
PHYSICAL REVIEW B 105, 054433 (2022)

Unified formulation of interfacial magnonic pumping from noncollinear magnets
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We establish a general formulation for spin current pumped by magnons at the interface between a normal
metal and a magnetic insulator, valid for any noncollinear magnetic configuration in the linear spin wave regime.
This current is generated by driving the system in a nonequilibrium state, covering setups such as thermal spin
injection (spin Seebeck effect) or spin voltage by irradiation of the insulator (spin pumping). We illustrate the
formula in the special case of a honeycomb topological ferromagnet, for simplicity, and cover both the spin
Seebeck and spin pumping setups. We show how the topological parameters influence the spin current and
propose a way to obtain a contribution mainly from the topological edge magnons in the spin pumping case.
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I. INTRODUCTION

Transport of magnons in insulators as well as their ability
to be pumped through other materials are of great interest
due to absence of Joule heating and their functionality for
high speed data transport at acceptable temperature [1]. In
addition, the same exotic properties displayed by conduction
electrons in metals, namely the various flavors of the Hall
effects including topological states at their boundaries, have
recently been experimentally reported in magnonic materi-
als [2], drawing a net analogy with electronic topological
Chern insulators [3]. The existence of magnonic edge chan-
nels naturally leads to the proposal of several applications
based on coherent magnon transport, such as magnon beam
splitters or magnonic Fabry-Perot interferometer [4–6]. These
breakthroughs in the topological realm have boosted the in-
terest for magnon transport in magnetic insulators, paving
the way for the exploitation of magnons as quantum infor-
mation carriers. Consequently extensive efforts are achieved
towards the identification of topological phases of magnon
materials and it has been shown that magnonic topological
phases can also exist in noncollinear magnets [7], opening
prospects to a vast new panel of topological materials. Despite
this intense effort and the promises it bears, most works have
been limited to topological band structure characterization.
Such a characterization often boils down to Chern number
and edge state computations, which are hardly accessible un-
der experimental conditions. In this Article, we suggest that
topological magnonic edge states are in fact accessible via in-
terfacial magnonic spin pumping, as usually achieved in spin
caloritronics experiments [8–11]. To achieve this goal and
identify the signature of interfacial magnons on the pumped
spin current, we theoretically derive a general formula for spin
pumping current adapted to both collinear and noncollinear
magnets. We then apply it to a topological ferromagnet and
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characterize the contribution of topological states to the spin
current response.

The issue we address in this paper is twofold. Spin in-
jection theories at the interface of a heterostructure between
a magnet and a metal under a temperature gradient (spin
Seebeck effect) or driven by ferromagnetic resonance (FMR)
[12–18] (spin pumping) have been successfully established
in the past [19–24]. However these approaches are limited
to collinear ferro-, ferri-, and antiferromagnets, disregarding
noncollinear systems which in fact host a wealth of unconven-
tional magnetic and electronic properties [25]. Consequently,
the literature on spin transport involving noncollinear mag-
nets is still scarce and the issue of spin pumping between
noncollinear magnets and nonmagnetic metals has only been
treated in recent works [26,27]. We here propose a compact
formula in a Landauer form [28], derived microscopically [29]
with the most general lattice model, formulated in terms of
the local spin susceptibility, i.e., the spin density correlation
function.

Second, the spin current pumped out of a topological
magnonic insulator into an adjacent metal is expected to
display specific properties, associated with the magnon con-
centration at the interface. The theories developed to date
are limited to bulk magnons and overlook the role of edge
states. These states being topologically protected, they weakly
interact with bulk magnons and are therefore expected to
display unique signature in the spin current. A major hurdle
lies in the fact that magnons are bosonic particles so that
the whole band structure contributes to the transport at finite
temperature. A way to discriminate the contribution of edge
and bulk magnons is thus needed.

The present paper is organized as follows. Section II con-
tains a presentation of the Hamiltonian model and introduces
the linear spin-wave theory notations. In Sec. III, the dynam-
ical spin susceptibilities are defined and the spin transport
formalism is established. The computation of the spin current
is the object of Sec. IV. The theoretical methodology is based
on Keldysh formalism [30] and nonrestrictive assumptions are
made along the way to give a compact and readily usable
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FIG. 1. (a) Schematic picture of the magnetic insulator/
nonmagnetic metal bilayer under a temperature gradient (TMI > TNM)
or FMR drive of the magnetic insulator at frequency �, responsible
for spin injection from the insulator into the metal. The insulator is in
its topological phase and magnon edge modes propagate. (b) Exam-
ple of mechanism for spin injection. The exchange interaction at the
interface of the bilayer induces electron spins to flip as they reflect
on the edge. For simplicity, the precession of the magnetic spins are
shown in the same direction as their propagation.

Landauer formula. Section V applies our formalism to a topo-
logical magnon insulator introduced in Ref. [31]. Concluding
remarks are given in Sec. VI.

II. MODEL

In this paper, we consider a bilayer composed of a magnetic
insulator adjacent to a nonmagnetic metal, as usually en-
countered in spin pumping and spin caloritronic experiments
[8,18]. The detailed formalism for dealing with magnons
in noncollinear magnets has been exposed in detailed in
Refs. [4,7,32]. For the sake of completeness, we summarize
the complete procedure in this section and invite the readers
familiar with this approach to directly move to Sec. III. The
Hamiltonian under consideration can always be decomposed
in four parts,

H = HMI + HNM + Hint + V. (1)

The first term corresponds to a general magnetic insulator
(MI). The second term models the normal metal (NM) adja-
cent to the magnetic insulator and isolated from it. The third
term contains the interaction between the two materials (see
Fig. 1). The last term is an external perturbation acting on the
insulator. Its value is V = 0 for spin Seebeck effect setup and
V �= 0 when an external magnetic field irradiates the insulator
to drive FMR.

A. Metallic system

The normal metal is treated as an ideal spin sink: spins
relax sufficiently fast at its interface so that there is no spin
accumulation. We assume that it is quadratic in fermionic
operators and spin mixing is forbidden (in other words,
spin-orbit coupling or noncollinear magnetism are absent).

Therefore the electronic Hamiltonian simply reads

HNM =
∑
qq′,σ

c†
q,σ [εqδqq′ + Uq−q′]cq′,σ , (2)

Uq−q′ being the Fourier transform of an impurity potential,
and c(†)

q,σ the fermionic operators of spin σ and momentum q.
One can define the local spin density as s(R) = 1

2 c†(R)σc(R),
in unit of h̄, and express it in momentum space

sq = 1

2
√

N

∑
p

c†
p+qσcp, (3)

with cq = (cq,σ=↑, cq,σ=↓)T and σ being the vector of Pauli
matrices.

B. Magnetic system

The magnetic insulator is taken as general as possible in
order to describe magnets possessing collinear or noncollinear
configurations. The Hamiltonian is supposed to be quadratic
in the spin operator and can be written in full generality

HMI =
∑
i, j

ST
i Ji jS j, (4)

where i and j indices describe the position of a spin in the
lattice, and Ji j is the interaction matrix.

An efficient procedure to diagonalize Eq. (4) starts by
assuming that it respects the ansatz of linear spin wave theory,
which treats small fluctuations of spin around their equi-
librium positions. This assumption enables us to treat these
quanta as bosonic modes of excitation and hence map a spin
Hamiltonian into a bosonic one. The method starts by evaluat-
ing the ground state configuration of this system, considering
quantum mechanical spins as classical vectors oriented in 3D
space. The orientation of each classical spin vector is then
known and an ordering into magnetic cells should appear. The
Hamiltonian can be expressed as

HMI =
M∑

l,m

N∑
i, j

ST
l,iJ lm

i j Sm, j, (5)

where now each spin is expressed as Sm,i, the first index
corresponding to the mth magnetic cell (m = 1, . . . , M) and
the second index representing the position i (i = 1, . . . , N) of
the ion within the cell. The position of Sm,i is noted Rm + Ri.
A spin can be connected to the global frame of the system
using a rotation

Sm,i = Rz(φi )Ry(θi )S′
m,i = RiS′

m,i, (6)

S′
m,i being the spin operator in its own local frame. It means

that if we consider the ground state (no magnons), S′
m,i =

(0, 0, S)T for all m and i. Ri depends only on sites i within
the magnetic cell and can be written

Ri =
⎛
⎝cos θi cos φi − sin φi sin θi cos φi

cos θi sin φi cos φi sin θi sin φi

− sin θi 0 cos θi

⎞
⎠ = (x̂i, ŷi, ẑi ).

(7)
In their local frame, each spin operator can be transformed
using a Holstein-Primakoff [33] transformation in the large S
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limit,

S′
m,i =

⎛
⎜⎝

√
Si/2(bm,i + b†

m,i )

−i
√

Si/2(bm,i − b†
m,i )

Si − b†
m,ibm,i

⎞
⎟⎠, (8)

where b(†)
m,i are bosonic annihilation (creation) operators in

real space (note that the same symbol i is used for both a
subscript for lattice site and the imaginary number). In the
global reference frame, it yields

Sm,i =
√

Si/2(b†
m,iûi + bm,iû∗

i ) + (Si − b†
m,ibm,i )ẑi, (9)

with û(∗)
i = x̂i ± iŷi. In momentum space these bosonic oper-

ators are expressed

b(†)
m,i = 1√

N

∑
k

eik.Rm b(†)
(−)k,i. (10)

It is then straightforward to express a quadratic Hamiltonian
in the Bogoliubov-de-Gennes (BdG) form

HMI = 1

2

∑
k

b†
kHkbk, (11)

with b a column vector of bosonic operators,

b†
k = (b†

k,1, . . . , b†
k,N , b−k,1, . . . , b−k,N ), (12)

satisfying the commutation relation

[bk, b†
k] = η, (13)

with

η =
(
1N 0
0 −1N

)
. (14)

A general procedure to diagonalize the Hamiltonian is pro-
posed in Ref. [32] and we give now a pedagogical summary.
First of all, because of the construction of Eq. (12), the blocks
of Hk are not independent of each others. It is required to be
of the following form:

Hk =
(

Ak Bk
B∗

−k A∗
−k

)
, (15)

in order to fulfill hermiticity. It is then diagonalized by a
Bogoliubov-Valatin (BV) transformation. We recall that a
BV transformation is an invertible linear transformation of
creation and annihilation operators preserving their algebraic
relations. It is not required to be unitary but symplectic for
bosons. Writing this transformation Pk, we have

[ak, a†
k] = [

P−1
k bk,

(
P−1

k bk
)†] = η (16)

and

b†
kHkbk = a†

kEkak. (17)

Hence we can identify the diagonalized matrix

Ek = P†
kHkPk = diag(εk,1, . . . εk,N , ε−k,1, . . . , ε−k,N ), (18)

containing the normal boson mode energies

HAF =
∑

k

∑
i

εk,i

(
a†

k,iak,i + 1

2

)
. (19)

Since we have the following identity on the transformation

PkηP†
k = η, (20)

it is called paraunitary, in analogy with a unitary transforma-
tion U †IU = I , and such a diagonalization is referred to as a
paraunitary diagonalization.

The algorithm that leads to Pk starts in [32] by assuming
positive definiteness of the Hamiltonian and using the follow-
ing theorem.

Theorem 1. A square hermitian matrix can be paraunitarily
diagonalized into a matrix with all diagonal elements positive
if and only if it is positive definite.

This condition is required to perform a Cholesky decom-
position on the coupling matrix,

Hk = LL†, (21)

where L is a lower triangular matrix depending implicitly on
momentum. We then diagonalize the matrix W = LηL† with
a unitary matrix U such that we arrange the resulting diagonal
matrix as such

V = UWU † = diag(εk,1, . . . εk,N ,−ε-k,1, . . . ,−ε-k,N ). (22)

We hence find that Ek = ηV and verify straightforwardly that
the matrix

Pk = (L†)−1UE1/2
k , (23)

fulfills the requirement P†
kHkPk = Ek. This concludes our

problem for a positive definite coupling matrix. In the fol-
lowing sections, the k dependence of the BV matrix will be
implicit. We will only reestablish the subscript in the final
formula.

In many cases, such as the one treated in Sec. V, the band
structure admits isolated points of 0-energy. These Goldstone
modes can be treated by adding an infinitesimal positive num-
ber to the diagonal of the coupling matrix Hk. The latter
solution is equivalent to introducing an anisotropy to the sys-
tem that can be removed at the end of the diagonalization.

C. Interfacial coupling

If we assume a one-to-one correspondence between the
metallic and the magnetic lattice sites at the interface between
the materials, interfacial coupling can be modeled by

Hint = −
∑

m,i∈Int

Jism,i.Sm,i, (24)

where it is sufficient to write R = Rm + Ri for both materi-
als and Int corresponds to the lattice sites at the interface.
In momentum space, with Sk,i = 1√

N

∑
m Sm,ieikRm , it is

written as

Hint = − 1

N

∑
i,q,k

Jqk,isq,i.Sk,i. (25)

This spin exchange Hamiltonian is responsible for driving the
system in a nonequilibrium state. It will be expanded in a
Keldysh evolution operator.
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III. DYNAMICAL SPIN SUSCEPTIBILITIES

A. Metallic Green functions

The retarded component of the spin susceptibility of the
metallic part is defined as [24]

χR
i (q, t ) = ih̄−1
(t )〈[s+

q,i(t ), s−
q,i(0)]〉

= 
(t )[χ>
i (q, t ) − χ<

i (q, t )], (26)

with s± = sx ± isy. The intracell index is kept to remind the
correspondence between the magnetic and metallic lattices
at the interface. It will be dropped subsequently, when the
metallic Green function is given explicitly as a nonspatially
dependent quantity. The lesser and greater components are
defined

χ<
i (q, t ) = ih̄−1〈s−

q,i(0)s+
q,i(t )〉,

χ>
i (q, t ) = ih̄−1〈s+

q,i(t )s−
q,i(0)〉. (27)

In the frequency domain, we adopt

χ (q, t ) =
∫

dω

2π
e−iωtχ (q, ω). (28)

Their relation to the distribution function are given by

χ<
i (q, ω) = 2i f NM(q, ω)ImχR

i (q, ω),

χ>
i (q, ω) = 2i[1 + f NM(q, ω)]ImχR

i (q, ω), (29)

where f NM is the (possibly nonequilibrium) distribution func-
tion that needs to be evaluated. The retarded Green function is
explicitly given by [20,34]

χR(q, ω) = χN

1 + λ2
N |q|2 − iωτs f

, (30)

with χN , λN , and τs f being the paramagnetic susceptibility,
the spin diffusion length, and the spin relaxation time in the
metal. Note furthermore that this Green function is space
independent and the i index has been dropped.

B. Magnonic Green functions

Similarly, we can define the retarded component of the spin
susceptibility for the magnet

GR
i (k, t ) = ih̄−1
(t )〈[S+

k,i(t ), S−
k,i(0)]〉. (31)

This is however the following magnon greater and lesser func-
tions that will be used,

G<
i (k, t ) = −ih̄−1〈a†

k,i(0)ak,i(t )〉,
G>

i (k, t ) = −ih̄−1〈ak,i(t )a†
k,i(0)〉, (32)

with 1 � i � N . Accordingly we make the necessary arrange-
ment to express the two-point function

〈(a†
k ) j (0)(ak ) j (t )〉 = ih̄[G<

[ j](ηk, t )δη,1 + G>
[ j](ηk,−t )δη,−1],

= ih̄Gη<

[ j] (ηk, ηt ), (33)

where 1 � j � 2N . The notation [ j] = ( j − 1 mod N ) + 1
takes care of the doubling of operators. Furthermore we have
written η instead of η j ≡ η j j and η is as defined in Sec. II B.
When η j = −1 the notation Gη j< and Gη j A refers respectively
to G> and GR. Equivalently,

〈T̃ (a†
k ) j (0)(ak ) j (t )〉 = 〈T̃ a†

k, j (0)ak, j (t )〉δη,1

+ 〈T̃ a−k,[ j](0)a†
−k,[ j](t )〉δη,−1,

= ih̄G−−
[ j] (ηk, ηt ), (34)

where T̃ denotes anti time ordering. The retarded component
is then obtained from the identity

G−− = Gη j< − Gη j A. (35)

Following our convention, we define the Fourier transform

G(k, t ) =
∫

dω

2π
e−iωt G(k, ω) (36)

and the relation

G
η j<

[ j] (k, ω) = 2i
[

f MI(k, ω) + 1
2 (1 − η j )

]
ImGR

[ j](k, ω) (37)

summarize the role of η j . An explicit formula for the equilib-
rium retarded Green function is derived as (h̄ = 1)

GR
i (k, ω) = 2S0

ω − εk,i + iϑ
, (38)

with ϑ the broadening. Here f MI needs also be replaced by
equilibrium or nonequilibrium distribution function. In the
case of the spin Seebeck effect, both f MI and f NM can be re-

placed by the Bose-Einstein distribution nB(ω, T ) = (e
h̄ω

kBT −
1)−1 or the Wigner distribution [35]. For other nonequilibrium
dynamics, such as spin pumping with FMR drive, a nonequi-
librium distribution f MI must be evaluated in perturbation
with respect to V .

IV. INTERFACIAL SPIN CURRENT

A. Full generality formulation

We wish to evaluate the spin current at the NM-MI inter-
face for the general system described in the previous section.
It is expressed through the Heisenberg equation

Î =
∑
R∈Int

i[s(R), Hint], (39)

the vector index of Î (α = {x, y, z}) indicating the polarization.
We now focus on one of these components

Îα =
∑

R∈Int,β,γ

JRεαβγ sγ (R)Sβ (R). (40)

From now on, R = Ri ∈ Int is always assumed and we omit
it. In momentum space, we obtain

Îα =
∑

qk,i,βγ

Jq,k,iεαβγ sγ

q,iS
β

k,i. (41)
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C+ τ τ2

τ1C−

t

FIG. 2. The Keldysh time contour c consist in two branches
c = C+ ∪ C−. All time points of the upper branch C+ are earlier than
times of the lower branch C−.

We verify easily that it yields the (α = z)-polarized result
of a Heisenberg ferromagnet HFI = ∑

〈i, j〉 Ji jSi.S j , that is,
Iz = −i

∑
qk[Jq,kS+

k s−
q − H.c.]. In this work, we assume for

simplicity that the coupling strength does not depend on the
position inside the magnetic cell: Jq,k,i → Jq,k. Notice that
when the sublattice-dependence of the exchange coupling is
maintained, it can have significant influence on the electron-
magnon coupling as pointed out by Ref. [36]. The current
average then reads

〈Îα〉 = lim
t1,t2→0

∑
qk,i,βγ

Jq,kεαβγ

〈
sγ

q,i(t2)Sβ

k,i(t1)
〉
. (42)

We use Keldysh perturbation expansion [30] and replace the
limit by setting τ1(2) on the lower C− (upper C+) branch of
the Keldysh contour, see Fig. 2. The α-polarized spin current
through the interface reads

〈Îα〉 =
∑

qk,i,βγ

Jq,kεαβγ

〈
Tc

[
sγ

q,i(τ2)Sβ

k,i(τ1)

× exp

(
− i

h̄

∫
c

dτHint (τ )

)]〉
0

, (43)

where the average is taken over the unperturbed system. We
expand Keldysh evolution operator to lowest order. We end up
with 〈Iα〉 to second order in J ,

〈Îα〉 =
∫

c
dτ

∑
qq′

∑
kk′

∑
i, j

∑
βγ δ

1

h̄
Jq,kJq′,k′εαβγ

× 〈
Tcsγ

q,i(τ2)sδ
q′, j (τ )

〉
0

〈
TcSβ

k,i(τ1)Sδ
k′, j (τ )

〉
0. (44)

This formula has been obtained in full generality. In the con-
text of a simple realistic system (non magnetic metal), we
prove in Appendix A and B that we can express the correlators
in terms of s± and bring some restriction on the γ index of the
insulator’s spin operators. We hence reduce it to

〈Îα〉 = Re

[
− i

2h̄

∑
qk,i,β,γ={x,y}

|Jqk|2εαβγ

×
∫

c
dτ

〈
Tcs−

q,i(τ2)s+
q,i(τ )

〉
0

〈
TcSβ

k,i(τ1)Sγ

k,i(τ )
〉
0

]
(45)

with β taking value in {x, y, z}. It is then expressed in the real-
time representation [30] (with t1 = t2 = 0) as

〈Îα〉 = Re

[
− i

2h̄

∑
qk,i,β,γ={x,y}

|Jqk|2εαβγ

×
∫

dt
[〈T s−

q,i(0)s+
q,i(t )〉0

〈
Sβ

k,i(0)Sγ

k,i(t )
〉
0

−〈s+
q,i(t )s−

q,i(0)〉0
〈
T̃ Sβ

k,i(0)Sγ

k,i(t )
〉
0

]]
. (46)

In Appendix C, we explain how to write the quantity∑
β,γ={x,y} εαβγ 〈(T̃ )Sβ

k (t1)Sγ

k (t2)〉0 in terms of Eqs. (33) and
(34). The formulation of Eq. (46) in terms of the previously
defined Green functions of the electronic and magnetic sys-
tems, Eqs. (27), (33), and (34), follows straightforwardly

〈Îα〉 = Re

[
h̄

4

∑
qk,i j

|Jq,k|2(P†
k ϒα,iPk ) j j

×
∫

dt
[
χ++

i (q, t )Gη j<

[ j] (η jk, η jt )

−χ>
i (q, t )G−−

[ j] (η jk, η jt )
]]

, (47)

with ϒα,i a diagonal matrix whose only nonzero elements are

ϒα,i
i,i =

∑
β,γ={x,y}

εαβγ SiImuβ
i u∗γ

i ,

ϒα,i
N+i,N+i =

∑
β,γ={x,y}

εαβγ SiImu∗β
i uγ

i = −ϒα,i
i,i . (48)

We then use χ++ = χA + χ> and Eq. (35) and obtain in
Fourier space

〈Îα〉 = Re

[
h̄

4

∑
qk,i j,β,γ={x,y}

|Jq,k|2
(
P†

k ϒα,iPk
)

j j

×
∫

dω

2π

[
χA

i (q, ω)Gη j<

[ j] (η jk,−η jω)

+χ>
i (q, ω)Gη j A

[ j] (η jk,−η jω)
]]

. (49)

Using Eqs. (29) and (37), we finally arrive at

〈Îα〉 = h̄

2

∑
qk,i j

|Jqk|2(P†
k ϒα,iPk ) j j

×
∫

dω

2π
ImχR

i (q, ω)ImGR
[ j](η jk,−η jω)

×
[

f MI(η jk,−η jω) + η j f NM(q, ω) + 1

2
(1 + η j )

]
.

(50)

This formula is the central result of this Article and expresses
the spin current pumped by interfacial magnons assuming the
most general magnonic Hamiltonian. The distribution func-
tions of the magnetic insulator and the normal metal should
then be replaced according to the setup under consideration.
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B. Spin Seebeck effect

For thermal spin injection, we can replace the distribu-
tion function by the Bose-Einstein distribution. We recall
η j = 1 for j � N and −1 for j > N . Using the equality
nB(−η jω, T ) + 1

2 (1 + η j ) = −η jnB(ω, T ), and a parity eval-
uation with respect to ω, we obtain

〈Îα〉 = h̄

2

∑
qk,i j

|Jq,k|2(P†
k ϒα,iPk ) j j

×
∫

dω

2π
ImχR

i (q, ω)ImGR
[ j](η jk, ω)

× η j[nB(ω, TNM) − nB(ω, TMI)], (51)

where TMI and TNM are the temperatures of the magnetic in-
sulator and the normal metal, respectively. This result is
consistent with the fact that spin injection does not occur
when TMI = TNM. Expression (51) is a generalization of the
one obtained for collinear magnets [20,22–24,34]. The dif-
ference is the presence of weights depending on the ground
state configuration of the insulating magnet, and that can be
gathered in a new matrix with elements

Mα
i, j (k) = (ηP†

k ϒα,iPk ) j j . (52)

Note that Mα (k) is not square since i runs over the lattice sites
at the interface while j runs over the energy eigenstates of
the magnonic system. This term is the only one bearing the
polarization index of the current and geometrical information
on spin configuration of the insulator’s ground state.

In analogy with the Landauer-Büttiker formalism [28,37],
we identify the transmission coefficient for α-polarized spin
current. Replacing Jq,k = J for simplicity, it is expressed

T α (ω) = |J|2
2

∑
q,k

∑
i, j

Mα
i, j (k)ImχR

i (q, ω)

× ImGR
[ j](η jk, ω), (53)

from which we write the current in a proper Landauer-like
form [29],

〈Îα〉 = h̄
∫

dω

2π
T α (ω)[nB(ω, TMI) − nB(ω, TNM)]. (54)

This result covers thermal spin injection to second order in
the interfacial coupling under assumption of linear spin wave
theory, for all magnets and for metals treated as spin sinks
without spin-orbit coupling.

We now show for consistency that, starting from Eq. (54),
we can derive the usual ferromagnetic case. Indeed, us-
ing Eq. (20), χi = χ and the parity of GR in momen-
tum (Ek = E−k), we get

∑
i Mz

i j = 2η2
j = 2 and T z(ω) =∑

qk j ImχR(q, ω)ImGR
[ j](k, ω), which finally gives

〈Î z〉 = A
∫

dω

2π

∑
q,k

∑
j

ImχR(q, ω)ImGR
[ j](k, ω)

× [nB(ω, TMI) − nB(ω, TNM)], (55)

with A = Nh̄|J|2/2.

C. Spin pumping

Pumping with a FMR drive is modeled by adding V �= 0
in the Hamiltonian. In noncollinear systems, the general ex-
pression of this perturbation is still lacking. We will not try to
give it in the present work. However, we now provide an intro-
duction to this new contribution. Section V contains a result
generalizing [21,24] to a topological ferromagnet and should
inspire further development in the direction of noncollinear
ordering, from antiferromagnets [38] to skyrmion crystals
[39]. This term V is treated perturbatively and a correction
to the lesser Green function,

δG<(k, ω) = GR(k, ω)�(k, ω)GA(k, ω), (56)

yields a new distribution f MI(k, ω)=nB(ω, TMI)+δ f MI(k, ω),
with

δ f MI(k, ω) = δG<(k, ω)/[2iImGR(k, ω)]. (57)

The quantity �(k, ω) is the self-energy associated with the
perturbation V . An expression for a specific case is given in
Sec. V. Starting from Eq. (50) and setting both materials at
equal temperature, the difference of Bose-Einstein distribu-
tions vanishes and we obtain,

〈Îα〉 = |J|2
2

∑
q,k

∑
i, j

Mα
i, j (k)

∫
dω

2π
ImχR

i (q, ω)

× ImGR
[ j](η jk,−η jω)δ f MI

[ j] (η jk,−η jω). (58)

The spin current therefore inherits a Landauer form as in the
spin Seebeck effect case.

V. APPLICATION: THE HONEYCOMB TOPOLOGICAL
MAGNON INSULATOR

A. Model

For the illustrative purpose, we turn to the application of
our formula Eq. (54) to a topological collinear ferromagnet.
The following Hamiltonian, a bosonic analog of the Haldane
model introduced in Ref. [31], models a Honeycomb Heisen-
berg ferromagnet with second nearest neighbor interaction.
In addition to a Heisenberg coupling, the lattice geometry
naturally induces a Dzyaloshinskii-Moriya interaction

HMI = −J
∑
〈lm〉

Sl .Sm − J ′ ∑
〈〈lm〉〉

Sl .Sm

+
∑
〈〈lm〉〉

Dlm.(Sl × Sm), (59)

with Dlm ∝ Rl × Rm. Note that in Eq. (53) the NM-MI cou-
pling J appears only in an overall factor. We formally set
it equal to the Heisenberg coupling of Eq. (59), playing the
role of an energy scale. In the linear spin wave regime,
the Holstein-Primakoff transformation yields the bosonic
description

HMI = ν0

∑
l

b†
l bl − νs

∑
〈lm〉

(b†
l bm + H.c.)

−νt

∑
〈〈lm〉〉

(eiφlm b†
l bm + H.c.), (60)
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FIG. 3. (a) Zigzag edge ribbon infinite along ŷ. (b) Phase accu-
mulation diagram.

with ν0 = 3JS + 6J ′S (each ion has three nearest and six
next nearest neighbors), νs = JS, S(J ′ + iDνlm) = νt eiφlm and
νlm = ±1 depending on the orientation with respect to the po-
sition of the third ion involved in the antisymmetric exchange.
This yields the phase accumulation diagram of Fig. 3, where
the direction of the arrow indicates a positive phase multi-
plication. The topological properties are identified to be re-
lated to the complex parameter Z = S(J ′ + iDνlm) = νt eiφlm .

The magnet enters its topological phase whenever D > 0. See
Ref. [31] for details.

We study the interfacial spin pumping by building a
nanoribbon along the y axis (zigzag edge). In order to use
our formulation, we must express the Hamiltonian in the BdG
form,

HMI = 1

2

∑
ky

�
†
ky

(
Jky 0

0 J ∗
−ky

)
�ky , (61)

with �ky = (β1,ky . . . βn,ky β
†
1,−ky

. . . β
†
n,−ky

)
T

and

βi,ky = (ai,1,ky ai,2,ky bi,1,ky bi,2,ky )
T

, since a unit cell
admits four sublattices. The derivation of the nanoribbon
Hamiltonian in Appendix D. The procedure for paraunitar-
ily diagonalization reviewed in Sec. II B generates the BV
matrix Pk. The band structures displayed in Fig. 4 follow
from that same procedure. The only eigenstates corresponding
to bands crossing the gap are the topological edge magnons
of the right and left sides of the nanoribbon depicted in
Fig. 3.

B. Spin Seebeck effect

We analyze the spin current pumped through the interface
by thermal magnons. The Hamiltonian of Eq. (61) is not diag-
onal in space, so that Eq. (55) does not hold. Then, Eq. (54),

(a) J /J = 0,D/J = 0 (b) J /J = 0.6,D/J = 0.2 (c) J /J = 0.23,D/J = 0.6

(d) J /J = 0,D/J = 0 (e) J /J = 0.6,D/J = 0.2 (f) J /J = 0.23,D/J = 0.6

FIG. 4. (Top) Energy bands for a 15 unit cell zigzag nanoribbon (along y) of the topological honeycomb ferromagnet, for J ′ and D indicated
bellow. (Bottom) Frequency contribution to the spin current generated by the spin Seebeck effect; value normalized by the spin current total of
the ferromagnetic case IFE

SE = Iz
SE(J ′ = D = 0). The ribbon is composed of 50 unit cells.
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(a) (b)

FIG. 5. (a) Spin current pumped through the interface, normalized by the current obtained in the simple honeycomb ferromagnet. The
ribbon is composed of 15 unit cells. The color map is obtained by tuning the parameters Z = J ′ + iDνlm. The white region, for which |Z| > 1
(nearest neighbor interaction dominates the first neighbor Heisenberg interaction) is not explored and the current is set to 0. (b) Temperature
dependence of the spin Seebeck effect for initial equal temperature T = 0.1J (kB = 1, h̄ = 1) and for three values of (J ′/J, D/J ). (b.1) (0,0),
ferromagnet IFE

SE ; (b.2) (0.23,0.6); (b.3) (0.6,0.2). The values are normalized by IFE
SE (�T/J = 1).

χi = χ and the parity of GR in momentum (Ek = E−k) yield

〈Î z〉 = A
∫

dω

2π

∑
q,k

∑
i, j

Mz
i, j (k)ImχR(q, ω)ImGR

[ j](k, ω)

× [nB(ω, TMI) − nB(ω, TNM)], (62)

with A = h̄|J|2/2 and i runs over the two sites at the interface
(see Fig. 3). In this collinear setting, the role of Mz(k) is
to redistribute the contribution of each magnon eigenmodes
based on their Bogoliubov coefficients.

The results for the current generated by the spin Seebeck
effect are displayed in Fig. 5 and can be analyzed in parallel
to Fig. 4. For completeness the temperature dependence of the
spin Seebeck effect is displayed in Fig. 5(b). This behavior is
identical to the analysis of [40]. The values of Fig. 5(a) are
normalized by the spin current of the Heisenberg ferromagnet
case, which is at the origin of the quadrant D = J ′ = 0. We
observe two behaviors depending on the direction in which
Z is set. For large J ′, the current is affected negatively. As
a matter of fact, the spin Seebeck effect does not discrimi-
nate between bulk and topological edge magnons. The main
contribution to the spin current comes from the lowest energy
bands even though the material is in its topological phase.
Increasing J ′ tends to relocate the gap, initially at ε/J = 1.5
for a Heisenberg ferromagnet, to ε/J > 3, and decreasing at
the same time the contribution of bulk magnons. This can be
rephrased as follows: interfacial magnetic moments rely on
the coupling constant Jqk to pump but as J ′ increases, they
need to compete with the bulk interaction of the magnonic
material. Furthermore, the energy gap being reduced, the spe-
cific contribution from the topological magnons would be very
hard to detect.

In the low J ′ region, the pumping magnitude is not affected
much by the value of D. This behavior matches the opening

of a large gap in the low energies ε/J < 3. The frequency
spectrum of the current on Fig. 4 does however not show any
specific contributions from topological magnons.

The spin Seebeck effect study does not support any cen-
tral role of topological edge magnons and cannot be used
as a probe. Even though the low J ′ regime seems favorable
for pumping despite a steady magnitude at constant J ′, the
technological applications of this type of materials require a
selection of edges as a controlled pumping channel.

C. Spin pumping

In the case of collinear ferromagnets, modeling an exter-
nal radiation can be done by adding a term V �= 0 to the
Hamiltonian, with

V =
∑

i

−h+
ac(t )S+

i − h−
ac(t )S−

i . (63)

Here h±
ac(t ) = h̄γ hac√

2

√
SNe∓�t , hac and � being the am-

plitude and the frequency of the radiated field, respec-
tively, and γ is the gyromagnetic ratio. Using a Holstein-
Primakoff transformation, we obtain V = h(t )bk=0 with
h(t ) = (h−

ac(t ), . . . , h+
ac(t ), . . . ) being a 2N row vector. Using

the BV transformation, it translates into

V = h′
0(t )a0, (64)

with h′
k(t ) = h(t )Pk. This perturbation brings a correction to

the lesser component of the dynamical spin susceptibility of
the insulator, but does not change its retarded and advanced
components. Treating V perturbatively to second order yields

δG<
i (k, ω) = GR

i (k, ω)�i(k, ω)GA
i (k, ω),

�i(k, ω) = −δk,0ih̄−1
∫

dt〈h′
k,i(t )h′

k,i+N (0)〉eiωt , (65)
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J /J = 0,D/J = 0 J /J = 0.6,D/J = 0.2 J /J = 0.23,D/J = 0.6

J /J = 0,D/J = 0 J /J = 0.6,D/J = 0.2 J /J = 0.23,D/J = 0.6

FIG. 6. Frequency contributions to the spin current generated by the FMR drive; values are normalized by the spin current maximal
pumped in the ferromagnetic case IFE

SP,max = Iz
SP,max(J ′ = D = 0, ky = 0, �/J = 3). (Top line) Momentum excited ky = 0 and (bottom line)

ky = π/a
√

3. The ribbon is composed of 50 unit cells.

where h′
k,i ≡ (h′

k )i, 1 � i � N , and �i(k, ω) the self energy
associated to V . For consistency with previous work [23,24],
we restore ferromagnetic damping in Eq. (38) by the change
ϑ → αω. From Eq. (57), it follows that

δ f MI
i (k, ω) = 2πNSγ 2

αω
h′

k,i(0)h′
k,i+N (0)δk,0δ(ω − �), (66)

and the current is then written

〈Îα〉 = AN2g(�)ImχR
loc(�),

g(�) = (Sγ )2
∑

j

h′
0,[ j](0)h′

0,[ j]+N (0)

(� − ε0,[ j] )2 + α2�2
, (67)

with χR
loc(�) = ∑

q χR(q,�). We hence understand why the
spin pumping setup is better suited for a control over edge
magnons: by choosing the value of � is the bulk gap, one
mainly obtains the contribution of edge modes. An analysis
over � then determines whether edge magnons indeed pump
better into the metal than bulk magnons.

In Fig. 6, we propose a two case study for the same
values of (J ′, D) as in Fig. 4. The upper panels of Fig. 6
uses Eq. (67), at ky = 0, which is experimentally accessible.
The lower panels assume that we possess an experimental
procedure to excite the modes at a momentum ky �= 0. The
results are normalized by the maximum pumped current of
the Heisenberg ferromagnet J ′ = D = 0.

For ky = 0, topological magnons are impossible to probe.
The well defined extrema of Fig. 6 correspond to a concentra-
tion of bands, as can be seen in Fig. 4. More specifically, we
verify that the concentration of bands at ky = 0 is a peculiarity
occurring at D/J = 0.23 and that does not depend on the
value of J ′. This coherent concentration could be interesting
if one wishes to pump at defined energy (�/J = 3). For
ky = π/a

√
3, which is the value of topological band crossing,

we use

gk(�) = (Sγ )2
∑

j

h′
k,[ j](0)h′

k,[ j]+N (0)

(� − εk, j )2 + α2�2

∣∣∣∣
ky=π/a

√
3

. (68)

We observe a net contribution of topological magnons due to
their concentration at the edges of the magnet. The case J ′ =
D = 0 displays the greatest magnitude of current pumped
but does not correspond to topological magnons. In contrast,
at finite J ′, the large peak is entirely due to topological
magnons, demonstrating that interfacial spin pumping could
be a handful approach to probe these exotic states. We em-
phasize that the grand challenge of the proposed approach
is the ability to excite spin waves with specific momentum.
Whereas this is possible in the case of dipolar magnons that
possess a long wavelength (typically 100 nm) [1,41], it is
much more challenging for exchange magnons. That being
said, su-bmicrometer artificial magnonic crystals could of-
fer interesting perspectives for the design and observation of
topological edge states.
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VI. CONCLUSION

The pumping properties of generic magnetic materials
have been the center of the present work. Starting from the
common setup consisting of an interface between a nonmag-
netic metal and a magnet described in terms of a quadratic
Bogoliubov-de-Gennes Hamiltonian, we gave a Landauer for-
mula for the spin current injected due to the spin Seebeck
effect and we extended the result to the spin pumping setup.
As an application, we studied a topological ferromagnet on
the honeycomb lattice in order to understand the role of topo-
logical edge magnons. Under temperature bias, we found that
increasing the internal interaction of the magnet is not in favor
of the spin injection. The specific contribution of topological
edge modes is wiped out by the contribution of bulk magnons,
which are ubiquitous due to their bosonic nature. The potential
solution brought by the spin pumping setup requires to excite
nonzero momentum modes, which remains an open experi-
mental challenge but could offer appealing perspectives for
topological magnonics.

As emphasized, the theory is readily applicable to model
thermal spin injection from noncollinear magnets and material
with nontrivial magnetic textures such as antiferromagnets

[38] and skyrmion crystals [39]. However, the resonant (FMR)
pumping theory must be extended since the FMR perturbation
has not been explicitly given in full generality. We expect that
it could be extended, with care, to noncollinear systems.

Another way to probe topological magnonic edge states
could be to investigate spin current noise [23]. Beyond
bosonic edge states, it is not excluded that certain topological
systems, such as frustrated magnets, can induce exotic pump-
ing statistics that only the noise can clearly highlight.

ACKNOWLEDGMENT

V.G. and A.M. acknowledge support from the Excellence
Initiative of Aix-Marseille Université—A*Midex, a French
Investissements d’Avenir program.

APPENDIX A: METALLIC SPIN DENSITY CORRELATORS

We evaluate 〈(T )sδ
q1,i(t1)sγ

q2, j (t2)〉0 and forget initially
about the dependence of operators on the position inside their
unit-cell and the time ordering. These extra constraints are
for now unavailing and can be added up later without loss of
validity. By definition,

〈
sδ

q1
(t1)sγ

q2
(t2)

〉
0 =

∑
σ1,2,σ

′
1,2=↑,↓

∑
p1,p2

〈c†
σ1,q1+p1

(t1)cσ ′
1,p1 (t1)c†

σ2,q2+p2
(t2)cσ ′

2,p2 (t2)〉0σ
δ
σ1σ

′
1
σ

γ

σ2σ
′
2
. (A1)

Using Wick’s theorem and diagonality of HNM in spins and momentum (in the limit of weak impurity potential),

〈
sδ

q1
(t1)sγ

q2
(t2)

〉
0 =

∑
σ1,2=↑,↓

∑
p1,p2

〈
c†
σ1,q1+p1

(t1)cσ1,p1 (t1)
〉
0

〈
c†
σ2,q2+p2

(t2)cσ2,p2 (t2)
〉
0δq1,0δq2,0σ

δ
σ1σ1

σγ
σ2σ2

+ 〈
c†
σ1,q1+p1

(t1)cσ1,p2 (t2)
〉
0

〈
cσ2,p1 (t1)c†

σ2,q2+p2
(t2)

〉
0δq1+p1,p2δp1,q2+p2σ

δ
σ1σ2

σγ
σ2σ1

. (A2)

We focus on the first line of Eq. (A2). We rewrite it in
terms of translational invariant electronic Green functions for
which the spin dependence vanishes by diagonality of HNM in
spins,

∑
p1,p2

ξ<
p1

(0)ξ<
p2

(0)
∑

σ1,2=↑,↓
σ δ

σ1σ1
σγ

σ2σ2
. (A3)

This contribution is nonzero only for δ = γ = z. However
Tr{σ z}=0 so that this term is inevitably vanishing. Proceed-
ing equivalently for the second contribution of Eq. (A2), we
easily prove that it is nonzero for δ = γ ∈ {x, y} only, since∑

σ1,2=↑,↓ σ δ
σ1σ2

σ
γ
σ2σ1 = Tr{σ δσ γ } = δδ,γ . The previous rea-

soning applies also for time ordered average 〈T sδ
q1

(t1)sγ
q2 (t2)〉0.

It is now relevant to add the index over position inside the unit
cell. The corresponding correlator is 〈(T )sδ

q1
(t1)sγ

q2 (t2)〉0 =
〈(T )sγ

q1,i
(t1)sγ

q2, j (t2)〉0. Replacing sx = 1
2 (s+ + s−) and sy =

1
2i (s

+ − s−), it boils down to 〈(T )s±
q1,i

(t1)s∓
q2, j (t2)〉0 which

is diagonal in momentum. This term indicates spin mixing
from site i to site j, which we have avoided by neglecting
spin-orbit coupling and noncollinear magnetism in the elec-
tronic system. Therefore this average is nonzero only when

i = j. Using the restriction γ ∈ {x, y}, the average appear-
ing in the real time representation of Eq. (44) is expressed
(t1 = t2 = 0)

〈
sγ

q,i(t )sγ

q′,i(0)
〉
0 = 1

4
[〈s+

q,i(t )s−
q′,i(0)〉0 + 〈s−

q′,i(t )s+
q,i(0)〉0]δq,q′ ,

= −ih̄

4
[χ>

i (q, t ) + χ<
i (q,−t )]δq,q′ . (A4)

Equivalently for the time ordered terms of the real time repre-
sentation of Eq. (44),

〈
T sγ

q (0)sγ

q′ (t )
〉
0 = 1

4
[〈T s+

q (0)s−
q′ (t )〉0 + 〈T s−

q′ (0)s+
q (t )〉0]δq,q′,

= −ih̄

4
[χ++(q,−t ) + χ++(q, t )]δq,q′ . (A5)

APPENDIX B: CURRENT CONTRIBUTIONS

We have proved that the contribution to the current can be
expressed in terms of s±, with sz inevitably vanishing. Using
this result as well as the restriction γ = {x, y}, we can come
back to the original real space definition of the current and
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cancel certain terms. We obtain

Îα = 1

h̄

∑
m,i,β

Jm,i
[
εαβx

(
s−

m,iS
β
m,i + H.c.

)

+iεαβy
(
s−

m,iS
β
m,i − H.c.

)]
. (B1)

Taking the average, it can be written in momentum space as

〈Îα〉 = Re
∑
qkiβ

Jqk
[
εαβx

〈
s−

q,iS
β

k,i

〉 + εαβyi
〈
s−

q,iS
β

k,i

〉]
, (B2)

considering Jqk = J∗
kq. We can now revisit the Keldysh op-

erator expansion to second order in the coupling. Keeping in
mind that all sz terms vanish and that a δ function over position
in the unit-cell appear,

〈Îα〉 = Re

[
− i

h̄

∑
qkiβ

|Jqk|2

×
[
εαβx

∫
c

dτ
〈
Tcs−

q,is
x
q,i

〉〈
TcSβ

k,iS
x
ki

〉

+iεαβy

∫
c

dτ
〈
Tcs−

q,is
y
q,i

〉〈
TcSβ

k,iS
y
k,i

〉]]
. (B3)

Replacing sx,y by their ladder operator expression, and keep-
ing the nonzero terms 〈T s±s∓〉0, we write this average

〈Îα〉 = Re

[
− i

2h̄

∑
qkiβ

|Jqk|2

×
[
εαβx

∫
c

dτ 〈Tcs−
q,is

+
q,i〉

〈
TcSβ

k,iS
x
k,i

〉

+εαβy

∫
c

dτ 〈Tcs−
q,is

+
q,i〉

〈
TcSβ

k,iS
y
k,i

〉]]
, (B4)

from which the more compact expression Eq. (45) follows.

APPENDIX C: MAGNON CORRELATOR

We evaluate the two-point function 〈(T̃ )Sβ

k,i(0)Sγ

k,i(t )〉0

where γ ∈ {x, y}. Starting from Eq. (9) in momentum space
and projecting this vector on either direction β or δ, we can
summarize it into a matrix format [42],

〈
Sβ

k,iS
γ

k,i

〉 = Si

2

〈(
b†

k,i b−k,i
)( uβ

i u∗γ
i uβ

i uγ
i

u∗β
i u∗γ

i u∗β
i uγ

i

)(
bk,i

b†
−k,i

)〉
,

(C1)

where the time ordering can be added on both sides. Since we
would like to express this correlator in terms of magnon eigen-
modes, we need to write a result in terms of b(†)

k = (Pak )(†)

with b†
k = (b†

k,1, . . . , b†
k,N , b−k,1, . . . , b−k,N ). We do this in

two steps. We first have〈
Sβ

k,iS
γ

k,i

〉 = 1
2 〈v†

k,iB
βγ ivk,i〉, (C2)

with vk,i = (0 . . . bk,i 0 . . . b†
−k,i 0 . . .)

T
whose two

nonzero elements are in ith and (N + i)th entries. Furthermore

Bβγ i is a matrix with only four nonzero elements,

Bβγ i
i,i = Siu

β
i u∗γ

i ,

Bβγ i
i,i+N = Siu

β
i uγ

i ,

Bβγ i
i+N,i = Siu

∗β
i u∗γ i

i ,

Bβγ i
i+N,i+N = Siu

∗β
i uγ

i . (C3)

After examination of Eq. (46), we can rather evaluate directly∑
βγ εαβγ 〈SβSγ 〉. Noticing that v(†), in Eq. (C2), does not

depend on β and γ , and using the identity
∑

βγ εαβγ Bβγ i =
1
2

∑
βγ [εαβγ Bβγ i + εαγβBγ βi], as well as εαβγ = −εαγβ , the

sum over spin polarization can be compactly expressed

∑
βγ

εαβγ

〈
Sβ

k,iS
γ

k,i

〉 = i

2

∑
βγ

εαβγ

〈
v†

k,iC
βγ ivk,i

〉
, (C4)

with Cβγ i = 1
2 [Bβγ i − Bγ βi] a 2N × 2N diagonal matrix with

only two nonzero elements,

Cβγ i
i,i = SiImuβ

i u∗γ
i ,

Cβγ i
i+N,i+N = SiImu∗β

i uγ
i = −Cβγ i

i,i . (C5)

The diagonality allows us to replace the right (left) vector by
b(†)

k without loss of validity,

∑
βγ

εαβγ

〈
Sβ

k,iS
γ

k,i

〉 = i

2

∑
βγ

εαβγ 〈b†
kCβγ ibk〉. (C6)

We can hence make use of the BV transform defined previ-
ously as b(†)

k = (Pak )(†) and write

∑
βγ

εαβγ

〈
Sβ

k,iS
γ

k,i

〉 = i

2

〈
a†

kP†
k ϒα,iPkak

〉
, (C7)

with ϒα,i = ∑
βγ εαβγ Cβγ i. This sum of two-point functions

is only nonzero for diagonal elements since ak is a vector of
eigenmodes. Hence,∑

βγ

εαβγ

〈
(T̃ )Sβ

k,i(0)Sγ

k,i(t )
〉

= i

2

∑
j

(P†
k ϒα,iPk ) j j〈(T̃ )(a†

k ) j (0)(ak ) j (t )〉. (C8)

This can be further evaluated with Sec. III B.

APPENDIX D: HONEYCOMB TOPOLOGICAL MAGNON
INSULATOR: BULK AND NANORIBBON SYSTEM

The nearest and next nearest neighbor vectors are
defined as

δ1 = (1,
√

3)/2, δ2 = (1,−
√

3)/2, δ3 = −(1, 0),

ρ1 = −(3,
√

3)/2, ρ2 = (3,−
√

3)/2, ρ3 = (0,
√

3).
(D1)
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We use the sublattice configuration to express the Hamiltonian
in terms of bosonic operator of A and B sites, respectively
noted a(†)

k and b(†)
k . We then express all hopping terms in

momentum space in the direction of our previously defined
nearest and next nearest neighbor vectors. According to our
convention and following Ref. [32], we straightforwardly ob-
tain the BdG form of the bulk system,

H =1

2

∑
k

(
φ

†
k φ−k

)(Ak 0

0 A∗
−k

)(
φk

φ
†
−k

)
+ const.

with

Ak =
(

ν0 − 2νt
∑

i cos(φ−ρik) −νs f (k)

−νs f ∗(k) ν0−2νt
∑

i cos(φ+ρik)

)
,

(D2)

and f (k) = ∑
i eiδik, φ(k) = (ak, bk )T .

We rewrite the Hamiltonian in terms of ky in a nanorib-
bon structure composed of one-dimensional chains stacked
together. We perform this step by looking at every possible
hopping between NN and NNN and by keeping track of the

phase φ accumulated. The coupling matrix between the one-
dimensional chains reads

Jky =

⎛
⎜⎜⎜⎜⎝

Lky Tky 0 . . .

T †
ky

Lky Tky 0 . . .

0 T †
ky

Lky Tky . . .

. . .

⎞
⎟⎟⎟⎟⎠. (D3)

Lky corresponds to the interaction matrix inside a single chain
of the ribbon and is a hermitian matrix with upper triangular
part

Lky =

⎛
⎜⎜⎝

d+ e− f0 −νs

d+ 0 f0

d− e+
d−

⎞
⎟⎟⎠, (D4)

such that d±=ν0−2νt cos(
√

3ky± φ), e±=−2νt cos(
√

3
2 ky±φ),

and f0 = −2νs cos(
√

3
2 ky). Tky models the hopping between

two adjacent chains,

Tky =

⎛
⎜⎝

0 e− 0 0
0 0 0 0
0 −νs 0 e+
0 0 0 0

⎞
⎟⎠. (D5)
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