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Fermi arcs and pseudogap phase in a minimal microscopic model of d-wave superconductivity
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We conclusively show that a pseudogap state can arise at T > Tc, for reasonable pairing interaction strength,
from order parameter fluctuations in a two-dimensional minimal model of d-wave superconductivity. The
occurrence of the pseudogap requires neither strong correlation nor the presence of competing order. We
study a model with attractive nearest-neighbor interaction and establish our result using a combination of a
cluster-based Monte Carlo method for the order parameter field and a twisted-boundary scheme to compute the
momentum-resolved spectral function. Apart from a dip in the density of states that characterizes the pseudogap,
the momentum and frequency resolution on our effective lattice size ∼160×160 allows two major conclusions:
(i) at T < Tc, despite the presence of thermal phase fluctuations, the superconductor has only nodal Fermi points
while all non-nodal points on the normal state Fermi surface show a two-peak spectral function with a dip at
ω = 0, and (ii) for T > Tc, the Fermi points develop into arcs, characterized by a single quasiparticle peak, and
the arcs connect up to recover the normal state Fermi surface at a temperature T ∗ > Tc. We show the variation
of Tc and T ∗ with coupling strength and provide detailed spectral results at a coupling where T ∗ ∼ 1.5Tc.
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I. INTRODUCTION

Experiments on the underdoped cuprates were the first to
focus attention on a “pseudogap” phase [1]. It was observed
that a gap persists in the quasiparticle excitation spectrum
above the superconducting transition temperature Tc. Unlike
the conventional superconductors, there exists another tem-
perature scale, T ∗ > Tc, for the disappearance of the antinodal
gap [2–5]. An intriguing aspect of the spectral properties in the
pseudogap (PG) phase is the appearance of Fermi arcs above
Tc, while the T < Tc phase shows only nodal Fermi points
despite thermal phase fluctuations. The Tc < T < T ∗ window
shows partial gapping of the Fermi surface. The length of the
Fermi arcs increases with temperature until the normal state
Fermi surface (FS) is recovered [6–12] at T ∗.

Theoretical work on this problem has explored multiple
possibilities. One focuses on the fluctuation in amplitude of
the d-wave superconducting (dwSC) order parameter as the
origin of PG behavior [13–18]. Another—the “semiclassical
approximation” (SCA)—attributes the Fermi-arc formation to
a square-root singularity along the FS in the spectral function
that results from the Doppler shift of the quasiparticle en-
ergy in the presence of supercurrent in the PG phase [16,19].
Later study, however, indicated that such singularity may be
an artifact of the SCA, which itself may be unjustifiable
because the quasiparticles are massless near the nodes in
the PG region [20]. A recent work [21] considers electron
self-energy correction due to the exchange of a Cooper-pair
fluctuation at finite temperature. A crucial input in the theory,
the correlation length ξ (T ), was assumed to have a phe-

nomenological Berezinskii-Kosterlitz-Thouless (BKT) [22]
form, while the temperature-dependent dwSC order parameter
�(T ) was adopted from the angle-resolved photoemission
spectroscopy (ARPES) measurements.

Despite the exploration of various physical mechanisms,
the microscopic origin of the PG phase in the high-Tc cuprates
remains highly debated. An exact-diagonalization (ED) +
Monte Carlo (MC)-based study in a microscopic model [23]
pointed out that the PG phase may not exist for a realistic
value of interaction, V ∼ t (where t is the hopping scale),
in a minimal microscopic model. On the other hand, another
work using a relatively larger system size suggested otherwise
[24]. However, both approaches suffered from a system size
that was not adequate to examine the momentum-resolved
spectral function and establish the existence of Fermi arcs in
the T > Tc window. Another approach stressed the competing
dwSC and antiferromagnetic order [25] using MC simulation
of a Landau-Ginzburg (LG) functional and also considered
the presence of quenched disorder [26]. The obtained order
parameters were used in a microscopic model to show the
existence of the PG phase. The topological aspect of this
transition has also been discussed [27]. Finally, recent work
indicates that the onset of the PG phase may be accompanied
by the appearance of nematic order [11,28–32].

In this richly varied field, it may be useful to first conclu-
sively establish what spectral features can emerge from purely
d-wave pairing fluctuations, and only then build in additional
effects. In this spirit, we explore the impact of classical ther-
mal fluctuations of the d-wave order parameter field on the
electronic spectrum. In these studies, the ED+MC method is
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the most frequently used approach. However, the use of the
approach is limited by the relatively small lattice size that is
accessible, owing to the high computational cost [23,24]. This
is a serious hindrance for examining the spectral properties,
especially the momentum-resolved spectral functions along
the normal state Fermi surface, an exercise essential to ex-
amine the pseudogap phase.

In this paper, we adopt an approach which uses a combi-
nation of a cluster-based MC method [33] to access thermal
fluctuations on reasonably large sizes, and a twisted-boundary
condition (TBC) scheme [34] to obtain high-resolution spec-
tra. For a small system size, with poor momentum resolution,
it is difficult to determine the extent of the Fermi arc. This
is because only a small fraction of the momentum points
fall on the FS or are close to it. Therefore, we first ob-
tain equilibration for size LMC×LMC (LMC = 20) and, for
spectral calculations, employ TBC—repeating an equilibrated
configuration Ltw = 8 times along both the x and y di-
rections. Then, the momentum-resolved spectral function is
obtained by using Bloch’s theorem for a lattice of effec-
tive size Leff = LMC×Ltw, i.e., 160×160. We summarize our
main results below in terms of the single-particle spectral
function A(k, ω).

(i) We show the existence of a PG phase above Tc in
a minimal model for dwSC without invoking the presence
of any competing order, suggesting that the key difference
between the PG phase and pure dwSC may be the absence
of phase correlation in the former. (ii) For T < Tc, there is
a two-peak structure in A(k, ω) for all momenta on the nor-
mal state Fermi surface, except the nodal points—where a
quasiparticle peak is visible. The spectral weight A(k, 0) on
this contour falls sharply away from the nodal points. (iii)
For T > Tc, the single-peak quasiparticle feature is visible
over a larger part of the normal state Fermi surface, forming
“Fermi arcs” around the nodal points. The Fermi arcs increase
in length and connect up to create the normal Fermi surface
at T = T ∗, where the two-peak feature at the antinodal point
also collapses.

II. MODEL AND METHOD

A. Model

We consider a minimal two-dimensional electron model,

H = −
∑

ijσ

tijd
†
iσ djσ − μ

∑

i

ni − |V |
∑

〈ij〉
ninj. (1)

The first term is the kinetic energy, which includes both
first- (t) and second- (t ′) neighbor hoppings. We set t = 1.
We choose t ′ = −0.4 so as to reproduce the experimentally
observed Fermi surface [35]. In the second term, μ is the
chemical potential, which is chosen to correspond to the band
filling n ∼ 0.9. Finally, the last term describes the nearest-
neighbor attractive interaction responsible for dwSC pairing.
The interaction parameter V ∼ 1.0 is chosen so that it is con-
sistent with the nearest-neighbor antiferromagnetic coupling
J ≈ 4t2/U ∼ 1. We have fixed V = 1.2 for all the calcula-
tions, unless stated otherwise.

B. Monte Carlo strategy

The effective Hamiltonian below, employed in the sim-
ulation process, can be formally obtained via a Hubbard-
Stratonovich transformation of the intersite interaction in the
d-wave pairing channel and assuming the pairing field �δ

i
to be “static,” i.e., classical. This is equivalent, structurally,
to a “mean-field”-like decoupling of the interaction, without
any additional assumption about homogeneity and phase cor-
relation among the �δ

i . The �δ
i are allowed both amplitude

and phase fluctuations. We have ignored other possible de-
couplings, for example related to charge density wave, etc.:

Heff = −
∑

i,δ′,σ

ti,i+δ′d†
iσ di+δ′σ − μ

∑

i

ni

−
∑

i,δ

[(d†
i↑d†

i+δ↓ + d†
i+δ↑d†

i↓)�δ
i + H.c.] + Hcl ,

Hcl = 1

V

∑

i

∣∣�δ
i

∣∣2
. (2)

Here, δ′ refers to both the first- and second-nearest neighbors,
whereas δ to only the first neighbor. The superconducting gap
function defined on the link is a complex classical field and
can be expressed as �δ

i = |�i|eiφδ

. For simplification, |�i| is
treated as a site variable, while φδ (δ = x, y) is treated as a
link variable.

The equilibrium configurations {�i, φ
x
i , φ

y
i } are deter-

mined using the Metropolis algorithm, which involves updat-
ing the configuration according to the distribution

P
{
�i, φ

x
i , φ

y
i

} ∝ Trdd† e−βHeff . (3)

For an update at a given site, the Hamiltonian correspond-
ing to a cluster of size LC×LC around the update site is
diagonalized (using periodic boundary condition), instead of
the full 20×20 system Hamiltonian. We use LC = 6. This
approximation is based on the assumption that the effect of
the proposed change at the update site decreases quickly with
distance as one moves away [36]. Benchmarked earlier for
spin-fermion and other similar models, it leads to a significant
reduction in update cost from ∼N3 to ∼N3

c for a system and
cluster with N and Nc sites, respectively [33]. After equili-
bration, we consider a superlattice constructed using dwSC
field configurations on the LMC×LMC system and study the
spectral properties by using Bloch’s theorem, as discussed in
later sections.

For the interaction parameter considered in this work, we
start MC simulations at a temperature T ∼ 0.05t that is far
above the dwSC transition temperature and reduce the tem-
perature to cool down the system in steps of �T = 0.0013t .
The small temperature step ensures that the system avoids any
metastable states during the annealing process.

C. Tc determination

From the equilibrium configurations at a given temper-
ature, we can calculate the long-range phase correlation
	(LMC/2, 0):

	(sx, sy) = 1

N

∑

i

〈eiφx
i eiφx

i+s〉. (4)
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The Tc for dwSC is determined from the the rise of
	(LMC/2, 0) on reducing T from a high temperature. To keep
track of any deviation from the dwSC state, we calculated
another useful correlation function 
 = 1

N

∑
i〈eiφx

i eiφy
i 〉. A

negative 
 indicates whether or not the state obtained in the
equilibration is a dwSC state. For the interaction parameters
considered in the current work, only the dwSC state is ob-
tained.

An earlier proposal for the determination of the onset tem-
perature T ∗ of the PG phase focused on the short-range phase
correlation function such as 	(1, 0), with 	(1, 0) ∼ 0.1 set
as a criterion for Tc. The inference [23] was that for a re-
alistic V ∼ 1, no PG is possible. However, the validity of
such assumptions was not checked by examining the spectral
function, which was challenging due to the finite-size effect.

D. Spectral features

Once the thermal equilibrium is achieved, we use the
twisted-boundary condition to calculate the density of
states. For instance, tij → tije−i(qxax+qyay ), where qx, qy =
0, 2π/Nl , 4π/Nl , . . . , 2π (Nl − 1)/Nl . Nl = Ltw = 8 is the
number of lattices in the superlattice, i.e., number of rep-
etitions along the x and y directions of the lattice under
consideration in both directions. Note that we set ax = ay = 1.
Similarly, �δ

i = |�i|eiφδ = |�i|eiφij = |�i|eiφij
e−i(qxax+qyay ) at

the boundaries. Then, the density of states (DOS) is calculated
as

N (ω) =
∑

q,λ,i

[|uq,λ(i)|2δ(ω − Eq,λ)

+ |vq,λ(i)|2δ(ω + Eq,λ)], (5)

where Eq,λ are the eigenvalues of the Hamiltonian obtained
from Eq. (1) using the Bogoliubov-Valatin transformation.
|uq,λ〉 and |vq,λ〉 form the eigenvectors of the Hamiltonian. The
single-particle spectral function is calculated as

A(k, ω) =
∑

q,λ

[|〈k|uq,λ〉|2δ(ω − Eq,λ)

+ |〈k|vq,λ〉|2δ(ω + Eq,λ)], (6)

where

〈k|uq,α〉 =
∑

l

∑

i

〈k|l, i〉〈l, i|uq,λ〉. (7)

Here, l is the superlattice index and i is a site index within the
superlattice.

III. RESULTS

Figure 1(a) shows both long- and short-range phase
correlations, 	(LMC/2, 0) and 	(1, 0), as a function of tem-
perature. On decreasing temperature, 	(LMC/2, 0) starts to
rise from a nearly zero value at Tc ∼ 0.035t . 	(1, 0) is ∼0.1
for a large temperature window above Tc for the model in this
work.

One of the earliest experimental signatures of the pseudo-
gap was a dip in the density of state (DOS) persistent above
Tc, obtained in the scanning tunneling spectroscopy (STS)
measurement [4]. We find a qualitatively similar dip as shown
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FIG. 1. (a) Long-range and short-range phase correlation func-
tion as a function of temperature. (b) Evolution of DOS as a function
of temperature. The dip in the V -shaped DOS continues to exist
beyond Tc and can be noticed up to T ∼ 1.5Tc. (c) T and T ∗ as
a function of interaction V , where the critical interaction strength
Vc ∼ 1.0 for the onset of d-wave superconductivity.

in Fig. 1(b), which retains its V -shape structure even above
Tc. The dip becomes shallow enough to become unnoticeable
only at temperature T ∼ 1.5Tc, for V = 1.2. We estimate T ∗
as the temperature at which the dip in the DOS becomes
unnoticeable.

Based on that criterion, our estimate of T ∗ reveals its
dependence on V to be similar to that of Tc(V ) in the
intermediate-coupling regime, with the T ∗(V ) curve running
almost parallel to the Tc curve [Fig. 1(c)]. Importantly, T ∗/Tc

grows with a decrease in the interaction parameter V , i.e., the
relative temperature window for the pseudogap phase is larger
[37] for realistic V ∼ 1.

Figure 2 shows the dependence of the long-range phase
correlation function and density of states on the lattice size.
The phase correlation shows only a relatively small suppres-
sion with increasing lattice size in the vicinity of the onset
temperature of dwSC [Fig. 2(a)]. For temperature T = 0.5Tc,
Fig. 2(b) shows the lattice size dependence of the density of
states at temperature T = 0.5Tc. We compare sizes 16×16,
20×20, and the results for an effective lattice size 160×160
(using twisted-boundary conditions). The effective lattice is
equivalent to an equilibrated field configurations on a 20×20
lattice size repeated eight times along both the x and y direc-
tions. The finite-size artifacts are absent in the latter, while
they are significant in the two smaller sizes.
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FIG. 2. (a) Phase correlation functions as a function of tempera-
ture for different lattice sizes LMC×LMC , with LMC = 12, 16, 20, and
24. (b) DOS for LMC = 16 and 20 with Ltw = 1. For comparison,
the DOS is also shown for LMC = 20 and Ltw = 8, i.e., an effective
lattice size of 160×160.
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FIG. 3. Evolution of quasiparticle spectral weight A(k, ω) for
ω = 0 as a function of temperature. kx and ky are along horizon-
tal and vertical directions, respectively, with each having range
[0, π ]. A(k, 0) increases continuously with temperature away from
the nodes. However, it is only a tiny fraction (∼1%) of that in the
vicinity of the node, a feature noticeable even beyond Tc, which is
an indication of a preformed Cooper-pair state existing up to a very
high temperature.

Figure 3 shows that well below Tc, the spectral weight
is concentrated at the nodal point. On approaching Tc, the
spectral weight continuously builds up at points near the nodal
points along the normal state FS. We will examine the energy
dependence of the spectral functions further on. The weight at
points on the nominal FS away from the nodal point remains
only a tiny fraction (∼1%) of that at the node. The process
of spectral weight buildup continues beyond Tc. The spectral
weight remains highest near the nodal points and smallest near
the antinodal, even beyond T ∗, which clearly indicates the ex-
istence of Cooper pairs without any phase coherence between
them. Above Tc, the pseudogap can be expected to quickly fill,
first near the nodal points and then away from them, until the
whole of the normal state Fermi surface appears.

To understand how the gaps are filled away from the nodal
points either below or above Tc, we examine the momentum-
resolved spectral function as plotted in Fig. 4 for the points
(k) along the normal state FS. Because of the finite-size effect,
most of the points are slightly away from the normal state FS
(within the range of �kx = �ky � 0.03). It introduces small
asymmetry, which is removed by plotting the symmetrized
spectral functions [A(k, ω) + A(k,−ω)]/2 instead.

Several points are to be noted. First of all, the SC order
parameter retains its d-wave character below Tc, despite phase
fluctuations. A two-peak structure exists with a small dip at
ω = 0 for any non-nodal point, however close they are to the
nodes, all the way up to Tc. It indicates that the Fermi points
remain intact against the thermal phase fluctuations below Tc.
This is in contrast to the mean-field picture in which the dwSC
order parameter approaches zero all along the normal state FS
while preserving its d-wave symmetry. Second, the spectral
weight continuously increases as the temperature increases at
the points near the nodes, along the normal state FS. This is
also accompanied by the disappearance of the dip associated
with the thermally broadened two-peak structure and appear-
ance of a single broad peak, starting from the points in the
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−0.5  0  0.5
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FIG. 4. Momentum-resolved spectral function A(k, ω) at dif-
ferent temperatures calculated for several values of momentum k
along the Fermi surface (V = 1.2). The bottom curve in each case
corresponds to a point very close to the nodal point, while the top
curves correspond to a point in the vicinity of the antinode. Nodal
quasiparticles are protected against the phase fluctuation below Tc

and the Fermi arcs are formed above Tc that continue to exist for
T � 1.4Tc. Asymmetry present in the spectral function, more visible
when the gap is small, is an artifact of the finite size of the system.
The peak height is arbitrarily scaled to enhance the visibility.

vicinity of the nodal points and extending up to those near
the antinodal points, as T increases beyond Tc and reaches
T ∗. Thus, the region Tc < T < T ∗ is marked by the spectral
features which are in qualitative agreement with the ARPES
measurements [8].

We have found that the peak in the dwSC amplitude distri-
bution shows only a small shift across the entire temperature
range considered here. We find �an(Tc) ≈ 0.5�an(0), while
�an(T ) does not noticeably decrease within the range Tc �
T � T ∗. The feature, which is indicative of the PG as a pre-
formed Cooper-pair state without the absence of any phase
coherence, also agrees with the ARPES measurements ac-
cording to which �an(T ) remains independent of temperature
for the entire range 0 < T < T ∗. For us, however, �an(T )
shows a drop in size by nearly one-half on approaching Tc

from below.
Figure 5 shows the thermally averaged spectral function

A(k,−ω) + A(k, ω). The existence of banana-shaped con-
stant energy surfaces can be seen nearly up to Tc. These
banana-shaped constant energy surfaces within the octet
model have been used to explain the features of quasiparticle
interference in the superconducting cuprates [38].

In this paper, we focused on a particular electron density
corresponding to “hole doping” x ≈ 0.1 on the half-filled
state. However, we ignored correlation effects that lead to the
Mott state at half-filling and also the possibility of competing
phases such as magnetic and charge order. These effects are
essential for any detailed understanding of the underdoped
cuprates. We touch upon this next in our discussion.

IV. CONNECTION TO EXPERIMENTS

Having discussed our results, we would like to place them
in the context of the pseudogap effect observed in the cuprates.
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FIG. 5. Thermally averaged A(k, −ω) + A(k, ω) for kx and ky

in the range [−π , π ]. The columns are for temperatures T/Tc =
0.35, 1, and 1.2, while the rows show data at ω = 0.2 and 0.3,
respectively.

There are two distinct regimes of “pseudogap physics” as
brought out by recent photoemission experiments. The first
pertains to the well-studied underdoped regime, where the
proximity to the x = 0 Mott insulator and competing charge
and spin order plays a role. The other, more pertinent to us,
occurs at relatively high doping, x � 0.19, where the “com-
peting order” effects are weak and one may be looking purely
at d-wave pairing fluctuations. Below, we first comment on
the underdoped regime, where we really cannot make any
quantitative comment, and then at the large doping window.

A. The underdoped regime

The underdoped cuprates exhibit a wide variety of
symmetry-breaking phenomena, including charge order, ne-
matic order, and breaking of time-reversal as well as inversion
symmetry, well above the superconducting transition temper-
ature [39]. The occurrence of these correlations also coincides
with the presence of a dip in the DOS. There is no quasipar-
ticle peak at the antinodal point above Tc and a pseudogap
appears on approaching Tc marked by the existence of Fermi
arcs. The length of the Fermi arc continues to decrease, and
vanishes at Tc, when it gets transformed to Fermi points. Our
results show a qualitative agreement with this experimental
feature, though the size of the gap rapidly decreases with
temperature beyond Tc [8].

Correlation effects in the underdoped window can be ap-
proximately incorporated within the Gutzwiller scheme that
renormalize the hopping amplitude t and pairing interac-
tion V . The respective factors are gt = 2x/(1 + x) and gs =
4/(1 + x)2, where x is the hole doping. The effective hopping
vanishes as x → 0, while the pairing interaction saturates.
The ratio Ṽ /t̃ = (V/t ) ∗ 2/[x(1 + x)]. This suggests that the
effective V/t is significantly enhanced for x = 0.1 used in this
work.

One can look at the consequence of this in two ways,
with a similar qualitative conclusion. (i) Correlation effects
would suppress charge fluctuations, and the kinetic energy, in
the doped Mott insulator. As suggested by pairing stiffness

−1.5 −1 −0.5  0  0.5  1  1.5

1.4Tc

1.3Tc

1.2Tc

1.1Tc

1.0Tc

0.9Tc

(a) A(kan,ω)

ω

FIG. 6. (a) Calculated and (b) experimentally determined antin-
odal quasiparticle energy distribution curve A(kan, ω) as a function
of temperature [41]. Experimental data are for an overdoped sample.

calculations in the projected ground state [40], the Tc would be
strongly suppressed with respect to its “uncorrelated” value,
with Tc → 0 as x → 0. This opens up a large window between
Tc and the “pairing scale” decided by V . The pseudogap
window increases because the Tc gets lowered. Alternately,
(ii) one can look at an uncorrelated system with V/t now
renormalized by gs/gt . It has been pointed out [23] that the
temperature window for the pseudogap phase increases with
increasing V/t . Our Fig. 1(b) shows the effect. Overall, the
pseudogap window will widen at small x, compared to the
estimate we make, due to the Tc suppression caused by corre-
lation effects.

B. The large doping regime

Beyond the underdoping window, the state above the super-
conducting dome is expected to be a normal metal marked by
the presence of a well-defined quasiparticle peak all along the
Fermi surface. On the contrary, recent work [39,41] indicates
the persistence of an antinodal gap in the spectral function
above Tc, a feature suggested to be intrinsic to a dwSC
[Fig. 6(b)]. However, there is a marked difference from the
usual pseudogap phase: the lowering of temperature is accom-
panied first with a sharpening of the quasiparticle peak before
the gap appears close to, but above, the superconducting tran-
sition. Our calculations, which only take d-wave correlations
and no competing order into account, show a behavior akin
to what is observed in the ARPES spectrum for the antinodal
point in the overdoped region [Fig. 6(a)]. First, we find that the
antinodal spectrum is gapped above Tc. Second, the gap closes
rapidly with an increase in temperature and disappears beyond
∼1.5Tc with the appearance of antinodal quasiparticles.

V. CONCLUSIONS

We have explored the possibility of a pseudogap phase in
a minimal microscopic model of d-wave superconductivity.
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We established the dependence of Tc and the pseudogap onset
temperature T ∗ on the pairing interaction V and found that for
V typical of the cuprates, the antinodal two-peak structure,
with a shallow dip in between, persists in the momentum-
resolved spectrum up to T ∗ ∼ 1.5Tc. We observe that despite
thermal fluctuations, an essentially nodal Fermi surface is
seen for T < Tc, while for T > Tc, there is a Fermi arc
feature, characterized by thermally broadened quasiparticle
peaks, around the nodal points. The arcs increase in length
from Tc to T ∗, where they connect up to recover the normal
state Fermi surface. Around T ∗, the two-peak feature in the
antinodal spectral function also collapses into a single-peak
feature. We provide a comprehensive map of the spectral func-
tion for varying momentum and temperature. The technical
innovations used in this work can serve as the starting point for

more elaborate models where the role of competing channels,
of density order or magnetism, can be studied in conjunction
with d-wave superconductivity.
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