fig. 4(d). Contrary to the case in
Fig. 4(a), the location of the coercive fields moves closer at
lower temperature for smaller χs.

A more interesting case takes place for ferromagnets with
anisotropy constants with intermediate values [47]. In this
case, the induced exchange field is out-of-plane at low tem-
perature and in-plane at a higher temperature. This transition
takes place at a temperature T = T ∗ and is due to the tem-
perature dependence of the spin susceptibility χs, so that the
induced field is in-plane for a temperature T > T ∗. This case
is shown in Fig. 4(b). In this limit, an in-plane exchange field
is favored in Ising superconducting and normal states for T >

T ∗. Note that, besides moving the coercive fields of single
magnets, NbSe2 promotes a ferromagnetic coupling between
the magnets in the normal state. This affects the hysteresis
curves by reducing the region with antiparallel magnetization
directions, but cannot be directly measured in situ because of a
lack of a control measurement without the presence of NbSe2.
In the superconducting state this ferromagnetic coupling de-
creases but, unlike the coupling mediated by a conventional
superconductor, does not become antiferromagnetic.

It is also worth noting that, beyond the NbSe2 platform
considered here, this phenomenology can also potentially take
place for generic monolayer Ising superconductors, for exam-
ple electron doped MoS2 [26,62] and other TMD monolayers
like TaS2/TaSe2 [63]. For other potential candidates with
smaller spin-orbit coupling, the dependence of the anisotropic
spin susceptibility on temperature is stronger, see Fig. 3(b).
Then the hysteresis curves can be obtained for more varied
anisotropy fields.

Interestingly, while magnetic order is often controlled by
external knobs such as magnetic field, here we propose a
radically different mechanism in which the magnetic order
itself is controlled by the superconducting order in one of the
components of the heterostructure. These results highlight that
Ising superconductivity controls the way the system reacts to
magnetic fields, an effect that can be present in a variety of
superconductor-ferromagnet van der Waals heterostructures.
From the practical point of view, we exploit the unique tem-
perature dependence of χs to uncover the interplay between
the magnetism and superconductivity.

Besides magnetic hysteresis, which in 2D materials can
be measured with the magneto-optical Kerr effect, the
anisotropic spin susceptibility of the Ising superconductivity
can be accessed also via the ferromagnetic resonance of the
multilayer system [54].

For the possible experimental realization, below we briefly
elaborate on the most promising materials candidates based
on recent experiments. First, recent experiments demonstrated
heterostructures of the monolayer ferromagnet with CrBr3 on
bulk NbSe2 [12], making CrBr3 a promising candidate for
our proposal. While the experiment focused on a monolayer
CrBr3 on top of a bulk NbSe2, it is worth noting that the
value of the exchange proximity would be comparable for
a monolayer NbSe2 given its van der Waals nature. From
the point of view of the ferromagnetic insulator candidates,
apart from CrBr3, CrI3 [9], CrCl3 [46], recently synthetized
chromium heterohalides [47] would provide excellent can-
didates. Importantly, van der Waals chromium heterohalides
have been demonstrated to have a completely tunable mag-
netic anisotropy, making them outstanding candidates for our
proposal [47]. Finally, we note that the magnetic anisotropy
could also be engineered by strain [51], yet this approach
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could be more challenging from the experimental point of
view.

It is finally worth mentioning that the possible moiré
patterns between the layers [64,65] and correlation effects
[65,66] in the TMDs have an influence on the effective values
of the parameters used in our model. These effects modify
the band structure of the middle layer, especially the split-
ting around the K points. However, the correlation effects in
the ferromagnetic layers, for example magnetic excitations
[67–69], do not directly influence the results, as these effects
do not modify the form of the low energy Hamiltonian for the
hybrid heterostructure we are considering.

V. CONCLUSIONS

To summarize, we demonstrate how Ising supercon-
ductivity allows controlling the magnetic coupling in
ferromagnet/NbSe2/ferromagnet heterostructures. In partic-
ular, we show that the anisotropic spin response inherited
by the Ising superconductor allows flipping the magnetic
alignment upon entering the superconducting state. We show
that the contribution of the Ising superconductivity to the
energetics of the system stems from an anisotropic spin sus-
ceptibility. In the magnetic vdW heterostructure, the coupling
between the ferromagnets is achieved through the anisotropic
spin susceptibility, which gives rise to a parallel alignment
of the magnetization directions, both in the superconduct-
ing and normal states. Interestingly, such magnetic switching
was shown to lead to a hysteretic behavior in the magnetic
alignment purely driven by the spin susceptibility of the
NbSe2 inherited from Ising spin-orbit coupling. Our results
put forward superconductor/ferromagnet van der Waals het-
erostructures as a novel platform to explore superconducting
spintronics phenomena dominated by Ising spin-orbit cou-
pling effects.
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APPENDIX A: SINGLE-BAND TIGHT-BINDING MODEL

Here we elaborate on the low energy model used for
NbSe2. We take a single-band model in a triangular lattice as
shown in Eq. (2), whose Bloch Hamiltonian takes the form

ξk↑ = 2t0[cos (2α − φ0) + 2 cos (β ) cos (α + φ0)]

+ 2t1[cos (3α − β − φ1) + cos (2β − φ1)

+ cos (3α + β + φ1)] + 2t2[cos (2α + 2β − φ2)

+ cos (2α − 2β − φ2) + cos (4α + φ2)]

+ 2t3[cos (5α + β − φ3) + cos (4α − 2β − φ3)

+ cos (4α + 2β + φ3) + cos (α − 3β + φ3)

+ cos (5α − β + φ3) + cos (α + 3β + φ3)]

+ 2t4[cos (3α − 3β − φ4) + cos (3α + 3β − φ4)

+ cos (6α + φ4)] + 2t5[cos (2α − β − φ5)

+ cos (4β − φ5) + cos (6α + 2β + φ5)] + ε, (A1)

ξk↓ = 2t0[cos (2α + φ0) + 2 cos (β ) cos (α − φ0)]

+ 2t1[cos (3α − β + φ1) + cos (2β + φ1)

+ cos (3α + β − φ1)] + 2t2[cos (2α + 2β + φ2)

+ cos (2α − 2β + φ2) + cos (4α − φ2)]

+ 2t3[cos (5α + β + φ3) + cos (4α − 2β + φ3)

+ cos (4α + 2β − φ3) + cos (α − 3β − φ3)

+ cos (5α − β − φ3) + cos (α + 3β − φ3)]

+ 2t4[cos (3α − 3β + φ4) + cos (3α + 3β + φ4)

+ cos (6α − φ4)] + 2t5[cos (2α − β + φ5)

+ cos (4β + φ5) + cos (6α + 2β − φ5)] + ε, (A2)

where tis are the hopping energies between first to sixth neigh-
bors, φi are corresponding phases, ε is the on-site energy,
α = kxa/2, β = √

3kya/2, and a is the lattice constant shown
in Fig. 2(a).

The tight-binding parameters are determined by comparing
the effective one-band model with the three-band model in
Ref. [70], and listed in Table I.

The momentum dependent splitting can be obtained from
the difference between the matrix component of the Hamilto-
nian in Eqs. (A1) and (A2),

�soc = ξk↑ − ξk↓ = 8t0 sin φ0(cos α − cos β ) sin α. (A3)

The strength of the SOC can be defined as the half of the
splitting at a K (or K ′) point

λsoc = 1
2 |�soc(K )| = 3

√
3t0 sin φ0. (A4)

For monolayer NbSe2, the parameters in Table I give λsoc =
77.2 meV. Note that the tight-binding parameters are fitted
first in the absence of SOC (φi = 0), and φis are determined
in the presence of SOC with respect to the splitting between
energy bands. As the effective value of λsoc is influenced by
the presence of charge density wave order [71], we consider
different λsoc by varying φ0.

APPENDIX B: SELF-CONSISTENCY EQUATION

The self-consistency equation can be derived from the
free energy density by minimizing with respect to the su-
perconducting pair potential. Using the free energy density
expression in Eq. (6), we have

∂ fsn

∂�
= 2�

g
−

∑
k,n

∂εk,n

∂�
tanh

( εk,n

2kBT

)
= 0, (B1)

where εk,n is the eigenvalue of the Hamiltonian in Eq. (1). For
convenience we now write the partial derivative of εk,n with
respect to � in terms of εk,n as

∂εk,n

∂�
= �

(−2ε2
k,n + ξ 2

k↓ + ξ 2
k↑ + 2�2−2J2

)
(
ξ 2

k↑−ξ 2
k↓

)
hz + εk,n

(
ξ 2

k↓ + ξ 2
k↑ + 2�2 + 2J2

)−2ε3
k,n

.

(B2)
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TABLE I. Parameters of the one-band tight-binding model fitted to the three-band model.

ε t0 t1 t2 t3

−44.5 meV 26.3 meV 99.1 meV −1.4 meV −11.2 meV

t4 t5 φ0 φ1–5

−14.6 meV 2.5 meV 0.6 0

Changing the momentum sum to a momentum integral, we
can write the self-consistency equation as

g

2

∫
BZ

dk
(2π )2

[∑
n

tanh
( εk,n

2kBT

)

× ξ 2
k+ − J2 + �2 − ε2

k,n

ξ 2
k−h cos θ + εk,n

(
ξ 2

k+ + J2 + �2 − ε2
k,n

)
]

= 1, (B3)

where ξ 2
k+ = (ξ 2

k↓ + ξ 2
k↑)/2 and ξ 2

k− = (ξ 2
k↑ − ξ 2

k↓)/2. The
interaction potential g could be determined from the supercon-
ducting pair potential of monolayer NbSe2 at zero temperature
and exchange field �0 = 1.8Tc0, where Tc0 = 3 K [25,29].
The momentum integral goes over the first Brillouin zone.
This model hence disregards the possible retardation effects
in the source of the attractive interaction. For the value of �

small compared to the bandwidth considered in this paper, this
simplification only affects the chosen value of the coupling
constant g with which � is obtained.

APPENDIX C: FREE ENERGY DENSITY
AT ZERO TEMPERATURE

The Hamiltonian in Eq. (4) can be written in the matrix
form as

HBdG =
(

Ĥ0(k) − J · σ �̂

�̂† −σy
[
Ĥ∗

0 (−k) − J · σ∗]σy

)
,

(C1)
where Ĥ0(k) = diag(ξk↑, ξk↓), ξk↑↓ is given in Eqs. (A1) and
(A2), �̂ = �τ1, J is the induced exchange field in the super-
conductor, and σi/τi is the Pauli matrix in the spin/Nambu
space. Up to the second order in J = |J|, the eigenvalues of
the Hamiltonian in Eq. (C1) can be written as

Ek↑ = ±
√

ξ 2
k↑ + �2

0 + J cos θ

±
(
ξk↑ξk↓ + ξ 2

k↑ + 2�2
0

)
(
ξ 2

k↑ − ξ 2
k↓

)√
ξ 2

k↑ + �2
0

J2 sin2 θ,
(C2)

Ek↓ = ±
√

ξ 2
k↓ + �2

0 − J cos θ

±
(
ξk↑ξk↓ + ξ 2

k↓ + 2�2
0

)
(
ξ 2

k↓ − ξ 2
k↑

)√
ξ 2

k↓ + �2
0

J2 sin2 θ,
(C3)

where θ is the polar angle of the exchange field. We note that
in the presence of an in-plane component of the exchange
field, ↑,↓ denotes the pseudospin degree of freedom, instead
of the original z spin component.

At T = 0, the free energy density can be simplified as

f (T = 0) = �2
0

g
−

∑
k,n

εk,n. (C4)

Then we have

fsn = −
∫

dk
(2π )2

(√
ξ 2

k↑ + �2
0 − ξk↑ +

√
ξ 2

k↓ + �2
0 − ξk↓

)

−
∫

dk
(2π )2

⎡
⎣ (

ξk↑ξk↓ + ξ 2
k↑ + 2�2

0

)
(
ξ 2

k↑ − ξ 2
k↓

)√
ξ 2

k↑ + �2
0

+ (ξk↑ξk↓ + ξ 2
k↓ + 2�2

0)

(ξ 2
k↓ − ξ 2

k↑)
√

ξ 2
k↓ + �2

0

⎤
⎦J2 sin2 θ + �2

0

g
. (C5)

The integrals in the first row can be solved by changing
the momentum integral to an energy integral, which yields
−N (0)�2/2 − �2/g, where N (0) is the density of states at
the Fermi level, and g is the interaction potential. The integral
in the second row is related to the spin susceptibility due to
the definition χspin = −∂2 fsn/∂J2|J→0. From Eq. (6) we have

χi = −∂2 f

∂J2
i

∣∣∣
Ji→0

=
∑
k,n

[
1

2T
sech2

(εk,n

2T

)(
∂εk,n

∂Ji

)2

+ tanh
(εk,n

2T

)(
∂2εk,n

∂J2
i

)]∣∣∣∣∣
Ji→0

, (C6)

where i =‖ / ⊥. At T = 0, from the eigenvalues in Eqs. (C2)
and (C3), we have χ⊥ = 0, and the second integral in Eq. (C5)
is equal to the spin susceptibility χ‖ = χs. Now we can write

fsn = − 1
2 N (0)�2

0 − 1
2χsJ

2 sin2 θ. (C7)

Contrary to conventional superconductors with weak spin-
orbit coupling, the spin susceptibility is nonzero at zero
temperature. It leads to several important properties of Ising
superconductivity like enhancing the critical field of a super-
conductor in the presence of an in-plane exchange field.

The spin susceptibility can be solved analytically for the
case of weak SOC. For such a case, the spin-splitting caused
by SOC can be approximated by the splitting at the Fermi
level. We can write ξk↑ = ξk + λ0 and ξk↓ = ξk − λ0, where
λ0 = |�soc(kF )|/2, and �soc is defined in Eq. (A3). Then the
momentum integral can be transformed to energy integral, and
the spin susceptibility is given by

χs = χP

⎡
⎣1 − �2

0

2λ0

√
λ2

0 + �2
0

log

⎛
⎝ λ0 +

√
λ2

0 + �2

−λ0 +
√

λ2
0 + �2

⎞
⎠

⎤
⎦,

(C8)

where χP = 2N0 is the Pauli paramagnetic susceptibility. We
can see that for weak SOC, χ soc

n → χP, and the structure
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of the spin susceptibility is consistent with known results
[39,72]. For strong SOC, namely, λsoc ∼ t0, the spin sus-

ceptibility cannot be solved analytically and the numerically
calculated results are shown in the main text.
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