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Spatial emergence of off-diagonal long-range order throughout the BCS-BEC crossover
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In a superfluid system, off-diagonal long-range order is expected to be exhibited in the appropriate reduced
density matrices when the relevant particles (either bosons or fermion pairs) are considered to recede sufficiently
far apart from each other. This concept is usually exploited to identify the value of the condensate density,
without explicit concern, however, as to the spatial range over which this asymptotic condition can effectively be
achieved. Here, based on a diagrammatic approach that includes beyond-mean-field pairing fluctuations in the
broken-symmetry phase at the level of the t-matrix also with the inclusion of the Gorkov-Melik-Barkhudarov
(GMB) correction, we present a systematic study of the two-particle reduced density matrix for a superfluid
fermionic system undergoing the BCS-BEC crossover, when the entities to recede far apart from each other
evolve with continuity from largely overlapping Cooper pairs in the BCS limit to dilute composite bosons in the
BEC limit. By this approach, we not only provide the coupling and temperature dependence of the condensate
density at the level of our diagrammatic approach, which includes the GMB correction, but we also obtain
the evolution of the spatial dependence of the two-particle reduced density matrix, from a power law at low
temperature to an exponential dependence at high temperature in the superfluid phase, when the interparticle
coupling spans the BCS-BEC crossover. Our results put limitations on the minimum spatial extent of a finite-size
system for which superfluid correlations can effectively be established.

DOI: 10.1103/PhysRevB.105.054505

I. INTRODUCTION

The concept of off-diagonal long-range order (ODLRO)
[1] is central to superfluid and superconducting systems in
the broken-symmetry phase. It entails the appearance of an
asymptotic correlation in the off-diagonal matrix elements in
the spatial representation of the one-particle (for bosons) and
two-particle (for fermions) reduced density matrices [1,2].

Accordingly, it could be of interest to assess how this
property manifests itself in the context of the BCS-BEC
crossover, whereby the system evolves with continuity from
a BCS (fermionic) regime of highly overlapping Cooper pairs
to a BEC (bosonic) regime of dilute composite bosons [3]. In
particular, for a Fermi gas this crossover is spanned in terms
of the dimensionless coupling parameter (kF aF )−1, where
kF = (3π2n)1/3 is the Fermi wave vector with density n, and
aF is the scattering length of the two-fermion problem. This
parameter ranges from (kF aF )−1 � −1 in the weak-coupling
(BCS) regime when aF < 0, to (kF aF )−1 � +1 in the strong-
coupling (BEC) regime when aF > 0, across the unitary limit
when |aF | diverges.

In this context, previous theoretical works have specifically
considered obtaining only the condensate density n0, which
can be extracted from the values of the above off-diagonal
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matrix elements in the asymptotic limit of large spatial sepa-
ration. This has been done for a wide coupling range across
the BCS-BEC crossover and for temperatures from zero up
to the superfluid critical temperature Tc, both at the mean-
field level [4] and with the inclusion of fluctuation effects
at the Gaussian level [5]. Experimental works with ultracold
Fermi gases, too, have considered determining the conden-
sate density, mainly at low temperatures around the unitary
regime [6,7] and more recently over a wider coupling range
[8]. The value of the condensate density at unitarity (both
at zero and finite temperature) was also recently obtained
by several quantum Monte Carlo simulations [9–14]. In the
present work, we complement and extend the above previous
theoretical studies about the ODLRO for a Fermi gas undergo-
ing the BCS-BEC crossover by not only addressing the value
of the condensate density as previously done in the literature,
but also determining over what spatial range this asymptotic
correlation is established below the superfluid temperature Tc

in the broken-symmetry phase.
A characteristic feature of a superfluid is that, due to bro-

ken gauge symmetry, correlations of infinite range establish
long-range phase coherence. This property results in the static
phase-phase (transverse) correlation function decaying as the
inverse power of the distance [15]. In the case of the ODLRO
of interest here, on the other hand, the two-particle reduced
density matrix corresponds to an equal-time correlation func-
tion [cf. Eq. (1) below and Sec. II E], where by equal-time we
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mean that its calculation implies summing over an infinite set
of frequencies (in contrast to a static correlation function, for
which only the zero frequency is required). Through an analy-
sis of its spatial behavior, we will show that, at sufficiently low
temperature, this correlation function decays with distance as
an inverse-square law, while only at higher temperatures in
the superfluid phase is the inverse-proportionality decay with
distance characteristic of the static phase-phase correlation
function recovered (cf. Sec. III C). This finding is consistent
with the progressive irrelevance of the finite-frequency com-
ponents in the description of a quantum many-body system as
the temperature is raised above zero [16], when a crossover
temperature from quantum to thermal regimes can be identi-
fied. In the following, this temperature analysis will be carried
out in detail with the interparticle coupling varying along
the BCS-BEC crossover. Our findings are consistent with the
occurrence of a generic scale invariance, whereby long-range
order appears in a whole region of the phase diagram, with
power-law decays of correlation functions occurring in an
entire phase and not just at an isolated critical point [17].

Notwithstanding the occurrence of the inverse power-law
behaviors mentioned above, from the spatial dependence
of the two-particle reduced density matrix we shall be
able to extract (albeit with some limitations in the tem-
perature interval 0 � T � Tc—see below) a coupling- and
temperature-dependent length referred to as the ODLRO
length ξodlro, which turns out to be related to the inter-
pair (healing) length, and which, similarly to it, diverges
at the critical temperature. This healing length (sometimes
referred to as the “phase coherence length” ξphase) was
originally determined as a function of coupling along the
BCS-BEC crossover, at zero temperature in Ref. [18] as
well as a function of temperature in the superfluid phase in
Ref. [19], by looking at the large-distance exponential behav-
ior of the static amplitude-amplitude (longitudinal) correlation
function. Here, we will demonstrate that this lengthscale
characteristic of the (massive) static longitudinal correlation
function manifests itself also in the (massless) equal-time
two-particle reduced density matrix associated with ODLRO
(cf. Sec. III C). However, this will turn out to be possible
only in the temperature ranges near absolute zero and near
the transition temperature Tc, for reasons related to the fact
that determining a time-dependent Ginzburg-Landau equa-
tion in the BCS regime was found to be possible only in
those temperature regimes [20]. Physically, this is because
at finite temperature there is the possibility of local conver-
sion of the thermally excited normal excitations to superfluid.
Mathematically, this is due to the intrinsic contribution of
the finite-frequency components to the equal-time ODLRO
correlation function of interest here.

A distinctive feature of both lengths ξodlro and ξphase at low
temperature is that, as a function of coupling, they saturate
to a minimum value that is of the order of the interparticle
distance. Recently, this feature has also been highlighted in
condensed-matter experiments [21,22], where it was used to
bring out analogies with the BCS-BEC crossover [3] and, in
particular, to identify what would therein correspond to the
unitary regime.

We shall find further that an additional lengthscale (re-
ferred to as ξ1) enters the ODLRO correlation function, which

turns out to be related to the intrapair correlation length (or
Cooper pair size) ξpair that remains finite at Tc (cf. Sec. III B).
This length was determined as a function of coupling along
the BCS-BEC crossover, at zero temperature in Ref. [23]
and as a function of temperature in the superfluid phase in
Ref. [19].

In practice, achieving these goals will be implemented
by relying on the diagrammatic t-matrix approximation in
the broken-symmetry phase as developed in Refs. [24,25],
which will enable us to extract the asymptotic spatial be-
havior of the two-particle reduced density matrix of ODLRO
with reasonable numerical effort. In addition, as far as the
calculation of the condensate density is concerned, we will
go beyond this approach and include also the Gorkov-Melik-
Barkhudarov (GMB) correction [26] throughout the whole
BCS-BEC crossover, which was proved in Ref. [27] to be
an important step for a reliable description of the superfluid
gap parameter not only in the BCS but even in the unitary
regime.

The main results obtained in this article are as follows (for
the reader’s convenience, in each item below we explicitly
refer to the figures that report the main results mentioned
therein):

(i) The improved values of the condensate density n0, both
as a function of coupling and temperature, whose novelty is
to include the GMB correction and which are compared with
recent experimental and quantum Monte Carlo results (cf.
Figs. 2–5 in Sec. III A).

(ii) The spatial profiles of the projected density matrix (as
obtained by suitably tracing the two-particle reduced den-
sity matrix), also as a function of coupling and temperature,
which show visually how the asymptotic value n0 is eventually
reached for large separations (cf. Fig. 9 in Sec. III C).

(iii) The coupling and temperature dependence of the char-
acteristic length ξodlro associated with the ODLRO, whenever
it can be extracted from the above spatial profiles and thus
compared with the interpair healing length ξphase (cf. Figs. 7
and 8 in Sec. III C).

(iv) The coupling and temperature dependence of the
length ξ1 associated with the normal contribution to the two-
particle reduced density matrix, which brings out of this
density matrix also the other relevant (intrapair healing) length
ξpair of the BCS-BEC crossover (cf. Fig. 6 in Sec. III B).

(v) The coupling and temperature dependence of the dis-
tance R∗, at which the asymptotic correlations entailed by the
ODLRO can effectively (and pragmatically) be reached within
a given default uncertainty (cf. Fig. 10 in Sec. III C).

(vi) The effect of the finite size of the system on the
apparent value of the condensate system, which can also
be extended above the critical temperature (cf. Fig. 11 in
Sec. III C).

The article is organized as follows. Section II sets up the
diagrammatic approach to the two-particle reduced density
matrix and discusses its various contributions within the t-
matrix approach. Section III reports on the numerical results
obtained for the spatial behavior of the two-particle reduced
density matrix throughout the BCS-BEC crossover over a
wide temperature range, from zero up to (and even above)
Tc. Section IV gives our conclusions. Additional technical
details are given in the Appendixes. Analytic results are given
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in Appendix A for the fermionic one-particle density matrix
within the BCS approximation, in Appendix B for the bosonic
one-particle density matrix within the Bogoliubov approxima-
tion, and in Appendix C for the asymptotic behavior of the
two-particle reduced density matrix at zero temperature in the
BCS limit.

II. THEORETICAL APPROACH

In this section, the two-particle reduced density matrix for
a fermionic system is analyzed in terms of a diagrammatic
approach in the broken-symmetry phase. In this way, not only
will the condensate density be identified through the emer-
gence of the asymptotic ODLRO for large spatial separation
of fermion pairs, but also the spatial extent for reaching this
asymptotic situation will be obtained as a function of coupling
and temperature. To this end, we shall explicitly rely on the
t-matrix approach developed in Refs. [24,25] and adapt it
to the present circumstances. In addition, whenever relevant,
we shall also include the GMB correction as made to evolve
along the BCS-BEC crossover in Ref. [27]. Throughout, we
consider balanced spin populations, and we set h̄ = 1 for
convenience.

A. Diagrammatic approach to the two-particle reduced
density matrix

The two-particle reduced density matrix is defined by (cf.,
e.g., Ref. [2])

h2(r1, r2; r1′ , r2′ ) = 〈ψ†
↑(r1)ψ†

↓(r2)ψ↓(r2′ )ψ↑(r1′ )〉, (1)

where ψσ (r) is a fermionic field operator with spin
σ = (↑,↓), and 〈· · · 〉 stands for an ensemble average. It will
be convenient to group the spatial variables in Eq. (1) as
follows:

r1 = r + ρ

2
, ρ = r1 − r2,

�⇒

r2 = r − ρ

2
, r = 1

2
(r1 + r2), (2)

and similarly for the primed quantities,

r1′ = r′ + ρ′

2
, ρ′ = r1′ − r2′ ,

�⇒

r2′ = r′ − ρ′

2
, r′ = 1

2
(r1′ + r2′ ), (3)

such that the magnitude of R = r′ − r identifies the dis-
tance between the center-of-mass coordinates r and r′ of the
two pairs (r1, r2) and (r1′ , r2′ ), respectively, of opposite-spin
fermions [cf. Fig. 1(a)]. For the homogeneous system in which
we are interested, only three coordinates (say, ρ, ρ′, and R)
suffice to describe the full spatial dependence of h2. In partic-
ular, the ODLRO we are after corresponds to the behavior of
h2 for large values of R = |R|.

When dealing with the broken-symmetry phase, it is conve-
nient to introduce at the outset the Nambu representation [28],
whereby �1(r) = ψ↑(r) and �2(r) = ψ

†
↓(r) with the index
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FIG. 1. (a) Spatial coordinates for the two-particle reduced
density matrix h2, according to the definitions (2) and (3). (b) Di-
agrammatic representation of h2 corresponding to the Bethe-Salpeter
equation (6), where the external indices are identified by the dictio-
nary (5) while the internal indices are integrated over. (c) Pairing
fluctuations contribution to h2 with the structure of a Maki-
Thompson diagram, where the quantity labeled by t stands for a
t-matrix. In panels (b) and (c), full lines represent the single-particle
Green’s functions (with the arrows pointing from the second to the
first of their arguments) and broken lines correspond to the inter-
particle interaction.

� = (1, 2) distinguishing the two components. In terms of this
representation, the two-particle reduced density matrix (1) can
be cast in the form

− h2(r1, r2; r1′ , r2′ )

= 〈Tτ [�1(r1′ , τ )�2(r2, τ
++)�†

2 (r2′ , τ+)�†
1 (r1, τ

+++)]〉,
(4)

where Tτ is the imaginary-time order operator, and τ+ signi-
fies that the imaginary time τ is augmented by the positive
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infinitesimal η. In addition, with the dictionary

1 ←→ (r1′ , τ, � = 1), 2′ ←→ (r2′ , τ+, � = 2),

1′ ←→ (r1, τ
+++, � = 1), 2 ←→ (r2, τ

++, � = 2), (5)

whose short-hand notation encompasses space, imaginary
time, and Nambu indices, h2 can be expressed in terms of the
two-particle Green’s function G2 in the compact form [24]

h2(r1, r2; r1′ , r2′ )

= −G2(1, 2; 1′, 2′)

= G(1, 2′)G(2, 1′) − G(1, 1′)G(2, 2′)

+
∫

d3456G(1, 3)G(6, 1′) T (3, 5; 6, 4)

× G(4, 2′)G(2, 5). (6)

Here, G is the single-particle Green’s function, and T is the
many-particle T -matrix, which formally solves the Bethe-
Salpeter equation for G2 [as depicted in Fig. 1(b)] [24]. In
any practical calculation based on diagrammatic approaches,
suitable approximations have to be selected for G and T . Their
choice in the present context will be discussed below.

The three terms on the right-hand side of Eq. (6) contribute
in different ways to the two-particle reduced density matrix
and will accordingly be dealt with separately in the following.

B. Anomalous contribution to h2

The first term on the right-hand side of Eq. (6) does not
depend on R and can be written only in terms of the anoma-
lous single-particle Green’s functions G12 and G21. With the
definitions (2) and (3) and the dictionary (5), we obtain for
this contribution to h2,

G(1, 2′)G(2, 1′) = G12(ρ′, 0−)G21(−ρ, 0−), (7)

where G21(−ρ, 0−) = G21(ρ, 0−) = G12(ρ, 0−), and the neg-
ative infinitesimal refers again to the imaginary-time domain.
Physically, the spatial (ρ) dependence of G12(ρ, 0−) accounts
for the internal structure of a Cooper pair and identifies the
associated pair size ξpair at any coupling and temperature [19].

In particular, at the mean-field (mf) level one obtains

Gmf
12 (ρ, 0−) =

∫
dk

(2π )3
eik·ρ 


2E (k)
[1 − 2 f (E (k))]. (8)

Here, 
 is the gap parameter (taken real in the follow-
ing without loss of generality), E (k) =

√
ξ (k)2 + 
2, where

ξ (k) = k2

2m − μ, with m the fermion mass and μ the chemical
potential, and f (ε) = (eβε + 1)−1 is the Fermi function with
inverse temperature β = (kBT )−1 (kB being the Boltzmann
constant). In addition, in the strong-coupling (BEC) limit
whereby βμ → −∞, the expression (8) simplifies to the form

Gmf
12 (ρ, 0−) −→

∫
dk

(2π )3
eik·ρ 


2 ξ (k)
= √

n0 φ(ρ) (9)

since |μ| � (2ma2
F )−1 (μ < 0), where

n0 = m2aF

8π

2 (10)

is the mean-field condensate density in this limit [4], and

φ(ρ) = e−|ρ|/aF

√
2πaF |ρ| (11)

is the normalized two-fermion wave function in vacuum.
Quite generally, at any coupling and temperature below Tc,

the condensate density can be obtained from the expression
[29]

n0 =
∫

dρ G12(ρ, 0−)G21(−ρ, 0−) =
∫

dρ G12(ρ, 0−)2

=
∫

dk
(2π )3

[
1

β

∑
n

eiωnη G21(k, ωn)

]2

, (12)

where again η is a positive infinitesimal, and ωn = (2n +
1)π/β (n integer) is a fermionic Matsubara frequency [30]. In
particular, at the mean-field level due to Eq. (8), the expression
(12) reduces to the form [4]

n0 =
∫

dk
(2π )3


2

4 E (k)2

[
tanh

(
βE (k)

2

)]2

. (13)

In Sec. III A below, we will compare the results of n0 ob-
tained numerically by (six) different levels of approximation:

(i) For reference purposes, we will initially consider the
mean-field approximation (13) to the expression (12) [4],
whereby the values of the gap parameter 
 and chemical
potential μ to be inserted therein are obtained by solving the
coupled gap and density equations:

− m

4πaF
=

∫
dk

(2π )3

(
1 − 2 f (E (k))

2E (k)
− m

k2

)
(14)

n =
∫

dk
(2π )3

(
1 − ξ (k)

E (k)
[1 − 2 f (E (k))]

)
. (15)

(ii) Inclusion of pairing fluctuations beyond mean field will
be first considered at the level of the t-matrix approach in
the broken-symmetry phase of Ref. [25]. Accordingly, the
gap equation will be kept in the form (14) while the density
equation will be replaced by

n =
∫

dk
(2π )3

2

β

∑
n

eiωnη Gpf
11(k, ωn). (16)

Here, the normal single-particle Green’s functions Gpf
11 (with

the suffix pf standing for “pairing fluctuations”) is taken of
the form [25]

Gpf
11(k, ωn) = 1

iωn − ξ (k) − �11(k, ωn) − 
2

iωn+ξ (k)+�11(k,−ωn )

�11(k, ωn) = −
∫

dQ
(2π )3

1

β

×
∑
�ν

�11(Q,�ν )Gmf
11 (Q − k,�ν − ωn)

Gmf
11 (k, ωn) = iωn + ξ (k)

[iωn − E (k)][iωn + E (k)]
, (17)

where �ν = 2νπ/β (ν integer) is a bosonic Matsubara fre-
quency [30], Gmf

11 is the mean-field version of G11, and �11
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is the 11-component of the particle-particle ladder propaga-
tor to be discussed in detail below [cf. Eqs. (26)–(28)]. The
values of 
 and μ obtained in this way can then be entered
into the mean-field expression (13) for n0. In this case, our
results should be compared with those of Ref. [5], where the
condensate density was obtained with the inclusion of pairing
fluctuation effects within a Gaussian approximation, although
only at first order in the relevant fluctuation contribution.

(iii) Next, following the approach of Ref. [27], we will
improve on the approach of Ref. [25] and include the GMB
correction throughout the BCS-BEC crossover at any temper-
ature below Tc. Accordingly, the density equation will be kept
in the form (16) while the gap equation will be cast in a form
equivalent to a Hugenholtz-Pines condition for fermion pairs,
to which the GMB correction can be added through (normal
and anomalous) bosoniclike self-energies [27]. The values of

 and μ obtained in this way will again be entered into the
mean-field expression (13) for n0.

(iv) Further improvements will be achieved by entering
in the general expression (12) for n0 the anomalous single-
particle Green’s function Gpf

21 taken from Ref. [25], namely

Gpf
21(k, ωn) = 
{[iωn − ξ (k) − �11(k, ωn)]

× [iωn + ξ (k) + �11(k,−ωn)] − 
2}−1

(18)

whose form now includes pairing fluctuations beyond mean
field. Here, the values of 
 and μ can alternatively be taken
at the mean-field level [point (i) above], with the inclusion
of pairing fluctuations within the t-matrix [point (ii) above],
and with the further inclusion of the GMB correction [point
(iii) above]. In this way, we will be able to test how the
replacement Gmf

21 → Gpf
21 in the expression (12) will affect n0,

over and above the effects of taking the numerical values of

 and μ at increasing levels of sophistication according to the
points (i), (ii), and (iii) above.

The numerical results obtained in these ways will even-
tually be compared with those obtained by several quantum
Monte Carlo simulations as well as with the experimental data
of Ref. [8].

C. Normal contribution to h2

With the definitions (2) and (3) and the dictionary (5), the
second term on the right-hand side of Eq. (6) reads

G(1, 1′)G(2, 2′) = G11(r1′ − r1, 0−)G22(r2 − r2′ , 0+), (19)

where again the (±) infinitesimals refer to the imaginary-time
domain [31]. In this term, one may set r1 = r2 = r and r1′ =
r2′ = r′ such that r1′ − r1 = r2′ − r2 = R [cf. Fig. 1(a)], and
study directly its dependence on R = |R|.

In particular, at the mean-field level one obtains in Eq. (19)

Gmf
11 (R, 0−)

=
∫

dk
(2π )3

eik·R 1

β

∑
ωn

eiωnη Gmf
11 (k, ωn)

=
∫

dk
(2π )3

eik·R{u(k)2 f (E (k)) + v(k)2[1 − f (E (k))]},
(20)

where u(k)2 = 1 − v(k)2 = 1
2 (1 + ξ (k)

E (k) ) are the BCS co-
herence factors [30]. A similar result can be obtained for
Gmf

22 (R, 0+) by taking into account that, quite generally,
G22(k, ωn) = −G11(k,−ωn).

For a noninteracting Fermi gas at zero temperature, on the
other hand, the expression (20) would reduce to the form [32]

G0(R|T = 0) = 1

2 π2

[
sin(kF R)

R3
− kF

cos(kF R)

R2

]
, (21)

which shows the characteristic Friedel’s oscillations due to
the sharpness of the Fermi surface. At finite temperature,
the Fermi surface is smeared by temperature effects, and
the amplitude of the oscillations decays exponentially [30].
For a gas with attractive inter-particle interaction, the Fermi
surface is further smeared by interaction effects even at zero
temperature. In Appendix A, it will be shown that Gmf

11 (R, 0−)
converges exponentially to zero for increasing R over a length-
scale ξ1; in Sec. III B, it will further be shown that ξ1 (about)
coincides with the Cooper pair size ξpair for any coupling
throughout the BCS-BEC crossover, both at zero [23] and
finite [19] temperature. Similar results for the exponential
damping of Friedel’s oscillations were obtained in Ref. [33]
both at T = 0 and T → T −

c but only in the BCS (weak-
coupling) limit, and more recently in Ref. [34] throughout the
BCS-BEC crossover but only at T = 0.

D. Fluctuation contribution to h2 within
the t-matrix approximation

The third term on the right-hand side of Eq. (6) represents
the contribution δh2 by pairing fluctuations to the two-particle
reduced density matrix h2. This contribution, which survives
even in the normal phase above Tc, where it reveals the
presence of fluctuating Cooper pairs, is expected to progres-
sively vanish for increasing distance R between the centers
of mass of the two pairs [cf. Fig. 1(a)]. In the following,
we shall analyze in detail the dependence of δh2 on R and
extract from it, whenever possible, a characteristic (coupling
and temperature-dependent) lengthscale. Or, at least, we will
determine from it a definite distance at which the asymptotic
correlations entailed by the ODLRO are effectively reached.

To this end, it will be convenient to eliminate at the outset
the dependence of δh2 on the relative coordinates ρ and ρ′ of
the separate pairs [cf. Fig. 1(a)] and concentrate directly on
the dependence of δh2 on R. This is achieved by introducing
the so-called projected density matrix [35]

δh(R) =
∫

dρ δh2(ρ, ρ, R) (22)

as far as the fluctuations contribution δh2 is concerned. (Note
that a similar procedure was already followed in Eq. (12) to
obtain the condensate density n0 from the anomalous contri-
bution to h2.)

The simplest pairing fluctuations contribution
δh2(ρ, ρ′, R) that one can consider is depicted diagram-
matically in Fig. 1(c). Taking into account the dictionary (5)
for the space and Nambu spin coordinates of the two-particle
reduced density matrix, and due to the contact form of the
interparticle interaction for the superfluid Fermi gas, the
diagram of Fig. 1(c) has the same topological structure of
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a Maki-Thompson (MT) diagram [36,37]. Accordingly, it
inherits the same overall sign of the MT diagram, due to the
way the pairs of external points (1, 1′) and (2, 2′) therein are
mutually connected. The contribution to δh2(ρ, ρ′, R) from
this diagram can then be cast in the following matrix form:

δh2(ρ, ρ′, R) =
∫

dQ
(2π )3

eiQ·(R+ ρ−ρ′
2 ) 1

β

×
∑

ν

ei�νη[�̃11(ρ; Q,�ν ), �̃12(ρ; Q,�ν )]

×
[
�11(Q,�ν ) �12(Q,�ν )
�21(Q,�ν ) �22(Q,�ν )

]

×
[
�̃11(ρ′; Q,�ν )
�̃12(ρ′; Q,�ν )

]
. (23)

Here,

�̃11(ρ; Q,�ν )

=
∫

dk
(2π )3

eik·ρ 1

β

∑
n

Gmf
11 (k+ Q, ωn+ �ν )Gmf

11 (k,−ωn),

(24)

�̃12(ρ; Q,�ν )

=
∫

dk
(2π )3

eik·ρ 1

β

∑
n

Gmf
12 (k+ Q, ωn+ �ν )Gmf

12 (k,−ωn),

(25)

are form factors, and[
�11(Q,�ν ) �12(Q,�ν )
�21(Q,�ν ) �22(Q,�ν )

]

= 1

A(Q,�ν ) A(Q,−�ν ) − B(Q,�ν )2

×
[

A(Q,−�ν ) B(Q,�ν )
B(Q,�ν ) A(Q,�ν )

]
(26)

are the components of the particle-particle ladder, where

A(Q,�ν ) = − m

4πaF
+

∫
dk

(2π )3

m

k2
−

∫
dk

(2π )3

1

β

×
∑

n

Gmf
11 (k + Q, ωn + �ν )Gmf

11 (k,−ωn),

(27)

B(Q,�ν )

=
∫

dk
(2π )3

1

β

∑
n

Gmf
12 (k + Q, ωn + �ν )Gmf

12 (k,−ωn)

(28)

according to the notation of Refs. [24,25]. In Eq. (27), use has
been made of the regularization condition

m

4πaF
= 1

v0
+

∫
|k|�k0

dk
(2π )3

m

k2
, (29)

whereby the limits v0 → 0− for the strength of the
contact interparticle interaction and k0 → ∞ for the ul-
traviolet cutoff are taken simultaneously, with aF kept
at the desired value. Note that in the normal phase
above Tc, whereby Gmf

12 (k, ωn) = 
/[ω2
n + E (k)2] → 0 and

Gmf
11 (k, ωn) → G0(k, ωn) = [ξ (k) − iωn]−1, only the term

containing �11(Q,�ν ) → A(Q,�ν )−1 survives in Eq. (23)
and the resulting expression corresponds to the non-self-
consistent t-matrix approximation above Tc [38].

The expression (23) gets considerably simplified by setting
ρ = ρ′ and integrating over ρ to obtain the projected density
matrix δh(R) according to Eq. (22). The dependence on R of
the resulting expression for δh(R) will be calculated numeri-
cally in Sec. III C for all temperatures in the superfluid phase
and couplings throughout the BCS-BEC crossover.

E. BEC limit of the fluctuations contribution to h2

Before embarking on numerical calculations, it is relevant
to show analytically that the fermionic expression for δh(R),
as it results from Eqs. (22) and (23), reduces in the strong-
coupling (BEC) limit to the fluctuations contribution to the
one-particle density matrix for a gas of bosons described by
the Bogoliubov approximation (further details will be given
in Appendix B at zero temperature). This analysis appears
important, not only because it represents a benchmark for
the fully fermionic calculation of the projected density matrix
when carried over to the BEC limit, but also because it high-
lights what we shall later find from our numerical results along
the whole BCS-BEC crossover, about the following: (i) The
progressive evolution for rising temperature of the long-range
spatial behavior of the equal-time correlation function (1) into
that of its static counterpart; and (ii) the identification of a
single temperature-dependent lengthscale even in the presence
of an asymptotic inverse-power-law spatial behavior. [A cor-
responding analysis of the asymptotic spatial behavior of the
fluctuations contribution to δh(R) in the BCS (weak-coupling)
limit will be considered in Appendix C at zero temperature.]

In the BEC limit, whereby 
/|μ| � 1 and 2m|μ| � a−2
F

with μ < 0 [3], the following leading contribution to δh(R) is
obtained from Eq. (23):

δh(R) �
∫

dQ
(2π )3

eiQ·R 1

β

∑
ν

ei�νη �11(Q,�ν )

×
∫

dρ �̃11(ρ; Q,�ν ) �̃11(−ρ; Q,�ν ). (30)

In this expression, the form factor (24) can be further approx-
imated consistently with the BEC limit, yielding∫

dρ �̃11(ρ; Q,�ν ) �̃11(−ρ; Q,�ν )

=
∫

dk
(2π )3

[
1

β

∑
n

Gmf
11 (k+ Q, ωn+ �ν )Gmf

11 (k,−ωn)

]2

�
∫

dk
(2π )3

1

4 E (k)2
� m2

2 π2

∫ ∞

0
dk

k2

(k2 + 2m|μ|)2

� m2 aF

8 π
. (31)

We also recall from Ref. [24] that, in the BEC limit, �11

acquires the following form:

�11(Q,�ν ) � − 8 π

m2 aF
G ′

B(Q,�ν ), (32)
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where

G ′
B(Q,�ν ) = uB(Q)2

i�ν − EB(Q)
− vB(Q)2

i�ν + EB(Q)
(33)

is the normal bosonic single-particle propagator within the
Bogoliubov approximation, with the bosonic coherence fac-
tors [30]

uB(Q)2 = 1 + vB(Q)2 = 1

2

[ Q2

2 mB
+ μB

EB(Q)
+ 1

]
(34)

and the dispersion relation

EB(Q) =
√(

Q2

2 mB
+ μB

)2

− μ2
B . (35)

In the above expressions, mB = 2m is the mass of the com-
posite bosons (dimers) that form in the BEC limit, and μB =
4πaB
mB

nB is the bosonic chemical potential obtained from the
definition μB = 2μ + (ma2

F )−1 in terms of the chemical po-
tential μ of the constituent fermions [3]. Here, nB = n/2 and
aB = 2aF are the bosonic density and scattering length ex-
pressed in terms of their fermionic counterparts n and aF , at
the level of the present approximation. With the results (31)–
(33), the expression (30) in the BEC limit becomes eventually

δh(R)

� −
∫

dQ
(2π )3

eiQ·R 1

β

∑
ν

ei�νη G ′
B(Q,�ν )

=
∫

dQ
(2π )3

eiQ·R{vB(Q)2+ [uB(Q)2+ vB(Q)2]b(EB(Q))},
(36)

where b(ε) = (eβε − 1)−1 is the Bose function.
The results (33) and (36) can now be exploited to illus-

trate in rather simple terms how the evolution with increasing
temperature, between the asymptotic spatial behaviors of the
static and equal-time correlation functions, manifests itself in
practice.

In the static limit, one sets �ν = 0 in the expression (33)
and obtains for all values of Q

−G ′
B(Q,�ν = 0) = uB(Q)2 + vB(Q)2

EB(Q)

= mB

(
1

Q2
+ 1

Q2 + 4mBμB

)
, (37)

where 4mBμB = ξ−2
B defines the healing length ξB in the BEC

limit. The two terms within parentheses on the right-hand side
of Eq. (37) correspond, respectively, to the transverse (mass-
less) and longitudinal (massive) contributions to the static
correlation function. Both contributions were considered in
Ref. [18] at zero temperature, and the longitudinal contribu-
tion was considered in Ref. [19] also at finite temperature (up
and past Tc), with the purpose of identifying the healing length
at any temperature for a fermionic system undergoing the
BCS-BEC crossover. In the BEC limit, the two terms on the
right-hand side of Eq. (37) then yield the following behavior

in real space:

−G ′
B(R,�ν = 0) = mB

4πR
(1 + e−R/ξB ) (38)

with R = |R|. This result shows how ξB can be identified from
the exponentially decaying term, which is associated with the
longitudinal contribution.

For the equal-time function, on the other hand, one obtains
from the expression (33) in the zero-temperature limit

− 1

β

∑
ν

ei�νη G ′
B(Q,�ν )

(T →0)−−−→ vB(Q)2

= 1

4

⎛
⎝

√
1 + Q2ξ 2

B

QξB
− 1

⎞
⎠ + 1

4

⎛
⎝ QξB√

1 + Q2ξ 2
B

− 1

⎞
⎠

(QξB�1)−−−→ −1

2
+ 1

4ξBQ
+ 3

8
QξB + · · · (39)

with Q = |Q|, where we have considered only the small-Q
behavior to capture directly the large-R behavior of the cor-
responding Fourier transform in real space [39]. Accordingly,

− 1

β

∑
ν

ei�νηG ′
B(R,�ν ) ≈ 1

8π2ξBR2
+ O

(
1

R4

)
+ · · · ,

(40)
where ξB is formally the same length entering Eq. (38).

When raising the temperature close enough to Tc such that
μB � kBT , and for Q small enough such that Q2/(2mB) �
kBT , the Bose function b(EB(Q)) in Eq. (36) becomes ap-
proximately kBT/EB(Q). With the help of Eq. (37), one then
obtains

− 1

β

∑
ν

ei�νηG ′
B(Q,�ν ) −→ kBT

(
uB(Q)2 + vB(Q)2

EB(Q)

)

= mBkBT

(
1

Q2
+ 1

Q2+ 4mBμB

)
= −kBTG ′

B(Q,�ν = 0).

(41)

Note that the result on the right-hand side of this expres-
sion is equivalent to having retained only the terms with
�ν = 0 in the original sum on the left-hand side of the same
expression. Accordingly, the asymptotic spatial behavior of
− 1

β

∑
ν ei�νηG ′

B(R,�ν ) for large R evolves into that given by
Eq. (38), in agreement with what we had anticipated in the
Introduction on general grounds.

The above evolution for increasing temperature, of the
long-range spatial behavior of the equal-time correlation func-
tion into that of its static counterpart, will be recovered
throughout the BCS-BEC crossover by the numerical calcu-
lations presented in the next section for the projected density
matrix given by Eqs. (22) and (23).

In this context, it is convenient to summarize how the
asymptotic spatial behavior of the projected density matrix
(36) in the BEC limit evolves continuously from zero up to the
critical temperature. To this end, it is sufficient to determine
the evolution with temperature of the small-Q behavior of the
Fourier transform of the expression (36), namely

δh(Q) = vB(Q)2 + [uB(Q)2 + vB(Q)2]b(EB(Q)). (42)
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Three main regimes can be identified as follows:
(i) A low-temperature regime, whereby kBT � Q2

2mB
�

1
mBξ 2

B
. In this case,

δh(Q) � vB(Q)2 � 1

4ξBQ
(43)

as in Eq. (39), yielding δh(R) � 1
8π2ξBR2 as in Eq. (40). Ac-

cordingly, the value of ξB can be obtained from this expression
in the low-temperature regime.

(ii) An intermediate-temperature regime, whereby Q2

2mB
�

kBT � 1
mBξ 2

B
, such that EB(Q) � |Q|

2mBξB
� kBT . In this case,

the Bose function can be approximated by

b(EB(Q)) � kBT

EB(Q)
− 1

2
+ · · · (44)

such that the second term on the right-hand side of Eq. (42)
becomes

[uB(Q)2 + vB(Q)2]b(EB(Q)) � mBkBT

Q2
− 1

4ξBQ
. (45)

Here, the term ∝Q−1 cancels the term of Eq. (43), thereby
converting the leading asymptotic behavior of δh(R) from
O(R−2) to O(R−1). Correspondingly, the relevant length turns
out to be the thermal length ξT = (mBkBT )−1/2, with no ref-
erence, however, to the intrinsic parameters of the many-body
system. In this temperature regime, there is thus no way to
extract the healing length ξB from the spatial profile of δh(R).

(iii) A high-temperature regime, whereby Q2

2mB
� kBT and

1
mBξ 2

B
� kBT . In this case, EB(Q) � kBT and b(EB(Q)) �

kBT/EB(Q) with EB(Q) given by Eq. (35). This yields approx-
imately

δh(Q) � kBT

[
uB(Q)2 + vB(Q)2

EB(Q)

]

= mBkBT

(
1

Q2
+ 1

Q2 + ξ−2
B

)
, (46)

where the result (37) has been utilized. Correspondingly,
the leading asymptotic behavior of δh(R) becomes that of
Eq. (38) (apart from an overall factor kBT ).

III. NUMERICAL RESULTS

In this section, we present the numerical results obtained
by evaluating all three terms on the right-hand side of Eq. (6)
within the approximations that were specified in Secs. II B,
II C, and II D, respectively, over a wide range of coupling
across the BCS-BEC crossover and temperature in the super-
fluid phase. In the next three subsections, we shall deal with
these three terms separately.

A. Results for the anomalous contribution

The relevant quantity to be extracted from the anomalous
contribution to the two-particle reduced density matrix h2

is the condensate density n0 given by the expression (12),
which depends on the specific choice of the anomalous single-
particle Green’s function G21.
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(a)

(b)

FIG. 2. The condensate fraction n0 (in units of half the number
density n), calculated at zero temperature within the six alternative
approximations I–VI described in the text, is shown as a function of
coupling. In panel (a) the anomalous single-particle Green’s function
G21 is taken at the mean-field level, while in panel (b) G21 also
includes pairing fluctuations beyond mean field. In addition, in both
panels the values of the thermodynamic parameters (
,μ) corre-
spond to three different approximations (see the text).

In this respect, several choices of G21 are at our disposal, as
already discussed in detail in Sec. II B. Let us recall here that
we can either take G21 at the mean-field level [cf. Eq. (8)], with
the thermodynamic parameters (
,μ) calculated alternatively
at the mean-field level (approximation I), within the t-matrix
approach (approximation II), and with the further inclusion of
the GMB correction (approximation III), or we can take G21

of the form (18), which includes pairing fluctuations beyond
mean field, again with the thermodynamic parameters (
,μ)
calculated alternatively at the mean-field level (approximation
IV), within the t-matrix approach (approximation V), and with
the further inclusion of the GMB correction (approximation
VI). These calculations can be done for any coupling through-
out the BCS-BEC crossover and for any temperature in the
superfluid phase.

Figure 2 shows the results for the condensate density n0

at zero temperature as a function of coupling spanning the
unitary regime from the BCS to the BEC limits, obtained
within the above six approximations I–VI. Note how the main
differences in these plots among the different curves are due to
the use of the alternative sets of values for the thermodynamic
parameters (
,μ), and not to the different functional forms
used for the anomalous single-particle Green’s function G21.
In the following, we shall consider approximation VI as the
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FIG. 3. Condensate fraction n0(T ) (in units of half the number
density n) vs temperature T (in units of the Fermi temperature
TF ), obtained at unitarity within the following three approximations
described in the text: I (mf–squares), V (TM–triangles), and VI
(GMB–dots). The experimental results from Ref. [40] for the unitary
Fermi gas are also shown for comparison (EXP–diamonds).

most sophisticated of our approximations, to the extent that it
includes the GMB correction both in the functional form of
G21 and in the parameters (
,μ), and use it when comparing
with the available experimental and quantum Monte Carlo
data.

With these premises, Fig. 3 shows (on an absolute temper-
ature scale set by the Fermi temperature TF ) the temperature
dependence of the condensate density n0(T ) at unitarity,
obtained within the mean-field approximation I (mf), the t-
matrix approximation V (TM), and the approximation VI that
includes also the GMB correction (GMB), as described above.
The experimental results from Ref. [40] for the unitary Fermi
gas are also reported for comparison. Close to the critical tem-
perature, note the concave behavior of all theoretical curves,
as well as the occurrence of a slight reentrant behavior of
n0(T ) within both the TM and GMB approaches, which is
inherited from a similar behavior present in the gap parameter

(T ) [27]. On the other hand, the experimental results show
an opposite (convex) behavior, which is rather peculiar for
the temperature dependence of the condensate density and
might originate from the rapid ramp method utilized in the
experiment [40].

Figure 4(a) further shows the temperature dependence of
the condensate density n0(T ) for three different couplings, as
obtained by our most sophisticated approximation VI (GMB)
described above. In addition, Fig. 4(b) reproduces from panel
(a) the temperature dependence of n0(T ) at unitarity, and
compares it with the temperature dependence of the conden-
sate density obtained experimentally for 4He in Ref. [41].
In both panels, the condensate density is normalized to its
value n0(0) at zero temperature, while the temperature is
rescaled in terms of the respective value of the critical tem-
perature Tc for given coupling [42]. Figure 4(b) shows also
a least-squares fit of the form n0(T )/n0(0) = [1 − (T/Tc)α]
(full line) to the experimental data of Ref. [41] (diamonds),
for which we find α = 4.56 [44]. Note how this fit encom-
passes reasonably well also the values calculated at unitarity
within the GMB approximation (dots). Note also that to the
temperature dependence of the experimental data for 4He

 0
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FIG. 4. Condensate fraction n0(T ) [in units of the value n0(0)
at zero temperature] vs temperature T (in units of the critical tem-
perature Tc). In panel (a), the results obtained within the (GMB)
approximation VI are shown for three different couplings. In panel
(b), the results of the GMB calculation at unitarity (dots) are com-
pared with the experimental data for 4He from Ref. [41] (diamonds).
The latter data are also fitted by the expression 1 − (T/Tc )α with
α = 4.56 (full line).

reported in Fig. 4(b) there corresponds a concave-type behav-
ior, in contrast to the convex-type behavior of the experimental
data from Ref. [40] for the unitary Fermi gas reported in
Fig. 3.

Finally, Fig. 5 compares the results of our most sophisti-
cated calculation for the condensate density n0 [corresponding
to the (GMB) approximation VI] across the unitary regime
at zero temperature, with the results of a self-consistent t-
matrix approach (LW) and of several quantum Monte Carlo
(QMC) calculations. Here, the smaller (larger) values of n0 on
the BCS (BEC) side of the crossover, obtained by the GMB
approach with respect to those obtained by the LW approach,
are consistent with a similar behavior obtained by the two
approaches for the coupling dependence of the gap parameter

 at zero temperature, as shown in Fig. 4 of Ref. [45]. In that
figure it is also apparent that on the BCS side of the crossover
the experimental data for 
 agree better with the GMB than
with the LW results, while the opposite is true on the BEC
side of the crossover. The inset of Fig. 5 compares further the
GMB results with the recent experimental data for n0 from
Ref. [8], for which a disagreement can be noted on the BCS
side of the crossover. In light of the good agreement obtained
on the BCS side of the crossover between the results of the
GMB calculation with the experimental data for 
 reported in
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FIG. 5. The coupling dependence of the condensate fraction n0

at zero temperature (in units of half the number density n) obtained
by our (GMB) approximation VI (full line) is compared with the
Luttinger-Ward (LW) results of Ref. [43] (dashed line) and with the
quantum Monte Carlo calculations of Refs. [9] (QMC-2005, circles),
[10] (QMC-2010, down triangles), [11] (QMC-2011, up triangles),
and [12] (QMC-2020, squares). In the inset, the GMB results (full
line) are further compared with the experimental data from Ref. [8]
(EXP, diamonds and circles).

Ref. [45], the disagreement for n0 that appears in the inset of
Fig. 5 on the BCS side of the crossover may possibly be due to
the specific protocol adopted in Ref. [8] to extract the values
of n0, which is expected to better apply to the BEC rather than
to the BCS side of the crossover.

B. Results for the normal contribution

The normal contribution to h2, as given at the mean-
field level by the expression (20), is considered in detail in
Appendix A, where its spatial behavior is conveniently ex-
pressed by the sum of elementary functions [cf. Eq. (A10)
therein]. In addition, in Appendix A the overall spatial be-
havior of the expression (20) is shown to be suitably captured
by a characteristic length ξ1 given by Eq. (A11), which it-
self depends on coupling and temperature. Here, we consider
explicitly this dependence and compare it with that of the
characteristic length ξpair entering the anomalous contribution
to h2, given at the mean-field level by the expression (8). We
recall that ξpair represents the intrapair correlation length (or
Cooper pair size) and was calculated across the BCS-BEC
crossover, at zero temperature in Ref. [23] and as a function
of temperature in Ref. [19].

Figure 6(a) shows the coupling dependence of ξ1 at zero
temperature, which is compared with the corresponding de-
pendence of ξpair in the inset. This comparison confirms that
ξ1 differs from ξpair by at most a factor of order unity, as could
have been expected on physical grounds. In particular, at zero
temperature one readily obtains from the expression (A11)
that ξ1 � kF /(m
) � 2

√
2 ξpair in the BCS limit (whereby


 � μ and μ � EF ), and that ξ1 � aF � √
2 ξpair in the BEC

limit [whereby 
 � |μ| and μ � −(2ma2
F )−1]. As shown in

the inset of Fig. 6(a), both these limiting values are reached
essentially at the boundaries of the unitarity regime −1 �
(kF aF )−1 � +1 [46]. Figure 6(b) shows further the coupling
dependence of ξ1 at the (mean-field) critical temperature T mf

c ,
which is again compared with the corresponding dependence
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FIG. 6. The coupling dependence of the lengthscale ξ1 (in units
of the inverse Fermi wave vector kF ), entering the normal contri-
bution to h2 and calculated at the mean-field level, is shown (a) at
zero temperature and (b) at the critical temperature. In both cases,
the insets show a comparison with the corresponding coupling de-
pendence of the Cooper pair size ξpair taken from Ref. [19]. (c) The
temperature dependence of ξ1 [in units of the value ξ1(0) at zero
temperature and of the mean-field critical temperature T mf

c ] is shown
for three characteristic couplings across unitarity. The inset shows
the corresponding temperature dependence of ξpair reproduced from
Fig. 2(b) of Ref. [19].

of ξpair in the inset. Even in this case, ξ1 differs from ξpair by at
most a factor of order unity. Finally, Fig. 6(c) shows the tem-
perature dependence of ξ1 for three characteristic couplings
across the BCS-BEC crossover, while the inset reports for
comparison the corresponding dependence of ξpair reproduced
from Fig. 2(b) of Ref. [19].

Due to the above similarities between the coupling and
temperature dependences of ξ1 and ξpair, we expect that the
inclusion of pairing fluctuations beyond mean field would
only marginally affect ξ1, similarly to what was explicitly
shown to occur for ξpair in Ref. [19].
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C. Results for the fluctuations contribution

To obtain the leading asymptotic spatial behavior of the
projected density matrix δh(R) given by Eqs. (22) and (23)
throughout the BCS-BEC crossover, we follow closely the
short summary made at the end of Sec. II E for the corre-
sponding behavior in the BEC limit and adapt it to the present
context. In this respect, we are implicitly assuming that, as
far as the leading asymptotic spatial behavior of δh(R) is
concerned (and apart from the explicit numerical values of
the healing length ξodlro associated with the ODLRO), there
should be no substantial difference in the asymptotic func-
tional dependence of δh(R) on R from the BEC to the BCS
limits. This is provided the considered values of R are suf-
ficiently larger than the spatial extent of the fermionic pairs
involved in superfluidity, being either Cooper pairs in the BCS
limit or composite bosons in the BEC limit.

Accordingly, as we did in Sec. II E, we identify several
temperature regimes where different asymptotic functional
dependences of δh(R) on R are assumed to hold:

(i) A low-temperature regime kBT � 1
m ξ 2

odlro
, where we take

δh(R) ≈ 1

8π2 ξodlro R2
, (47)

from which ξodlro can be readily extracted. With this definition,
the value of ξodlro coincides with the corresponding value of
ξphase in the BEC regime.

(ii) An intermediate-temperature regime kBT � 1
m ξ 2

odlro
,

where we take

δh(R) ≈
{

1
8π2 ξodlro R2 (R � R̃),

c1
mkBT
2πR (R � R̃),

(48)

where c1 is a numerical coefficient (of order unity) and
R̃ is consistently determined by the condition c1kBT =
(4π m ξodlro R̃)−1. Note, however, that the R−2 behavior in
Eq. (48) may hardly be visible in practice, to the extent that
the (upper) limit of this intermediate-temperature regime cor-
responds to the condition ξodlro/R̃ � 4π . This implies that, in
the temperature regime “intermediate” between T � Tc and
T � Tc, it is not possible to extract from the radial profile
of δh(R) a characteristic length ξodlro that depends on the
parameters of the many-body system, a conclusion which is in
line with that reached in Ref. [20] under a related perspective.

(iii) A high-temperature regime 1
m ξ 2

odlro
� kBT still in the

superfluid phase, where we take

δh(R) ≈ c1
mkBT

2πR
(1 + c2 e−R/ξodlro ). (49)

Here, the coefficient c1 is determined for sufficiently large R
when the decaying exponential becomes negligible, while the
coefficient c2 and ξodlro are determined at smaller R from this
decaying exponential.

(iv) An even higher temperature regime 1
m ξ 2

odlro
� kBT past

Tc in the normal phase, where we take

δh(R) ≈ c1
mkBT

πR
e−R/ξodlro , (50)

in line with a general argument on the asymptotic behavior of
correlation functions in the neighborhood of Tc [47].
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FIG. 7. The coupling dependence of ξodlro at zero temperature
(squares) is compared with that of ξphase (circles). These two lengths
(given in units of the inverse Fermi wave vector kF ) are computed
with the thermodynamic parameters, calculated either at the mean-
field level (empty symbols and dotted lines) or with the inclusion
of pairing fluctuations at the level of the t-matrix approach (filled
symbols and full lines). In the inset, the ratio ξodlro/ξphase is shown at
the two levels of approximation, namely mean field (dashed line) and
t-matrix (full line).

The dimensionless coefficients c1 and c2 depend on cou-
pling and on temperature within the respective temperature
ranges. In particular, from the analysis of Sec. II E both co-
efficients are expected to tend to unity in the BEC limit.
In the following, we shall omit reporting the values of the
coefficients c1 and c2 and rather concentrate on the length
scale ξodlro of direct physical interest.

Figure 7 shows the coupling dependence of the length ξodlro

across the unitary regime at zero temperature, as obtained
from the relation (47). This length is calculated using the
thermodynamic parameters 
 and μ obtained within either
the mean-field or the t-matrix approach. In both cases, the
length ξodlro associated with the two-particle reduced density
matrix is compared with the healing length ξphase associated
with the static (zero-frequency) pair-pair correlation function.
It is rather remarkable how these two lengths, obtained in-
dependently in different ways, essentially coincide with each
other over the whole coupling range shown in the figure. This
feature is further evidenced in the inset, where the coupling
dependence of the ratio ξodlro/ξphase is reported. This finding
confirms our expectation that a single (interpair) coherence
length can be identified along the whole BCS-BEC crossover.
Note, in particular, that irrespective of the adopted approxima-
tion, the coupling dependence of ξodlro (like that of ξphase [18])
has a characteristic minimum close to unitarity on the BEC
side, where it becomes comparable with the size k−1

F of the
interparticle distance. Both features were regarded as distinc-
tive properties of the coupling dependence of ξphase throughout
the BCS-BEC crossover [18], and they have recently been
exploited also experimentally to highlight the proximity to
this crossover [21,22].

Figure 8 shows the temperature dependence of the length
ξodlro for three distinctive couplings across the unitary regime
(dots), in the high-temperature range T � Tc, where the
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FIG. 8. The temperature dependence of ξodlro close to Tc (dots),
obtained with mean-field thermodynamic parameters, is shown for
three couplings: (kF aF )−1 = −1.0 (a), 0.0 (b), and 1.0 (c). In each
case, the value of ξodlro at zero temperature taken from Fig. 7 is also
shown for comparison (stars). In all panels, the solid lines represent
fits of the type kF ξfit/

√|1 − T/T mf
c |, where the fitting parameter ξfit

takes different values below and above T mf
c , showing the expected

temperature behavior with a mean-field critical exponent on both
sides of the critical temperature T mf

c . The insets show the behavior
of the healing length ξphase obtained from Ref. [19] (squares) with
the corresponding fits (solid lines).

expression (49) holds, as well as in the higher-temperature
range T � Tc, where the expression (50) holds instead. For
simplicity, the thermodynamic parameters are taken here at
the mean-field level. To connect with the low-temperature
results of Fig. 7, fits of the type kF ξfit/

√|1 − T/T mf
c | (solid

lines) are also made through the numerical data of Fig. 8,

with the parameter ξfit taking different values below and above
T mf

c . In particular, below T mf
c the fitting parameter ξfit corre-

sponds to the value of ξodlro extrapolated in this way from high
down to zero temperature. For the three couplings consid-
ered in the figure, we obtain kF ξfit = (1.93, 0.66, 0.62) when
(kF aF )−1 = (−1.0, 0.0, 1.0), respectively. It is rewarding that
the extrapolated values of kF ξodlro(T → 0) obtained from the
above fits just about coincide with values of kF ξodlro(T =
0) = (1.88, 0.84, 0.86) at zero temperature extracted from
Fig. 7 (stars). In each panel of Fig. 8, the inset shows the
corresponding behavior of the healing length ξphase obtained
from Ref. [19] (squares) with the associated temperature fit
(solid line). From this comparison we may conclude that, not
only do ξodlro and ξphase (about) coincide with each other at
zero temperature for all couplings as shown in Fig. 7, but these
two lengths also share a similar temperature dependence for
given coupling (whenever it is possible to extract ξodlro from
the relevant spatial profiles of the projected density matrix).

Although it is not possible to determine in a meaningful
way the lengthscale ξodlro from the spatial profiles of the
projected density matrix δh(R), in between the low- and the
high-temperature regimes of the superfluid phase, even in
this intermediate-temperature range it is always possible to
examine the overall spatial dependence of the full projected
density matrix h2(R) = n0(T ) + δh(R), obtained by adding
to the expression (22) for δh(R) the value of the condensate
density n0(T ) at a given temperature and coupling. Quite
generally, these profiles are obtained by setting ρ = ρ′ and
integrating over ρ on the same footing, not only in the fluctu-
ations contribution to h2 like in Eq. (22) for δh(R), but also in
the anomalous contribution to h2 given by Eq. (7). The results
obtained in this way at unitarity are shown in Fig. 9 for various
temperatures in the superfluid phase (full lines), where the
thermodynamic parameters 
 and μ obtained either within
the mean-field (top panel) or the t-matrix approach (bottom
panel). These plots help one to visualize how the convergence
of h2(R) to its asymptotic value n0(T ) (broken lines) occurs
in practice, and, in particular, how it progressively crosses
over from a power-law behavior at low temperature to an
exponential decay at high temperature.

In this context, it would also be of practical importance (es-
pecially when considering finite-size systems, like ultracold
Fermi gases or nuclei [3]) to identify the distance R∗, at which
the function h2(R) reaches its asymptotic value n0(T ) within a
given relative error, for given coupling and temperature. The
values of R∗ identified in this way are shown in Fig. 10, where
two relative errors of 10% and 5% are specifically considered.
In this case, the calculations were done only with the t-matrix
approach, since it is expected to be more reliable than the
mean-field approach. For instance, for the 5% relative error
considered in Fig. 10(b), when T � 0.1TF the value of R∗ at
unitarity is about 15 k−1

F .
It is also interesting to compare the values of R∗ obtained

in this way with the size of the cloud of a Fermi gas em-
bedded in a harmonic trapping potential at zero temperature,
for which the Thomas-Fermi radius RTF of the noninteract-
ing case represents an upper bound. This radius is given
by kF (0)RTF = (48N )1/3, where kF (0) = [6π2n(0)]1/3 is the
Fermi wave-vector corresponding to the density n(0) at the
center of the cloud, and N is the total number of fermions. For
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FIG. 9. The radial profile of the projected density matrix h2(R) =
n0(T ) + δh(R) (in units of its value at R = 0) is shown at unitarity
for various temperatures (full lines), with the thermodynamic param-
eters calculated within mean field (mf, top panel) and the t-matrix
approach (TM, bottom panel). In all cases, the broken lines represent
the values of the condensate fraction n0(T ) reached asymptotically
by h2(R) at the given temperature.

typical experimental values N ≈ 104–105 one obtains corre-
spondingly RTF ≈ (100–200)kF (0)−1, which is one order of
magnitude larger than the representative value R∗ � 15 k−1

F
indicated above.

This result may also serve to provide a pragmatic answer
to the question asked for trapped gases in Ref. [29], where
a concern was raised about utilizing the definition of the
order parameter based on ODLRO, to the extent that, strictly
speaking, for finite-size systems the limit R → ∞ cannot be
taken in a sensible way. This is because, whenever the distance
R∗ can be considered to be much smaller than the typical size
of the cloud, in practice the occurrence of asymptotic corre-
lations in the two-particle reduced density matrix should be
taken for granted, at least within a given default uncertainty.

Finally, the results for h2(R) = n0(T ) + δh(R), which were
reported in Fig. 9 below Tc, can also be extended above Tc

because the term containing �11 in Eq. (23) survives in the
normal phase even though n0(T � Tc) vanishes therein. This
property enables us to examine the behavior of h2(R) across
the critical temperature when it is calculated for a finite value
Rmax of the radial variable R. This is shown in Fig. 11 at
unitarity for the value Rmax = 10k−1

F , where h2(R = Rmax) not
only remains finite at Tc but also shows a “convex” behavior
for T � Tc. In this context, it is interesting to mention that a
similar convex behavior across Tc was reported in Ref. [14]
for the condensate density obtained by QMC calculations
performed on systems of finite size, as shown in the inset of
Fig. 11.
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FIG. 10. The temperature dependence of the distance R∗ (in units
of the inverse of the Fermi wave vector kF ), at which h2(R) has
reached its asymptotic value n0(T ) for given coupling with a relative
error of (a) 10% and (b) 5%, is shown for three representative cou-
plings. The calculations are done here within the t-matrix approach.
In both panels, the arrows indicate the corresponding value of the
critical temperature for given coupling.

IV. CONCLUDING REMARKS

In this article, we have considered the two-particle re-
duced density matrix, which has long been identified as the
central quantity for establishing the superfluid properties of
a fermionic system [1], and we calculated it numerically in
all of its aspects throughout the BCS-BEC crossover. To
this end, we have relied on a diagrammatic approach that
includes beyond-mean-field pairing fluctuations, which has
proved sufficient to describe the relevant features of the BCS-
BEC crossover [3]. The novelty here is that we have not
only been concerned with the condensate density, which is
extracted from the two-particle reduced density matrix in the
limit when either Cooper pairs (in the BCS limit) or bosonic
dimers (in the BEC limit) recede far apart from each other,
but we have also determined the spatial range past which
the asymptotic correlations associated with ODLRO are ef-
fectively established, a piece of information that can be of
practical importance especially for finite-sized systems [29].

In the present article, the BCS-BEC crossover has been
exploited as a theoretical tool to cause the entities, which
recede far apart from each other in the ODLRO protocol, to
evolve in a continuous fashion from Cooper pairs to bosonic
dimers. In the process, we have verified that the two-particle
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FIG. 11. The projected density matrix h2(R = Rmax) for the finite
value Rmax = 10k−1

F , calculated at unitarity within the t-matrix ap-
proach as in Fig. 9, is shown as a function of temperature across the
critical temperature Tc. The inset reports the values of the condensate
fraction α taken from Fig. 1 of Ref. [14], as obtained by QMC
calculations on systems of finite size.

reduced density matrix for the constituent fermions effec-
tively evolves, when passing from the BCS to the BEC limits,
into the one-particle reduced density matrix for (composite)
bosons made up of tightly bound fermion pairs.

Whenever possible on physical grounds [17], from
our numerical calculations we have also extracted the
coupling- and temperature-dependent length ξodlro specif-
ically associated with ODLRO, and we found that it
(about) coincides with the length ξphase associated in-
stead with the static limit of the pair-pair correlation
function considered some time ago in the context of the
BCS-BEC crossover [18,19]. In particular, at low temperature
both lengths as a function of coupling show a characteristic
minimum where they reach the value of the interparticle dis-
tance. This feature has been recently utilized in experiments
on condensed-matter samples [21,22] to identify what would
correspond to the unitary regime of the BCS-BEC crossover
with ultracold Fermi gases.

On the experimental side, although the condensate den-
sity has already been measured for a Fermi gas undergoing
the BCS-BEC crossover [6–8,40], no corresponding mea-
surement is available at present for the spatial extension of
the ODLRO correlations contained in the projected density
matrix. As a matter of fact, the spatial coherence of a Bose-
Einstein condensate has already been measured through the
interference pattern of two matter waves originating from
spatially separated slit regions of the trapped gas, showing the
expected algebraic decay for large separations according to
the off-diagonal elements of the one-particle reduced density
matrix [48]. For a Fermi gas, on the other hand, the spatial
coherence emerges only via the two-particle reduced den-
sity matrix, which requires more sophisticated interferometric
techniques to be detected such as those proposed in Ref. [49],
whereby two atomic wave packets are meant to be coherently
extracted from the gas at different positions and mixed by a
matter-wave beam splitter to identify the spatial long-range
order of the atomic pairs. In addition, with the experimental
methodologies nowadays available for ultracold Fermi gases
[50,51], it should also be possible to measure the frequency

and wave-vector dependence of the pair-pair correlation func-
tion, from which the length ξphase could be obtained in the
limit of zero-frequency and the length ξodlro by an averaging
over frequencies, once the wave-vector dependence has been
turned into spatial profiles. We hope that the present article
could stimulate experiments along these lines.
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APPENDIX A: ANALYTIC RESULTS FOR THE
FERMIONIC ONE-PARTICLE REDUCED DENSITY

MATRIX AT T = 0 WITHIN THE MEAN-FIELD
APPROXIMATION

In this Appendix, we consider the expression (20) of the
fermionic one-particle reduced density matrix Gmf

11 (R, 0−) at
the mean-field level, and we obtain analytically its asymptotic
spatial width ξ1 at any temperature throughout the BCS-BEC
crossover. It will turn out that ξ1 (about) coincides with the
Cooper pair size ξpair [19,23], as determined from the anoma-
lous term Gmf

12 (ρ, 0−) given by Eq. (8). The results discussed
here complement the numerical analysis of Sec. III B and
extend to any temperature throughout the BCS-BEC crossover
the results obtained in Ref. [33] at any temperature but in
the weak-coupling (BCS) limit only, on the one hand, and
in Ref. [34] throughout the BCS-BEC crossover but at zero
temperature only, on the other hand.

We begin by rewriting the expression within curly brackets
in the second line of Eq. (20) in the form

u(k)2 f (E (k)) + v(k)2[1 − f (E (k))]

= 1

2
− ξ (k)

2

β

+∞∑
n=0

1

ω2
n + E (k)2

, (A1)

obtained by using the spectral representation of the Fermi
function

f (ε) = 1

β

+∞∑
n=−∞

eiωnη

iωn − ε
(A2)

in terms of fermionic Matsubara frequencies ωn [30]. Once the
expression (A1) is inserted into Eq. (20), the constant ( 1

2 ) term
therein gives rise to a Dirac δ function in the spatial variable
R, which we will consistently omit in the following. Upon
performing the integration over the angle between k and R in
Eq. (20) and integrating by parts the remaining radial integral
in k = |k|, we are left with the expression

Gmf
11 (R, 0−) = I (R) + I (R)∗ (A3)

for R = |R| > 0, where

I (R) = i

2π2mR

d

dR

1

Rβ

+∞∑
n=0

∫ ∞

0
dk k eikR

×
[

1

ω2
n + E (k)2

− 2 ξ (k)2[
ω2

n + E (k)2
]2

]
. (A4)
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We can follow at this point Ref. [33] and introduce the auxil-
iary function

Kn(R; λ) = −i
∫ ∞

0
dk k eikR 1

ω2
n + λ2ξ (k)2 + 
2

, (A5)

in such a way that the expression (A4) is rewritten in the
compact form

I (R) = − 1

2π2mR

d

dR

1

Rβ

+∞∑
n=0

∫ ∞

0
dk k eikR

×
+∞∑
n=0

∂

∂λ
[λKn(R; λ)]|λ=1. (A6)

To proceed further, we look for the zeros of the denominator
in Eq. (A5) in the complex k-plane and write(

2 m

λ

)2(
ω2

n + λ2ξ (k)2 + 
2)
= [k − (qn + ipn)][k − (qn − ipn)][k + (qn + ipn)]

× [k + (qn − ipn)],

where

qn =
√

m

√
μ2 + ω2

n + 
2

λ2
+ mμ,

pn =
√

m

√
μ2 + ω2

n + 
2

λ2
− mμ. (A7)

To the k-integral from k = 0 up to k = +∞ along the real axis
in Eq. (A5), we can now add a vanishing contribution coming
from a large semicircle in the first quadrant of the complex
k-plane, plus the integral along the imaginary axis from k =
+i∞ down to k = 0, which, however, is not going to affect
the expression (A3) we are after. In this way, the k-integral
in Eq. (A5) can be transformed into an integral over a closed
curve that encircles the pole at (qn + ipn). Applying Cauchy’s
integral formula over this closed curve then gives

Kn(R; λ) = − iπm

λ

ei(qn+ipn )R√
ω2

n + 
2
, (A8)

which can be utilized in Eq. (A6) to obtain

I (R) = − m

2πR

1

β

+∞∑
n=0

ei(qn+ipn )R. (A9)

This yields eventually the desired result [cf. Eq. (A3)]

Gmf
11 (R, 0−) = − m

πR

1

β

+∞∑
n=0

e−pnR cos(qnR). (A10)

From this expression, one gets that the leading contribution
to Gmf

11 (R, 0−) for large R stems from the smallest value of
pn, which corresponds to the term with n = 0 according to
Eq. (A7). This identifies the characteristic length ξ1 of the
fermionic one-particle reduced density matrix as follows:

ξ1 = 1

pn=0
=

[
m

(√
μ2 + 
2 + π2

β2
− μ

)]−1/2

, (A11)

which holds at the mean-field level for any coupling and
temperature.

The coupling and temperature dependence of ξ1 was re-
ported in Sec. III B, where it was also compared with the
corresponding behavior of the Cooper pair size. Here, we
instead show the full spatial profile of the expression (A10)
(for which we have found it sufficient to extend the sum over
n up to nmax = 100, in order to obtain good convergence over
the whole considered spatial range) and compare it with the
spatial profile obtained by the n = 0 term only. This is done
in Fig. 12, where the function ln[ πR

mT |Gmf
11 (R, 0−)|] is shown

versus R/ξ1 for a choice of temperatures and couplings in both
cases, namely with nmax = 100 (full lines) and n = 0 only
(dashed lines). In each panel, this comparison evidences that
retaining the n = 0 term only represents a good approximation
to the full function on the BCS side of the crossover, while
the comparison becomes slightly worse on the BEC side. In
addition, in each panel the straight line −R/ξ1 corresponds
to the asymptotic damping envelope of the expression (A10)
and evidences the role played by the lengthscale (A11) in that
expression. For the lowest temperature considered in Fig. 12,
these plots reflect the same behavior reported in Ref. [34]
across the BCS-BEC crossover, albeit at zero temperature
only.

Finally, the expression (20) for Gmf
11 (R, 0−) can be readily

calculated in the normal phase for temperatures much larger
than Tc (such that μ/kBT → −∞), where it recovers the clas-
sical (Boltzmann) result for noninteracting particles

G0(R|T � TF ) � eβμ e
− πR2

λ2
T

λ3
T

(A12)

with λT =
√

2π
mkBT the thermal wavelength. In this limit, we

can identify ξ1 = λT /
√

π , to be compared with the corre-
sponding result ξpair = λT /(2

√
π ) for the Cooper pair size

[19]. This yields ξ1/ξpair = 2, in line with the results shown
in the insets of Figs. 6(a) and 6(b).

APPENDIX B: ANALYTIC RESULTS FOR THE BOSONIC
ONE-PARTICLE REDUCED DENSITY MATRIX AT T = 0

WITHIN THE BOGOLIUBOV APPROXIMATION

In this Appendix, we consider the bosonic one-particle
reduced density matrix obtained from the Bogoliubov approx-
imation (33) for the normal single-particle Green’s function
G ′

B, which is associated with the particles out of the conden-
sate. In particular, at zero temperature the term containing the
Bose function [cf. Eq. (36)] drops out and one obtains

− G ′
B(R)

n′
B

= 1

4π2n′
BR

∫ +∞

0
dQ sin(QR) Q

[
Q2

2 mB
+ μB

EB(Q)
− 1

]

= 1

4π2n′
B ξ̃ 3

B

ξ̃B

R

∫ +∞

0
dx sin

(
R

ξ̃B
x

)
x

[
1 + x2

√
x4 + 2x2

− 1

]
,

(B1)
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FIG. 12. The function ln[ πR
mT |Gmf

11 (R, 0−)|], obtained from the expression (A10) with nmax = 100 (full lines) and n = 0 only (dashed lines),
is shown vs R/ξ1 for three characteristic couplings across the BCS-BEC crossover and three temperatures, from T � 0 to T � Tc. In each
panel, the straight lines −R/ξ1 represent the asymptotic behavior of this function (apart from a constant term), where the length ξ1 depends on
coupling and temperature according to the expression (A11).

with Q = |Q|. Here, n′
B is the noncondensate density, mB

is the particle mass, μB = 4πaB
mB

nB is the chemical poten-
tial with scattering length aB and particle density nB, and
ξ̃B = (2mBμB)−1/2 is the healing length in the present context
(with the suffix B referring to bosonic quantities) [52]. The
expression within brackets in the second line of Eq. (B1),
with the rescaled integration variable x = Q ξ̃B in the place
of the original variable Q, reduces to (

√
2x)−1 for x � 1 and

to (2x4)−1 for x � 1. The singular small-x behavior is re-
sponsible for the asymptotic R−2 tail of the Fourier transform
G ′

B(R) for R � ξ̃B, while the large-x behavior is related to the
Tan contact C [53–55] and gives rise to a cusp in G ′

B(R) at
R = 0 [56].

We can also determine the behavior of G ′
B(R) for interme-

diate values of R lying between ξ̃B � R and R � ξ̃B, which
should account in practice for most of the spatial profile of
G ′

B(R). To this end, we exploit the formal similarity between
the function occurring in the second line of Eq. (B1), which
we rewrite in the form

F
(

R

ξ̃B

)
= ξ̃B

R

∫ +∞

0
dx sin

(
R

ξ̃B
x

)
f (x), (B2)

f (x) = x

[
1 + x2

√
x4 + 2x2

− 1

]
, (B3)

and the integral representation of the modified Bessel function
of zero order [58], which can be cast in the form

K0

(
α

R

ξ̃B

)
= ξ̃B

R

∫ +∞

0
dx sin

(
R

ξ̃B
x

)
kα (x), (B4)

kα (x) = 1

α2

x
α(

1 + x2

α2

)3/2 . (B5)

We thus multiply the function kα (x) by an overall factor b, and
vary b and α so as to optimize the comparison between kα (x)
and f (x) of Eq. (B3), with emphasis on an extended interval of
intermediate values of x centered about x = 1. This is because
we expect this interval to be relevant for the corresponding
interval of intermediate values of R/ξ̃B, where we would like
to optimize the comparison between the corresponding (sine)
Fourier transforms bK0(αR/ξ̃B) and F (R/ξ̃B).

Figure 13(a) compares the functions f (x) of Eq. (B3)
(full line) and b kα (x) of Eq. (B5) (dashed line), where the
fitting parameters b and α are suitably chosen to optimize
the comparison. With the values of b and α determined
in this way, Fig. 13(b) then compares the spatial profiles
of the functions −G ′

B(R)/n′
B and bK0(αR/ξ̃B)/(4π2n′

B ξ̃ 3
B )

over an extended interval of R spanning several times
ξ̃B. Note how bK0(αR/ξ̃B)/(4π2n′

B ξ̃ 3
B ) well approximates
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FIG. 13. (a) Comparison between the functions f (x) of Eq. (B3)
(full line) and b kα (x) of Eq. (B5) (dashed line), with the reported
values of b and α. (b) Comparison between the spatial profiles of
−G ′

B(R)/n′
B of Eq. (B1) (full line) and bK0(αR/ξ̃B)/(4π 2n′

B ξ̃ 3
B ) of

Eqs. (B4) and (B5) (dashed-dotted line), with the same values of b
and α reported in panel (a). Also shown are the linear approximation
to −G ′

B(R)/n′
B for R � ξ̃B (dotted line) and the asymptotic (R/ξ̃B)−2

behavior of −G ′
B(R)/n′

B for R � ξ̃B (dashed line). The inset shows
−G ′

B(R)/n′
B (full line) and bK0(αR/ξ̃B)/(4π 2n′

B ξ̃ 3
B ) (dashed-dotted

line), both multiplied by (R/ξ̃B )2 to evidence their different asymp-
totic behavior for R � ξ̃B.

−G ′
B(R)/n′

B over the extended interval ξ̃B � R � 5 ξ̃B of
intermediate values of R, with G ′

B(R ≈ 5ξ̃B) ≈ G ′
B(R = 0)/20.

Figure 13(b) also reports for comparison the linear approxi-
mation to −G ′

B(R)/n′
B for R � ξ̃B and the asymptotic (R/ξ̃B)−2

tail for R � ξ̃B. Although in these outer ranges of R the
function bK0(αR/ξ̃B)/(4π2n′

B ξ̃ 3
B ) fails to well approximate

−G ′
B(R)/n′

B, the resulting discrepancies appear irrelevant to
our main conclusion that (−4π2 ξ̃ 3

B )G ′
B(R) converges to zero

essentially like b
√

πξ̃B

2αR e−αR/ξ̃B [58] and that this convergence

is exhausted when R has reached about a few times ξ̃B.
This piece of physical information is relevant to the nu-

merical analysis made in Sec. III C when dealing with a gas
of superfluid fermions undergoing the BCS-BEC crossover.
However, a different (and, in practice, more efficient) sys-
tematic procedure was there utilized to identify (whenever
possible) the lengthscale ξodlro over which the projected den-
sity matrix δh(R) of Eq. (22), obtained from the expression

(23) of the contribution by pairing fluctuations to the two-
particle reduced density matrix, converges to zero.

APPENDIX C: ASYMPTOTIC BEHAVIOR OF THE
TWO-PARTICLE REDUCED DENSITY MATRIX IN

THE BCS LIMIT AT ZERO TEMPERATURE

In this Appendix, we extend to the weak-coupling (BCS)
limit of the BCS-BEC crossover the estimate for the leading
asymptotic spatial behavior of the projected density matrix
δh(R) given by Eqs. (22) and (23), which was considered in
Sec. II E in the opposite strong-coupling (BEC) limit. Here,
our analysis will be limited to zero temperature, for which the
analytic results of Ref. [59] in terms of elliptic integrals will
be exploited.

In the BCS limit, whereby 
/μ � 1 and μ � EF [3],
the following leading contribution to δh(R) is obtained from
Eq. (23):

δh(R) �
∫

dQ
(2π )3

eiQ·R 1

β

∑
ν

ei�νη �11(Q,�ν )

×
∫

dρ �̃11(ρ; Q,�ν ) �̃11(−ρ; Q,�ν ). (C1)

Although this result is formally similar to Eq. (30) obtained in
the BEC limit, the two factors of the Q-integrand in Eq. (C1)
now acquire values specific to the BCS limit. In particular, we
are interested in their leading small-Q behavior (where Q =
|Q|), since this accounts for the leading large-R behavior of
the Fourier transform in Eq. (C1) [39]. With the help of the
analytic results of Ref. [59], we obtain accordingly∫

dρ �̃11(ρ; Q,�ν ) �̃11(−ρ; Q,�ν )

=
∫

dk
(2π )3

[
1

β

∑
n

Gmf
11 (k+ Q, ωn+ �ν )Gmf

11 (k,−ωn)

]2

�
∫

dk
(2π )3

1

4 E (k)2
� m kF

8 π 

= m2 ξ0

8
, (C2)

where ξ0 = kF
πm


is the Pippard coherence length character-
istic of BCS superconductivity [30]. On the other hand, in
Eq. (C1) the sum over the bosonic Matsubara frequencies of
the 11-component of the particle-particle ladder can conve-
niently be dealt via the spectral representation [25]

�11(Q,�ν ) = −
∫ +∞

−∞

dω

π

Im �R
11(Q, ω)

i�ν − ω
, (C3)

where the spectral function �R
11(Q, ω) with real frequency ω

is obtained from �11(Q,�ν ) given by Eqs. (26)–(28) with the
replacement i�ν → ω + iη. At zero temperature, in the small-
Q limit the spectral function in Eq. (C3) is expected to take the
form

Im �R
11(Q, ω) = α+(Q) δ(ω − EAB(Q))

+α−(Q) δ(ω + EAB(Q)), (C4)

where EAB(Q) = s Q is the dispersion relation of the
Anderson-Bogoliubov mode with sound velocity c. In this
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limit, one then gets

1

β

∑
ν

ei�νη �11(Q,�ν ) = − α−(Q)

π
. (C5)

In turn, the amplitude α−(Q) can be obtained by expanding
the expressions (26)–(28) (where i�ν → ω + iη) for small Q
and ω, yielding at the relevant order

�R
11(Q, ω) � a0

F [s2 Q2 − (ω + iη)2]
. (C6)

From this expression, we get

Im �R
11(Q, ω) � a0

2FsQ
sgn(ω) [δ(ω − sQ) + δ(ω + sQ)],

(C7)
such that

α−(Q) = −a0π

2Fs

1

Q
, (C8)

where Fs =
√

2a0(a2 − b2)[2a0(b3 − a3) + a2
1].

The expressions of the coefficients (a0, a1, a2, a3, b2, b3)
needed in Eqs. (C7) and (C8) are provided in Ref. [59], where
they are calculated analytically in terms of elliptic integrals.
In particular, in the BCS limit,

(a1)2

2a0(b3 − a3)
� 1

4

[
ln(8x0)

x0

]2

� 1 (C9)

since x0 = μ/
 � EF /
 � 1 in this limit. Accordingly, in
the expression (C8) for α−(Q) one approximates

a0

2Fs
� 1

4
√

(a2 − b2)(b3 − a3)
�

√
3 π2


m x0
� 2

√
3

m2ξ 2
0

,

(C10)

which has also been expressed in terms of the Pippard coher-
ence length ξ0.

In conclusion, the results (C2), (C5), (C8), and (C10) can
be entered in the expression (C1), yielding for the leading
asymptotic spatial behavior of δh(R):

δh(R) �
√

3

4 ξ0

∫
dQ

(2π )3

eiQ·R

|Q| =
√

3

8π2 ξ0

1

R2
. (C11)

As a final comment, it might be interesting to compare the
result (C11) obtained in the BCS limit at zero temperature
with the corresponding result (40) obtained in the BEC limit.
This comparison can conveniently be made in terms of the
phase coherence length ξphase discussed in Ref. [18] at zero
temperature, which, at the level of the pairing fluctuations
considered here, reduces to the healing length ξB of the Bo-
goliubov theory in the BEC limit and to (π/6)ξ0 in the BCS
limit (see also Ref. [23]). The BCS result (C11) can thus be
cast in the form

δh(R) �
(

π

2
√

3

)
1

8π2ξphase R2
, (C12)

which differs from the BEC result (40) by the factor
π

2
√

3
� 0.91.

The results (40) for the BEC limit and (C12) for the BCS
limit have suggested that we should introduce the length
ξodlro associated with the asymptotic spatial behavior of δh(R)
in the context of the ODLRO, which at zero temperature
evolves from ξphase in the BEC limit to 2

√
3

π
ξphase � 1.1 ξphase

in the BCS limit (cf. the inset of Fig. 7). The values of
ξodlro identified from the asymptotic spatial behavior of δh(R)
were then obtained numerically throughout the BCS-BEC
crossover Sec. III C, not only at zero temperature but also
where it was possible for temperatures close to Tc.
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