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Three-dimensional O(N)-invariant φ4 models at criticality for N � 4
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We study the O(N )-invariant φ4 model on the simple cubic lattice by using Monte Carlo simulations. By using
a finite-size scaling analysis, we obtain accurate estimates for the critical exponents ν and η for N = 4, 5, 6, 8,
10, and 12. We study the model for each N for at least three different values of the parameter λ to control leading
corrections to scaling. We compare our results with those obtained by other theoretical methods.
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I. INTRODUCTION

We study the φ4 model on the simple cubic lattice by using
Monte Carlo (MC) simulations combined with a finite-size
scaling (FSS) [1] analysis. The φ4 model is a prototypical
model to investigate critical phenomena. The reduced Hamil-
tonian of the N-component φ4 model, for a vanishing external
field, is given by

H = −β
∑
〈x,y〉

�φx · �φy +
∑

x

[
�φ 2

x + λ
( �φ 2

x − 1
)2

]
, (1)

where �φx is a vector with N real components. We label the
sites of the simple cubic lattice by x = (x0, x1, x2), where
xi ∈ {1, 2, . . . , Li}. Furthermore, 〈xy〉 denotes a pair of nearest
neighbors on the lattice. For λ = 0 we get the Gaussian model
or free-field theory on the lattice. For λ > 0, the model un-
dergoes a second-order phase transition. In the limit λ → ∞
the field is forced to unit length | �φx| = 1. In the literature, the
model in this limit is referred to as O(N ) vector model. In
the following we shall use the notation λ = ∞ to refer to this
limit.

The modern theory of critical phenomena is the renor-
malization group (RG), going back to the 1970s. The RG
theory furnishes a general framework but also provides
computational tools like the ε expansion or the functional
renormalization group (FRG) method.

In the neighborhood of the critical temperature, at a
second-order phase transition, thermodynamic quantities di-
verge, following power laws. For example, the correlation
length ξ in the thermodynamic limit behaves as

ξ = at−ν (1 + bt θ + ct + · · · ), (2)

where t = (T − Tc)/Tc is the reduced temperature and ν the
critical exponent of the correlation length. The power law is
subject to confluent and analytic corrections. In Eq. (2) we
give the leading ones. The correction exponent can be written
as θ = νω, where ω naturally appears in FSS.

The RG predicts that second-order phase transitions fall
into universality classes. For a given class, critical exponents
such as ν and correction exponents such as ω assume unique

values. The same holds for so-called amplitude ratios. A uni-
versality class is characterized by a few qualitative features
of the system. These are the spatial dimension, the symme-
try properties of the order parameter, and the range of the
interaction. Accurate experiments and theoretical calculations
support the universality hypothesis. In the case of the model
discussed here, the universality class, for a given value of N ,
should not depend on the parameter 0 < λ � ∞. For reviews
on critical phenomena and the RG see, for example [2–6].

Great progress has been achieved recently by using the
so-called conformal bootstrap (CB) method. In particular in
the case of the three-dimensional Ising universality class, cor-
responding to N = 1, the accuracy that has been reached for
critical exponents clearly surpasses that of other theoretical
methods. See Refs. [7,8] and references therein. Very recently,
also highly accurate estimates [9] were obtained for the XY
universality class, N = 2, surpassing the accuracy of results
obtained by lattice methods. In the case of the Heisenberg
universality class N = 3, accurate results were provided in
[10]. Results for N = 4 are given in Refs. [11,12]. For a
review on the CB method, see for example [13].

In the last few years, progress has also been achieved by
using other methods. The ε expansion for critical exponents
of O(N )-invariant models has been extended to six loops
[14] and to seven loops [15]. An analysis of the seven-loop
series is provided, for example, in Ref. [16]. In Ref. [17]
accurate results were obtained for critical exponents and the
correction exponent ω for three-dimensional O(N )-invariant
systems by using the FRG method. For a recent review on
the FRG method, see Ref. [18]. These two approaches can
be applied to a wide range of problems. For example, both
the ε expansion as well as the FRG method can be applied to
dynamic problems.

The Monte Carlo simulation of lattice models in combina-
tion with a FSS analysis is well established in the study of
critical phenomena and might serve as benchmark of these
methods. Recently, in Refs. [19–23] accurate estimates of the
critical exponents for N = 1, 2, and 3 were obtained. For
references to the bulk of previous work see Refs. [19–23]
and the review [6]. Here we like to bridge the gap to the 1/N
expansion. To this end, we study the φ4 model for N = 4, 5,
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6, 8, 10, and 12. Previous simulations for these values of N
are discussed in the Conclusions. For a review on the large-N
expansion see, for example, [24]. For a physical motivation
to study the φ4 model for N = 4 and 5, see for example
sections 6.1 and 6.2 of the review [6].

The outline of the paper is the following. In Sec. II, we
define the observables that we measure. In Sec. III we discuss
corrections to scaling. In the main part of the paper, we discuss
our simulations and the analysis of the data. In Sec. IV we
briefly sketch the Monte Carlo algorithm and its implemen-
tation. In Secs. V and VI we discuss the cases N = 4 and 5,
respectively. The simulations and the analysis of the data for
N � 6 are briefly sketched in Sec. VII. Finally, in Sec. VIII
we conclude and compare our results for the critical exponents
with those obtained by various methods given in the literature.

II. OBSERVABLES

Here we study the same observables as in previous work
(see, for example, Sec. II B of Ref. [22]). For completeness we
recall the definitions of the quantities that we have measured.

In our study, the linear lattice size L = L0 = L1 = L2 is
equal in all three directions throughout. We employ periodic
boundary conditions. The energy of a given spin configuration
is defined as

E =
∑
〈xy〉

�φx · �φy. (3)

The magnetic susceptibility χ and the second moment corre-
lation length ξ2nd are defined as

χ ≡ 1

V

〈( ∑
x

�φx

)2〉
, (4)

where V = L3 and

ξ2nd ≡
√

χ/F − 1

4 sin2 π/L
, (5)

where

F ≡ 1

V

〈∣∣∣∣∣
∑

x

exp

(
i
2πxk

L

)
�φx

∣∣∣∣∣
2〉

(6)

is the Fourier transform of the correlation function at the low-
est nonzero momentum. In our simulations, we have measured
F for the three directions k = 0, 1, 2 and have averaged these
three results.

In addition to elementary quantities like the energy, the
magnetization, the specific heat, or the magnetic suscepti-
bility, we compute a number of so-called phenomenological
couplings, that means quantities that, in the critical limit, are
invariant under RG transformations. We consider the Binder
parameter U4 and its sixth-order generalization U6, defined as

U2 j ≡ 〈 �m2 j〉
〈 �m2〉 j

, (7)

where �m = 1
V

∑
x

�φx is the magnetization of a given spin
configuration. We also consider the ratio RZ ≡ Za/Zp of the
partition function Za of a system with antiperiodic boundary
conditions in one of the three directions and the partition

function Zp of a system with periodic boundary conditions in
all directions. This quantity is computed by using the cluster
algorithm. For a discussion, see Appendix A 2 of Ref. [25].
In the following we shall refer to the RG-invariant quantities
U2 j , Za/Zp, and ξ2nd/L using the symbol R.

In our analysis we need the observables as a function of
β in some neighborhood of the simulation point. To this end
we have computed the coefficients of the Taylor expansion of
the observables up to the third order. For example, the first
derivative of the expectation value 〈A〉 of an observable A is
given by

∂〈A〉
∂β

= 〈AE〉 − 〈A〉〈E〉. (8)

III. CORRECTIONS TO SCALING

In the analysis of the data corrections to scaling play an
important role. Systematic errors are caused by corrections
that are not or not exactly taken into account in the Ansätze
that are used to fit the data.

Based on the general framework of the RG theory we
expect that the quantities that we are dealing with in the FSS
analysis behave at the critical point as

A(L) = aLx

(
1 +

∑
i

biL
−ωi +

∑
i j

ci jL
−ωi−ω j + · · ·

)
, (9)

where x is the critical exponent we like to determine and
ωi > 0 are correction exponents. RG theory predicts that x and
ωi are universal, while a, bi, and ci j depend on the particular
system that is considered. In the case of the model studied
here, these coefficients are functions of the parameter λ.

In practice, only a small number of correction terms can be
taken into account since the statistical error of the estimates
obtained by the fit rapidly increases with the number of free
parameters. The systematic error can be reduced by going to
larger lattice sizes L. However, we are limited in this direction
since the CPU time that is required to keep the statistical error
constant essentially grows as Ld+z, where d is the dimension
of the system and the dynamical critical exponent z > 0 for
the algorithms used here. In order to decide on the design of
the study, information on the corrections is needed. Getting
information by using FSS studies, in practice one is restricted
to the leading correction. In the case of subleading corrections,
we have to rely on other theoretical methods.

Various methods give consistently ω ≈ 0.8 for the expo-
nent of the leading correction to scaling for N � 12. Since
the amplitudes of corrections bi depend on the details of the
system, in our case, one might try to find a value λ∗ such that
the amplitude of the leading correction vanishes: b(λ∗) = 0.
RG theory tells us that λ∗ is the same for different quantities.
Models with a vanishing amplitude of the leading correction
to scaling are denoted as improved models. This idea had been
exploited first by using high-temperature series expansions of
such models [26,27]. For early Monte Carlo simulations of
improved models sharing the universality class of the three-
dimensional Ising model see, for example, Refs. [28–30]. In
[31] it has been pointed out that for the φ4 model on the
simple cubic lattice in the large-N limit λ∗ does not exist. For
N = 1, 2, 3, and 4 a finite λ∗ has been found. Most recent
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estimates are λ∗ ≈ 1.1 [32] for N = 1, λ∗ = 2.15(5) [33] for
N = 2, λ∗ = 5.17(11) [23] for N = 3, and λ∗ = 20+15

−6 [34]
for N = 4. The value of λ∗ is rapidly increasing with N . In the
case of N = 5 it is not fully settled, whether λ∗ exist. If yes, it
is close to the limiting case λ = ∞ [35]. Analyzing our data,
we confirm that λ∗ for N = 4 exists, while for N = 5 this is
highly unlikely. The result that for N > 5 no λ∗ exists is very
robust. As a consequence, the outline of the study for N = 4
is very similar to our recent work [22,23], where we studied
models in the XY and Heisenberg universality classes. For
larger values of N we focus on improved observables, which
are constructed such that leading corrections are suppressed
for any model. Still, the accuracy of the estimates of critical
exponents is lower for larger values of N than for N = 4.

Subleading corrections

In the analysis of our data, we use prior information on
subleading corrections to scaling. In Sec. III A of Ref. [22] we
argue, based on the literature, that there should be only a small
dependence of the irrelevant RG eigenvalues on N . Therefore,
the discussion of Sec. III A of Ref. [22] should apply to the
present case 4 � N � 12 at least on a qualitative level.

The most important subleading correction should be due
to the breaking of the rotational symmetry by the simple
cubic lattice. Corrections related with the spatial anisotropy
are discussed in Ref. [36]. To this end, the two-point func-
tion of O(N )-invariant models is studied by using the 1/N
expansion, field-theoretic methods, and the high-temperature
series expansion. Results for σ , for various values of N , are
summarized in Table VI (Table VIII of the preprint version),
where the correction exponent is ωNR = 2 + σ . In the large-N
limit one obtains [36]

σ = 32

21π2N
+ O(N−2). (10)

According to the authors, this expression gives a reasonable
numerical value at best down to N = 8. Looking at Table VI of
Ref. [36], it seems plausible that σ has a plateaulike maximum
at N = 3 up to 4 and then slowly decreases. This behavior is
supported both by the high-temperature series expansion as
well as the field-theoretic methods.

We might gauge the estimates of Ref. [36] by using the
highly accurate result σ = 0.022 665(28) obtained by using
the CB method in Ref. [8] for N = 1. This suggests in partic-
ular that for the values of N studied here, the field-theoretic
estimates of σ given in Ref. [36] are too small.

Based on these considerations, we use the numerical value

σ = min

[
0.023,

32

21π2N

]
(11)

with an error of 0.005 in the analysis of our data. We checked
that the estimates of the quantities we are interested in change
only by little, when σ is varied within this error band.

In addition, there are corrections that are intrinsic to the
quantity that is studied. For example, in the case of the mag-
netic susceptibility there is the analytic background. This can
be interpreted as a correction with the exponent 2 − η. It
should also appear in the Binder cumulant U4 that contains

〈m2〉 in its definition. In the case of ξ2nd/L there is, by con-
struction, a correction with the exponent 2.

IV. MONTE CARLO ALGORITHM AND ITS
IMPLEMENTATION

We simulated by using a hybrid of local updates and the
wall cluster algorithm [30]. The probability to delete the link
between the nearest-neighbor sites x and y is the same as for
the Swendsen-Wang (SW) [37] or the single-cluster algorithm
[38]. It differs in the choice of the clusters to be flipped. In
the case of the SW algorithm, all clusters are constructed,
and a cluster is flipped with probability 1

2 . In the case of the
single-cluster algorithm, a single site of the lattice is randomly
chosen. The cluster that contains this site is flipped. To this
end, only this cluster has to be constructed. In the case of the
wall cluster algorithm, a plane of the lattice is randomly se-
lected. All clusters that share a site with this plane are flipped.
Also here, only these clusters need to be constructed. In order
to determine Za/Zp, we have to go through all N components
of the field [25].

We have implemented over-relaxation updates

�φ ′
x = 2

��x · �φx

��2
x

��x − �φx, (12)

where

��x =
∑
ynnx

�φy, (13)

where
∑

ynnx is the sum over all nearest neighbors y of the
site x. Note that these updates do not change the value of the
Hamiltonian and therefore no accept or reject step is needed.
It is computationally quite cheap since no random number
and no evaluation of exp(. . . ) is needed. In the case of the
over-relaxation update we run through the lattice in typewriter
fashion. As the cluster update, the over-relaxation update does
not change | �φx|.

For finite λ, we perform Metropolis updates to change | �φx|.
For each site, we perform two subsequent updates. We use the
acceptance probability

Pacc = min[1, exp[−H (φ′) + H (φ)]]. (14)

For the first hit, we generate the proposal by

φ′
x,i = φx,i + s1(r − 0.5) (15)

for each component i of the field at the site x. r is a uniformly
distributed random number in [0,1) and the step size s1 is
tuned such that the acceptance rate is roughly 50%. In the
case of the second hit, we randomly select a single component
j. Now, φ′

x, j = φx, j + s2(r − 0.5), while all other components
keep their value. Also here, we tune s2 such that the accep-
tance rate is roughly 50%. Also here, we run through the
lattice in typewriter fashion.

In the limit λ = ∞, we simulated the model by using a
hybrid of the over-relaxation algorithm and the wall-cluster
algorithm [30]. Below we give the update sequence used for
λ = ∞ and N = 5, 6, 8, 10, and 12 as C-code:
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ROTATE; over(); over(); for(ic=0;ic<N;ic++) wall_0(ic); measure();
ROTATE; over(); over(); for(ic=0;ic<N;ic++) wall_1(ic); measure();
ROTATE; over(); over(); for(ic=0;ic<N;ic++) wall_2(ic); measure();

Here over() is a full sweep with the over-relaxation up-
date over the lattice. wall_k(ic) is a wall-cluster update with
a plane perpendicular to the k axis. The component ic of the
field is updated. The position of the plain on the k axis is
randomly chosen for each component of the field. Note that
in the cluster and Metropolis updates the axes play a special
role. This does not invalidate the updates but might lead
to a certain degradation of the performance. Therefore, we
interleave the updates with global rotations of the field. The

rotations ROTATE are built from a sequence of rotations by
a random angle between two axes. For λ = ∞ the condition
| �φ 2

x | = 1 might be lost due to rounding errors. Therefore, we
normalize the field �φx after each update cycle. For finite λ, we
have added a sweep with the local two-hit Metropolis update
following ROTATE.

In the case of N = 4 the update cycle for λ = ∞ is given
by

ROTATE; over(); for(ic=0;ic<N;ic++) wall_0(ic); measure();
over(); for(ic=0;ic<N;ic++) wall_1(ic); measure();
over(); for(ic=0;ic<N;ic++) wall_2(ic); measure();

Again, for finite λ a sweep using the Metropolis algorithm
is added for each measurement. Note that the composition of
the update cycles is not tuned. Essentially it is based on an
ad hoc decision guided by the experience gained in previous
work.

For a certain fraction of the simulations for N = 4 we have
used the SIMD-oriented fast Mersenne twister (SMFT) [39]
pseudorandom number generator, where SIMD is the abbre-
viation for single instruction, multiple data. In the remaining
part of the simulations for N = 4 and for larger values of N
we have used a hybrid of generators, where one component
is the xoshiro256+ taken from [40]. For a discussion of the
generator see [41]. As second component we used a 96-bit
linear congruential generator with the multiplier and the in-
crement a = c =0xc580cadd754f7336d2eaa27d and the
modulus m = 296 suggested by O’Neill [42]. In this case
we used our own implementation. The third component is
a multiply-with-carry generator taken from [43]. For a more
detailed discussion see the Appendix A of Ref. [20].

Throughout this work, least-square fits were performed
by using the function curve_fit() contained in the SCIPY

library [44]. Plots were generated by using the MATPLOTLIB

library [45].
Fitting our data, we take lattice sizes L � Lmin into ac-

count. For small values of Lmin, χ2/DOF decreases with
increasing Lmin since the magnitudes of corrections that are
not taken into account in the Ansatz decrease with increasing
lattice size L. At some point χ2/DOF levels off since the mag-
nitudes of these corrections become smaller than the statistical
error. On the other hand, with increasing Lmin, the statistical
error of the estimates of fit parameters is increasing. Often in
the literature, the estimates of fit parameters obtained for the
smallest Lmin with an acceptable goodness of the fit are taken
as the final results.

Here, in order to get a better handle on systematic errors
due to corrections that are not included in the Ansatz, the final
results are chosen such that they are compatible with estimates
obtained by using several different Ansätze, containing more
or less correction terms. For a more comprehensive discussion
of this issue see Sec. V of Ref. [23].

V. THE SIMULATIONS AND THE ANALYSIS OF THE DATA
FOR N = 4

We simulated at λ = 2, 4, 12.5, 18.5, 20, and ∞. Let us
briefly summarize the lattice sizes and the statistics of the
simulations. Note that some of the simulations were already
performed a few years ago, leading to different choices of the
lattice sizes for different values of λ. Most of the simulations
were performed on desktop PCs at the Institute of Theoreti-
cal Physics of the University of Heidelberg. The CPU times
quoted below refer to the time that would be needed on a
single core of an AMD EPYCT M 7351P CPU. For example,
on a single core of an Intel(R) Xeon(R) CPU E3-1225 v3 the
performance of our code is very similar.

For λ = ∞ we simulated the linear lattice sizes L = 6, 7, 8,
..., 20, 22, 24, ..., 32, 36, 40, 44, 48, 56, 64, 72, 80, and 200. Up
to L = 20 we performed 3 × 109 measurements. For L = 22,
24, 26, and 28 we performed 6.2 × 109, 5.8 × 109, 3.8 × 109,
and 4.6 × 109 measurements, respectively. Then, the number
of measurements monotonically decreases to 4.8 × 108 for
L = 80. For L = 200 only 7.5 × 106 measurements were
performed. In total these simulations took about 8.5 years of
CPU time.

For λ = 20 we simulated the linear lattice sizes L = 6, 7,
8, ..., 20, 22, 24, 26, 30, 34, 40, 50, 60, 80, 100, 140, 200,
and 300. Up to L = 30 we performed 3 × 109 measurements.
For larger linear lattice sizes L, the number of measurements
decreases with increasing L. For example, for L = 200 and
300, we performed 9 × 107 and 3 × 107, respectively. In total
these simulations took about 20.6 years of CPU time.

For λ = 18.5 we simulated the linear lattice sizes L = 8,
9, 10, ..., 22, 24, 26, ..., 32, 36, 40, 44, 48, 56, 64, ...,
80, 100, 120, and 200. For L = 10, we performed 5.4 × 109

measurements. This number slowly drops to 2.8 × 109 for
L = 36. Then the number of measurements decreases more
rapidly with L. For example, for L = 80, 100, 120, and 200,
we performed 5.9 × 108, 2.1 × 108, 2.5 × 108, and 5.3 × 107

measurements, respectively. In total these simulations took
about 19.5 years of CPU time.

For λ = 12.5 we simulated the linear lattice sizes L = 6, 7,
8, ..., 20, 24, 28, ..., 40, 48, 56, 60, 64, and 80. Up to L = 28 we
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performed 3 × 109 measurements. For example, for L = 64
and 80, we performed 4.6 × 108 and 1.7 × 108 measurements,
respectively. In total these simulations took about 7.5 years of
CPU time.

For λ = 4 we simulated the linear lattice sizes L = 6, 7, 8,
..., 22, 24, 26, 28, 32, 36, ..., 52, 60, 70, 80. Up to L = 21 we
performed at least 2.4 × 109 measurements. Then the number
of measurements decreases with increasing L. For example,
for L = 70 and 80, we performed 4.8 × 108 and 1.8 × 108

measurements, respectively. In total these simulations took
about 6 years of CPU time.

For λ = 2 we simulated the linear lattice sizes L = 6, 7,
8, ..., 22, 24, 26, 28, 32, 36, ..., 48, 60, 80. The number of
measurements for each lattice size is similar to that for λ = 4.
In total these simulations took about 4.3 years of CPU time.

Throughout, while the number of measurements decreases
with increasing L, the CPU time used for a given lattice size L
increases with increasing L. The same holds for larger values
of N , discussed below.

A. Dimensionless quantities

First, we analyzed the behavior of dimensionless quan-
tities. We performed joint fits of all four quantities Za/Zp,
ξ2nd/L, U4, and U6, for two sets of λ values. The first set
contains λ = 4.0, 12.5, 18.5, 20, and ∞, while in the second
we consider λ = 2.0, in addition. We use Ansätze of the form

Ri(βc, λ, L) = R∗
i +

kmax∑
k=1

ci,k[b(λ)aiL
−ω]k +

∑
j

ei, j (λ)L−ε j ,

(16)
where ci,1 = 1 and b(λ) is normalized such that aZa/Zp = 1.
In our fits, we consider ω as free parameter, while we fix
the exponents of subleading corrections. In particular, we
take ε1 = 2 − η, where we took the preliminary estimate
η = 0.036 25, which is close to our final estimate, Eq. (30),
ε2 = 2, and ε3 = ωNR = 2.023, Eq. (11). The correction with
the exponent ε1 applies to U4, U6, and ξ2nd/L, the correction
with ε2 to ξ2nd/L, while the correction with the exponent ωNR

is nonvanishing in all four cases. The amplitude of the leading
correction b(λ) is taken as free parameter for each value of
λ. In principle, the ei, j depend on λ. In order to keep the fits
tractable, we used a parametrization to reduce the number of
free parameters. In the case of ei,1, we used

ei,1 = di, (17)

ei,1 = di + siλ
−1, (18)

or

ei,1 = di + siλ
−1 + tiλ

−2, (19)

where di, si, and ti are the free parameters of the fit. In our fits,
ei,2 and ei,3 are assumed to be constant. For ei,3 this should
indeed be a good approximation. In the case of the Ising
universality class, for the Blume-Capel model on the simple
cubic lattice, in Ref. [20], we found that the amplitude of
deviations from the rotational invariance depends very little on
the parameter D, where D plays a similar role as the parameter
λ of the model studied here.

FIG. 1. Joint fits of dimensionless quantities for λ = 4.0, 12.5,
18.5, 20, and ∞ for N = 4. Numerical estimates for χ2/DOF ob-
tained from the fits 1, 2, 3, and 4, which are discussed in the text, are
plotted versus the minimal lattice size Lmin that is taken into account.
Note that the values on the x axis are slightly shifted to reduce overlap
of the symbols.

In our analysis of the data set 1, i.e., for λ = 4.0, 12.5, 18.5,
20, and ∞, we consider the following choices, based on the
Ansatz (16):

(i) Fit 1: kmax = 1, parametrization (17);
(ii) Fit 2: kmax = 1, parametrization (18);
(iii) Fit 3: kmax = 2, parametrization (17);
(iv) Fit 4: kmax = 2, parametrization (18).
In Fig. 1 we give the χ2/DOF obtained in these fits as

a function of the minimal lattice size Lmin that is taken into
account. In the case of fit 1, we get χ2/DOF = 1.07 corre-
sponding to p = 0.20 at Lmin = 22. In the case of fits 2 and
fit 3, χ2/DOF ≈ 1 is reached for somewhat smaller Lmin.
For fit 4, we get χ2/DOF = 1.00 already for Lmin = 11.
We checked that using the parametrization (19) or adding a
term proportional to L−3ω improves the goodness of the fits
only by little. Finally, we performed fits with an additional
correction term on top of fit 4, where the correction expo-
nent is a free parameter. Here we get χ2/DOF = 1.06 and
χ2/DOF = 0.97 already for Lmin = 7 and 8, respectively. We
get ω′ = 4.91(24) and 4.88(47), for Lmin = 7 and 8, respec-
tively. Going to larger Lmin, the statistical error of ω′ rapidly
increases. The amplitude of this correction is comparatively
large. Since ω′ is large, this correction plays virtually no role
for L � 10. One should note that this finding does not mean
that there is no correction with 2 < ω′ < 4.9. Such corrections
might just have a small amplitude compared with the ω′ ≈ 4.9
correction.

In a second set of fits we have analyzed in addition the data
for λ = 2.0. Still, fit 4 gives χ2/DOF = 1.07 corresponding
to p = 0.14 for Lmin = 11 and χ2/DOF = 1.02 correspond-
ing to p = 0.39 for Lmin = 12. Using the parametrization (19)
or adding a term proportional to L−3ω improves the goodness
of the fits only by little.

In Fig. 2 we give our results for the correction exponent
ω obtained by using the fits 1, 2, 3, and 4 with the data for
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FIG. 2. Numerical estimates of the correction exponent ω for
N = 4 obtained from joint fits of the data for λ = 2, 4, 12.5, 18.5,
20, and ∞ versus the minimal linear lattice size Lmin that is taken
into account. The Ansätze used in fits 1, 2, 3, and 4 are discussed
in the text. Note that the values on the x axis are slightly shifted to
reduce overlap of the symbols. The solid line gives our final estimate
of ω, while the dashed lines indicate the error.

λ = 2, 4, 12.5, 18.5, 20, and ∞. Here we give all estimates,
irrespective of the χ2/DOF. As our final result we consider

ω = 0.755(5). (20)

It is chosen such that it contains the results obtained by using
the fits 2 and 4 up to Lmin = 15, while the results of fit 3
are contained for Lmin = 18, 20, and 22. The results for fit
1 are contained from Lmin = 7 up to 28. Here and in the
following we mean by “the fit is contained” that the central
estimate obtained by the fit ± its error lies within the inter-
val given by our final result ± our final error estimate. To
get an idea on the amplitude of corrections to scaling we
quote the results for fit 4 and Lmin = 12: b = 0.004 74(11),
0.000 38(11), 0.000 03(11), −0.002 17(11), −0.014 95(15),
and −0.028 68(22) for λ = ∞, 20, 18.5, 12.5, 4.0, and 2.0,
respectively. Taking into account also the results of other fits,
linearly interpolating b(λ) for λ = 18.5 and 20 we determine
the zero of b(λ) as

λ∗ = 18.4(9), (21)

which can be compared with the previous estimate λ∗ = 20+15
−6

[34].
In Fig. 3 we give our results for the fixed point value

(Za/Zp)∗ of the ratio of partition functions using set 1. In com-
parison with ω, the results for (Za/Zp)∗ show little dependence
on the Ansatz that is used. The final estimate and its error are
chosen such that the results of all four fits from Lmin = 12
up to 17 are covered. Fitting set 2, we get consistent results.
The final estimates and the errors of the other dimensionless
quantities are determined in a similar way. We get

(Za/Zp)∗ = 0.119 11(2), (22)

(ξ2nd/L)∗ = 0.547 296(26), (23)

FIG. 3. Data set 1, i.e., λ = 4, 12.5, 18.5, 20, and ∞ for N = 4.
Numerical estimates of (Za/Zp)∗ obtained from the fits 1, 2, 3, 4,
which are discussed in the text, are plotted versus the minimal linear
lattice size Lmin that is taken into account. The solid line gives our
final estimate of (Za/Zp)∗, while the dashed lines indicate the error.
Note that the values on the x axis are slightly shifted to reduce overlap
of the symbols.

U ∗
4 = 1.094 016(12), (24)

U ∗
6 = 1.281 633(33). (25)

Finally, in Table I we summarize the estimates of the criti-
cal temperature obtained in these fits. Our result for λ = ∞ is
fully consistent with βc = 0.935 856(2) given in Ref. [46].

B. Magnetic susceptibility and the critical exponent η

The magnetic susceptibility at criticality behaves as

χ = aL2−η (1 + cL−ω + · · · + dL−ωNR + · · · ) + b, (26)

where b is the analytic background. Corrections ∝L−nω with
n > 1 and further subleading corrections are not explicitly
given. In order to enforce criticality, we take χ at a fixed value
of either Za/Zp or ξ2nd/L. To this end we take the fixed-point
values given in Eqs. (22) and (23). In the following we denote
χ at a fixed value of Za/Zp or ξ2nd/L by χ̄ . In the case of
fixing ξ2nd/L, there is, compared with Eq. (26), an additional
correction with an exponent equal to 2.

TABLE I. Estimates of the inverse critical temperature βc for
N = 4.

λ βc

2.0 0.7978640(4)
4.0 0.85875410(35)
12.5 0.90951811(21)
18.5 0.91787555(17)
20 0.91919685(15)
∞ 0.93585450(25)
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FIG. 4. Estimates of η from joint fits for λ = 18.5 and 20 for
N = 4. We give the results of fits for χ at Za/Zp = 0.119 11 and its
improved version obtained by using the Ansatz (28). Furthermore,
we give the estimates obtained by fitting χ at ξ2nd/L = 0.547 296 by
using the Ansatz (29). Note that the values on the x axis are slightly
shifted to reduce overlap of the symbols. The solid line gives our
final estimate and the dashed lines indicate the error.

We consider the improved susceptibility

χ̄imp = Ū x
4 χ̄ , (27)

where the exponent x is tuned such that the leading correction
to scaling is eliminated. In previous work, we determined x
in a preliminary analysis, and then performed fits by using
Ansätze based on Eq. (26) with a fixed value of x. Here we
perform fits with x as free parameter. In Appendix A, we
discuss how we deal with the fact that x appears on the left
side of the equation.

In a first step we performed joint fits for λ = 4.0, 12.5,
18.5, 20, and ∞, of U x

4 χ at ξ2nd/L = 0.547 296 or Za/Zp =
0.119 11 fixed, where x is a free parameter. In the case of χ at
Za/Zp = 0.119 11 we used the Ansatz

χ̄imp = aL2−η(1 + cL−ωNR ) + b, (28)

where a and b are free parameters for each value of λ sepa-
rately, while c is the same for all values of λ. At Lmin = 10
we get χ2/DOF = 1.02. The value that we obtain for x is sta-
ble with increasing Lmin. For example, we get x = −1.67(3),
−1.70(3), −1.71(5), −1.72(6), and −1.71(8) for Lmin = 10,
12, 14, 16, and 18, respectively. In the following, constructing
χ̄ we use x = −1.7.

In the case of χ at ξ2nd/L = 0.547 296 we used the Ansatz

χ̄imp = aL2−η(1 + cL−2 + dL−ωNR ) + b, (29)

where a and b are free parameters for each value of λ sepa-
rately, while c and d are the same for all values of λ. Here
we find that χ̄ , by chance, is only little affected by leading
corrections. We find x ≈ −0.07.

To get the final estimate of η, we have fitted the data for
λ = 18.5 and 20 jointly. To this end, we use the Ansätze
(28) and (29), but now fixing the value of x. In Fig. 4 we
give the estimates of η as a function of the minimal lattice
size Lmin that is taken into account in the fits. We have fitted
χ at Za/Zp = 0.119 11 and its improved version by using

the Ansatz (28). In both cases, we find χ2/DOF ≈ 1 and
correspondingly an acceptable p value for Lmin � 10. Note
that here and in the following we consider 0.1 � p � 0.9 as
acceptable. Instead, χ at ξ2nd/L = 0.547 296 is fitted by using
the Ansatz (29). In the case of χ at Za/Zp = 0.119 11, we see
that the results differ only by little between the standard and
improved version of χ , which is due to the fact that λ = 18.5
and 20 are close to λ∗. Here we get an acceptable p value for
Lmin � 8.

Our final estimate

η = 0.036 24(8) (30)

and the associate error bar are chosen such that the estimates
of η and their error bars obtained by fitting χ at ξ2nd/L =
0.547 296 are covered up to Lmin = 16. The estimates ob-
tained from χ at Za/Zp = 0.119 11 are contained from Lmin =
11 up to 22.

C. Slope of dimensionless quantities and the exponent ν

We have analyzed the slopes of dimensionless quantities at
Za/Zp = 0.119 11 or ξ2nd/L = 0.547 296. We used Ansätze of
the type

SR = aLyt

(
1 +

∑
i

ciL
−εi

)
+ bL−ω, (31)

where yt = 1/ν. The term bL−ω is due to the fact that the
scaling field of the leading correction depends on β. The
derivative of this scaling field with respect to β in general does
not vanish at λ∗. For a discussion see, for example, Sec. III
of Ref. [22]. We ignore leading corrections to scaling that
multiply aLyt since we consider good approximations of λ∗
or we consider improved quantities, where leading corrections
are suppressed for any λ.

Here we focus on the slopes of Za/Zp and ξ2nd/L since
their relative statistical error is smaller than that of the Binder
cumulants U4 and U6. Let us first discuss the slope of Za/Zp

at Za/Zp = 0.119 11. Here we expect only subleading cor-
rections with a correction exponent close to two due to the
breaking of the rotational invariance ∝L−ωNR and the additive
term bL−ω. We performed fits by using an Ansatz containing
only a correction ∝L−ωNR and with an Ansatz containing the
term bL−ω in addition. The results obtained for yt by using
these two Ansätze, jointly fitting the data for λ = 18.5 and
20, are plotted in Fig. 5. We get an acceptable p value start-
ing from Lmin = 11 for both Ansätze. In order to check the
effect of leading corrections to scaling on the estimate of yt ,
we perform separate fits for λ = 4.0, 12.5, and ∞. Fitting,
taking into account only the correction ∝L−ωNR , for Lmin = 16,
we get yt = 1.339 79(26), 1.336 80(24), and 1.335 74(21) for
λ = 4.0, 12.5, and ∞, respectively. We conclude that, given
the small amplitude of leading corrections to scaling at λ =
18.5 and 20, we can neglect the effect of leading corrections
to scaling in our final estimate of yt , which is based on the data
for λ = 18.5 and 20.

Next, we study the slope of ξ2nd/L at ξ2nd/L = 0.547 296.
Here we study, also having in mind the analysis of the data for
larger values of N , similar to the analysis of the magnetic sus-
ceptibility, improved versions of the slope. Similar to Eq. (27),
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FIG. 5. Results for the RG exponent yt of joint fits for λ = 18.5
and 20 for N = 4. The slope of Za/Zp at Za/Zp = 0.119 11 is fitted by
using the Ansatz (31) as discussed in the text. We take either one or
two correction terms into account. In the legend, these two choices
are referred to by fit 1 or 2. Note that the values on the x axis are
slightly shifted to reduce overlap of the symbols. The solid line gives
our final estimate and the dashed lines indicate the error.

we multiply by a power of U4:

S̄ξ2nd/L,imp = Ū x
4 S̄ξ2nd/L. (32)

Furthermore, one might construct an improved slope by com-
bining the slope of ξ2nd/L with that of the Binder cumulant
U4:

S̄mix = S̄ξ2nd/L + xS̄U4 . (33)

Similar to the analysis of the dimensionless quantities, we per-
formed joint fits for two sets of λ values. We consider λ = ∞,
20, 18.5, 12.5, and 4. As a check, we take a second set, where
λ = 2 is added. Also here we used two different types of fits.
In the first fit, we used a single correction with ε1 = 2. The
additive correction with the exponent ω is neglected. In the
second fit, this correction is present. For both corrections we
use Eq. (18) as parametrization of the coefficient. Given the
present statistical error of the data, we can not resolve a larger
number of corrections with ε ≈ 2.

Analyzing the improved slope (32) we find x = 0.25(15)
taking into account the two types of fits that we performed.
Note that χ2/DOF = 1.20 is reached for Lmin = 16 in the case
of fit 1 and χ2/DOF = 1.10 for Lmin = 10 in the case of fit
2. In both cases all values of λ are taken into account. The
estimates of yt obtained by performing these fits are shown
in Fig. 6. We find that the result is fully consistent with that
obtained above for Za/Zp.

Analyzing the mixed slope (33) we find x = −0.05(5).
The results obtained for yt are very similar to those for the
improved slope (32). As our final result we quote the one
obtained from the slope of Za/Zp at λ = 18.5 and 20,

yt = 1.336 60(35), (34)

corresponding to ν = 0.748 17(20).

FIG. 6. Results of joint fits for λ = ∞, 20, 18.5, 12.5, 4, and
2 for N = 4. The improved slope of ξ2nd/L at ξ2nd/L = 0.547 296
[Eq. (32)] is fitted by using the Ansatz (31) as discussed in the
text. We take either one or two correction terms into account. In
the legend, these two choices are referred to by fit 1 or 2. Note that
the values on the x axis are slightly shifted to reduce overlap of the
symbols. The solid line and the dashed lines give the result and the
error bar obtained above from the slope of Za/Zp.

VI. SIMULATIONS AND THE ANALYSIS
OF THE DATA FOR N = 5

We have simulated at λ = ∞, 10, 5, and 1. In the case of
λ = ∞ we simulated the lattice sizes L = 8, 9, 10, ..., 16, 18,
20, ..., 24, 28, 32, ..., 40, 48, 56, ..., 80, 100, and 200. The
number of measurements is decreasing with increasing lattice
size L. For example, we performed 3.4 × 109, 1.2 × 108, and
8.5 × 107 measurements for L = 10, 100, and 200, respec-
tively. These simulations took about 6.4 years of CPU time.

For λ = 10 and 5 we simulated the same set of lattice size
as for λ = ∞ but with a maximal lattice size L = 72. The
number of measurements for each lattice size is a bit smaller
than for λ = ∞. These simulations took about 3.3 and 2.8
years of CPU time for λ = 10 and 5, respectively.

For λ = 1, we simulated the lattice sizes L = 12, 16, 20,
..., 48, 56, 64, 72, and 80. For example, for L = 12 and
80, we performed 2.3 × 109 and 2.4 × 108 measurements,
respectively. These simulations took about 6.9 years of CPU
time.

A. Dimensionless quantities

We performed fits by using the same Ansätze as for N = 4.
First we analyzed the data for λ = ∞, 10, and 5 jointly. As
check, we have added in a second set of fits the data for λ = 1.
In the case of the first set, using the Ansatz (16) with kmax = 1
and the parametrization (17), a reasonable goodness of the
fit is reached at Lmin = 22 with χ2/DOF = 1.15 correspond-
ing to p = 0.127. Using Ansatz (16) with kmax = 2 and the
parametrization (18), we get, for example, χ2/DOF = 1.18
corresponding to p = 0.039 for Lmin = 12 and χ2/DOF =
0.99 corresponding to p = 0.515 for Lmin = 16. Adding the
data for λ = 1, we get χ2/DOF = 1.07 corresponding to
p = 0.244 for Lmin = 18. Using the Ansatz (16) with kmax = 3
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FIG. 7. Numerical estimates of the correction exponent ω for
N = 5 obtained from the fits discussed in the text. Fits 1 and 2 are
based on the data for λ = ∞, 10, and 5. In the case of fits 3 and 4,
in addition, λ = 1 is taken into account. In the case of fit 1, we use
kmax = 1 and the parametrization (17). In the case of fits 2 and 3 we
use kmax = 2 and the parametrization (18), while for fit 4 kmax = 3
and the parametrization (19) is taken. Note that the values on the x
axis are slightly shifted to reduce overlap of the symbols. The solid
line and the dashed lines give the final result and the error bar.

and the parametrization (19), we get χ2/DOF = 1.14 corre-
sponding to p = 0.080 for Lmin = 14 and χ2/DOF = 1.00
corresponding to p = 0.470 for Lmin = 18. Below, we refer
to these four choices of the data set and the Ansatz as fits 1, 2,
3, and 4, respectively.

In Fig. 7 we plot the estimates of the correction exponent ω

obtained by fitting as discussed above. As our final result we
quote

ω = 0.754(7). (35)

This estimate covers fit 1 for Lmin = 11 up to 22, fit 2 for
Lmin = 7 up to 12, fit 3 for Lmin = 9 up to 22, fit 4 for Lmin = 8
up to 11 and 13.

We have determined the fixed-point values of the dimen-
sionless quantities in a similar fashion as for N = 4. We skip
a detailed discussion of the analysis. Our results are summa-
rized in Table II.

Next, let us discuss the amplitude of leading cor-
rections. For example for fit 4 with Lmin = 14, we

TABLE II. Estimates of the fixed-point values R∗ of the dimen-
sionless quantities that we have analyzed. For completeness, we have
copied the values for N = 4 from Eqs. (22)–(25).

N (Za/Zp)∗ (ξ2nd/L)∗ U ∗
4 U ∗

6

4 0.11911(2) 0.547296(26) 1.094016(12) 1.281633(33)
5 0.07263(4) 0.53691(7) 1.069735(25) 1.20860(8)
6 0.04401(4) 0.53038(6) 1.054960(25) 1.16439(8)
8 0.015835(35) 0.5232(1) 1.03825(3) 1.11445(10)
10 0.005610(8) 0.51967(10) 1.02924(2) 1.08753(6)
12 0.00196(1) 0.5178(2) 1.02360(4) 1.07065(10)

FIG. 8. Estimates of η from joint fits for λ = ∞, 10, 5, and 1 for
N = 5. The data for χimp at ξ2nd/L = 0.536 91 are fitted by using the
Ansätze (36), (28), and (29). In the legend, these are referred to as fits
1, 2, and 3. Note that the values on the x axis are slightly shifted to
reduce overlap of the symbols. The solid line gives our final estimate
and the dashed lines indicate the error.

get b = −0.000 88(21), −0.008 70(30), −0.015 02(43), and
−0.0407(13) for λ = ∞, 10, 5 and 1, respectively. Varying
the form the Ansatz (16) we find b < 0 throughout for λ = ∞.
Assuming that b is a monotonous function of λ, this implies
that for N = 5 no λ∗ exists. However, the amplitude of b at
λ = ∞ is rather small. Therefore, in the following analysis of
the data, we can regard λ = ∞ as a reasonable approximation
of λ∗.

With increasing N the value of (Za/Zp)∗ approaches 0,
while (ξ2nd/L)∗ approaches a finite value. Therefore, going
to larger values of N , we focus on ξ2nd/L instead of Za/Zp.
In particular, in the Ansatz (16) we set aξ2nd/L = 1 instead
of aZa/Zp = 1. This way the correction amplitude b(λ) for
different values of N can be compared more easily. Estimates
of b(λ), setting aξ2nd/L = 1 for N � 5, are given in Table III.
Our estimates of the inverse critical temperature βc are sum-
marized in Table IV.

B. Magnetic susceptibility and the exponent η

First we analyzed the improved magnetic susceptibility,
Eq. (27), at ξ2nd/L = 0.536 91. Here we used the Ansatz

χ̄imp = aL2−η + b, (36)

where a and b are free parameters for each value of λ and in
addition the Ansätze (28) and (29). We included data for all
values of λ that we have simulated. In Fig. 8 our results for
η are plotted versus the minimal lattice size Lmin that is taken
into account. We get acceptable p values starting from Lmin =
16, 8, and 8 for the Ansätze (36), (28), and (29), respectively.
As our final result we take

η = 0.033 97(9). (37)

Furthermore, we get x = 0.075(25). Fixing Za/Zp = 0.072 63
instead of ξ2nd/L = 0.536 91 we get η = 0.033 98(11) and
x = −2.06(6). As a check, we analyzed the data for χ and
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TABLE III. Estimates of the leading correction amplitude b(λ) obtained by fitting with the Ansatz (16), setting aξ2nd/L = 1. kmax and Param.
refer to the precise form of the Ansatz. Throughout the minimal linear lattice size that is taken into account is set to Lmin = 12. The number in
parentheses gives the statistical error.

N kmax Param. b(∞) b(10) b(5) b(1)

5 2 Eq. (18) 0.00167(34) 0.01844(34) 0.03192(36)
5 3 Eq. (19) 0.00182(32) 0.0188(4) 0.0325(6) 0.0885(19)
6 2 Eq. (18) 0.0090(4) 0.0283(6) 0.0426(8)
8 2 Eq. (18) 0.0180(6) 0.0430(10) 0.0591(14)
10 2 Eq. (18) 0.0237(8) 0.0557(17) 0.0743(23)
10 3 Eq. (19) 0.0232(6) 0.0522(12) 0.0687(16) 0.1194(31)
12 2 Eq. (18) 0.0245(19) 0.0509(47) 0.0641(63)

χimp with x = 0.075 at ξ2nd/L = 0.536 91 for λ = ∞ sepa-
rately. We find that the results for η obtained by fitting χ and
χimp differ only by a small fraction of the error bar. We find
that the results for η are fully consistent with Eq. (37) that we
regard as our final estimate.

C. The slope of dimensionless quantities and the critical
exponent ν

First we have analyzed the slope of the ratio of partition
functions Za/Zp at Za/Zp = 0.072 63. Here we expect sub-
leading corrections proportional to L−ωNR . The corrections due
to the additive contribution bL−ω effectively correspond to a
correction with the exponent yt + ω. Putting in the numerical
values 1.282 + 0.754(7) ≈ 2.036, where we anticipate our
estimate of yt given below, we get for N = 5 a value close
to ωNR. Since there is little chance to disentangle these two
different corrections in the fit, we use an Ansatz containing
a single correction term. The results for the RG exponent yt

obtained from the data for λ = ∞ are plotted in Fig. 9. Ac-
ceptable p values are obtained for Lmin � 12. For the Ansatz
without any correction, acceptable p values are obtained for
Lmin � 24. As estimate we take yt = 1.2822(6). To get an idea
on the effect of the leading correction to scaling, we quote
the results obtained for Lmin = 12 and the Ansatz containing
a correction term proportional to L−ωNR : yt = 1.282 24(20),
1.284 24(27), 1.286 79(30), and 1.295 57(24) for λ = ∞, 10,
5, and 1, respectively.

Next, we analyze the slope of ξ2nd/L at ξ2nd/L = 0.536 91.
Here we expect in addition subleading corrections with the
exponents 2 − η and 2. Since it is virtually impossible to
disentangle the subleading corrections here, we performed fits
without any corrections and with an Ansatz containing a single
correction term proportional to L−2+η. Our results for λ = ∞

TABLE IV. Estimates of the inverse critical temperature βc for
N = 5, 6, 8, 10, and 12 for λ = ∞, 10, and 5. For N = 5 and 10,
λ = 1 we get βc = 0.804 498 9(5) and 1.166 510 0(13), respectively.

Nλ ∞ 10 5

5 1.1813639(5) 1.1054374(6) 1.0452357(8)
6 1.4286859(9) 1.2991764(10) 1.2067603(8)
8 1.926761(3) 1.6642478(18) 1.5040374(14)
10 2.427525(4) 2.0039555(35) 1.7744067(20)
12 2.929802(11) 2.322675(5) 2.023970(4)

are given in Fig. 10. Without any correction, we get acceptable
p values for Lmin � 28 and, including one correction term, we
get acceptable p values for Lmin � 8.

For the fit with a correction term and Lmin = 16 we get yt =
1.281 71(29), 1.281 34(33), 1.283 05(44), and 1.285 01(35)
for λ = ∞, 10, 5, and 1, respectively. We see that the estimate
of yt is less affected by leading corrections to scaling than in
the case of the slope of Za/Zp at Za/Zp = 0.072 63.

As our final estimate we quote

yt = 1.2818(10) (38)

that covers both preliminary estimates and takes into account
that the estimate obtained from the slope of Za/Zp might be
slightly overestimated due to leading corrections to scaling.

As a check we analyze the improved slopes, Eqs. (32) and
(33), of ξ2nd/L at ξ2nd/L = 0.536 91. First we have analyzed
the improved slope, Eq. (32). We used an Ansatz without
correction term and one with a correction proportional to L−2.
Note that replacing the correction exponent 2 by 2 − η or ωNR

FIG. 9. Estimates of yt from fits of the slope of Za/Zp at Za/Zp =
0.072 63 for λ = ∞ and N = 5 plotted versus the minimal lattice
size Lmin that is taken into account. In the legend, fit 1 refers to an
Ansatz without correction term, while fit 2 refers to an Ansatz with a
correction proportional to L−ωNR . Note that the values on the x axis
are slightly shifted to reduce overlap of the symbols. The solid line
gives our preliminary estimate and the dashed lines indicate the error:
yt = 1.2822(6).
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FIG. 10. Estimates of yt from fits of the slope of ξ2nd/L at
ξ2nd/L = 0.536 91 for λ = ∞ and N = 5 plotted versus the minimal
lattice size Lmin that is taken into account. In the legend, fit 1 refers
to an Ansatz without correction term, while fit 2 refers to an Ansatz
with a correction proportional to L−2+η. Note that the values on the x
axis are slightly shifted to reduce overlap of the symbols. The solid
line gives our preliminary estimate and the dashed lines indicate the
error: yt = 1.2818(8).

changes the estimate of yt only by a little. An acceptable good-
ness of the fits is reached for Lmin = 28 and 14, respectively.
The estimates of yt are given in Fig. 11. These estimates are
consistent with our final estimate, Eq. (38). As estimate of
the exponent in Eq. (32) we get x = 1.05(20). We obtain
qualitatively similar result for the other improved quantity,
Eq. (33).

FIG. 11. Estimates of yt from joint fits of the improved slope,
Eq. (32), of ξ2nd/L at ξ2nd/L = 0.536 91 using the data for λ = ∞,
10, 5, and 1 for N = 5. In the legend, fit 1 refers to an Ansatz without
correction term, while fit 2 refers to an Ansatz with a correction
proportional to L−2. Note that the values on the x axis are slightly
shifted to reduce overlap of the symbols. The solid line gives our
final estimate, Eq. (38), and the dashed lines indicate the error.

VII. SIMULATIONS AND THE ANALYSIS OF THE DATA
FOR N � 6

In addition to N = 4 and 5, we have simulated the φ4

model for N = 6, 8, 10, and 12. In all cases, we simulated
at λ = ∞, 10, and 5. For N = 10, in addition, λ = 1 is con-
sidered. The largest lattice size that we simulate for λ = ∞ is
L = 200, 100, 100, and 72 for N = 6, 8, 10, and 12, respec-
tively. The statistics for a given lattice size is similar to that
of the simulations for N = 4 and 5 discussed above. In total
we used 20.5, 13.3, 24.2, and 12.9 years of CPU time for the
simulations for N = 6, 8, 10, and 12, respectively.

A. Dimensionless quantities

For N � 6, we analyzed dimensionless quantities in a sim-
ilar way as for N = 4 and 5. We fitted our data by using the
Ansatz (16). Here we use a parametrization, where aξ2nd/L = 1
and aZa/Zp is a free parameter. Taking into account data for
λ = ∞, 10 and 5, we consider either kmax = 1 or 2 and either
the parametrization (17) or (18). In the case of N = 10, taking
into account the data for λ = 1, we also used kmax = 3 and the
parametrization (19).

Throughout, the χ2/DOF and the corresponding goodness
of the fit as a function of Lmin behave similar to that discussed
for N = 4 and 5. Therefore, we abstain from a detailed dis-
cussion.

Let us first discuss the amplitude of corrections to scaling.
In Table III we give the amplitude b(λ) obtained from the
fit with kmax = 2 and the parametrization (18) for Lmin = 12.
Here we abstain from estimating the systematic error of b(λ)
since we are mainly interested in the qualitative picture. For
N � 6, b(∞) > 0, as it is the case of finite λ. The value of
b(λ) increases with decreasing λ. This means that there is
no λ∗ and the amplitude of leading corrections to scaling is
minimal for λ = ∞. Furthermore, we note that the values of
b(λ) for a given value of λ are similar for N = 8, 10, and 12.

The fixed-point values of dimensionless quantities are de-
termined in the same fashion as for N = 4 and 5. Our final
results are summarized in Table II. We get ω = 0.758(14) and
0.816(16) for N = 6 and 10, respectively. In the other cases,
it is hard to give a reasonable estimate of the error due to a
lack of statistics or data for λ = 1. Our results for the inverse
critical temperature βc are summarized in Table IV. To our
knowledge, for λ = ∞, the most accurate results given in the
literature for N = 1, 2, and 3 are βc = 0.221 654 628(2) [19],
0.454 164 66(10) [21], and 0.693 003(2) [47], respectively.

B. Magnetic susceptibility and the critical exponent η

Since (Za/Zp)∗ rapidly decreases with increasing N and its
relative error increases with increasing N , for N � 6, we only
consider χ at a fixed value of ξ2nd/L. To this end, we take our
estimates of (ξ2nd/L)∗ summarized in Table II.

We perform fits of the improved susceptibility, Eq. (27),
where the exponent x is a free parameter. We use Ansätze of
the form (26). In particular,

χ̄imp = a(λ)L2−η + b(λ), (39)

χ̄imp = a(λ)L2−η(1 + cL−2) + b(λ), (40)
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FIG. 12. Estimates of η from joint fits of the improved magnetic
susceptibility (27) at ξ2nd/L = 0.519 67 using the data for λ = ∞,
10, and 5 for N = 10. In the legend, fits 1, 2, and 3 refer to the
Ansätze (39)–(41), respectively. Note that the values on the x axis
are slightly shifted to reduce overlap of the symbols. The solid line
gives our final estimate, and the dashed lines indicate the error.

and

χ̄imp = a(λ)L2−η(1 + cL−2 + dL−ωNR ) + b(λ), (41)

where a(λ) and b(λ) are free parameters for each value of λ,
while c and d take the same value for all λ.

As an example, in Fig. 12, we give estimates of η for
N = 10. We get an acceptable p value already for Lmin = 8
for all three Ansätze that we consider. The final results for
the critical exponent η are given in Table V. Results for the
exponent in Eq. (27) are x = 0.14(4), 0.21(6), 0.30(5), and
0.25(5) for N = 6, 8, 10, and 12, respectively.

C. Slope of dimensionless quantities and the critical exponent ν

We analyzed the improved slope of ξ2nd/L, Eq. (32), at a
fixed value of ξ2nd/L. Here we consider the Ansätze

S̄imp = a(λ)Lyt (42)

and

S̄imp = a(λ)Lyt + b(λ)L−ω, (43)

where a(λ) and b(λ) are free parameters for each value of
λ. While yt is a free parameter, we fix ω. To this end, we
use the values obtained by the biased Padé approximation
discussed below. We checked that varying the value of ω

TABLE V. Estimates of η and yt = 1/ν for N = 6, 8, 10, and 12.
For a discussion see the text.

N η yt

6 0.03157(14) 1.2375(9)
8 0.02675(15) 1.1752(10)
10 0.02302(12) 1.1368(12)
12 0.0199(3) 1.1108(17)

FIG. 13. Estimates of yt from joint fits of the improved slope of
ξ2nd/L, Eq. (32), at ξ2nd/L = 0.519 67 using the data for λ = ∞, 10,
and 5 for N = 10. In the legend, fits 1 and 2 refer to the Ansätze (42)
and (43), respectively. Note that the values on the x axis are slightly
shifted to reduce overlap of the symbols. The solid line gives our
final estimate and the dashed lines indicate the error.

within plausible errors, the estimates of yt change only by
little.

As an example, in Fig. 13 we give estimates of yt for
N = 10. The final results for the RG exponent yt are given in
Table V. Here we get an acceptable p value for Lmin � 16 and
8 for the Ansätze (42) and (43), respectively. The estimates
for the exponent in Eq. (32) are x = 1.7(3), 3.7(6), 5.7(5), and
7(1) for N = 6, 8, 10, and 12, respectively.

VIII. SUMMARY AND COMPARISON
WITH OTHER RESULTS

We have studied the O(N )-symmetric φ4 model on the
simple cubic lattice by using Monte Carlo simulations in con-
junction with a finite-size scaling (FSS) analysis. In the cases
N = 1, 2, 3, and 4 it had been demonstrated before that there
is a value λ∗ of the parameter λ, where leading corrections
to scaling vanish. In the large-N limit such a λ∗ does not
exist [31]. Here we confirm the existence of λ∗ for N = 4
and provide a more accurate numerical estimate. In contrast,
for N = 5 it is quite clear from the data that no λ∗ exists. In
the limiting case λ = ∞, the amplitude of the corrections is
relatively small. Going to larger values of N , there is no doubt
that there is no λ∗. The minimal amplitude of corrections to
scaling is found for the limiting case λ = ∞. However, these
corrections can not be ignored in the analysis of the data.

Estimating critical exponents, we focus on λ∗ and λ = ∞
for N = 4 and 5, respectively. For larger values of N we have
to deal with leading corrections in a different way. Instead of
putting them explicitly into the Ansätze, we use improved ob-
servables. The advantage of this approach is that the exponent
of the leading correction is not needed.

The O(N )-symmetric φ4 theory has been studied by a
variety of methods. Lattice models have been studied by
using high-temperature (HT) expansions and Monte Carlo
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TABLE VI. We summarize results for the critical exponents ν and η and the exponent ω of the leading correction given in the literature.
These results were obtained from high-temperature (HT) expansions and Monte Carlo (MC) simulations of lattice models, the conformal
bootstrap (CB) method, the ε expansion, the perturbative expansion in d = 3, and the functional renormalization group. In the case of Ref. [48]
the authors give estimates of the exponents ν and γ . Here we have computed η = 2 − γ /ν. Since it is unclear how the error propagates, we
abstain from quoting one. For a discussion, see the text.

N Method Year Ref. ν η ω

4 HT 1997 [48] 0.750(3) 0.0347 –
4 HT θ biased 1997 [48] 0.759(3) 0.0356 –
4 MC 2001 [50] 0.749(2) 0.0365(10) –
4 MC 2006 [46] 0.7477(8) 0.0360(4) –
4 MC 2011 [34] 0.750(2) 0.0360(3) –
4 MC 2012 [49] 0.7508(39) 0.034(4) –
4 MC 2021 This work 0.74817(20) 0.03624(8) 0.755(5)
4 CB 2015 [11] 0.7472(87) 0.0378(32) –
4 CB 2016 [12] 0.7508(34) 0.817(30)
4 ε, five-loop 1998 [51] 0.737(8) 0.036(4) 0.795(30)
4 d = 3-exp 1998 [51] 0.741(6) 0.0350(45) 0.774(20)
4 ε, six-loop 2017 [14] 0.7397(35) 0.0366(4) 0.794(9)
4 ε, seven-loop 2021 [15,16] 0.74425(32) 0.03670(38) 0.7519(13)
4 FRG 2020 [17] 0.7478(9) 0.0360(12) 0.761(12)
5 MC 2005 [35] 0.779(3) 0.034(1) –
5 MC 2012 [49] 0.784(7) 0.034(6) –
5 MC 2021 This work 0.7802(6) 0.03397(9) 0.754(7)
5 FRG 2020 [17] 0.7797(9) 0.0338(11) 0.760(18)
10 HT 1997 [48] 0.867(4) 0.0254 –
10 HT θ biased 1997 [48] 0.894(4) 0.0280 –
10 MC 2012 [49] 0.876(12) 0.028(6) –
10 MC 2021 This work 0.8797(9) 0.02302(12) 0.816(16)
10 FRG 2020 [17] 0.8776(10) 0.0231(6) 0.807(7)

(MC) simulations. Field-theoretic approaches are the ε expan-
sion and the perturbative expansion in D = 3 fixed. Accurate
results were recently reported by using the functional renor-
malization group (FRG) method. Recently, accurate estimates
of critical exponents were obtained by using the conformal
bootstrap method. We have summarized numerical results for
the critical exponents ν and η and the correction exponent ω

for N = 4, 5, and 10 in Table VI. In particular, in the case
of field-theoretic methods we are not able to cover the large
number of works presented in the literature. We focus on
recent results. For more extended surveys we refer the reader,
for example, to Refs. [5,6].

The authors of Ref. [48] computed the HT expansion coef-
ficients of the magnetic susceptibility and the second moment
correlation length as rational functions of N for the O(N )-
invariant φ4 model in the limit λ = ∞ on the simple cubic
and the body-centered-cubic (bcc) lattice up to the order β21.
They have analyzed the series by using inhomogeneous dif-
ferential approximants (DA). In Ref. [48] they give numerical
estimates for the inverse critical temperature βc and the critical
exponents ν and γ = ν(2 − η) for N = 0, 1, 2, 3, 4, 6, 8, 10,
and 12. They give estimates based on an unbiased analysis
and an analysis that takes into account a leading correction
with the exponent θ = ων, where the values of θ are taken
from field theory. In Table VI we report only results obtained
for the simple cubic lattice. Those obtained for the bcc lattice
are similar. Note, however, that the results of the unbiased
and the biased analyses differ by more than the error bars that
are quoted. The estimates for the critical exponents essentially

agree with ours. However, the error is clearly larger than ours.
The same observation holds for the estimates of βc. It would
be an interesting exercise to perform a biased analysis of the
series by using our values of βc.

Let us turn to Monte Carlo simulations of lattice models. In
Ref. [49] an O(N )-symmetric loop model has been simulated
for N = 0, 0.5, 1, 1.5, 2, 3, 4, 5, and 10. The estimates for
the critical exponents ν and η are consistent with but less
precise than ours. In Refs. [35,46] the λ = ∞ limit of the
model studied here has been simulated for N = 4 and 5,
respectively. The estimates for the critical exponents ν and η

are consistent with but less precise than ours. In Refs. [34,50],
similar to this work, the φ4 model for N = 4 is studied for
various values of λ. Also, here we find that the estimates
for the critical exponents are consistent with but less precise
than ours.

The authors of Ref. [11] give rigorous error bars. Indeed,
our estimates of ν and η for N = 4 are within the range
allowed by the result of Ref. [11]. The numbers taken from
Table 2 of Ref. [12] have a plausible but not rigorous error
bar. In the case of the exponent ν the estimate agrees with
ours within the quoted error. In contrast, the estimate of ω

is by roughly twice the error bar larger than ours. Note that
similar observations hold when comparing the results of [12]
for N = 2 and 3 with Refs. [22,23].

The ε expansion has been extended recently to six-loop
[14] and to seven-loop [15]. In order to get a numerical result
for 4 − ε = d = 3, a resummation of the series is needed. In
the literature one can find a number of different estimates
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based on the five-loop series. In particular, the estimates of
the errors strongly vary. It is beyond our expertise to discuss
the different approaches and their respective merits. Here we
just like to remark that the estimate of ν for N = 4 given in
Ref. [16] clearly differs from our estimate. The same holds for
the estimate of ω for N = 4 given in Ref. [14]. Throughout we
see a good agreement with the results of Ref. [17]. In the case
of η, our results are considerably more accurate than those of
Ref. [17].

In Table VI we have taken N = 4, 5, and 10 as examples.
Our results for the critical exponents for N = 6, 8, and 12 can
be found in Table V. In Appendix B we interpolate our results
by using Padé approximants of extended large-N series.
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APPENDIX A: FITS WITH A FREE PARAMETER
ON THE LEFT-HAND SIDE OF THE EQUATION

We study the improved magnetic susceptibility and im-
proved slopes (27) and (32). These can be written as

Ȳimp = Ū x
4 Ȳ , (A1)

where x should be tuned such that leading corrections to
scaling are eliminated and Y represents either the magnetic
susceptibility or a slope. To this end, we intend to perform a
fit with x as free parameter

Ȳimp(x, L, λ) = A(L, λ, {P}), (A2)

where the Ansatz A(L, λ, {P}) is given, for example, by
Eqs. (36), (28), and (29) in the case of the magnetic suscep-
tibility and {P} is the set of free parameters of the Ansatz. In
particular, A(L, λ, {P}) should not contain terms that represent
the leading correction to scaling. We intend to perform the fit
by using the function optimize.curve_fit() of the opti-
mize package of python. The problem is that the parameter
x is on the left side of Eq. (A2). In order to deal with this
problem, we divide Eq. (A2) by Ȳimp on both sides of the
equation. Now we treat Ū4 and Ȳ along with L as X and the
value of y is equal to 1. As statistical error ε(y) of y we assume
ε(y) = ε(Ȳimp)/Ȳimp. In order to determine the statistical error
of Ȳimp, we take into account the covariance of Ȳ and Ū4. It
remains the problem that x is not know a priori. Therefore, we
proceed iteratively. First, the error is computed for an initial
guess of x, then for the first result of the fit. Typically, we get
a stable result after a few iterations. Computing the statistical
error of Ȳimp, we have neglected that x has a statistical error.
Therefore, in general, we regard the approach as an ad hoc
approach. In the analysis of our data for N = 4 and 5, we
have benchmarked the results for critical exponents obtained
by using the procedure discussed here with results obtained
from standard fits of data for λ values close to λ∗. Therefore,
we regard the estimates of the error obtained here as reliable.

APPENDIX B: INTERPOLATION WITH LARGE N

The critical exponents ν and η and the correction expo-
nent ω have been computed by using the large-N expansion
[52–55]. Here we give the series as collected in [5] (Chap.
20):

η = 8

3π2

1

N
− 8

3

(
8

3π2

)2 1

N2
−

[
797

18
−

(
27 log(2) − 61

4

)
ζ (2) + 189

4
ζ (3)

](
8

3π2

)3 1

N3
+ O(N−4)

= 0.270 189 823 05
1

N
− 0.194 673 441 3

1

N2
− 1.881 234 507 2

1

N3
+ O(N−4), (B1)

where we have evaluated the coefficients to get a better
idea of their magnitude. The exponent of the correlation
length

ν = 1 − 4
8

3π2

1

N
−

[
9

2
π2 − 56

3

](
8

3π2

)2 1

N2
+ O(N−3)

= 1 − 1.080 759 292 2
1

N
− 1.879 563 787 6

1

N2
+ O(N−3)

(B2)

and correction exponent

ω = 1 − 8
8

3π2

1

N
− 2

[
9

2
π2 − 104

3

](
8

3π2

)2 1

N2
+ O(N−3)

= 1 − 2.161 518 584 4
1

N
− 1.423 046 280 0

1

N2
+ O(N−3).

(B3)

As stated in the literature, evaluating the series naively or by
using Padé approximants, numerically useful results can be
expected at best for N � 10.

Here we like to extend the series by one or two orders,
where the additional coefficients are determined by fitting the
numerical results for N = 4, 5, 6, 8, 10, and 12 obtained
here with Padé approximants of the extended series. We are
aiming at a reasonable interpolation for N = 7, 9, 11, and for
N somewhat larger than 12. We used a standard χ2 minimiza-
tion. Interpreting the result, one has to keep in mind that the
error that we quote for the exponents is partially of systematic
nature.

In the case of η we get an acceptable fit down to N = 8
for adding a c4N−4 term and a [1,3] Padé approximant. As
result for the coefficient we get c4 = −4.78(84). Adding a
c4N−4 and a c5N−5 term, we get acceptable fits down to
N = 5 by using [0,5] or [3,2] approximants. For the [1,4]
Padé approximant we get an acceptable fit even down to
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N = 4. The estimates of c4 and in particular of c5 differ
considerably between the different Padé approximants that
we used. The estimates of c4 and c5 and the associated co-
variance matrices are contained in a PYTHON3 script [56]
that we provide as Supplemental Material. This Python script

computes η for N � 5 based on the Padé approximants dis-
cussed here.

In the case of ν and ω we performed similar fits. Also here,
the results are given in PYTHON3 scripts [56] that produce
estimates of ν and ω for N � 5.

[1] M. N. Barber, in Finite-size Scaling in Phase Transitions and
Critical Phenomena, edited by C. Domb and J. L. Lebowitz,
(Academic, New York, 1983), Vol. 8.

[2] K. G. Wilson and J. Kogut, The renormalization group and the
ε-expansion, Phys. Rep. C 12, 75 (1974).

[3] M. E. Fisher, The renormalization group in the theory of critical
behavior, Rev. Mod. Phys. 46, 597 (1974).

[4] M. E. Fisher, Renormalization group theory: Its basis and for-
mulation in statistical physics, Rev. Mod. Phys. 70, 653 (1998).

[5] H. Kleinert and V. Schulte-Frohlinde, Critical Properties of φ4-
Theories (World Scientific, Singapore, 2001).

[6] A. Pelissetto and E. Vicari, Critical phenomena and
renormalization-group theory, Phys. Rep. 368, 549 (2002).

[7] F. Kos, D. Poland, D. Simmons-Duffin, and A. Vichi, Precision
islands in the Ising and O(N ) models, J. High Energy Phys. 08
(2016) 036.

[8] D. Simmons-Duffin, The lightcone bootstrap and the spectrum
of the 3d Ising CFT, J. High Energy Phys. 03 (2017) 086.

[9] S. M. Chester, W. Landry, J. Liu, D. Poland, D. Simmons-
Duffin, N. Su, and A. Vichi, Carving out OPE space and precise
O(2) model critical exponents, J. High Energy Phys. 06 (2020)
142.

[10] Sh. M. Chester, W. Landry, J. Liu, D. Poland, D. Simmons-
Duffin, N. Su, and A. Vichi, Bootstrapping Heisenberg magnets
and their cubic instability, Phys. Rev. D 104, 105013 (2021).

[11] F. Kos, D. Poland, D. Simmons-Duffin, and A. Vichi, Bootstrap-
ping the O(N ) archipelago, J. High Energy Phys. 11 (2015) 106.

[12] A. C. Echeverri, B. von Harling, and M. Serone, The effective
bootstrap, J. High Energy Phys. 09 (2016) 097.

[13] D. Poland, S. Rychkov, and A. Vichi, The conformal bootstrap:
Theory, numerical techniques, and applications, Rev. Mod.
Phys. 91, 015002 (2019).

[14] M. V. Kompaniets and E. Panzer, Minimally subtracted six-loop
renormalization of φ4-symmetric theory and critical exponents,
Phys. Rev. D 96, 036016 (2017).

[15] O. Schnetz, Numbers and functions in quantum field theory,
Phys. Rev. D 97, 085018 (2018).

[16] A. M. Shalaby, Critical exponents of the O(N )-symmetric φ4

model from the ε7 hypergeometric-Meijer resummation, Eur.
Phys. J. C 81, 87 (2021).

[17] G. De Polsi, I. Balog, M. Tissier, and N. Wschebor, Precision
calculation of critical exponents in the O(N ) universality classes
with the nonperturbative renormalization group, Phys. Rev. E
101, 042113 (2020).

[18] N. Dupuis, L. Canet, A. Eichhorn, W. Metzner, J. M.
Pawlowski, M. Tissier, and N. Wschebor, The nonperturbative
functional renormalization group and its applications, Phys.
Rep. 910, 1 (2021).

[19] A. M. Ferrenberg, J. Xu, D. P. Landau, Pushing the limits of
Monte Carlo simulations for the three-dimensional Ising model,
Phys. Rev. E 97, 043301 (2018).

[20] M. Hasenbusch, Restoring isotropy in a three-dimensional lat-
tice model: The Ising universality class, Phys. Rev. B 104,
014426 (2021).

[21] W. Xu, Y. Sun, J.-P. Lv, and Y. Deng, High-precision Monte
Carlo study of several models in the three-dimensional U(1)
universality class, Phys. Rev. B 100, 064525 (2019).

[22] M. Hasenbusch, Monte Carlo study of an improved clock model
in three dimensions, Phys. Rev. B 100, 224517 (2019).

[23] M. Hasenbusch, Monte Carlo study of a generalized icosahedral
model on the simple cubic lattice, Phys. Rev. B 102, 024406
(2020).

[24] M. Moshe and J. Zinn-Justin, Quantum field theory in the large
N limit: a review, Phys. Rep. 385, 69 (2003).

[25] M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, and E.
Vicari, Critical behavior of the three-dimensional XY universal-
ity class, Phys. Rev. B 63, 214503 (2001).

[26] J. H. Chen, M. E. Fisher and B. G. Nickel, Unbiased Estimation
of Corrections to Scaling by Partial Differential Approximants,
Phys. Rev. Lett. 48, 630 (1982).

[27] M. E. Fisher and J. H. Chen, The validity of hyperscaling in
three dimensions for scalar spin systems, J. Phys. (Paris) 46,
1645 (1985).

[28] H. W. J. Blöte, E. Luijten and J. R. Heringa, Ising universality in
three dimensions: a Monte Carlo study, J. Phys. A: Math. Gen.
28, 6289 (1995).

[29] H. G. Ballesteros, L. A. Fernández, V. Martín-Mayor, and A.
Muñoz Sudupe, Finite Size Scaling and ”perfect” actions: the
three dimensional Ising model, Phys. Lett. B 441, 330 (1998).

[30] M. Hasenbusch, K. Pinn, and S. Vinti, Critical exponents of
the three-dimensional Ising universality class from finite-size
scaling with standard and improved actions, Phys. Rev. B 59,
11471 (1999).

[31] M. Campostrini, A. Pelissetto, P. Rossi and E. Vicari, Improved
high-temperature expansion and critical equation of state of
three-dimensional Ising-like systems, Phys. Rev. E 60, 3526
(1999).

[32] M. Hasenbusch, A Monte Carlo study of leading order scaling
corrections of φ4 theory on a three dimensional lattice, J. Phys.
A: Math. Gen. 32, 4851 (1999).

[33] M. Campostrini, M. Hasenbusch, A. Pelissetto, and E. Vicari,
Theoretical estimates of the critical exponents of the superfluid
transition in 4He by lattice methods, Phys. Rev. B 74, 144506
(2006).

[34] M. Hasenbusch and E. Vicari, Anisotropic perturbations in
three-dimensional O(N)-symmetric vector models, Phys. Rev.
B 84, 125136 (2011).

[35] M. Hasenbusch, A. Pelissetto and E. Vicari, Instability of the
O(5) multicritical behavior in the SO(5) theory of high-Tc su-
perconductors, Phys. Rev. B 72, 014532 (2005).

[36] M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari, Two-
point correlation function of three-dimensional O(N ) models:

054428-15

https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1103/RevModPhys.46.597
https://doi.org/10.1103/RevModPhys.70.653
https://doi.org/10.1016/S0370-1573(02)00219-3
https://doi.org/10.1007/JHEP08(2016)036
https://doi.org/10.1007/JHEP03(2017)086
https://doi.org/10.1007/JHEP06(2020)142
https://doi.org/10.1103/PhysRevD.104.105013
https://doi.org/10.1007/JHEP11(2015)106
https://doi.org/10.1007/JHEP09(2016)097
https://doi.org/10.1103/RevModPhys.91.015002
https://doi.org/10.1103/PhysRevD.96.036016
https://doi.org/10.1103/PhysRevD.97.085018
https://doi.org/10.1140/epjc/s10052-021-08884-5
https://doi.org/10.1103/PhysRevE.101.042113
https://doi.org/10.1016/j.physrep.2021.01.001
https://doi.org/10.1103/PhysRevE.97.043301
https://doi.org/10.1103/PhysRevB.104.014426
https://doi.org/10.1103/PhysRevB.100.064525
https://doi.org/10.1103/PhysRevB.100.224517
https://doi.org/10.1103/PhysRevB.102.024406
https://doi.org/10.1016/S0370-1573(03)00263-1
https://doi.org/10.1103/PhysRevB.63.214503
https://doi.org/10.1103/PhysRevLett.48.630
https://doi.org/10.1051/jphys:0198500460100164500
https://doi.org/10.1088/0305-4470/28/22/007
https://doi.org/10.1016/S0370-2693(98)01100-9
https://doi.org/10.1103/PhysRevB.59.11471
https://doi.org/10.1103/PhysRevE.60.3526
https://doi.org/10.1088/0305-4470/32/26/304
https://doi.org/10.1103/PhysRevB.74.144506
https://doi.org/10.1103/PhysRevB.84.125136
https://doi.org/10.1103/PhysRevB.72.014532


MARTIN HASENBUSCH PHYSICAL REVIEW B 105, 054428 (2022)

The critical limit and anisotropy, Phys. Rev. E 57, 184
(1998).

[37] R. H. Swendsen and J.-S. Wang, Nonuniversal Critical Dynam-
ics in Monte Carlo Simulations, Phys. Rev. Lett. 58, 86 (1987).

[38] U. Wolff, Collective Monte Carlo Updating for Spin Systems,
Phys. Rev. Lett. 62, 361 (1989).

[39] M. Saito and M. Matsumoto, SIMD-oriented Fast Mersenne
Twister: a 128-bit Pseudorandom Number Generator, in Monte
Carlo and Quasi-Monte Carlo Methods 2006, edited by A.
Keller, S. Heinrich, and H. Niederreiter (Springer, Berlin,
2008); M. Saito, Masters thesis, Math. Dept., Graduate School
of science, Hiroshima University, 2007. The source code of the
program is provided at http://www.math.sci.hiroshima-u.ac.jp/
∼m-mat/MT/SFMT/index.html.

[40] https://prng.di.unimi.it/.
[41] D. Blackman and S. Vigna, Scrambled Linear Pseudorandom

Number Generators, ACM Trans. Math. Softw. 47, 1 (2021).
[42] https://www.pcg-random.org/posts/does-it-beat-the-minimal-

standard.html.
[43] https://de.wikipedia.org/wiki/KISS_(Zufallszahlengenerator).
[44] P. Virtanen, R. Gommers, T. E. Oliphant et al., SciPy 1.0:

fundamental algorithms for scientific computing in Python, Nat.
Methods 17, 261 (2020).

[45] J. D. Hunter, Matplotlib: A 2D graphics environment, Comput.
Sci. Eng. 9, 90 (2007).

[46] Y. Deng, Bulk and surface phase transitions in the three-
dimensional O(4) spin model, Phys. Rev. E 73, 056116 (2006).

[47] Y. Deng, H. W. J. Blöte, and M. P. Nightingale, Surface and bulk
transitions in three-dimensional O(n) models, Phys. Rev. E 72,
016128 (2005).

[48] P. Butera and M. Comi, N-vector spin models on the sc
and the bcc lattices: a study of the critical behavior of the
susceptibility and of the correlation length by high temper-
ature series extended to order β21, Phys. Rev. B 56, 8212
(1997).

[49] Q. Liu, Y. Deng, T. M. Garoni, and H. W. J. Blöte, The O(n)
loop model on a three-dimensional lattice, Nucl. Phys. B 859,
107 (2012).

[50] M. Hasenbusch, Eliminating leading corrections to scaling in
the 3-dimensional O(N)-symmetric φ4 model: N = 3 and 4,
J. Phys. A: Math. Gen. 34, 8221 (2001).

[51] R. Guida and J. Zinn-Justin, Critical exponents of the N vector
model, J. Phys. A: Math. Gen. 31, 8103 (1998).

[52] R. Abe, Critical exponent η up to 1/n2 for the three-dimensional
system with short-range interaction, Prog. Theor. Phys. 49,
1877 (1973); Y. Okabe, M. Oku, and R. Abe, 1/n expansion
up to order 1/n2. I: Equation of state and correlation function,
ibid. 59, 1825 (1978); Y. Okabe and M. Oku, 1/n expansion up
to order 1/n2. II: Critical exponent β for d = 3, ibid. 60, 1277
(1978); 1/n Expansion Up to Order 1/n2. IV Critical Amplitude
Ratio Rχ , 61, 443 (1979).

[53] I. Kondor and T. Temesvári, Critical indices to O(1/n2 ) for a
three dimensional system with short range forces, J. Phys. Lett.
(Paris) 39, L-99 (1978); Calculation of critical exponents to
O( 1

n2 ), Phys. Rev. B 21, 260 (1980).
[54] A. N. Vasil’ev, Yu. M. Pis’mak, and Yu. R. Khonkonen, Simple

method of calculating the critical indices in the 1/n expansion,
Theor. Math. Phys. 46, 104 (1981); 1/n Expansion: Calculation
of the exponents η and v in the order 1/n2 for arbitrary number
of dimensions, 47, 465 (1981); 1/n Expansion: Calculation of
the exponent v in the order 1/n3 by the Conformal Bootstrap
Method, 50, 127 (1982).

[55] D. J. Broadhurst, J. A. Gracey, and D. Kreimer, Beyond
the triangle and uniqueness relations: non-zeta countert-
erms at large N from positive knots, Z. Phys. C 75, 559
(1997).

[56] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.105.054428 for PYTHON3 scripts that pro-
vide estimates of η, ν, and ω based on an interpolation of our
Monte Carlo results and the large-N expansion.

054428-16

https://doi.org/10.1103/PhysRevE.57.184
https://doi.org/10.1103/PhysRevLett.58.86
https://doi.org/10.1103/PhysRevLett.62.361
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html
https://prng.di.unimi.it/
https://doi.org/10.1145/3460772
https://www.pcg-random.org/posts/does-it-beat-the-minimal-standard.html
https://de.wikipedia.org/wiki/KISS_(Zufallszahlengenerator)
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1103/PhysRevE.73.056116
https://doi.org/10.1103/PhysRevE.72.016128
https://doi.org/10.1103/PhysRevB.56.8212
https://doi.org/10.1016/j.nuclphysb.2012.01.026
https://doi.org/10.1088/0305-4470/34/40/302
https://doi.org/10.1088/0305-4470/31/40/006
https://doi.org/10.1143/PTP.49.1877
https://doi.org/10.1143/PTP.59.1825
https://doi.org/10.1143/PTP.60.1277
https://doi.org/10.1143/PTP.61.443
https://doi.org/10.1051/jphyslet:0197800390809900
https://doi.org/10.1103/PhysRevB.21.260
https://doi.org/10.1007/BF01030844
https://doi.org/10.1007/BF01019296
https://doi.org/10.1007/BF01015292
https://doi.org/10.1007/s002880050500
http://link.aps.org/supplemental/10.1103/PhysRevB.105.054428

