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We investigate the effects of magnetic and crystalline anisotropies on the topological superconducting state
of planar Josephson junctions (JJs). In junctions where only Rashba spin-orbit coupling (SOC) is present, the
topological phase diagram is insensitive to the supercurrent direction, but exhibits a strong dependence on
the magnetic field orientation. However, when both Rashba and Dresselhaus SOCs coexist, the topological phase
diagram strongly depends on both the magnetic field and junction crystallographic orientations. We examine
the impact of the magnetic and crystalline anisotropy on the current-phase relation (CPR), energy spectrum,
and topological gap of phase-biased JJs, where the junction is connected in a loop and the superconducting
phase difference is fixed by a loop-threading magnetic flux. The anisotropic CPR can be used to extract the
ground-sate phase (i.e., the superconducting phase difference that minimizes the system free energy) behavior
in phase-unbiased JJs with no magnetic flux. Under appropriate conditions, phase-unbiased JJs can self-tune
into or out of the topological superconducting state by rotating the in-plane magnetic field. The magnetic
field orientations at which topological transitions occur strongly depend on both the junction crystallographic
orientation and the relative strength between Rashba and Dresselhaus SOCs. We find that for an optimal practical
application, in which the junction exhibits topological superconductivity with a sizable topological gap, a careful
balancing of the magnetic field direction, the junction crystallographic orientation, and the relative strengths of
the Rashba and Dresselhaus SOCs is required. We discuss the considerations that must be undertaken to achieve
this balancing for various junction types and parameters.
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I. INTRODUCTION

Majorana bound states (MBSs) are zero-energy quasi-
particle excitations predicted to arise in topological super-
conductors (TSs) [1–6]. Due to their non-Abelian exchange
statistics they can be utilized as qubits for fault-tolerant quan-
tum computing, with quantum gates realized through braiding
operations [7–10]. Driven by this technological impetus,
proposals to achieve topological superconductivity have in-
cluded, among others, 1D systems such as magnetic chains on
s-wave superconductors [11–16], semiconductor nanowires
with large spin-orbit coupling (SOC) proximitized by s-wave
superconductors [17–27], and proximitized systems exposed
to magnetic textures [28–36]. Because of their experimental
feasibility, planar Josephson junctions (JJs) have also been
considered as an alternative promising platform for creating
and manipulating MBSs [37–62]. Moreover, the supercon-
ducting phase difference across JJs provides an additional
control knob that can enhance the parameter space leading
to topological superconductivity. However, tuning a planar JJ
to a topologically nontrivial state does not necessarily guar-
antee the existence of a sizable topological gap, which is a
practical requirement for the stability of MBSs and braiding
operations [63,64]. Indeed, as shown later in this work (see
also Ref. [65]), even when the parameter space for topological
superconductivity is relatively large, the topological gap may
be sizable only over reduced subregions.

Josephson junctions with noncentrosymmetric supercon-
ductors (particularly d-wave superconductors) have been
predicted to exhibit anisotropic effects [66–68]. In this

work, we consider the effects of magnetic and crystalline
anisotropies on the topological superconducting state in pla-
nar JJs formed in a semiconducting two-dimensional electron
gas proximitized by s-wave superconductors. The interrela-
tion between the Zeeman interaction and the Rashba SOC
emerging from the lack of structure inversion symmetry
[69] in proximitized planar JJs gives rise to a strong de-
pendence of the system properties on the magnetic field
direction. Furthermore, in junctions where both Rashba and
Dresselhaus SOCs are relevant, not only the magnetic field
direction, but also the junction crystallographic orientation
can strongly affect the topological superconducting state [65].
The Dresselhaus SOC originates from the bulk inversion
asymmetry [70], which can be particularly large in some
zinc-blende semiconductors (e.g., InSb) suitable for building
superconductor/semiconductor proximitized JJs [71]. Here
we investigate the impact of SOC-induced anisotropies of
topological phase transitions on the topological gap, topo-
logical charge, energy spectrum, ground-state phase, current
phase relation, and critical currents in planar JJs.

II. THEORETICAL MODEL

A. General considerations

We consider JJs composed of superconducting (S) and
normal (N) regions (see Fig. 1). The S regions are formed in
a semiconducting 2DEG proximitized by a superconducting
(e.g., Al or Nb) covering. Excitations in the JJ are described
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FIG. 1. (a) A JJ composed of a noncentrosymmetric semicon-
ductor 2DEG in contact to two superconducting (S) leads. The x̂ and
ŷ axes define the coordinate system in the junction reference frame.
The Rashba SOC strength can be controlled by using a gate on the
top of the normal region [42,72]. The current flow is perpendicular to
the junction. (b) ϕB and θc characterize the orientation of the in-plane
magnetic field (B) and the junction reference frame, respectively,
with respect to the semiconductor [100] crystallographic axis.

by the Bogoliubov-de Gennes (BdG) Hamiltonian,

H = H0τz − g∗μB

2
B · � + �(x)τ+ + �∗(x)τ−, (1)

where

H0 = p2

2m∗ + V (x) − (μS − ε) + α

h̄
(pyσx − pxσy)

+ β

h̄
[(pxσx − pyσy) cos 2θc − (pxσy + pyσx ) sin 2θc],

(2)

is the single-particle Hamiltonian of the 2DEG in the ab-
sence of a magnetic field. In the equations above, p is the
momentum, m∗ the electron effective mass, α and β are, re-
spectively, the Rashba and Dresselhaus SOC strengths, and θc

characterizes the direction of the current (x axis) with respect
to the [100] crystallographic direction of the semiconductor
[Fig. 1(b)]. The crystallographic orientation of the junction is
determined by the angle θc + π/2. The length of the junction
is L and the widths of the S and N regions are WS and WN ,
respectively (see Fig. 1). The gate-voltage-induced difference
between the chemical potentials in the N (μN ) and S (μS) re-
gions is described by V (x) = (μS − μN ) �(WN/2 − |x|) and
σx,y,z and τx,y,z, with τ± = (τx ± iτy)/2, represent Pauli and
Nambu matrices, respectively. The chemical potentials are
measured with respect to the minimum of the single-particle
energies, ε = m∗λ2(1 + | sin 2θc|)/2h̄2, where we have used
the SOC parametrization,

α = λ cos θso, β = λ sin θso, λ =
√

α2 + β2. (3)

Here λ represents the overall strength of the combined Rashba
+ Dresselhaus SOCs, while the spin-orbit angle,

θso = arccot(α/β ), (4)

characterizes the relative strength between Rashba and Dres-
selhaus SOC.

The second contribution in Eq. (1), with the Dirac spin
matrices �, represents the Zeeman splitting due to an applied
magnetic field,

B = |B|
⎛
⎝cos ϕB

sin ϕB

0

⎞
⎠. (5)

The angle ϕB characterizes the direction of the magnetic field
with respect to the current flow (x axis), as shown in Fig. 1(b).
The spatial dependence of the superconducting gap is �(x) =
�e−i sgn(x)φ/2 �(|x| − WN/2), where φ is the phase difference
across the JJ.

The temperature and magnetic field dependence of the
superconducting gap is taken into account by using the BCS
relation,

�(T, B) ≈ �(T, 0)

√
1 −

[
B

Bc(T )

]2

, (6)

where �(T, 0) ≈ �0 tanh[1.74
√

Tc/T −1], �0 = 1.74 kBTc, kB

is the Boltzmann constant, and Tc is the superconductor
critical temperature. The temperature dependence of the crit-
ical magnetic field can be approximated as Bc(T ) = Bc(1 −
T 2/T 2

c ), where Bc is the critical magnetic field at zero temper-
ature.

Although we consider ballistic junctions throughout this
work, we expect the predicted anisotropic effects to qual-
itatively hold in the presence of weak disorder. Junctions
with low disorder are usually preferred because the presence
of disorder typically reduces the parameter space supporting
topological superconductivity, although in some cases weak
disorder can increase the robustness of the topological super-
conducting state [73–76].

B. Topological gap and topological charge

Topological superconductivity (TS) is a superconducting
phase featuring a pair of degenerate zero-energy states, called
Majorana bound states (MBSs), which are isolated from the
rest of the excitation spectrum by an energy gap, called the
topological gap (�top). In the TS state, the topological gap
cannot be destroyed by smooth local perturbations, providing
protection for the MBSs. However, the information stored
in the MBSs can be damaged if the perturbation energy be-
comes comparable or larger than the topological gap. A large
topological gap is therefore desirable for the practical use of
fault-tolerant qubits encoded in MBSs.

The topological gap can be estimated by imposing transla-
tional invariance along the junction direction (the y direction
in our case). In such a system, the momentum component py

is a conserved quantity and can be substituted by h̄ky. Then
�top is obtained as the eigenenergy closest to zero,

�top = min
ky

|E (ky)|. (7)

Note that this quantity represents the topological gap only
when the system is in the TS state. When the system is in
the trivial state, the quantity defined in Eq. (7) simply denotes
the lowest positive-energy Andreev state.

The size of the topological gap strongly depends on the
interrelation between the spin-orbit angle (θso), the junction
crystallographic orientation (θc) and the in-plane magnetic
field orientation (ϕB) [48,65]. In symmetric JJs (i.e., with
identical left and right S coverings) the optimal topological
gap is achieved when the system is in the TS state and the
condition, [65]

tan ϕB = cot θso sec 2θc − tan 2θc, (8)
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is fulfilled.
This work focuses on the behavior of the current across the

JJ [see Fig. 1(a)]. Hence, we use the current direction as the
axis with respect to which the magnetic field orientation ϕB is
defined [see Fig. 1(b)] [77].

In the presence of Rashba and Dresselhauss SOC the
topological gap exhibits strong magnetic and crystalline
anisotropies [65]. Therefore the fulfillment of Eq. (8) is a
vital prerequisite for the optimization of �top. However, the
relation in Eq. (8) alone is not sufficient for inducing TS.
Therefore, in a practical situation, one will need to first ar-
range the experimental setup in a way that Eq. (8) is fulfilled,
and then tune other system parameters (e.g., chemical poten-
tial, magnetic field amplitude) to drive the system into the TS
state.

The TS state in symmetric JJs typically belongs to the D
class. However, the BDI class can emerge for some specific
junction crystallographic orientations and magnetic field di-
rections (see Table I in Ref. [65]). Therefore the transition
between the trivial and TS states typically occur when the Z2

topological index (also called topological charge, Q) associ-
ated with the symmetry class D changes sign. According to
the bulk-boundary correspondence, we can obtain the phase
diagram of a junction with finite length by computing the
topological charge of the translational-invariant version of the
junction,

Q = sgn

[
Pf{H (ky = π )σyτy}
Pf{H (ky = 0)σyτy}

]
, (9)

where Pf{...} denotes the Pfaffian [78–81]. The topological
charge determines whether the system is in the trivial (Q = 1)
or topological (Q = −1) phase [73–75,82–84].

C. Current-phase relation and critical current in Josephson
junctions

The supercurrent across the JJ can be obtained from the
energy spectrum of the BdG Hamiltonian given in Eq. (1).
Indeed, the eigenenergies (En) can be used to compute the free
energy of the junction,

F = −
∑
En>0

[En + 2kBT ln(1 + e−βEn )] (10)

with β = 1/kBT . The current-phase relation (CPR) is then
obtained as

I (φ) = 2e

h̄

dF

dφ
= I0(φ) + �I (φ, T ), (11)

where the zero-temperature contribution is given by

I0(φ) = −2e

h̄

∑
En>0

dEn

dφ
, (12)

while the temperature-dependent correction reads

�I (φ, T ) = 4e

h̄

∑
En>0

[
1

1 + eβEn

]
dEn

dφ
. (13)

In the low-temperature limit (βEn � 1), Eqs. (11)–(13)
yield

I (φ) ≈ I0(φ) + 4e

h̄

∑
En>0

e−βEn
dEn

dφ

= I0(φ) − 4e

h̄β

d

dφ

(∑
En>0

e−βEn

)
, (14)

while in the high-temperature regime (βEn � 1),

I (φ) ≈ −eβ

h̄

∑
En>0

En
dEn

dφ
= −eβ

2h̄

d

dφ

(∑
En>0

E2
n

)
. (15)

In the phase-biased case, the JJ is connected to a closed
loop threaded by a magnetic flux, �, and the superconducting
phase difference across the junction is fixed to the value φ =
2π�/�0, where �0 is the magnetic flux quantum. In this case,
the current-phase relation [Eq. (11)] can be experimentally
measured by tuning the magnetic flux.

In the absence of a magnetic flux, the junction is phase
unbiased and the phase difference self-adjusts in such a way
that the free energy of the system is minimized. The ground-
state phase (φGS) is the superconducting phase difference that
minimizes the free energy of the system, i.e.,

F (φGS) = min
φ

F (φ) (16)

and the ground-state spectrum is the energy spectrum of the JJ
evaluated at the ground-state phase, i.e., En(φGS). The math-
ematical conditions for the free energy to have a minimum at
the ground-state phase are,

dF

dφ

∣∣∣∣
φ=φGS

= 0 and
d2F

dφ2

∣∣∣∣
φ=φGS

> 0, (17)

which, according to Eq. (11) can be rewritten as

I (φGS) = 0 and
dI

dφ

∣∣∣∣
φ=φGS

> 0. (18)

The relations above allow for extracting the ground-state
phase from the CPR.

Under forward bias voltage, the critical current of a phase-
unbiased JJ is obtained by maximizing the current amplitude
with respect to the phase difference, i.e.,

Ic = max
φ

I (φ). (19)

However, under reverse bias voltage, the critical current is
negative and is determined by minimizing the supercurrent. In
centrosymmetric JJs the amplitudes of the forward and reverse
critical currents are equal. However, the interrelation between
the SOC and the in-plane magnetic field can break the in-
version symmetry and lead to the so-called superconducting
diode effect [85–91], where the amplitudes of the forward and
reverse critical currents become different. In this work, we
limit our analysis to the case of the forward critical current.

D. Numerical approach

We use a finite-difference discretization of Eq. (1) to build
a tight-binding version of the BdG Hamitonian, which is then
numerically diagonalized to find the eigenstates and energy
spectrum (see Appendix A for more details). The Pfaffians
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FIG. 2. (a) Plot of I (φ) and Q as a function of φ and B for a HgTe
Josephson junction (see Fig. 1). Here, θSO = θc = 0 and ϕB = π/2.
The TB simulations are made for a translationally invariant system in
the y direction (Appendix A), with a SC lead width of 252 nm each
and a junction width of 96 nm. The vertical dashed lines correspond
to B = 0.4 and 0.8 T (see Fig. 3). The shaded (unshaded) areas have
Q = 1 (Q = −1). The TB lattice parameter is a = 6 nm, yielding
a hopping parameter of t = 27.9 meV. (b) and (c) The lowest 200
energy levels corresponding to a fully 2D TB simulation of the
system in (a) with a length L = 4002 nm at (b) B = 0.4 T and (c)
B = 0.8 T. The red lines correspond lowest energy levels.

of the tight-binding Hamiltonian with imposed translational
invariance along the junction direction are numerically cal-
culated to compute the topological charge, while the energy
spectrum is used to calculate the free energy of the system,
CPR, ground-state phase, and critical currents.

The numerical simulations of the tight-binding version of
the BdG Hamiltonian are performed by using the KWANT

package [92]. To illustrate and compare the different effects
of magnetic and crystalline anisotropies, two type of junctions
are considered: (i) Al/HgTe JJs, where only Rashba SOC
plays a role and (ii) Al/InSb JJs, where both Rashba and
Dresselhaus SOC become relevant (see Appendix for more
details).

III. CURRENT-PHASE RELATION IN PHASE-BIASED
JOSEPHSON JUNCTIONS

A. Effects of magnetoanisotropy

To investigate the effects of magnetic field orientation on
the CPR of a phase-biased JJ, we consider Al/HgTe JJs (see
system parameters in Appendix A), where Rashba SOC is
large and Dresselhaus SOC is negligibly small. In such sys-
tems, the spin-orbit angle θso = 0 and the CPR is independent
of the junction crystallographic orientation. For the chosen
system parameters, the estimated zero-field superconducting
coherence length of the Al/HgTe JJ is ξ = 81nm, which is
smaller but comparable to the width of the normal region, and
about 1/4th the size of each lead.

The supercurrent (normalized to its maximum value) of a
Al/HgTe JJ is shown in Fig. 2(a) as a function of an in-plane
magnetic field perpendicular to the current (i.e., ϕB = π/2)
and the superconducting phase difference. The shaded (un-
shaded) areas correspond to topological charge Q = 1 (trivial
state) and Q = −1 (TS state), respectively. Both the super-

current amplitude and direction can be tuned by changing the
phase difference and/or the magnetic field strength. Note that
for magnetic fields larger than the critical field (1.19 T at
0.7 K), superconductivity is destroyed and the supercurrent
vanishes.

At zero magnetic field the CPR is anti-symmetric under
reflection with respect to φ = π , i.e., I (φ) = −I (2π − φ). In
the presence of Rashba SOC and a finite in-plane magnetic
field this symmetry is preserved only when the field is parallel
to the current (ϕB = 0). The symmetry breaking for B �= 0 and
ϕB = π/2 is clearly seen in Fig. 2(a).

The two white traces in Fig. 2(a) correspond to parameters
for which the supercurrent vanishes. However, the conditions
in Eq. (18) are satisfied only along the lower trace. As shown
in the figure, the path of the lower trace is in good agreement
with the magnetic field dependence of the ground-state phase
(black dashed line). This illustrates how the magnetic field
dependence of the CPR in a phase-biased junction can be
used to extract the ground-state phase of the phase-unbiased
junction. The method works well when only a single trace in
the B dependence of the CPR satisfies Eq. (18). However, the
situation may not be that clear when there are multiple traces
obeying Eq. (18). In such a case, different traces correspond
to different free energy minima, and the information in the B
dependence of the CPR is not enough to decide which one
represents the absolute minimum.

The phase dependence of the energy spectrum is shown
in Figs. 2(b) and 2(c) for B = 0.4 T and B = 0.8 T [indicated
with vertical dashed lines in (a)], respectively. The red lines
illustrate the formation of MBSs in the TS state. For B =
0.4 T, zero-energy MBSs appear in a reduced interval of φ

values, while at B = 0.8 T zero-energy MBSs exist for any
value of the phase difference. This is an agreement with the
topological region depicted in Fig. 2(a). Although the junction
is long enough, and the MBSs are typically well separated
from each other [note that MBSs have zero energy in most
of the topological region, as shown in Figs. 2(b) and 2(c)],
they start to hybridize and depart from zero energy when
the topological gap becomes too small. This is particularly
noticeable in Fig. 2(c) around φ ∼ 1.5π , and emphasizes the
fact that, even if the system is in the topological state, one
may still need to optimize the topological gap to realize stable
MBSs.

The Rashba SOC is rotationally invariant, however its
combination with the in-plane Zeeman interaction leads to
magnetoanisotropic effects. The magnetic anisotropy of the
CPR is shown in Figs. 3(a) and 3(b), where the normalized
supercurrent is shown as a function of the phase difference,
φ, and the magnetic field orientation, ϕB for the two values
of magnetic field amplitudes corresponding to the vertical
dashed lines in Fig. 2(a). In both cases, the topological re-
gion exhibits a strong dependence on ϕB. When the in-plane
magnetic field is parallel to the supercurrent direction, the
system is in the trivial state for any phase difference. As
the magnetic field is rotated towards the junction direction,
the range of phase differences leading to TS increases. The
results demonstrate the convenience of orienting the magnetic
field in the direction, ϕB = π/2, i.e., perpendicular to the
supercurrent flow [48,65]. The CPR at different magnetic field
orientations indicated by vertical dashed lines in Figs. 3(a)
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FIG. 3. [(a) and (b)] Plot of I (φ) and Q as a function of φ and
ϕB, with θSO = θc = 0, for a HgTe junction with (a) B = 0.4 and
(b) 0.8 T. The shaded (unshaded) areas have Q = 1 (Q = −1). The
TB simulation parameters and the junction geometry are the same
as in Fig. 2. The vertical dashed lines are at ϕB = 0.2π and 0.5π .
(c), (d) The current-phase relation along the dashed lines in (a) and
(b), respectively. In (d), note the difference between the maxima of
the forward and reverse supercurrents, indicated by the horizontal
dashed lines for ϕB = 0.5π case.

and 3(b) are shown in Figs. 3(c) and 3(d), respectively. In
both cases, the CPR shows a slight deviation from a sinusoidal
function, evidencing the low transparency of the junction. Fur-
thermore, an anomalous phase [51,87,90,93–95] emerges due
to the combined action of the Rashba SOC and the in-plane
magnetic field, producing a ϕB-dependent shift of the CPR.
Although hardly notable at the scale of the figure, numerical
evaluation reveals that for ϕB �= 0, the forward (maximum)
and reverse (minimum) supercurrents are slightly different.
This manifestation of the superconducting spin diode effect
[89] is perhaps more apparent in the CPR shown in Fig. 3(d)
for B = 0.8 T and ϕB = π/2, where the horizontal lines in-
dicate the different amplitudes of the forward and reverse
supercurrents.

B. Effects of crystalline anisotropy

The linear Rashba SOC exhibits rotational invariance.
However, the coexistence of Rashba and Dresselhaus SOCs
reduce the symmetry of the spin-orbit field to a twofold
C2v symmetry [96,97]. Such a symmetry reduction leads
to various magnetoanisotropic phenomena in both the nor-
mal [98–101] and superconducting [102–107] states as well
as crystalline anisotropic phenomena in which the system
properties depend on the specific crystallographic orientation
and/or transport direction [65,108,109]. The effects of crys-
talline anisotropy on the topological gap of planar JJs was
investigated in Ref. [65]. In this section, we explore the SOC-
induced crystalline anisotropy of the CPR in a phase-biased,
planar JJ. For the numerical simulations of the crystalline
anisotropy, we consider Al/InSb JJs, which for the considered
system parameters (see Appendix A) have an estimated zero-
field superconducting coherence length, ξ = 164 nm, which
is larger than WN , but shorter than WS .

The CPR as a function of the in-plane magnetic field di-
rection is shown in Fig. 4 for different supercurrent directions
(θc) and spin-orbit angles (θso). The supercurrent direction is
fixed by the junction orientation with respect to the [100] crys-
tallographic axis. The dashed lines indicate the ground-state
phase computed by minimizing the system free energy and are
in good agreement with the CPR contours obeying Eq. (18).
When only Rashba SOC is present, θso = 0 and the CPR is
independent of θc. However, the presence of Dresselhaus SOC
leads to appreciable changes in the CPR. For θso = π/8, the
topological (unshaded) region changes its size and exhibits
a shift in its position with respect to the magnetic field di-
rection when the supercurrent direction changes, as shown in
Figs. 4(a)–4(c). A similar trend is observed when the strength
of the Rashba and Dresselahus SOC are equal, α = β [i.e.,
θso = π/4 in Figs. 4(d) and 4(e)] and when only Dresselhaus
SOC is present [i.e., θso = π/2 in Figs. 4(g)–4(i)].

Previous investigations [37,39,42] have shown the impor-
tance of properly tuning the chemical potential, magnetic field
strength, and superconducting phase difference for driving the
JJ into the TS state. However, the strong dependence of the
TS state and the ground-state phase on the spin-orbit angle
(θso), the magnetic field orientation (ϕB), and the supercurrent
direction (θc), shown in Fig. 4, reveals that an experimental
setup with an adequate combination of θso, ϕB, and θc values
is also crucial for inducing TS in planar JJs.

IV. TOPOLOGICAL SUPERCONDUCTIVITY IN
PHASE-UNBIASED JOSEPHSON JUNCTIONS

A. Effects of magnetoanisotropy

In the absence of a magnetic flux, the superconducting
phase difference self-tunes to a value (the ground-state phase
φGS) that leads to the minimization of the system free energy.
Since the free energy of the junction varies with the applied
magnetic field, both the ground-state phase and the critical
current also change as the strength of the in-plane magnetic
field increases.

The topological gap [see Eq. (7)] of a HgTe JJ (where only
Rashba SOC is relevant) with an in-plane magnetic field per-
pendicular to the supercurrent direction is shown in Fig. 5(a)
as a function of the phase difference and magnetic field ampli-
tude. The shaded and unshaded regions correspond to trivial
(Q = 1) and topological (Q = −1) phases. The red and blue
lines correspond to the ground-state phase and normalized
critical current, respectively. The ground-state phase exhibits
a jump from 0 to π as the magnetic field increases, as shown in
Fig. 5(a) and earlier in Fig. 2(a). The junction transitions into
the topological state at the center of the white ring, where φGS

crosses into the topological region. The ground-state phase
jump is accompanied by a local minimum in the critical
current (blue line). However, due to the smoothness of the
ground-state jump, the critical current minimum may occur at
a magnetic field higher than the transition field (corresponding
to the center of the white ring). Therefore, in the best situation,
the critical current minimum alone can only be an indirect
indication of the topological phase transition. In a more gen-
eral scenario, there are situations in which the topological
transition occurs without the current having a local minimum
[39,110].
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FIG. 4. [(a)–(i)] Plot of I (φ) and Q as a function of φ and ϕB for an InSb junction, for various values of θSO and θc, for B = 0.6 T [see
Figs. 2(b) and 3(c)]. The top row has θSO = π/8, the middle row has θSO = π/4 and the bottom row has θSO = π/2. The shaded (unshaded)
areas have Q = 1 (Q = −1). The TB simulation parameters and the junction geometry are given in Appendix.

FIG. 5. (a) Plot of �top/�0 and Q as a function of φ and B
for a HgTe Josephson junction (see Fig. 1), with θSO = θc = 0 and
ϕB = π/2. The shaded (unshaded) areas have Q = 1 (Q = −1). The
TB simulation parameters and the junction geometry are the same
as in Fig. 2. The red lines are the ground-state phase φGS of the
system and the blue lines are Ic/Imax

c , Imax
c being the maximum critical

current in the junction at T = 0.7 K. The white ring indicates the
field and phase values at which the topological transition occurs.
(b) The lowest 200 energy levels calculated along the red (φGS) curve
in (a). Here, a fully 2D closed system with L = 4002 nm is used
instead of the translationally invariant system used in (a). For (a) and
(b) both, the vertical dashed line marks the B = 0.79 T value at which
�top/�0 is largest along the φGS curve within the nontrivial region.
(c) The density plot of ρ = |�|2 for the Majorana mode (b) (red
curve) at B = 0.79 T.

Figure 5(a) reveals that the topological gap is sizable only
on a reduced part of the topological region. The topological
gap is crucial for ensuring the practical protection of the
MBSs. Therefore, only the portion of the parameter space
leading to the TS state with a sizable topological gap is useful
from a practical point of view. The departure of φGS from the
value 0 as the magnetic field increases, yields a topological
transition at a magnetic field slightly smaller than the one
required at φ = 0. Furthermore, the self-tuned jump of the
ground-state phase to values close to π allows for achieving a
sizable topological gap in the TS state.

The ground-state spectrum, i.e., the energy spectrum for
which the junction has the minimum free energy, is shown in
Fig. 5(b) as a function of the magnetic field strength. At zero
magnetic field the system is in the trivial state with a gap of
about �0/2. As the magnetic field increases, the ground-state
phase starts to depart from zero, yielding a decrease in the
energy gap until it closes and reopens at the topological tran-
sition. Once the system enters the TS state, zero energy MBSs
(red line) emerge inside the topological gap. The probability
density of the MBSs (normalized to its maximum value) is
shown in Fig. 5(c) for a magnetic field value indicated by the
vertical dashed line in (b). The MBSs are well localized at the
ends of the junction.

The magnetic anisotropy of the topological gap, the
ground-state phase (red line), and the critical current is shown
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FIG. 6. [(a) and (b)] Plot of �top/�0 and Q as a function of
φ and ϕB for a HgTe junction, for (a) B = 0.4 and (b) 1.0 T. The
shaded (unshaded) areas have Q = 1 (Q = −1). The TB simulation
parameters and the junction geometry are the same as in Fig. 2.
The red lines are the ground-state phase φGS of the system and the
blue lines are Ic/Imax

c , Imax
c being the maximum critical current in the

junction for the respective B value and at T = 0.7 K. (c) Plot of �top

along φ = φGS curve (red line) in (b) as a function of ϕB. The shaded
(unshaded) areas have Q = 1 (Q = −1) at the given ϕB. The vertical
dashed line corresponds to ϕ

opt
B given by Eq. (8). θSO = θc = 0 for all

plots.

in Fig. 6(a) for B = 0.4 T. The trajectory of the ground-state
phase indicates that for such a field value the system is unable
to self-tune into the TS state for any magnetic field orientation.
The critical current (blue line) exhibits a local minimum but
it is not associated to a topological transition. However, if
the field amplitude is increased to 1 T, the self-tuning of the
ground-state phase can drive the system into the TS state when

the magnetic field is rotated away from the direction of the
supercurrent, as shown in Fig. 6(b). In this case, the jump
in the ground-state phase not only allows for the topological
transition, but also for a finite topological gap when ϕB =
π/2. The jumps in the ground-state phase are accompanied
by critical current minima. Interestingly, the critical current
exhibits a maximum at the magnetic orientation leading to the
TS state with the largest topological gap.

The ground-state topological gap (i.e., the topological gap
at the ground-state phase) as a function of the magnetic field
orientation for a phase-unbiased Al/HgTe JJ is represented
by the green line in Fig. 6(c). As the in-plane magnetic field
is rotated from a direction parallel (ϕB = 0) to perpendicu-
lar (ϕB = π/2) to the supercurrent direction, the topological
gap self-tunes from a negligible small value to a maximum
of about 0.08�0. The figure illustrates the importance of
properly orienting the magnetic field when driving the sys-
tem into a robust TS state, and evidences that even if the
ground-state phase self-tuning can drive the system in the TS
state for a wide range of magnetic field orientations (white
area), the topological gap is sizable and stable only within
a small window around ϕB = π/2. This is consistent with
recent experimental results, where the TS state deteriorates as
the magnetic field deviates from the direction perpendicular to
the supercurrent [42].

B. Effects of crystalline anisotropy

To explore the effects of crystalline anisotropy on
phase-unbiased JJs, we consider an Al/InSb junction (see
Appendix A for system parameters), where Rashba and
Dresselhaus SOCs coexist. The topological gap as a func-
tion of the magnetic field orientation is shown in Fig. 7
for B = 0.6 T, different crystallographic orientations (θc)
of the junction, and various values of the spin-orbit an-
gle (θso). The top row corresponds to θso = π/8, i.e., to a
situation in which Rashba SOC is about 2.4 times stronger
than Dresselhaus SOC. The middle row displays the case
θso = π/4, in which Rashba and Dressellhaus SOCs have
equal strength, and the bottom row with θso = π/2 corre-
sponds to a junction in which only Dresselhaus SOC is
present. The case of junctions in which only Rashba SOC
is present has been omitted because such junctions do not
exhibit crystalline anisotropy. Shaded and unshaded regions
represent trivial (Q = 1) and topological (Q = −1) states,
respectively. The blue lines represent the normalized positive
branch of the critical current, while the red lines indicate
the ground-state phase behavior. The topological regions,
critical current, and ground-state phase exhibit a strong de-
pendence on both the magnetic field and junction orientations.
Furthermore, the critical current dependence on the mag-
netic field direction can be used to determine whether both
Rashba and Dresselhaus or only one SOC interaction is
present in the system. Indeed, as long as the junction is
not oriented along the spin-orbit field symmetry axes [i.e.,
θc �= (2n + 1)π/4] and only Rashba, only Dresselhaus, or
both SOCs are present, the absolute maxima of the criti-
cal current occur for magnetic field orientations ϕB = (2n +
1)π/2 [see Fig. 6(b)], ϕB = nπ [see Fig. 7(g)], or ϕB �= nπ/2
(with n being an integer number) [see Figs. 7(a) and 7(d)],
respectively.
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FIG. 7. [(a)–(i)] Plot of �top/�0 and Q as a function of φ and ϕB for an InSb junction, for various values of θSO and θc. The top row
has θSO = π/8, the middle row has θSO = π/4 and the bottom row has θSO = π/2. For all of the figures, B = 0.6 T. The shaded (unshaded)
areas have Q = 1 (Q = −1). The TB simulation parameters and the junction geometry are specified in the Appendix. The red lines are the
ground-state phase φGS of the system and the blue lines are Ic/Imax

c , Imax
c being the maximum critical current in the junction at T = 0.7 K. The

vertical dashed lines correspond to ϕ
opt
B given by Eq. (8), for the respective θSO and θc.

The spin-orbit field in zinc-blende semiconductor quantum
wells grown along the [001] crystallographic direction ex-
hibits a C2v symmetry, with symmetry axes along the [110]
and [1̄10] directions [97]. Although the specific crystallo-
graphic direction of the junction may lower the symmetry to
C2, the C2v symmetry is still preserved as long as the junction
direction coincides with one of the spin-orbit field symmetry
axes [i.e., when θc = (2n + 1)π/4, with n being an integer
number]. This is the situation in the middle and right columns
in Figs. 7, where the topological gap, ground-state phase, and
critical current exhibit a C2v symmetry with respect to the
magnetic field orientation with a symmetry axis ϕB = π/2.
Note that for θc = π/4 and 3π/4, ϕB = π/2 corresponds to
magnetic fields along the [1̄10] and [1̄1̄0] directions, respec-
tively (i.e., to magnetic field directions along symmetry axes
of the spin-orbit field).

Unlike the critical current dependence on the magnetic
field strength, which may exhibit minima (accompanied by
ground-state phase jumps) when the system transits from the
trivial to the topological superconducting state [37,42] (see
also Fig. 8), the minima of the critical current dependence on
the magnetic field direction (see Fig. 7) is not an indicator of
topological phase transitions.

The results shown in Fig. 7 reveal that the realization of the
topological superconducting state with a sizable topological
gap requires an adequate orientation of the magnetic field,
according to the junction crystallographic direction. Indeed,
even if the system is in the topological state, the topological
gap protecting the MBSs can be very small when the optimal
magnetic field orientation (vertical, dashed lines) calculated
from Eq. (8) do not cross the topological region, as shown in
Figs. 7(a), 7(d) and 7(e). However, a sizable topological gap is
achieved when the system is in the TS state and the magnetic
field orientation fulfills Eq. (8), as illustrated in Figs. 7(b), 7(c)
and 7(f)–7(i).

The topological gap as a function of the magnetic field
strength is shown in Fig. 8 for for the corresponding optimal
magnetic field orientations (ϕB), different crystallographic
orientations (θc) of the junction, and various values of the
spin-orbit angle (θso). For θso = π/8 and π/2 (upper and
lower rows, respectively), as the magnetic field strength is
increased, the system transits into the TS state when the
ground-state phase (red line) jumps and crosses the topolog-
ical region (unshaded zones). The proper orientation of the
magnetic field allows for the existence of a sizable topological
gap when the system enters in the TS state. The jump of
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FIG. 8. [(a)–(i)] Plot of �top/�0 and Q as a function of φ and B for an InSb junction, for various values of θSO and θc. The shaded
(unshaded) areas have Q = 1 (Q = −1). The TB simulation parameters and the junction geometry are provided in Appendix. The red lines are
the ground-state phase φGS of the system and the blue lines are Ic/Imax

c , Imax
c being the maximum critical current in the junction at T = 0.7 K.

For each plot, ϕB = ϕ
opt
B for the respective θSO and θc, corresponding to (a) ϕB = 3π/8, (b) π/2, (c) π/2, (d) π/8, (e) 0, (f) π/2, (g) 3π/4, (h)

π/2, and (i) π/2.

the ground-state phase is accompanied by a minimum in the
critical current. Such a behavior has previously been used as
a signature of TS phase transitions [37,42]. Note, however,
that in junctions with narrow S regions critical current minima
may not necessarily signal topological transitions [38,110]
and the observation of more reliable signatures in other
physical quantities, such as the spin susceptibility might be
required [110]. When the Rashba and Dresselhaus SOCs have
equal strengths (i.e., θso = π/4) and θc = π/8 or θc = π/4,
the system remains in the trivial state for all magnetic field
strengths and no ground-state jump nor local critical current
minimum occur. However, the system can still reach the TS
state when θc = 3π/4, even without a ground-state phase
jump (nor associated critical current minimum). However, the
absence of the phase jump does not allow the system to reach
the TS state with an optimal topological gap. The results
suggest that coexisting Rashba and Dresselhaus SOCs with
equal strength may not be favorable for realizing stable TS in
phase-unbiased JJs.

V. SUMMARY

We show that a rich interplay of magnetic field direc-
tion, crystalline orientation, and the relative strengths between
Rashba and Dresselhaus SOCs (parametrized by a spin-orbit

angle), all play an important role in defining the optimal
set of parameters that lead to a large topological gap in a
topologically nontrivial state. We provide examples of the ef-
fects of magnetoanisotropy on the current-phase relation of a
proximitized Al/HgTe planar JJ, where only Rashba SOC is
sizable, and show that both the topological phase diagram and
the CPR strongly depend on the direction of the applied mag-
netic field. We demonstrate that for a phase-unbiased planar JJ
in which the phase is allowed to self-tune to its ground-state
value (i.e., the phase value that minimizes the system free
energy), changing the magnetic field direction can cause π

jumps in the ground-state phase. We also consider the case
of an Al/InSb junction, where both Rashba and Dresselhaus
SOCs are relevant and not only the magnetic field direction,
but the junction crystallographic orientation and spin-orbit
angle also affect the topological superconducting state. We
show that to realize stable MBSs, the system parameters must
be tuned such that the junction is in the topological super-
conducting state and a sizable topological gap is achieved
by properly orienting the magnetic field, in dependence of
the junction crystallographic orientation and the spin-orbit
angle parametraizing the relative strengths between Rashba
and Dresselhaus SOCs. In phase-unbiased JJs, the ground-
state phase self-tunes and can exhibit π jumps as the magnetic
field is rotated. When the magnetic field orientation is optimal
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42a 16a 42a

y

x a

FIG. 9. The tight-binding simulation lattice with the lattice con-
stant a. The square sites correspond to the JJ and the round sites
correspond to the superconducting leads. The grayed out copies of
the system represent the translational invariance in the y direction of
the system. The width of the SC leads are 42a = 252 nm each and
the width of the JJ is 16a = 96 nm.

and the field strength is varied, the ground-state self-tuning π

jumps enables the system transition to the topological super-
conducting state with a sizable topological gap.
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APPENDIX: TIGHT-BINDING SIMULATIONS

In this Appendix, we briefly describe the tight-binding
(TB) simulation methods used in the main text to obtain
Figs. 2–8. We start by discretizing the Hamiltonian in Eqs. (1)
and (2) on a square lattice in the usual manner [111]:

HTB = Ĥonsite + (V̂ up + V̂ right + H.c.),

Ĥonsite =
∑
j�0,i

honsite(xi ) |xi, y j〉 〈xi, y j | ,

V̂ up =
∑
j�0,i

vup(xi ) |xi, y j + a〉 〈xi, y j | ,

V̂ right =
∑
j�0,i

vright(xi ) |xi + a, y j〉 〈xi, y j | , (A1)

where a is the lattice constant and (xi, y j ) = (i a, j a) are the
x and y coordinates of the lattice points and i, j are integers
representing the ith ( jth) lattice point along the x (y) axis. The
onsite (honsite) and hopping (vup, vright) terms do not have y j

dependence because we consider a system with translational
invariance in the y direction, except in the cases where we
consider the energy levels or the wave-function amplitude of
a 2D closed system [see Figs. 2(b), 2(c), 5(b), and 5(c)]. These
terms are given by

honsite(xi ) = (4t + ε(λ, θc) − μ) τzσ0 + B · σ

+ �(xi )τ+ + �∗(xi )τ−,

vright(xi ) = −t τzσ0 + i

2a
ατzσy

− i

2a
β (cos 2θc τzσx − sin 2θc τzσy),

vup(xi ) = −t τzσ0 − i

2a
ατzσx

+ i

2a
β (cos 2θc τzσy + sin 2θc τzσx ). (A2)

TABLE I. Material and simulation properties of the planar JJs,
used throughout this work. Here, m0 is the rest mass of the electron.
Parameters are taken from Ref. [48,71].

Name HgTe InSb

Effective mass(m∗) 0.038m0 0.013m0

Landé factor (g∗) −10 −20
Induced SC gap(�0) 0.25 meV 0.21 meV
SOC strength(λ) 16 meV nm 15 meV nm
Critical field at 0 K 1.45 T 1.45 T
Temperature(T ) 0.7 K 0.7 K
Chemical potential in S (μS) 1 meV 1 meV
Chemical potential in N(μN ) 1 meV 1 meV
Junction width(WN ) 96 nm 96 nm
Left SC lead width(WS) 252 nm 252 nm
Right SC lead width(WS) 252 nm 252 nm
Junction length (L) 4000 nm 4000 nm
TB lattice constant(a) 6 nm 6 nm
TB hopping parameter(t) 27.9 meV 81.5 meV

Here, t = h̄2/2m∗a2 is the hopping parameter, m∗ is the effec-
tive mass, and the definitions of τ , σ , �, λ, α, β, and θc are
given in the main text. ε(λ, θc) = (2m∗λ2/h̄2) (1 + (sin 2θc)2)
is the minimum single-particle energy, which is at least an
order smaller than other relevant energies in the systems we
consider. An illustration of the lattice discretization used for
the numerical calculations is shown in Fig. 9.

In order to calculate the free energy in Eq. (10) as well
as the topological gap, we need the energy spectrum of the
system. The translational invariance in the y direction implies
the momentum h̄ky is a good quantum number. We utilize the
KWANT package [92] to solve the relevant eigenvalue problem
for a given ky:

(V̂ down
y=0 ei kya + Ĥy=0

0 + V̂ up
y=0 e−i kya) ψ = E (ky) ψ, (A3)

where Ĥy=0
0 = ∑

i[h
onsite(xi )|xi, y = 0〉〈xi, y = 0|+

(vright (xi )|xi + a, y = 0| + H.c.)], V̂ up
y=0 = ∑

i v
up(xi )|xi, y =

a〉〈xi, y = 0| and V̂ down
y=0 = (V̂ up

y=0)†. We obtain the spectrum
for a range of ky in the Brillouin zone.

Finally, to obtain the topological charge Q, we make use of
the formula [78]

Q = sgn

[
Pf(H (ky = π/a))

Pf(H (ky = 0))

]
, (A4)

where Pf(.) is the Pfaffian and H (ky = π/a), H (ky = 0) are
obtained using the KWANT package [92,112].

The system parameters used in the numerical simulations
are summarized in Table I.
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