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Mean-field description of skyrmion lattice in hexagonal frustrated antiferromagnets
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A simple mean-field description of frustrated antiferromagnets on hexagonal lattices, aimed to describe the
high-temperature part of the temperature-magnetic field phase diagram, is proposed. It is shown that an interplay
between modulation vector symmetry, Zeeman energy, and magnetodipolar interaction leads to stabilization of
the triple-Q skyrmion lattice in a certain region of the phase diagram. The corresponding analytical expressions
for phase boundaries are derived. The possible relevance to the high-temperature part of the Gd2PdSi3 phase
diagram is discussed.

DOI: 10.1103/PhysRevB.105.054435

I. INTRODUCTION

Topological phases are one of the hottest topics of con-
temporary solid state physics. In magnetism, individual
skyrmions, skyrmion lattices (SkLs), and various other topo-
logically nontrivial structures have been extensively studied
(see, e.g., Refs. [1,2] and references therein).

In noncentrosymmetric magnets, skyrmions and SkLs were
predicted theoretically in seminal papers [3,4]. Experimental
observation of the SkL in the so-called A phase of MnSi [5]
has stimulated a plethora of further studies on this topic. It is
noteworthy that this interest is partially caused by promising
technological applications (see, e.g., Refs. [6,7] and refer-
ences therein).

A crucial skyrmion property relates to its nontrivial topol-
ogy, which can be characterized by topological charge [8]

Q = 1

4π

∫
n · [∂xn × ∂yn]dxdy, (1)

where n = s/|s| is the unit vector along the local spin value,
averaged over thermal and/or quantum fluctuations. A sin-
gle skyrmion usually has Q = ±1. For a SkL the natural
measure of topological charge is its density nSk , which, e.g.,
defines the topological contribution to the Hall resistivity,
since ρT ∝ nSk [9]. In noncentrosymmetric compounds with-
out exchange interaction frustration, where modulated spin
structures are stabilized solely by Dzyaloshinskii-Moriya in-
teraction (DMI) [10,11], the size of a magnetic unit cell is
usually quite large, being of the order of the exchange constant
to the DMI constant ratio (J/D) multiplied by the lattice
parameter, so nSk is rather small. In contrast, in frustrated
helimagnets the typical size of the magnetic unit cell is of
the order of several nanometers (see Ref. [12]). This leads to
large nSk and the giant topological Hall effect, which were
observed in the EuPtSi [13] and Gd2PdSi3 [14] compounds.
Interestingly, a “synergy” between DMI and frustration can
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lead to a drastic decrease in skyrmion size even if they are
both rather weak [15].

Theoretically, stable skyrmions and SkLs in frustrated cen-
trosymmetric helimagnets are usually ascribed to the interplay
of lattice symmetry, exchange interaction, Zeeman energy,
and certain kind(s) of anisotropic interactions [16–18]. For
instance, in Ref. [17], multiple-Q states including the SkL
were predicted at low temperatures for a triangular lattice
with single-ion easy-axis anisotropy. Next, it was shown that
related models with bilinear and biquadratic xxz-type ex-
change interactions [19] and single-ion and bond-dependent
anisotropies [20] also yield rich phase diagrams in parameter
space. Furthermore, recent experimental observation of the
SkL in tetragonal GdRu2Si2 [21] has stimulated theoretical
research, where the importance of biquadratic exchange and
compass anisotropy terms has been highlighted [22,23]. A
complementary high-temperature study [24] has shown that
the main features of the phase diagram observed in Ref. [21]
can be described within a simple model with magnetodipolar
interaction and easy-axis anisotropy.

In this paper, we show the importance of dipolar forces
in the phase diagram of hexagonal frustrated helimagnets, in-
cluding SkL stabilization. Magnetodipolar interaction, despite
being small, can play a significant role in helimagnets’ proper-
ties including temperature- and magnetic-field-induced phase
transitions (see, e.g., Refs. [24–32]). It is noteworthy that
for magnetic ions in the spherically symmetrical L = 0 state
(such as, e.g., Gd3+ in Gd2PdSi3 [33]) the dipolar forces are of
particular importance, since the strength of other anisotropic
interactions is governed by the spin-orbit coupling [34].

The rest of the paper is organized as follows. In Sec. II
we present the model under consideration, discuss its main
properties, and formulate the mean-field approach. In Sec. III
we describe the phase transitions and phase diagram for the
case of in-plane easy axes. Section IV is devoted to discussion
of the relevance between the proposed approach and experi-
mental data on the Gd2PdSi3 compound. In Sec. V we address
the phase diagram for out-of-plane collinear easy axes. Sec-
tion VI contains our conclusions. In Appendixes A–C we
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provide some discussion of our treatment of magnetodipolar
interaction and technical details of calculations of various
phases’ properties.

II. MODEL

We consider a simple model of a three-dimensional hexag-
onal frustrated antiferromagnet with one magnetic ion per
crystallographic unit cell. The system Hamiltonian is the fol-
lowing:

H = Hex + Hd + Hz, Hex = −1

2

∑
i, j

Ji j (Si · S j ),

Hd = 1

2

∑
i, j

Dαβ
i j Sα

i Sβ
j , Hz = −

∑
i

(h · Si ). (2)

Here, along with conventional symmetrical Heisenberg and
Zeeman interactions [h = −gμBH is the external magnetic
field in energy units (1 T ≈ 1.34 K)], we take into account
the dipolar forces, which tensor reads

Dαβ
i j = ω0

v0

4π

(
1

R3
i j

− 3Rα
i jR

β
i j

R5
i j

)
, (3)

where α and β denote Cartesian coordinates. The strength of
the magnetodipolar interaction is governed by

ω0 = 4π
(gμB)2

v0
, (4)

which is usually about 0.1 ÷ 1 K (v0 is the unit cell volume).
For instance, in Gd2PdSi3, one has ω0 ≈ 0.53 K (here and
below we use lattice parameters from Ref. [35]).

Introducing the Fourier transform

S j = 1√
N

∑
q

SqeiqR j (5)

(where N is the total number of spins) and plugging it into the
Hamiltonian (2), we get

Hex = −1

2

∑
q

Jq(Sq · S−q), (6)

Hd = 1

2

∑
q

Dαβ
q Sα

q Sβ
−q, (7)

Hz = −
√

N (h · S0). (8)

The former two terms can be combined into the bilinear part

H0 = −
∑

q

Hαβ
q Sα

q Sβ
−q. (9)

The symmetrical tensor Hαβ
q determines three eigenval-

ues λ1(q) � λ2(q) � λ3(q) for three mutually perpendicular
eigenvectors v1(q), v2(q), and v3(q). The latter can be con-
sidered as a set of principal axes for momentum-dependent
biaxial anisotropy; see Appendix A 1 for a particular example
and some details. Note that standard single-ion anisotropies
as well as more tricky compass anisotropy [36,37] can also be
included in this scheme; they simply modify λ j (q).

To describe the high-temperature part of the phase di-
agram, we introduce the averaged-over-thermal-fluctuations

values 〈Si〉 ≡ si and 〈Sq〉 ≡ sq. Near the ordering temperature,
|si| � S, and we expand the free energy of the mean-field
approach in powers of the order parameters as follows (see,
e.g., Refs. [26,30] for details):

F = −
∑

q

Hαβ
q sα

qsβ
−q −

√
Nh · s0 + AT

∑
i

s2
i + BT

∑
i

s4
i ,

(10)
where

A = 3

2S(S + 1)
, B = 9[(2S + 1)4 − 1]

20(2S)4(S + 1)4
. (11)

For S = 7/2, one has A ≈ 0.095 and B ≈ 0.002.
The ordering temperature of the model (10) corresponds

to the largest eigenvalue λ1(q), where the system becomes
unstable towards formation of magnetic structure with the
corresponding modulation vector. As the dipolar interaction is
typically much smaller than the frustrated exchange coupling,
this maximum approximately corresponds to the momentum
k, which maximizes J (q) (see Appendix A 2 for details).
It is usually incommensurate due to the frustration, and in
low-symmetry lattices either spiral [if λ1(k) = λ2(k)] or sinu-
soidal spin-density wave (SDW) [for λ1(k) > λ2(k)] ordering
emerge at Tc = λ1(k)/A.

For high-symmetry lattices there can be several equiva-
lent k, which can lead to stabilization of various so-called
multiple-Q structures, and SkLs in particular (see, e.g.,
Ref. [24] for a discussion of the tetragonal frustrated an-
tiferromagnet). Below, we concentrate on a case that is
relevant to Gd2PdSi3 [14] in which there are three equiv-
alent in-plane modulation vectors k1 = k(0, 1, 0), k2 =
k(−√

3/2,−1/2, 0), and k3 = k(
√

3/2,−1/2, 0) with angles
of 120◦ among them [Cartesian coordinates are used; see
Fig. 1(a)]; generalization of the results to another set of in-
plane vectors is straightforward.

Importantly, the dipolar tensor for in-plane q has quite
simple properties. Basically, it favors screw helicoids. Qual-
itatively, it can be understood using an analogy with Bloch
domain walls in ferromagnets: The spin component along
the modulation vector leads to positive correction to the
magnetic structure energy from dipolar interaction. In more
detail, the c axis is the middle one for relatively small q
and the easy one in the rest of the first Brillouin zone [see
Fig. 1(b)]. Moreover, the hard axis is approximately parallel
to q (for high-symmetry directions it is an exact feature), so
the perpendicular-to-q direction plays the role of the easy
or middle axis [for k1,2,3 we choose the corresponding vec-
tors as follows: e1 = (−1, 0, 0), e2 = (1/2,−√

3/2, 0), and
e3 = (1/2,

√
3/2, 0)]. This axis hierarchy is crucial for the

hexagonal SkL stabilization.

III. PHASE DIAGRAM: IN-PLANE EASY AXES

First, we assume that for the modulation vectors k j the
middle axis is c. So, the easy axes are lying in plane with 60◦

angles among them; see Fig. 2. We consider the external mag-
netic field along the c axis; the corresponding eigenvalue is
λ0 = (J0 − ω0Nzz )/2 ≈ J0/2 (where Nzz is the demagnetiza-
tion tensor component [38] for ellipsoid samples). To simplify
equations, we introduce “temperature” t = λ1 − AT (t > 0 in
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FIG. 1. (a) In the considered model, magnetic ions are arranged
hexagonally in the ab planes, which are stacked along the c axis. For
each incommensurate in-plane modulation vector there are at least
two counterparts due to the symmetry of the system. Here, we sketch
three modulation vectors observed in Gd2PdSi3 [14] and show the
Cartesian xyz coordinates we use (the out-of-plane ẑ direction is cho-
sen along the c axis). (b) Due to dipolar forces, in the first Brillouin
zone (large hexagon) for in-plane modulation vectors q = (qx, qy, 0)
the c axis is the easy one outside the black hexagon, wherein it plays
the role of the middle axis; the hard axis is along q everywhere (so,
inside the black hexagon the easy axis is in plane and perpendicular
to q). Consequently, at relatively small external magnetic fields,
screw helicoids are energetically favorable. Furthermore, we show
that in a large part of the phase diagram the triple-Q structure is
stable.

magnetically ordered phases) and parameters 	 = λ1 − λ2,
	′ = λ1 − λ3 > 	, and 	0 = λ1 − λ0. Finally, it is sufficient
to substitute BT with b = BTc in Eq. (10).

Similarly to Ref. [24], we restrict our analysis to a par-
ticular set of magnetic structures. We also neglect possible
small variations of the modulation vectors in phases with a
multicomponent order parameter, which can appear due to the
dipolar tensor eigenvalues’ momentum dependence. Details
of the calculations are mostly presented in Appendix B.

(i) The first structure we discuss is the simple SDW (herein
referred to as 1S) with the spin ordering

si = se1 cos k1Ri + mẑ, (12)

FIG. 2. Illustration for the case of in-plane easy axes considered
in Sec. III. The particular orientation of easy and hard axes is the
effect of dipolar forces (see Appendix A 1 for details). When consid-
ering double-modulated structures (2S and 2Q) with, e.g., k1 and k2,
the choice of two easy axes for in-plane modulated spin components
leads to an increase in their free energy making it larger than that of
the 1S and 1Q phases. In contrast, when the in-plane components are
polarized along the red axes, 2S and 2Q can become stable in some
part of the phase diagram (see Sec. IV).

where one can choose any k j and arbitrary phase of cosine.
The corresponding free energy per one spin reads

F1S = − t

2
s2 − hm − (t − 	0)m2

+ b

(
m4 + m2s2 + 3

8
s4

)
. (13)

(ii) The second structure is the helicoid with spins rotating
in the easy plane perpendicular to k (1Q structure). Taking,
e.g., k1, we have

si = se1 cos k1Ri + pẑ sin k1Ri + mẑ. (14)

Here, sp > 0 corresponds to the right spiral, and sp < 0 cor-
responds to the left one; the common phase of sine and cosine
functions can be chosen arbitrarily. The free energy is given
by

F1Q = − t

2
s2 − t − 	

2
p2 − hm − (t − 	0)m2

+ b

[
m4+ m2(s2+ 3p2)+ 3s4+ 2s2 p2+ 3p4

8

]
. (15)

(iii) The third structure is the conical cycloid with spins
rotating in the ab plane, perpendicular to the magnetic field
(XY structure):

si = se1 cos k1Ri + pẑ × e1 sin k1Ri + mẑ. (16)

The corresponding free energy per one spin reads

FXY = − t

2
s2 − t − 	′

2
p2 − hm − (t − 	0)m2

+ b

[
m4+ m2(s2+ p2)+ 3s4+ 2s2 p2+ 3p4

8

]
. (17)

Important differences compared with Eq. (15) are the follow-
ing: Eq. (17) contains 	′ instead of 	 and bm2 p2 instead of
3bm2 p2, so at low magnetic fields the 1Q structure is prefer-
able, but at stronger fields FXY becomes smaller.

These single-modulated spin structures [structures (i)–(iii)]
are depicted in Fig. 3.

(iv) The fourth structure is the superposition of three screw
helicoids (3Q) [Fig. 4]. In general, this spin ordering reads

si =
∑

j=1,2,3

[s je j cos (k jRi+ ϕ j )+ p j ẑ sin (k jRi+ ϕ j )]+ mẑ.

(18)
However, a minimal free energy is achieved only if [39] [see
Eq. (B10)]

s1 = s2 = s3 = s/
√

3,

p1 = p2 = p3 = p/
√

3,

ϕ1 + ϕ2 + ϕ3 = 2πn + sgn(p)π/2. (19)

Note that the chiralities of all three helicoids are the same. The
corresponding free energy is given by

F3Q = − t

2
s2 − t − 	

2
p2 − hm − (t − 	0)m2

+ b

[
m4 + m2(s2 + 3p2) + 9s4 + 10s2 p2 + 15p4

24

− mp(2p2 + s2)√
3

]
. (20)
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FIG. 3. Single-modulated spin structures considered in the pro-
posed theory. Modulation vector k1 is taken for all the structures.
(a) Simple spin-density wave (1S) with collinear spin ordering.
(b) Elliptical helicoid (1Q) with spins rotating in plane perpendicular
to the modulation vector [red spins are “up” and violet ones are
“down” along the direction perpendicular to the figure plane (ab)].
(c) Conical cycloid (XY) where spins rotate in the ab plane and there
is a constant magnetization component along the external field.

The last term here is crucial. Note that if all p j = 0 in Eq. (18),
the corresponding magnetic structure is a triple SDW, or 3S.
Moreover, its free energy is the same as that of the simple 1S
structure [40]. However, it is evident from Eq. (20) that even
at infinitesimal h, when nonzero m appears, 3S is unstable
towards transition to 3Q. So, for in-plane easy axes, F3Q is
always smaller than F1S and F3S .

(v) The fifth structure is the superposition of two SDWs
(2S) and two screw helicoids (2Q). These magnetic structures

FIG. 4. The 3Q phase, which is a superposition of three ho-
mochiral (left or right) helicoids and a uniform magnetization
component, can be either topologically nontrivial at moderate mag-
netic fields (a), where spins wrap around a sphere once per skyrmion,
or trivial (b) at fields close to the saturation one (see Fig. 6). Here,
h ↑↑ ẑ, red spins are “up” (sz > 0), and violet spins are “down”
(sz < 0).

FIG. 5. Illustration of double-modulated spin structures with k1

and k2 modulation vectors at zero magnetic field. (a) Double spin-
density wave (2S) which is a vortical structure. (b) Superposition of
two elliptical helicoids (2Q): meron-antimeron lattice with average
nSk = 0 [41]. However, at finite magnetic field, nonzero spins emerge
in the nodes (points where si = 0) of this structure, and the whole
lattice become topologically nontrivial (see, e.g., a similar discussion
in Ref. [24]).

were shown to be stable in tetragonal frustrated antiferro-
magnets with dipolar forces in Ref. [24]. However, in that
study the in-plane spin components with different modulation
vectors were oriented in perpendicular directions, in-plane
easy axes. Here, if one considers the 2Q spin structure given
by Eq. (18) with, e.g., modulation vectors k1, k2 and s1 =
s2 = s, s3 = 0 and p1 = p2 = p, p3 = 0, it is evident from
Eq. (B10) that this structure has no advantages in comparison
with 1Q and 3Q because the last term of Eq. (B10) in this case
is always zero.

So, in order to have a stable double-modulated phase, we
choose two modulation vectors ki and two mutually per-
pendicular directions for in-plane spin components, which
minimize the anisotropy energy (they are rotated by φ =
15◦ = π/12 from the easy axes; see Fig. 2). For instance, after
taking k1 and k2 we have

si =
∑
j=1,2

[s je′
j cos (k jRi + ϕ j ) + p j ẑ sin (k jRi + ϕ j )] + mẑ,

(21)
where directions e′

j are shown by red color in Fig. 2. The
corresponding 2S structure with p j = m = 0 and 2Q structure
with m = 0 are shown in Fig. 5. In order to describe their free
energy, one should use the eigen-numbers λ̃1 = λ1 cos2 φ +
λ3 sin2 φ and λ2. It is convenient to introduce δ	 = λ1 − λ̃1.
For the 2Q structure with equal order parameters s1 = s2 =
s/

√
2 and p1 = p2 = p/

√
2 (other structures have larger free

energy) we have

F2Q = − t − δ	

2
s2 − t − 	

2
p2 − hm − (t − 	0)m2

+ b

[
m4 + m2(s2 + 3p2) + 5s4 + 6s2 p2 + 9p4

16

]
.

(22)

The 2S free-energy function is a particular case of this equa-
tion with p = 0.

Competition of these phases with 1S and 1Q was stud-
ied in detail in Ref. [24] for δλ = 0, with the main result
that at fixed moderate magnetic field, a paramagnetic (PM)
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↔ 2S ↔ 2Q ↔ 1Q sequence of phase transitions ap-
pears. However, nonzero δ	 makes F2Q (and F2S) larger; the
double-modulated structures’ region of stability in the phase
diagram can only be observed at δ	 � 	, and it collapses
at δ	 � 	 (see Appendix B). So, in this section, we will
consider the phase diagram topology without these phases and
postpone the corresponding discussion to Sec. IV.

We note that all the phases above have longitudinal spin
modulations, which are typical for helimagnets near the or-
dering temperature [42].

For analytical treatment of various spin structures’ free
energies we neglect derivatives of terms with the fourth power
of order parameters in equation ∂F/∂m = 0, assuming that
the system is not close to ferromagnetic instability near Tc.
So, the magnetization simply reads

m(t, h) = χ (T )h = h

2(	0 − t )
. (23)

Furthermore, usually 	0  	,	′, and it is sufficient to put
χ ≡ χ (Tc) = 1/2	0 instead of χ (T ). Under this assumption,
it is fruitful to use in calculations renormalized by terms ∝ m2

parameters t and 	:

th = t − 2b(χh)2, (24)

	h = 	 + 4b(χh)2. (25)

Then, it is easy to show that both 1S and 3Q phases re-
quire th > 0 ⇔ t > 2b(χh)2. This determines the boundary
between 3Q and the paramagnetic (or field-polarized) phase,
PM.

If we opt for not taking into account 3Q (and other
multiple-Q structures), a simple phase diagram (shown in
Fig. 12 in Appendix B) can be obtained. The important scales
here are determined by the coordinates of the triple point
(where 1S, 1Q, and XY are in equilibrium), namely, the spiral
plane flop field

hSF =
√

	′ − 	

4bχ2
(26)

and the “temperature”

tTr = 2	′ − 	/2. (27)

However, 3Q has lower energy than 1S, and it pushes
the XY phase further away to t substantially larger than tTr.
Moreover, below we show that for realistic parameters of
Gd2PdSi3 the XY phase does not appear at all in the range of
mean-field approach validity. So, the resulting phase diagram
consists of 1Q and 3Q phases. The boundary between them is
approximately given by

t1Q−3Q(h) ≈ 3
2	 + 45b(χh)2. (28)

Importantly, inside the 3Q phase stability domain there exists
a curve dividing topologically trivial and nontrivial parts. We
show these two spin structures in Fig. 4. For nontrivial struc-
ture topology with nSk = ±1 (the sign here depends on the
chirality of the helicoid constituents), the spin should be able
to point oppositely to the external field and magnetization.
For the spin structure given by Eq. (18) under conditions (19)
(and positive m) the minimal value of the spin z component

is m − √
3p. So, upon m growth the 3Q structure remains

topologically nontrivial until
√

3p > m. When m becomes
larger than

√
3p, the skyrmions’ cores disappear, and the z

component of all spins becomes positive. The spin structure
in this case is kind of vortical, but with a small modulated
spin component along the z axis. In our approximation this
boundary can be found exactly as

tSkL(h) = 9
10	 + 203

45 b(χh)2 ≈ 0.9	 + 4.5b(χh)2. (29)

At t < tSkL (at larger T ) the 3Q structure is topologically triv-
ial with nSk = 0. Note that in our approach, tSkL(h) does not
have the physical meaning of a phase transition temperature.
Nevertheless, one can expect some anomalies due to possible
effects of topology on other, e.g., electronic, degrees of free-
dom. Moreover, our theory averages over thermal fluctuations,
and the picture with discontinuously changing topological
charge is valid only in this approach. In reality, one can expect
that, e.g., at t � tSkL(h), spin configurations in magnetic unit
cells will be topologically nontrivial with some probability,
and vice versa, for t � tSkL(h) in the 3Q SkL phase, thermal
fluctuations will destroy some skyrmions. The latter results in
the diminishing of the nSk at higher temperatures, which is
always observed experimentally (see, e.g., Ref. [14]).

We first apply our theory to Gd2PdSi3 as is. The parameters
can be estimated using the ordering temperature TN ≈ 22 K
and the saturation field HS ≈ 9 T [43,44]. The former quantity
determines Jk for k = 0.14 [14] (in reciprocal lattice units,
r.l.u.), whereas the second one can be used to estimate J0,
since hS ≈ S(Jk − J0) in frustrated helimagnets (see, e.g.,
Refs. [32,45]). Dipolar tensor components were calculated
using their representation in the form of fast-converging sums
(see, e.g., Ref. [46]). As a result we get (all values are in
kelvins)

Jk ≈ 4.00, J0 ≈ 0.56, 	 ≈ 0.02,

	′ ≈ 0.26, 	0 ≈ 1.72. (30)

Using this set of parameters, we obtain the phase diagram
shown in Fig. 6. Note that the 2S and 2Q phases do not
appear in the phase diagram, the reason being that for param-
eters (30), δ	 ≈ 	, which is a big disadvantage for them with
regard to anisotropic energy.

The type of phase diagram shown in Fig. 6 is quite gen-
eral (in a qualitative sense) for the model with in-plane easy
axes. Nevertheless, by varying the parameters, the XY phase
can appear in the approach validity region. We illustrate this
statement by manually setting 	′ = 0.05 in Eq. (30), which
results in the phase diagram shown in Fig. 7 with observable
regions of the conical phase. We would like to point out that in
this case, TTr ≈ 21 K but XY emerges only at T ≈ 18 K due
to the competition with 3Q. Note also the appearance of the
2S phase in a small part of the phase diagram due to the much
smaller δ	 ≈ 0.003 in this case.

IV. DOUBLE-MODULATED PHASES AND POSSIBLE
RELEVANCE TO Gd2PdSi3 PHASE DIAGRAM

We see that the phase diagram obtained in the previous
section is substantially different from the one discussed in
the literature for the Gd2PdSi3 compound. Although it also
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FIG. 6. High-temperature part of the phase diagram for the con-
sidered model (see Fig. 1). Parameters (30) are used. As usual for
dipolar-forces-induced anisotropy, the simple SDW (1S) and conical
helicoid (XY) (see Fig. 12) do not appear in this region of the phase
diagram. They are substituted by the 3Q phase in its topologically
trivial and nontrivial forms (see text). It is pertinent to provide some
order parameter values. For instance, at T = 19 K and h = 0 K
(1Q phase), s ≈ 1.9, p ≈ 1.8, and m = 0, whereas at T = 19 K and
h = 4 K (3Q SkL phase) s ≈ 1.9, p ≈ 0.8, and m ≈ 1.2; so the
average spin value is not close to saturation (S = 7/2), and the theory
still has a small parameter s2

i /S2 ≈ 1/4.

contains the 3Q SkL stability region, there are several major
issues in comparison with the data of Refs. [14,43,44]. First,
the low-h–low-T phase in Fig. 6 (1Q) does not have scalar
spin chirality, whereas scalar spin chirality was observed ex-
perimentally at nonzero h [14]. Second, in our approach, the
3Q SkL can be found at zero h, while experimentally this is
not the case [14,43]. The third minor issue is the modulated z

FIG. 7. If one makes the value of parameter 	′ in set (30)
smaller, then the XY phase appears on the phase diagram (cf. Fig. 6).
However, the 3Q SkL phase is still the ground state in a large part of
the phase diagram.

FIG. 8. Phase diagram obtained within the proposed approach
at δ	 � 	, where the 2S and 2Q phases can appear at low h (cf.
Fig. 6). It can be relevant to Gd2PdSi3. Note that the 1Q phase
appears only in the region when the small-si approach fails.

component of spin in the 3Q trivial phase, which is, however,
small at T � TN . So, the 3Q trivial phase looks almost like
the vortex phase proposed in Ref. [26] near its boundary
with the PM phase. Moreover, at smaller T near the fully
polarized phase the constant spin component m becomes ∼S,
and the most likely scenario (which cannot be described in
our high-temperature approach) is stabilization of the con-
ventional single-modulated fan structures or, possibly, their
multiple-Q counterparts [20].

Regarding the low-h part of the phase diagram, we would
like to note that the triangular meron-antimeron lattice, which
is a 3Q structure with ϕ1 + ϕ2 + ϕ3 = πn, in our high-
temperature approach always has larger free energy than the
simple 1Q helicoid [see Eq. (B10), where the last term is
zero in this case]. We can make the conclusion that in the
small-s expansion there are no reasons for triangular meron-
antimeron lattice stabilization. However, we note that this
structure can be stabilized in systems with a more compli-
cated Hamiltonian that includes biquadratic exchange and
Dzyaloshinskii-Moriya interaction [47].

Since the model under consideration lacks DMI, we believe
that the 2Q structure shown in Fig. 5(b) can be considered as
a candidate for the incommensurate-1 (IC-1) phase observed
experimentally (see Ref. [14]). It is a topologically trivial (on
average) meron-antimeron lattice [41] at h = 0, but nonzero
magnetic field induces the average topological charge. In or-
der to observe double-modulated spin structures, we modify
parameters (30) to have δ	 � 	 (under the condition that the
c axis remains the middle one). Playing with the parameters,
we observe the phase diagram shown in Fig. 8. Here, addi-
tional single-ion easy-plane anisotropy with constant 0.15 K
along with anisotropic exchange (bond-dependent anisotropy)
making λ3 larger by ≈0.07 K is taken into account. In Fig. 8
one can see several important features: (i) The 3Q SkL phase
is stable only at finite magnetic fields; (ii) there is a vortexlike
double-modulated structure 2S, which can possibly describe
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the intermediate IC-3 phase observed in Ref. [44]; (iii) there is
a 2Q phase (note that it can be topological and trivial at h > 0
as in Ref. [24]), which possibly represents the IC-1 phase
discussed above; and (iv) there is a 1Q structure, however,
only in the region where our approach is unreliable.

So, we make the conclusion that the developed framework
arguably allows one to describe the high-temperature part of
the Gd2PdSi3 phase diagram. At the same time, we cannot ex-
clude the possibility that considering other interactions (e.g.,
biquadratic exchange) could be important.

Finally, we note that in-plane momentum-dependent
anisotropy (in the form of dipolar forces or anisotropic ex-
change) should be important for low-temperature depinned
phase [43] description. Moreover, the spiral plane anisotropy
for depinned q under in-plane h supports the idea of the fan-
phase stabilization; the corresponding theoretical framework
was developed in Ref. [32].

V. PHASE DIAGRAM: EASY AXIS ALONG c

According to Fig. 1 there is a possibility to have collinear
easy axes along c for all three k j solely due to dipolar in-
teraction. However, this requires rather large k. At the same
time, standard single-ion easy-axis anisotropy can also change
the axes’ hierarchy (its constant should be subtracted from
the Hαβ

q in-plane eigenvectors’ eigenvalues and added to the
ones corresponding to the c axis). In both cases we arrive at
a substantially different phase diagram, which is discussed
below.

First, we point out important differences compared with
the previous case: (i) The modulated component of 1S is now
along ẑ; (ii) for free energies of the 1Q and 3Q phases, t −
	 is multiplied on s2, not on p2 as previously; and (iii) in a
magnetic field the following counterparts of Eqs. (24) and (25)
should be used:

th = t − 6b(χh)2, (31)

	h = 	 − 4b(χh)2. (32)

Importantly, here the in-plane s component of 3Q and 1Q
structures appears only at t > 3	/2 (see Appendix C for de-
tails). At lower t the 1S phase competes with the bubble phase
we call here 3P, which is the superposition of three collinear
spin-density waves [48]; see Fig. 9. If we fix certain t < 3	/2
and increase h starting from h = 0, we have the sequence of
phase transitions 1S → 3P → PM. Both transitions are of the
first order.

At t > 3	/2 (lower T ), this sequence transforms into
1Q → 3Q → PM. The former transition is always a first-
order one; however, the latter can be either continuous or
discontinuous. The reason is that in a small vicinity of t =
3	/2 the 3Q phase is topologically nontrivial in the whole
range of fields till the PM phase becomes the ground state.
For yet larger t , before the PM phase appears, the 3Q phase
becomes topologically trivial (either smoothly or discontinu-
ously; see Appendix C).

As a result, using parameter set (30) (note that if we keep
the same k j as in the previous sections of this paper, it implies
single-ion easy-axis anisotropy with the constant equal to
2	, which makes c the easy direction), we obtain the phase

FIG. 9. When the easy axes are along c, a peculiar bubblelike 3P
phase can be stable near Tc in the external field. It consists of three
collinear spin-density waves.

diagram shown in Fig. 10. Note that double-modulated spin
structures 2S and 2Q do not appear in this case. For the out-
of-plane easy axis they were previously shown to be stabilized
in the moderate-h part of the phase diagram (see Fig. 5 of
Ref. [24]); however, here we also have δ	 ∼ 	 > 0, and they
“lose the competition” with the 3Q structures.

The boundary between 1S (1Q) and 3P (3Q) is approxi-
mately given by

t1S−3P ≈ 40b(χh)2, (33)

whereas the boundary between 3P and PM reads

t3P−PM = 74
15 b(χh)2. (34)

FIG. 10. Same as Fig. 6, but for the system with collinear easy
axes along c. Parameters (30) are used. Note that the superposition of
three collinear spin-density waves, the 3P phase (see Fig. 9), appears.
Typical values of the order parameters here are the following: At
T = 20 K and h = 0 K (1Q phase), s ≈ 1.4, p ≈ 1.5, and m = 0,
whereas at T = 20 K and h = 4 K (3Q SkL phase) s ≈ 1.4, p ≈ 1.0,
and m ≈ 0.9; so s2

i /S2 ≈ 1/5.
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FIG. 11. If one considers standard single-ion easy-axis
anisotropy without dipolar forces, the conical phase becomes stable
at large fields (see text), but the skyrmion lattice is the ground state
in the intermediate field range. In contrast, for easy-plane anisotropy
the whole phase diagram is rather trivial, and only XY and PM
phases appear.

The boundary between the 3Q SkL and 3Q trivial phases is
approximately a continuation of the previous equation onto
larger t :

tSkL = 	

10
+ 203

45
b(χh)2. (35)

Finally, the second-order phase transition between the 3Q
trivial phase and the PM phase takes place at

th = 	h ↔ t = 	 + 2b(χh)2. (36)

The equations above fix the generic type of phase diagram
which can be obtained by varying the parameters of the system
until the c axis remains the easy one for modulated spin
components.

It is pertinent to make a connection with Ref. [17], which
is devoted to low temperatures and considers standard easy-
plane and easy-axis anisotropies. In agreement with the results
of Ref. [17] we find that the phase diagram for easy-plane
anisotropy is trivial and consists only of XY and PM phases.
The easy-axis case is more interesting. To analyze it, we put
	 = 	′ = 0.1 K in parameter set (30) and observe the phase
diagram shown in Fig. 11, which is similar to the one for
dipolar forces and easy-axis anisotropy (see Fig. 10) but with
the conical XY phase neighboring the PM phase instead of the
3Q trivial one. We also would like to point out that the bubble
crystal (3P) can be stable at low temperatures if the easy-axis
anisotropy is large enough [49]; in our approach it is small.
Furthermore, similar to our findings, a recent paper [50] shows
a temperature-induced topological transition between 3P and
3Q SkL phases at rather high temperature in the Kondo lattice
model with easy-axis anisotropy.

Note that in Fig. 11, despite δ	 = 0, we have no traces of
double-modulated phases once again. The reason for this is
that in this case the XY structure has lower energy than 2S
and 2Q (see Ref. [24] for details) and we are left with only

a competition between XY and 3Q in the high-h part of the
phase diagram. This resembles the results of Ref. [51], where
the bimerons were shown to appear in the easy-plane case,
rather than the easy-axis one.

VI. CONCLUSIONS

To conclude, we propose a simple analytical mean-field
description of skyrmion lattices in hexagonal frustrated anti-
ferromagnets capable of describing the high-temperature part
of the phase diagram. We show that dipolar forces (which
are always present in real compounds) are sufficient to sta-
bilize the hexagonal SkL for the case of in-plane modulation
vectors. We observe several generic types of phase diagrams
and discuss the phase boundaries. One of the obtained phase
diagrams can be relevant to the experimental observations in
Gd2PdSi3 [14,43,44].

Finally, we would like to point out that a theory comple-
mentary to the one proposed here for the low-temperature
part of the phase diagram is an interesting and challenging
problem due to the multiharmonic skyrmion structure (see,
e.g., Ref. [52]) and long-range nature of the dipolar forces.
Moreover, the same problems should arise when discussing
isolated skyrmions and their pairwise properties (e.g., interac-
tion) at high temperatures, which is also an important issue.
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APPENDIX A: DIPOLAR FORCES

1. Dipolar forces as a source of momentum-dependent
biaxial anisotropy

After one chooses a particular lattice geometry, all the
properties of dipolar interaction in our model (2) are fixed
[see also Eq. (3)]. In order to stay connected with some real
compounds, we take the lattice parameters of the Gd2PdSi3
hexagonal lattice, a = 4.066 Å and c = 4.091 Å [35]. Nev-
ertheless, it can be directly checked that the conclusions we
made about the dipolar tensor properties are valid in a wide
range of lattice parameters.

The next step in dealing with dipolar interaction is to
calculate its Fourier transform. Fortunately, the appropriate
technique was developed a long time ago. It is based on pre-
senting the lattice sums in the fast-converging forms using the
Poisson summation formula [46]. Nowadays, this method can
be easily realized on any computer, and accurate calculations
of dipolar tensor components at a certain momentum require
time of the order of several seconds.

Finally, we can calculate Dαβ
q for various q. Let us, for

example, take the k1 vector, for which we have Dαβ in the
almost diagonal form with some numerical error (all values
are in kelvins):

Dk1 ≈
⎡
⎣ −0.19 −2.3 × 10−19 −1.0 × 10−37

−2.3 × 10−19 0.33 1.6 × 10−20

−1.0 × 10−37 1.6 × 10−20 −0.15

⎤
⎦.

(A1)
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Evidently, we have eigen-numbers of the dipolar tensor on the
diagonal of this matrix. So, we have d1 = 0.19 K for eigen-
vector x̂, d2 = 0.15 K for eigenvector ẑ, and d3 = −0.33 K
for eigenvector ŷ. Combined with the contribution from spher-
ically symmetrical Heisenberg exchange (6), we arrive at
three eigenvalues of Hαβ

k1
[see Eq. (9)]: λ1(k1) = (Jk1 + d1)/2,

λ2(k1) = (Jk1 + d2)/2, and λ3(k1) = (Jk1 + d3)/2, where the
biaxial anisotropy stems from the magnetodipolar interaction.

This biaxial anisotropy acts in momentum space. For ex-
ample, the energy of a simple SDW with modulation vector
k1 will depend on its polarization. The energy of this structure
will be the lowest if the spins are oriented along the x̂ direc-
tion, and the highest if the spins are oriented in the ŷ direction
(along k1). Moreover, components of more complicated spin
structures will also feel this axis hierarchy. This allows us to
say that the x̂ direction is the easy one for structures with
modulation vector k1, whereas the ŷ axis is the hard one (see
Fig. 2).

2. Dipolar forces and noncollinear structures’ modulation
vectors

In Sec. II we stated that since the dipolar interaction is
much smaller than the exchange one, it is safe to assume that
modulation vectors of all the modulated structures addressed
in this paper are ki: vectors at which Jq has its maxima. Here,
we show that this assumption is correct up to the first order
in dipolar forces to some characteristic scale of exchange
coupling ratio.

In order to show the main principle, but not fine details,
we take into consideration the famous J1-J2 model with ferro-
magnetic nearest-neighbors coupling J1 and antiferromagnetic
next-nearest-neighbors coupling J2 (bearing in mind some
not-frustrated interchain coupling), which is apparently one
of the simplest magnetically frustrated models. In this case,
the Fourier transform of the exchange interaction reads

Jq = 2(J1 cos q − J2 cos 2q), (A2)

and its maximum is given by

k = arccos
J1

4J2
, 4J2 � J1. (A3)

Importantly, Jq can be expanded near its maximum as

Jq ≈ Jk − J (q − k)2/2, J = (4J2)2 − J2
1

2J2
. (A4)

Here, parameter J is of the order of exchange constants.
Now we can consider a question about the SDW modula-

tion vector in such a model with dipolar forces. It corresponds
to the maximum of λ1(q) [eigen-number for the easy direc-
tion; see Eq. (9) and the text after it], which can be found by
maximization of the equation

Jq + d1(q). (A5)

In general, the dipolar interaction contribution here can be
expanded up to the linear order in q − k:

d1(q) = d1(k) + D(q − k), (A6)

where constant D is of the order of ω0 � J . Next, one can
find that Eq. (A5) is maximized at k′ = k + D/J ≈ k, and

λ1(k′) = λ1(k) + D2

2J = λ1(k)(1 + O[(ω0/J )2]). (A7)

We see that the variation of the eigen-number here is of the
second order in the dipolar-to-exchange interaction ratio and
can be safely neglected.

The same conclusion is evidently also true in other compli-
cated cases: Instead of Eq. (A5) we have exchange interaction
with maxima at ki and some dipolar interaction contributions,
which linearly alter the modulation vectors but affect eigen-
numbers only in the second order. So, the assumption of
using eigen-numbers and modulation vectors corresponding
to maxima of the exchange interaction for the free energies
of various phases (which was used everywhere in the calcula-
tions) is mathematically correct. At the same time, neglecting
the modulation vectors’ small variations is also safe, because
it does not change the nature of the considered magnetic struc-
tures (of course, there can be some exceptions to these rules,
when, for example, some commensurate phases appear due
to dipolar-forces-induced anisotropy, but we do not consider
them here).

APPENDIX B: FREE ENERGIES OF VARIOUS PHASES
AND PHASE DIAGRAM FOR IN-PLANE EASY AXES

Here, we derive analytical expressions for the relevant
phases’ free energies (double-modulated phases are addressed
in Ref. [24]). For magnetization components of the corre-
sponding spin structures we use the simple approximation
m = χh with constant susceptibility parameter χ [see Eq. (23)
and the discussion below]. Finally, we make conclusions
about the generic phase diagram for in-plane easy axes.

1. Simple spin-density wave (1S phase)

In the case of the 1S phase there is only one component of
the order parameters. It can be easily found from Eq. (13) by
plugging in m = χh and using th defined in Eq. (24), which
yields

s2 = 2th
3b

, (B1)

F1S = − t2
h

6b
− χh2

2
, th > 0. (B2)

The condition th = 0 ⇔ t = 2b(χh)2 determines the bound-
ary between the 1S phase and the high-field paramagnetic, or
induced ferromagnetic, phase (PM).

2. Single-Q elliptical helicoid (1Q phase)

The single-Q elliptical helicoid structure is characterized
by two parameters, which measure the amplitude of the spin
ordering along the easy and middle axes. Minimization of the
free energy (15) yields

s2 = 2th + 	h

4b
, p2 = 2th − 3	h

4b
(B3)
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and

F1Q = −4t2
h − 4th	h + 3	2

h

16b
− χh2

2
, th >

3

2
	h. (B4)

At

th = 3	h/2 ⇔ t1Q = 3	/2 + 8b(χh)2, (B5)

continuous transition between 1S and 1Q takes place.

3. Conical helicoid (XY phase)

In the XY phase the modulated spin component rotates in
the ab plane, which is perpendicular to the external field. The
equations are quite similar to the 1Q phase ones:

s2 = 2th + 	′

4b
, p2 = 2th − 3	′

4b
, (B6)

whereas the free energy reads

FXY = −4t2
h − 4th	′ + 3	′2

16b
− χh2

2
, th >

3

2
	′. (B7)

The condition th = 3
2	′ ⇔ t = 3	′/2 + 2b(χh)2 determines

the phase boundary between the 1S and XY phases. More-
over, it is evident from Eqs. (B4) and (B7) that the 1Q and
XY phases are in equilibrium when 	h = 	′. This condition
determines the so-called spiral plane flop field

hSF =
√

	′ − 	

4bχ2
. (B8)

Note that at this field and th = 3	h/2 = 3	′/2, phases 1S,
1Q, and XY are in equilibrium. This yields the triple-point
temperature

tTr = 2	′ − 	/2. (B9)

If we for the moment forget about the 3Q phase, whose
properties are described below, the typical phase diagram of
the model (10) considered here is shown in Fig. 12, where the

FIG. 12. High-temperature part of the phase diagram for the
considered model with in-plane easy axes, where (for illustration pur-
poses) the 3Q phase was excluded from the analysis. Parameters (30)
were used.

parameter set (30) is used. This type of phase diagram should
be contrasted with those (see Figs. 6 and 7) where the 3Q
phase is also taken into account. Note that for parameters (30)
at t � tTr, small |si| � S expansion is inapplicable: Using
Eq. (B1), one obtains s ≈ 2.5 for t = tTr and h = hSF .

4. Superposition of three screw helicoids (3Q phase)

In the case of the 3Q phase the free energy is a function
of three s j , three p j , and three phases ϕ j [see Eq. (18)]. The
general expression for it is quite cumbersome; to make it
shorter, we introduce s2

� = s2
1 + s2

2 + s2
3, p2

� = p2
1 + p2

2 + p2
3.

As a result we get

F3Q = − t

2
s2
� − t − 	

2
p2

� − hm − (t − 	0)m2 + b

[
m4 + m2

(
s2
� + 3p2

�

) + 3
(
s2
�

)2 + 2s2
� p2

� + 3
(
p2

�

)2

8

+ 3
(
p2

1 p2
2 + p2

1 p2
3 + p2

2 p2
3

)
4

+ s2
1

(
p2

2 + p2
3

) + s2
2

(
p2

1 + p2
3

) + s2
3

(
p2

1 + p2
2

)
4

− m(6p1 p2 p3 + s1s2 p3 + s1s3 p2 + s2s3 p1) sin (ϕ1 + ϕ2 + ϕ3)

]
. (B10)

Importantly, the first line here constitutes the free energy
of the 1Q phase if one puts s� = s, p� = p [cf. Eq. (15)],
whereas the second and the third lines determine the “penalty”
and the “profit” for having 3Q structure instead of 1Q, respec-
tively. They can be considered as effective “cubic anisotropy”
in the order parameter space. Evidently, the superposition of
two helicoids has no advantages in this model, because the last
term in Eq. (B10) is zero. So, we are left with two possibilities:
One can have a single helicoid component (e.g., with nonzero

s1 and/or p1), or all three helicoids. In the former case we
arrive at the free energy given by Eq. (15), while in the latter
case it can be checked that the minimum of the free energy
corresponds to the spin structure (18) with all equal si and pi,
and

∑
i ϕi = π/2 + πn with integer n (the signs of s and p

should be properly chosen). This leads to the free energy of
the 3Q phase in the form of Eq. (20).

Analytical minimization of the free energy (20) (using the
trick with magnetization described above) leads to a system of
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cubic equations:

−ths + b

(
3

2
s3 + 5

6
sp2 − 2χhsp√

3

)
= 0,

−(th − 	h)p + b

(
5

2
p3 + 5

6
s2 p − χh(s2 + 6p2)√

3

)
= 0.

(B11)

The first one gives either s = 0 or

s2 = 2

3

(
th
b

− 5

6
p2 + 2χhp√

3

)
, (B12)

which can be plugged into the second equation in the sys-
tem (B11). After some algebra, we arrive at the following
cubic equation for p:

p3 − 39
√

3χh

55
p2 +

[
24

11
(χh)2 + 27

55b

(
	 − 4

9
t

)]
p

− 6
√

3χhth
55b

= 0. (B13)

This equation can be solved using Cardano’s formula. To
make the corresponding result more compact, first we intro-
duce

α = 39
√

3χh

55
, β = 24

11
(χh)2 + 27

55b

(
	 − 4

9
t

)
,

γ = 6
√

3χhth
55b

, ρ = α2 − 3β, σ = 2α3 − 9αβ + 27γ .

(B14)

Using these expressions, we can write solutions for p in the
form

p = α

3
− (−1)1/321/3ρ

3(σ +
√

σ 2 − 4ρ3)1/3
− (σ +

√
σ 2 − 4ρ3)1/3

(−1)1/321/33
,

(B15)
where (−1)1/3 = −1, (1 + i

√
3)/2, (1 − i

√
3)/2; these val-

ues should be plugged simultaneously into both the second
and the third terms of Eq. (B15), whereas the other cube roots
should be taken for the branch (−1)1/3 = −1.

The 3Q phase is (meta)stable at t > 2b(χh)2, where there
is an instability towards nonzero s value, which, in its turn,
leads to nonzero p in the external field due to the term ∝ mps2

[see Eq. (20)]. Analysis shows that in this region of the phase
diagram, the proper solution for p is given by Eq. (B15) with
(−1)1/3 = −1. Then, one can calculate s using Eq. (B12).
Finally, plugging these particular p and s into Eq. (20) with
m = χh, one could obtain an analytical expression for the 3Q
phase free energy. We will not write down it here explicitly,
because it is cumbersome.

5. Double-modulated spin structures (2S and 2Q)

The double-modulated spin structures’ free energies in the
developed framework are addressed in detail in Ref. [24].
Here, we just describe necessary changes, when there is δ	 >

0 (see Sec. III).

FIG. 13. Illustration of empirical law (B18) for the boundary
between the 1Q and 3Q phases. Black dots stand for the numerical
solution of the F1Q = F3Q equation, whereas the red line is for
Eq. (B18). Parameter set (30) is used.

Using Eq. (22), one can easily obtain

F2S = − (th − δ	)2

5b
− χh2

2
, th > δ	, (B16)

for the vortical 2S phase. At th − δ	 > 5(	h − δ	)/2 it con-
tinuously transforms into a 2Q structure with the free energy

F2Q = −8(t − δ	)2 − 4(t − δ	)(	 − δ	) + 5(	 − δ	)2

36b

− χh2

2
, th > δ	 + 5(	h − δ	)/2. (B17)

6. Phase boundaries

After free-energy derivation, we can turn to analysis of the
boundary between the 1Q and 3Q phases. An approximate
expression for this curve was obtained by fitting numerical
data for various parameter sets. The result is the following:

t1Q−3Q(h) ≈ 3
2	 + 45b(χh)2. (B18)

This expression works quite well for not very small h, where
the linear-in-h term is somewhat important. Particular usage
of this expression for parameter set (30) is shown in Fig. 13.
Note that at given h, Eq. (B18) yields a much larger temper-
ature than Eq. (B5). For instance, at hSF [see Eq. (B8)] one
has t1Q−3Q ≈ 3	/2 + 11.25(	′ − 	), which is a very large
quantity for our approach [note that for parameter set (30)
it corresponds to T < 0]. Nevertheless, it shows that the 3Q
phase should be stable even at temperatures substantially
lower than the ordering one (Tc). This can also be illustrated
by manually making 	′ in parameter set (30) be much smaller
than 0.26 K, e.g., equal to 0.05 K. Then, the XY phase appears
at larger temperatures, and its traces become visible in the
phase diagram; see Fig. 7.

Topological properties of the 3Q phase depend on whether
the spins can wrap around the whole sphere in the spin space
or not. In the external field along the c axis, this requires that
the maximal negative value of the modulated z component of
spin (which is equal to −3p/

√
3) overcomes positive magneti-

zation m. So, the boundary between the 3Q trivial and 3Q SkL
phases is given by the equation p = m/

√
3. We plug this into

Eq. (B13). Then, it can be shown that this equation is satisfied
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if

t = tSkL = 9
10	 + 203

45 b(χh)2

≈ 0.9	 + 4.5b(χh)2. (B19)

At larger t (smaller temperatures T ) the structure is topolog-
ically nontrivial with nSk = ±1 (depending on the choice of
the three constituent helicoids’ chiralities) per magnetic unit
cell.

Finally, by comparing the free energy of the 1Q phase (B4)
and that of the 2Q phase (B17) we can find a condition
under which double-modulated phases can be visible in the
phase diagram as, e.g., in Fig. 8. The physical solution of
equation F1Q = F2Q reads

th = 1
2

( − 12δ	 + 5	h + 3
√

2
√

10δ	2 − 8	hδ	 + 	2
h

)
,

(B20)
which should be larger than δ	 + 5(	h − δ	)/2. The last
condition at h = 0 yields

δ	 <
8 − √

42

11
	 ≈ 0.14	. (B21)

This is the precise formulation of the condition δ	 � 	,
which was used in Secs. III and IV.

APPENDIX C: FREE ENERGIES OF VARIOUS PHASES
AND PHASE DIAGRAM FOR OUT-OF-PLANE COLLINEAR

EASY AXES

When the easy axes for possible modulation vectors k j

are collinear and oriented along the c axis, the formulas are
similar to those of Appendix B; however, some important
differences appear. Here, we discuss them in detail and obtain
the corresponding phase boundaries.

In the external magnetic field it is convenient to use the
renormalized parameters given by Eqs. (31) and (32) [cf.
Eqs. (24) and (25)].

1. Simple spin-density wave (1S phase)

In the 1S phase the spin polarization is along the easy axis
c, so it is parallel to the magnetic field:

si = (s cos k1Ri + m)ẑ. (C1)

For s and F1S one should use Eqs. (B1) and (B2), but with th
defined in Eq. (31). The boundary between PM and 1S is thus
defined by the condition

th = 0 ⇔ t = 6b(χh)2. (C2)

2. Single-Q elliptical helicoid (1Q phase)

We left the definition of the single-Q elliptical helicoid spin
ordering (14) intact, so in comparison with Eqs. (B3) the spin
components should be interchanged:

p2 = 2th + 	h

4b
, s2 = 2th − 3	h

4b
, (C3)

where conditions th > 3	h/2 and th > −	h/2 should hold
(the last one can be violated in the external field). Importantly,
the former one defines the boundary between the 1S and 1Q

phases, which is a simple vertical line:

th = 3	h/2 ⇔ t = 3	/2. (C4)

The free energy of 1Q is given exactly by Eq. (B4).

3. Conical helicoid (XY phase)

The modulated components of spins in the conical phase
are rotating in the hard plane. As compared with the previous
1Q case, substitutions th → t ′

h − 	 and 	h → 	′ − 	 are in
order, where t ′

h = t − 2b(χh)2. So, the XY phase free energy
reads

FXY = −4(t ′
h − 	)2 − 4(t ′

h − 	)(	′ − 	) + 3(	′ − 	)2

16b

− χh2

2
, t ′

h >
3	′ − 	

2
. (C5)

Importantly, the spiral plane flop field in this case reads

hSF =
√

	′

4bχ2
, (C6)

which is larger than the one for the in-plane easy-axes case
[see Eq. (B8)].

4. Superposition of three screw helicoids (3Q phase)

For the 3Q phase, one should make the following substitu-
tion in the free energy (B10):

− t

2
s2
� − t − 	

2
p2

� −→ − t

2
p2

� − t − 	

2
s2
�, (C7)

which leads to qualitatively new behavior of order parameters
in comparison with the case of in-plane easy axes.

The counterparts of Eqs. (B11) read

−(th − 	h)s + b

(
3

2
s3 + 5

6
sp2 − 2χhsp√

3

)
= 0,

−th p + b

(
5

2
p3 + 5

6
s2 p − χh(s2 + 6p2)√

3

)
= 0. (C8)

We can rewrite the first equation as

s

[
3

2
bs2 + 5b

6
p2 − 2bχhp√

3
− (th − 	h)

]
= 0. (C9)

Assuming s = 0 in the second equation of the system (C8),
and plugging its p-dependent part into Eq. (C9), we find that
there are no additional solutions for s if th � 3	h/2 ⇔ t �
3	/2. Then, we arrive at an interesting conclusion: In this re-
gion of parameters the 3Q phase is just a superposition of three
collinear SDWs. We will refer to this spin structure as 3P. It
is illustrated in Fig. 9. Evidently, this phase is topologically
trivial. The corresponding order parameter p can be simply
obtained from the quadratic equation, the result being

p = 1
5 (2

√
3χh +

√
12(χh)2 + 10th/b). (C10)

Together with s = 0 and m = χh it allows us to calculate the
3P phase free energy.
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For t > 3	/2, parameter s is nonzero, and (as in Ap-
pendix B) one needs to solve the cubic equation:

p3 − 39
√

3χh

55
p2 +

[
24

11
(χh)2 − 3

55b
(4t + 5	)

]
p

− 6
√

3χh(th − 	h)

55b
= 0. (C11)

In order to utilize solutions (B15), one should use modified
parameters

β = 24

11
(χh)2 − 3

55b
(4t + 5	), γ = 6

√
3χh(th − 	h)

55b
,

(C12)

along with α, σ , and ρ from Eqs. (B14).

5. Phase boundaries

We start from the phase boundaries at t � 3	/2. In this re-
gion, the competing phases are PM, 1S, and 3P. By comparing
the free energies, we find that there is a boundary between 1S
and 3P which reads

t1S−3P =
[ √

6 − 1

(
√

6 − 2)2

24

5
+ 6

]
b(χh)2 ≈ 40b(χh)2. (C13)

At given t the 1S phase is stable below this curve (at smaller
fields) in the T -H plane, and 3P is stable above it.

At yet higher magnetic fields, there is a first-order transi-
tion between 3P and PM, which is evident from the 3P phase
free energy (bearing in mind that s = 0 and m = χh), which
has the form [cf. Eq. (20)]

F3P = − th
2

p2 − χ

2
h2 + b

[
5p4

8
− 2χhp3

√
3

]
. (C14)

The cubic term here induces discontinuous transition. After
some algebra we find the phase boundary

t3P−PM = 74
15 b(χh)2. (C15)

Note that t3P−PM is always smaller than the t1S−3P at given h,
so there is no boundary between the 1S and PM phases.

At t > 3	/2, nonzero s appears. So, 1Q, 3Q, and PM are
competing. The boundary between 1Q and 3Q is hard to find
explicitly; however, we observe that Eq. (C13) describes this
curve quite accurately. In the high-fields domain the transition
between 3Q SkL and PM can be either direct (the first-order
one) or via the intermediate 3Q trivial phase. This should be
contrasted with the in-plane easy-axes case, where the 3Q
trivial phase always appears before the PM phase. The 3Q
trivial phase continuously transforms into PM at

th = 	h ↔ t = 	 + 2b(χh)2. (C16)

Moreover, the boundary (if it exists) between the 3Q SkL and
3Q trivial phases can be found analytically from the condition
p = m/

√
3. Plugging the latter into the cubic equation (C11),

we can find the corresponding curve

tSkL = 	

10
+ 203

45
b(χh)2. (C17)

Importantly, curves (C16) and (C17) intersect at t ′ =
194	/113 ≈ 1.72	, which is larger than 3	/2. This means
that below t ′ the 3Q trivial phase does not exist. In the range
t ∈ (1.5	, 1.72	) there is a first-order transition between
the 3Q SkL and PM phases. The boundary between them
interpolates the two curves (C15) and (C17). At t > t ′ the
line of the first-order transitions (here, between the 3Q SkL
and 3Q trivial phases) is approximately given by Eq. (C17).
It terminates at t = t ′′ (it will be quantified below). In the
region of temperatures t ′ < t < t ′′ at relevant magnetic fields,
tSkL corresponds to the spurious real solution for p, whereas
the physical solution discontinuously jumps from p > m/

√
3

to p < m/
√

3. At t > t ′′ there is only one physical solution,
which continuously changes with h, and there is a smooth
crossover between the 3Q SkL and 3Q trivial phases at tSkL

given by Eq. (C17).
Finally, we discuss the analytical derivation of t ′′. At this

temperature the plot for p(h) has a vertical tangent; at t < t ′′
there is a region of fields with three real solutions, and at t >

t ′′ there is only one real solution in the high-fields domain
(near the PM phase stability part of the phase diagram). In
order to obtain t ′′, we rewrite Eq. (C11) in the form

p3 − 39
√

3χh

55
p2 +

[
24

11
(χh)2 − 3

55b
(4t + 5	)

]
p

= 6
√

3χh(th − 	h)

55b
, (C18)

where the right-hand side is p independent. Then, the so-
lutions can be found graphically, as intersections of cubic
parabola and the horizontal line. At t ′′ the left-hand side
(l.h.s.) should have a horizontal tangent and inflection at the
same point. So, conditions ∂l.h.s./∂ p = 0 and ∂2l.h.s./∂ p2 =
0 should hold simultaneously with Eq. (C18). The latter sim-
ply yields p = 13

√
3χh/55; plugging it into the former, we

get 4t ′′ + 5	 = 1693b(χh)2/55. Next, using these two for-
mulas and Eq. (C18), we obtain

t ′′ = 2 × 93 115 + 5 × 14 297

2 × 93 115 − 4 × 14 297
	 ≈ 2	. (C19)

Note that t ′′ > t ′ > 1.5	, so the above-discussed topology of
the phase diagram should be independent of the parameters of
a model, until the easy axes are collinear.
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