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Dimerization tendencies of the pyrochlore Heisenberg antiferromagnet:
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We investigate the ground-state properties of the spin-1/2 pyrochlore Heisenberg antiferromagnet using
pseudofermion functional renormalization group techniques. The first part of our analysis is based on an
enhanced parton mean-field approach, which takes into account fluctuation effects from renormalized vertex
functions. Our implementation of this technique extends earlier approaches and resolves technical difficulties
associated with a diagrammatic overcounting. Using various parton ansätze for quantum spin liquids, dimerized
and nematic states our results indicate a tendency for lattice symmetry breaking in the ground state. While
overall quantum spin liquids seem unfavorable in this system, the recently proposed monopole state still shows
the strongest support among all spin liquid ansätze that we have tested, which is further confirmed by our
complementary variational Monte Carlo calculations. In the second part of our investigation, we probe lattice
symmetry breaking more directly by applying the pseudofermion functional renormalization group to perturbed
systems. Our results from this technique confirm that the system’s ground state either exhibits broken C3 rotation
symmetry, or a combination of inversion and C3 symmetry breaking.
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I. INTRODUCTION

The pyrochlore network is a paradigmatic lattice to study
the effects of magnetic frustration and it arouses ongoing in-
terest, which has spanned several decades. As a consequence
of the unique geometry featuring corner-sharing tetrahedra,
even the classical nearest-neighbor Ising model on the py-
rochlore lattice is highly nontrivial due to its extensively
degenerate ground-state manifold [1,2]. This gives rise to a
classical spin liquid that has been observed in a number of
materials referred to as spin ice compounds, most notably
the titanates Ho2Ti2O7 and Dy2Ti2O7 [3,4]. The associated
physical phenomena ranging from residual entropies [5] and
pinch point singularities [6,7] to monopole excitations [8,9]
are characteristic to this fascinating and multifaceted research
field.

What is even more remarkable, when including quantum
fluctuations in the classical nearest-neighbor Ising model on
the pyrochlore lattice, e.g., via transverse spin interactions
Sx

i Sx
j + Sy

i Sy
j , it can be shown perturbatively [10] that the

system realizes the iconic U(1) quantum spin liquid with
emergent gauge photons and fractionalized magnetic charges
[11–13]. The possible identification of these phenomena in
magnetic materials, so-called quantum spin ice compounds
[14], has become a particularly challenging but also rewarding
research direction.

Given the rich physical phenomenology of (quantum) spin
ice systems it is natural to ask about the ground-state prop-
erties of spin models where the transverse terms are beyond

the perturbative regime, such as the spin-1/2 nearest-neighbor
pyrochlore Heisenberg antiferromagnet. Due to the strong
magnetic frustration and the nearby U(1) quantum spin liquid,
it seems plausible that spin liquid behavior survives in the
Heisenberg limit and, indeed, this model is considered as a
prime candidate for realizing a quantum spin liquid. On the
other hand, early works also point out the possibility of a
dimerized ground state [15–22]. Due to the inherent difficul-
ties in treating frustrated quantum spin models (particularly
in three dimensions) and the notorious lack of controlled
and unbiased numerical approaches, these questions remain
highly nontrivial and an ultimate answer currently cannot be
given by a single method alone. Further incentive for study-
ing the pyrochlore Heisenberg antiferromagnet comes from
experimental progress in realizing such systems. Most no-
tably, the recently synthesized spin-1/2 oxynitride pyrochlore
compound Lu2Mo2O5N2 does not show any experimental in-
dications of magnetic long-range order [23,24].

On the theoretical front, two large-scale numerical stud-
ies have recently investigated the nearest-neighbor pyrochlore
Heisenberg antiferromagnet and have both found indications
for a dimerized ground state that spontaneously breaks lattice
symmetries [25,26]. Using complementary state-of-the-art
methods, such as many-variable variational Monte Carlo, ex-
act diagonalization, and density-matrix renormalization group
these results provide a rather compelling argument against
quantum spin liquid behavior.

Inspired by these findings, the present paper adds another
and again complementary perspective to the ground-state
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properties of the pyrochlore Heisenberg antiferromagnet
using the pseudofermion functional renormalization group
(PFFRG) method. Our analysis goes significantly beyond
a previous PFFRG study [27] as it investigates additional
scenarios for spontaneous breaking of lattice symmetries
and includes a recently developed self-consistent PFFRG-
enhanced parton mean-field treatment [28]. Since the latter
approach has been rarely applied so far, in the beginning
the focus lies on introducing, discussing, and extending it.
This technique first assumes that the system’s low-energy
behavior is described by a quadratic fermionic parton theory
as is expected for a quantum spin liquid [29]. The param-
eters of this theory, such as spinon hopping and pairing
amplitudes are self-consistently determined within a Fock-
type approach. As a crucial difference compared to a pure
mean-field treatment, however, the bare exchange couplings
entering the self-consistent equations are replaced by the
renormalized ones from PFFRG, hence, adding fluctuations
well beyond mean-field. This approach allows us to com-
pare the RG behaviors of different mean-field ansätze for
quantum spin liquids and identify the preferred one. As an
improvement of this technique with respect to an earlier
implementation [28], we resolve a methodological subtlety
that may lead to an overestimation of mean-field amplitudes.
First, restricting to ansätze of previously proposed quantum
spin liquid candidates for the pyrochlore Heisenberg antifer-
romagnet we identify the monopole-antimonopole chiral spin
liquid state from Ref. [30] as the preferred one, even under
the effect of fluctuations beyond mean-field. This finding is
confirmed by our additional large-scale (N = 6912-site) vari-
ational Monte Carlo calculations yielding a projected energy
per site E/J = −0.459402(6), which is lower compared to
the energy E/J = −0.457354(5) of the monopole flux state of
Ref. [31]. Furthermore, the PFFRG approach is not restricted
to spin liquid states only, but the real-space configuration
of fermionic hopping/pairing terms may also mimic possi-
ble types of dimerization patterns. Including such symmetry
breaking configurations in our analysis, we observe a clear
dominance of dimer orders over spin liquids, associated with a
breaking of inversion and C3 rotation symmetry, in agreement
with Refs. [25,26]. To further confirm this result we pursue a
more direct approach where we impose the dimerization pat-
terns as small perturbations in the spin Hamiltonian and apply
PFFRG for this modified system. We find large responses to
perturbations that break both inversion and C3 rotation sym-
metry together, while patterns, which only break inversion but
not the C3 rotation symmetry are not supported. These results
are in agreement with our PFFRG-enhanced mean-field treat-
ment and further corroborate the findings in Refs. [25,26] such
that, in total, we conclude that a dimer valence bond state or a
nematic state constitute the most likely ground-state scenario
of the pyrochlore Heisenberg antiferromagnet.

The rest of the paper is structured as follows: In Sec. II,
we introduce the PFFRG approach and its variants, which
will be applied to the pyrochlore Heisenberg antiferromagnet.
The results of our analysis are presented in Sec. III, where
Sec. III A first discusses our findings of the PFFRG-enhanced
mean-field treatment and compares them with results from
a complementary variational Monte Carlo study. This is fol-
lowed by a direct investigation of symmetry breaking patterns

via PFFRG in Sec. III B. The paper ends with a discussion of
the presented methods in Sec. IV and a conclusion in Sec. V.

II. METHODS

Most of the methods applied in this paper are based on
the PFFRG technique. In this section, we give an introduction
into its standard formulation (Sec. II A) and then discuss the
two types of extensions, which are used for our numerical
investigations in Sec. III. Particularly, we put an emphasis
on introducing our PFFRG-enhanced parton mean-field treat-
ment in Sec. II B, followed by a brief description of our
approach to directly investigate lattice symmetry breaking
dimer patterns, see Sec. II C.

A. Standard PFFRG formulation

We first introduce the standard one-loop PFFRG method
for quantum spin-1/2 systems [32], which has proven to be
a powerful tool for the investigation of magnetic properties
of two- and three-dimensional spin systems with different
types of interactions [24,27,32–64]. Here, we apply it to a
Heisenberg model on a pyrochlore lattice,

H =
∑
(i, j)

Ji j Si · S j, (1)

where (i, j) are pairs of sites and Ji j is finite only on nearest-
neighbor bonds; in this case Ji j ≡ J > 0. The PFFRG treats
this model by utilizing a pseudofermionic description of S =
1/2 spin operators [65,66] also called parton representation,

Sμ
i =

∑
α,β

1

2
f †
i,ασ

μ

αβ fi,β , (2)

where f †
i,α ( fi,α) creates (annihilates) a fermion with spin

α ∈ {↑, ↓} at lattice site i and σμ with μ ∈ {x, y, z} are
the standard 2×2 Pauli matrices. This rewriting enables one
to employ common quantum-many-body techniques based
on Feynman diagrams, including functional renormalization
group methods [67]. Note, however, that the pseudofermion
representation in Eq. (2) artificially enlarges the Hilbert space
by introducing two S = 0 states per lattice site, which may
lead to artifacts in the numerical outcomes when pursuing
the PFFRG procedure as explained below. Various previous
papers have discussed this effect [46,60,64] and find that
such artifacts are minor or not observable, at least as long as
ground-state properties are considered (as is also done in this
paper).

Since a quadratic spin Hamiltonian, rewritten in terms of
pseudofermions is purely quartic in these auxiliary particles,
the bare fermionic propagator in Matsubara space has the
simple form G0(ω) = 1

iω and is strictly local in real space. The
key manipulation within PFFRG is to regularize G0(ω) via an
infrared cutoff �:

G0(ω) = 1

iω
−→ G�

0 (ω) = θ (|ω| − �)

iω
. (3)

This insertion leads to a cutoff-dependent generating func-
tional for the one-particle-irreducible vertex functions. By
taking the full cutoff derivative of these vertex functions,
one arrives at an infinite hierarchy of coupled differential
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FIG. 1. [(a), (b)] PFFRG flow equations for n-particle vertex functions up to n = 2: Regular (slashed) arrows represent the full Green’s
function G� (single-scale propagator S�). The first equation in (a) couples the self energy �� (circle) to the 2-particle vertex 	� (square)
and to itself via S�. In the second equation (b), the 2-particle vertex couples to the 3-particle vertex (hexagon), itself, and the self energy.
This procedure leads to an infinite hierarchy of coupled differential equations, which we truncate by neglecting the 3-particle vertex. In (c) the
diagrammatic relation between the self energy, the 2-particle vertex, and the spin-spin correlation 〈SiS j〉 is depicted.

equations, the so-called flow equations. Since the full set of
equations is beyond numerical solvability, the hierarchy of
equations needs to be truncated, which in our one-loop ap-
proach is done by neglecting the 3-particle vertex. One then
arrives at the flow equations for the fermionic self-energy
written as ��(ω) = −iγ �(ω) [where γ (ω) is real valued] and
the 2-particle vertex 	�

i j (s, t, u) depicted diagrammatically in
Figs. 1(a) and 1(b). Note that the three Matsubara frequency
arguments of 	� take into account energy conservation and
are defined in a way that the vertex on the left-hand side of
Fig. 1(b) corresponds to 	�

i j (ω1′ + ω2′ , ω1′ − ω1, ω1′ − ω2).
Here, the frequencies ω1, ω′

1, . . . are the ones on the ex-
ternal fermion lines labeled accordingly. A crucial technical
necessity is the implementation of the so-called Katanin
scheme [68,69] where the single-scale propagator [slashed
line in Fig. 1(b)] in the flow equation for 	� is given by
the full derivative of the renormalized propagator S�(ω) =
− d

d�
G�(ω). This insertion re-includes certain contributions

of the 3-particle vertex and ensures that quantum fluctuations
are included on a level that captures the subtle interplay
of ordering and disordering tendencies in quantum spin
systems.

Apart from the aforementioned truncation, two more ap-
proximations are required to yield a finite set of differential
equations in the zero-temperature limit. First, the Matsubara-
frequencies, which at T = 0 are continuous variables, need
to be replaced by a discrete mesh, in our case consisting of
64 frequencies. Second, all 2-particle vertices, which exceed
a given real-space distance must be neglected. In Sec. III A
(Sec. III B), we truncate correlations after 10 nearest-neighbor
bonds (outside a sphere with a radius of 5 nearest-neighbor
distances). This corresponds to a finite size approximation
that accounts for correlations in a cluster of 741 (381)
sites.

In its standard formulation, the resulting flow equations are
numerically solved, starting in the limit � → ∞ where the
2-particle vertex is given by the bare interactions, 	�→∞

i j ≡
Ji j . While lowering �, magnetic instabilities may be detected
by a breakdown of the RG flow of the 2-particle vertex, or
otherwise, the flow continues down to � = 0 indicating non-
magnetic ground-state behavior. Having reached this physical
cutoff-free limit, the real-space spin-spin correlations 〈SiS j〉

(or their Fourier-transform into momentum space), which de-
pend on the 2-particle vertex as shown in Fig. 1(c) may be
further investigated. This type of analysis has already been
performed for the nearest-neighbor pyrochlore Heisenberg
antiferromagnet in Ref. [27] demonstrating the absence of
magnetic long-range order. The approach outlined in the next
section, which will be applied in Sec. III, pursues a different
strategy. There, the 2-particle vertex is not used as a direct
diagnostic tool but rather forms the basis for a more involved
post-processing analysis.

B. PFFRG-enhanced parton mean-field approach

The approach presented in this section is directly adapted
to the states it aims to describe, namely nonmagnetic spin
states and primarily quantum spin liquids. Therefore, we first
give a brief introduction into the general phenomenology and
low-energy behavior of quantum spin liquids.

A characteristic property of a quantum spin liquid is that
it features fractional and spinful quasiparticles called spinons,
which we here assume to be fermions. The fractional property
stems from the fact that it requires two spinons to create
a conventional �S = ±1 excitation. Since this property is
inherently given by the fermionic parton representation of
spin operators in Eq. (2) it is natural to construct a low-
energy effective theory for quantum spin liquids based on this
rewriting. Furthermore, in quantum spin liquids the spinons
described by the fermionic partons fi,α are free in the sense
that they do not experience long-range confining forces be-
tween them. Hence, at low energies the situation can be
described by a general quadratic model in fi,α , including
spinon hopping χi j and pairing ηi j ,

HMF = −3

8

∑
i, j

(χi j f †
j,α fi,βδαβ + ηi j f †

i,α f †
j,βεαβ + H.c.). (4)

Here, the sums over spin indices are implicit and the anti-
symmetric tensor ε has vanishing diagonal entries and the
off-diagonals ε↑↓ = −ε↓↑ = 1. Furthermore, the identities
χ

†
i j = χ ji and ηi j = η ji must hold. Due to the spin-isotropy

of Heisenberg interactions, Eq. (4) only contains spin-rotation
symmetric terms.
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(a) (b)

(c)

(e)

(d)

FIG. 2. Diagrammatic representations of different self-consistent
schemes. (a) Bare self-consistent Fock mean-field approach. The
dashed line is a bare interaction ∼Ji j . The thick line is a dressed
propagator resulting from Dyson’s equation in (b). The thin line in
(b) is the free fermionic propagator G0(ω) = 1

iω . In an enhanced par-
ton mean-field scheme, Dyson’s equation is evaluated together with
the self-energy �MF+ shown in (c) making use of the renormalized
vertex from PFFRG (gray box). Note that in this approximation, the
thin line in (b) also contains the self-energy γ (ω) from PFFRG.
(d) Illustration of a contribution from the bare self-consistent Fock
mean-field scheme, obtained via iteration, see main text for details.
Blue lines in (c) and (d) illustrate a cut for a two-particle decoupling
in the crossed particle-hole channel. To avoid overcounting in �MF+,
the enhanced mean-field equation in (c) needs to be evaluated with
a two-particle irreducible vertex 	̃� (white square), which follows
from the Bethe-Salpeter equation in (e). Note that in this equation the
propagator line is dressed with γ � but not with �MF+.

It is clear that Eq. (4) alone cannot describe quantum spin
liquids since its eigenstates generally contain contributions
from the unphysical Hilbert space sectors and are thus not
even proper spin states. To resolve this problem one introduces
gauge fluctuations in the amplitudes χi j and ηi j , which in
the simplest case of a Z2 gauge theory correspond to sign
fluctuations χi j → ±χi j , ηi j → ±ηi j . The crucial property
of a Z2 gauge theory is that excitations in the gauge field
(so called visons) are gapped such that in the low-energy
limit even the bare quadratic theory in Eq. (4) without gauge
fluctuations provides a faithful description of quantum spin
liquids.

The fact that the original strongly interacting spin model
that is quartic in the fermions fi,α becomes effectively
quadratic at low energies implies that a mean-field decoupling
in the hopping and pairing channels describes the system
reasonably well [hence, the index “MF” in Eq. (4)]. This
means that on this simple level of approximation the am-
plitudes χi j and ηi j can be thought of as resulting from the
self-consistency conditions

χi j = Ji j〈 f †
i,α f j,α〉, ηi j = Ji j〈 f j,α fi,βεβα〉. (5)

Translating these conditions into Feynman diagrams, χi j and
ηi j have the form of a self-energy �MF, which consists of
a convolution of an equal-time fermionic propagator and a
bare interaction line, as shown in Fig. 2(a). More precisely, to
incorporate fermionic pairing, self-energies and propagators

need to be extended to a 2×2 structure in Nambu space where

�MF = ui j =
(

χ
†
i j ηi j

η
†
i j −χi j

)
. (6)

To close self-consistency within the diagrammatic framework,
the self-energy is fed back into Dyson’s equation shown in
Fig. 2(b), which in total corresponds to a Fock mean-field
decoupling. In terms of explicit expressions in momentum
space the self-consistent equation for uk reads

uk = −
∫ ∞

−∞

dω

2π

∫
BZ

dq
VBZ

Jk−q
[
G−1

0 (ω) − uq
]−1

. (7)

For non-Bravais lattices like the pyrochlore lattice, this equa-
tion must be interpreted as a matrix equation in sublattice
space. The momentum integral is carried out over a single
Brillouin zone with volume VBZ.

On this level, Eq. (7) and Figs. 2(a) and 2(b) correspond to
a standard parton mean-field theory for quantum spin liquids,
expressed in terms of Feynman diagrams. In this technique
different ansätze for ui j may be tested with respect to nonvan-
ishing solutions and the one with the smallest mean-field free
energy gives an indication of the system’s spin liquid ground
state.

We now explain our extension of this approach, which
we call “PFFRG-enhanced parton mean-field approach”. The
key step is to replace the bare Heisenberg couplings Ji j and
the free fermionic propagator G0(ω) = 1

iω in Eq. (7) by the
corresponding renormalized quantities from PFFRG,

Ji j → 	�
i j (s, t, u), G0(ω) → 1

iω + iγ �(ω)
, (8)

including their full real-space and frequency dependence. The
corresponding improved self-energy, called ��

MF+, is depicted
diagrammatically in Fig. 2(c) and the explicit self-consistent
equation reads

u�̄
k = −

∫ ∞

−∞

dω

2π

∫
BZ

dq
VBZ

	�̄
k−q(ω,−ω, 0)

× [
iω + iγ �̄(ω) − u�̄

q

]−1
. (9)

Since the renormalized vertices γ � and 	� depend on �

there is the freedom to choose � for which Eq. (9) is eval-
uated. We call this cutoff parameter the “decoupling scale”
�̄ to distinguish it from the renormalization group scale �

used in the PFFRG flow equations of Fig. 1. By varying
�̄ from �̄ = ∞ to �̄ = 0 one can smoothly interpolate be-
tween a bare mean-field scheme and an approach that uses
the fully one-loop renormalized vertices. Hence, Eq. (9) ex-
tends the method well beyond mean-field since the vertices
from PFFRG include additional dynamics and real-space de-
pendencies (	�

i j become spatially more spread-out than Ji j)
not contained in Ji j . Effectively, this can be thought of
as taking into account gauge fluctuations and interactions
between partons, which are not contained in Eq. (4). We
therefore expect that the obtained spinon parameters χi j and
ηi j provide a better approximation of the system’s low-energy
behavior.

This general type of combined FRG plus mean-field
treatment has first been applied in Ref. [70] to investigate
competing instabilities in a two-dimensional Hubbard model.

054426-4



DIMERIZATION TENDENCIES OF THE PYROCHLORE … PHYSICAL REVIEW B 105, 054426 (2022)

Since the mean-field Hamiltonian may explicitly break the
symmetries of our system, an important benefit is that ordered
phases can be directly accessed, which is not easily possible
within FRG alone. The extension to quantum spin systems in
the pseudofermion representation has later been formulated in
Ref. [28]. This latter paper discusses solutions of Eq. (9) to
characterize spin liquid phases in square and kagome Heisen-
berg antiferromagnets. It is worth emphasizing that for the
investigation of quantum spin liquids, the objective of the
approach differs from Ref. [70] in the sense that the possibility
of accessing symmetry broken phases is not exploited. Rather,
Eq. (9) is solved for different ansätze ui j to identify the one
that is realized at low energies.

Here, we develop the method of Eq. (9) and Ref. [28]
further, by resolving a technical difficulty associated with
an overcounting of diagrams that has first been noticed in
Ref. [71] (there again in the context of a two-dimensional
Hubbard model). To illustrate the overcounting, let us ex-
amine an iterative solution of the bare mean-field scheme
in Fig. 2(a). A particular class of diagrams contributing to
the solution has the form of the nested graphs in Fig. 2(d).
These diagrams have the property that they decompose into
disconnected graphs when cutting the two propagators along
the blue line. Now we upgrade the bare interaction lines ∼J to
renormalized two-particle vertices 	� from PFFRG. It is clear
that if the vertex 	� has the same property of decomposing
into disconnected diagrams upon cutting two propagators in
the crossed particle-hole channel, this creates an overcounting
of terms (which already occurs in second order in J). The
contributions of 	� with this property have the structure of
particle-hole ladder diagrams. To avoid this problem only
those contributions 	̃� of 	� should be considered, which
are two-particle irreducible in the crossed particle-hole chan-
nel. Isolating the contributions 	̃� corresponds to solving
the Bethe-Salpeter equation (see Appendix A) in the crossed
particle-hole channel as depicted in Fig. 2(e) and explicitly
given by

	�
k−q(ω,−ω, 0) = 	̃�

k−q(ω,−ω, 0)

−
∫ ∞

−∞

dω′

2π

∫
BZ

dp
VBZ

	̃�
k−p(ω′,−ω′, 0)

× 	�
p−q(ω′ + ω,ω′ − ω, 0)(G�(ω′))2.

(10)

Additionally, it needs to be ensured that ��
MF+ only con-

tains diagrammatic contributions that actually depend on the
spinon amplitudes χi j and ηi j . Other terms independent of
these parameters are local in real space and imaginary and,
therefore, contribute to γ (ω). These latter self-energy terms
are, however, already generated within PFFRG such that in-
cluding them would lead to another source of overcounting.
To overcome this problem, we additionally subtract the zeroth
order term in ui j on the right-hand side of Eq. (9). Based on
these considerations we can now formulate the corrected and
final self-consistent equation containing 	̃� instead of 	�:

u�̄
k = −

∫ ∞

−∞

dω

2π

∫
BZ

dq
VBZ

	̃�̄
k−q(ω,−ω, 0)

× {[
iω + iγ �̄(ω) − u�̄

q

]−1 − [iω + iγ �̄(ω)]−1
}
. (11)

See Appendix B for numerical details about how we solve
this equation. The error in Eq. (9) resulting from overcounting
may in general be drastic: If the vertex 	� diverges during
the RG flow due to an instability this will feed back into
the self-consistent equation, leading to unphysical divergent
amplitudes ui j . In our specific situation where the 2-particle
vertex does not display any instabilities during the RG flow,
the consequences of overcounting are less disastrous and
solely have a quantitative effect. We base the following anal-
ysis on the more accurate self-consistent scheme in Eq. (11).

An unconstrained investigation of Eq. (11) where χi j and
ηi j are taken as free parameters on all bonds (i, j), is gener-
ally too complicated to be performed numerically. Hence, an
ansatz for ui j is made which consists of a small number of free
variables (typically amplitudes |χi j | and |ηi j | while their phase
relations on symmetry-related bonds are fixed), which are
then self-consistently determined. Despite this reduction of
complexity, there still exist large ansatz classes. For example,
ui j can also become finite on bonds (i, j) where Ji j = 0, if
	�

i j �= 0. However, such a spread of amplitudes ui j in real
space beyond the range of exchange couplings is typically a
small effect, such that in our investigation below we neglect all
spinon amplitudes beyond nearest neighbors. Moreover, the
ansätze ui j do not need to obey the symmetries of the under-
lying lattice, even for symmetric quantum spin liquids. More
precisely, possible ansätze are taken from a projective symme-
try group analysis, which imposes a weaker condition on the
symmetries of ui j , according to which a gauge transformation
must exist such that the combined application of the symme-
try transformation and the gauge operation leaves the ansatz
invariant (so-called projective implementation of symmetries)
[29,72]. One may also investigate states where lattice symme-
tries are explicitly (i.e., even projectively) broken such as for
dimer valence bond solids. In the corresponding ansätze, χi j

is taken to be finite only on bonds, which are occupied by a
dimer and zero otherwise (furthermore, ηi j = 0 on all bonds)
[73,74]. This type of ansatz reflects the physical properties
of a dimer state where on length scales beyond the extent of
singlet dimers spinons are no longer free quasiparticles, e.g.,
they can only hop within a dimer but not between dimers.

Having calculated the amplitudes ui j self-consistently for
different ansätze, one needs a criterion that indicates which
one describes the system’s low-energy physics best. In an
ideal situation where the free energy functional for these
amplitudes would be known, one could identify the ansatz,
which minimizes the free energy. However, within FRG the
free energy functional including effects of renormalization
beyond mean-field is not easily accessible (even though first
approaches have accomplished parts of this task [64]). There-
fore, we use a more basic approach and simply compare
the sizes of the self-consistently calculated amplitudes |χi j |
and |ηi j | for different ansätze aiming to find the largest ones
(note that for simplicity each ansatz investigated below is only
characterized by one free parameter). This procedure is well
justified from a pure mean-field perspective, where the energy
expectation value EMF of Eq. (4) is given by

EMF = 〈HMF〉 ∼ −
∑

i j

J−1
i j (|χi j |2 + |ηi j |2), (12)

which is minimized by the ansatz with the largest amplitudes.
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C. Investigation of symmetry breaking perturbations

To complement the analysis of the PFFRG-enhanced
parton approach we use another and more straightforward
method to directly probe the system’s ground state with re-
spect to symmetry breaking orders such as dimerization. This
amounts to applying the standard PFFRG technique from
Sec. II A, but with slightly modified coupling constants J
mimicking the dimer pattern. Particularly, we start with a set
of bonds (i, j), which initially all carry the same interactions
J (such as nearest-neighbor bonds). We then partition these
bonds into two groups B+ and B− in a way that the bonds B+
are those carrying a dimer and perturb the couplings J by a
small parameter δ > 0 as follows:

(i, j) ∈ B+ : Ji j −→ Ji j + δ,

(i, j) ∈ B− : Ji j −→ Ji j − δ. (13)

Running PFFRG for this system we keep track of the static
spin-spin correlations

χ�
i j =

∫ ∞

0
dτ 〈Si(0)S j (τ )〉 (14)

[see Fig. 1(c)] for all weakened and strengthened bonds. Of
particular interest is the dimer response function χ�

D,i jkl , which
measures how strongly this perturbation affects the correla-
tions:

χ�
D,i jkl =

∣∣∣∣J

δ

χ�
i j − χ�

kl

χ�
i j + χ�

kl

∣∣∣∣, where (i, j) ∈ B+, (k, l ) ∈ B−.

(15)

This quantity is defined such that at the beginning of the
RG flow χ�=∞

D,i jkl = 1. If the dimer response function grows
towards values much larger than one as � approaches the
cutoff-free limit (χ�→0

D,i jkl  1) this indicates the tendency for
dimerization. Furthermore, the size of the response function
can be compared for different patterns to identify the pre-
ferred one. Note that for a given symmetry breaking pattern,
i.e., for a certain partitioning of bonds into B+ and B−, the
quantity χ�

D,i jkl may not be uniquely given, but depends on
the precise choice of strengthened/weakened bonds (i, j) and

(k, l ) for which the spin-correlations are compared to each
other. This method cannot only be applied to dimer patterns
but to all other types of lattice symmetry breaking states
such as nematic order while, on the other hand, probing
quantum spin liquid behavior directly is not possible (at least
not beyond the observation that lattice symmetry breaking is
absent).

III. RESULTS

A. PFFRG-enhanced parton mean-field theory

In this section, we present our results for the PFFRG-
enhanced mean-field analysis for various ansätze of the matrix
ui j . To simplify the analysis, we will restrict ourselves to finite
nearest-neighbor hopping terms only, and thus all ansätze
analyzed subsequently have a U(1) invariant gauge group
(IGG) [29]. (Note that an ansatz with only hopping ampli-
tudes is gauge equivalent to an ansatz with only real-valued
pairing terms such that no bias is induced by concentrating
on hopping ansätze.) We start by considering four simple
or previously proposed candidate ansätze for symmetric and
chiral quantum spin liquids, which all satisfy the system’s
lattice symmetries projectively:

(i) The uniform ansatz with identical real-valued hoppings
on all nearest-neighbor bonds, see Fig. 3(a). Consequently,
this state has a 0-flux through the triangular faces of both
up and down tetrahedra, and a 0-flux through the elementary
hexagon plaquettes of the pyrochlore lattice. This ansatz can
be implemented within a four-site unit cell.

(ii) The staggered ansatz with real-valued and positive
(negative) hoppings on all up (down) tetrahedra, see Fig. 3(b).
Such a pattern results in a 0 (π )-flux through the triangu-
lar faces of up (down) tetrahedra, and a π -flux through the
hexagons. This flux structure can be realized by a four-site
unit cell.

(iii) The (π/2, π/2, 0) flux monopole state proposed in
Ref. [31] and depicted in Fig. 3(c). This ansatz features a
π/2-flux threading each of the triangular faces of both up
and down tetrahedra, and a 0-flux through the hexagons. Such
a flux structure breaks inversion (I ) and time-reversal (T )

FIG. 3. Investigated hopping models on the pyrochlore lattice: The blue (red) bonds denote positive (negative) real-valued hoppings χ

(−χ ). Black arrows depict imaginary hoppings iχ (−iχ ) in (against) the direction of the arrow. Gray bonds carry zero hopping amplitudes.
Within each ansatz, all finite hoppings have the same absolute value. (a) The uniform state. (b) The staggered state. (c) The (π/2, π/2, 0)
monopole state. (d) The localized tetramer state breaking inversion symmetry. (e) Two infinitely extended lines breaking the C3 rotation
symmetry. (f) Two localized dimers breaking inversion and rotation symmetry. (g) One localized trimer breaking inversion and rotation
symmetry. (h) One localized fourfold loop breaking inversion and rotation symmetry. (i) The (π/2,−π/2, 0) monopole-antimonopole
state.
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FIG. 4. Self-consistently determined nearest-neighbor hopping
amplitudes as a function of the decoupling scale �̄ for the ansätze
given in Fig. 3. While the amplitudes for symmetric quantum spin
liquids are comparatively small, by far the largest amplitude results
for the dimerized pattern in Fig. 3(f). The decay of all amplitudes
when �̄ � 0.4 is caused by the finite pseudofermion lifetime due to
the imaginary self energy from PFFRG. Note that the data points
for the (π/2, π/2, 0) flux monopole state and (π/2,−π/2, 0) flux
monopole-antimonopole state lie almost on top of each other, with
slightly larger amplitudes for the (π/2,−π/2, 0) state.

symmetries, but respects their product IT , and thus describes
a chiral spin liquid of the Kalmeyer-Laughlin type. It can be
implemented within a four-site unit cell.

(iv) The (π/2,−π/2, 0) flux monopole-antimonopole
state investigated in Ref. [30]. The ansatz features a π/2
(−π/2)-flux threading each of the triangular faces of up
(down) tetrahedra, and a 0-flux through the hexagons. This
flux pattern involves a breaking of the screw (S ) [75] and
time-reversal (T ) symmetries, while conserving their prod-
uct ST , and thus realizes a chiral spin liquid of a different
symmetry class compared to the (π/2, π/2, 0) monopole flux
state. This ansatz also involves a doubling of the unit cell
along any two of the three Bravais lattice vectors, and thus
requires a 16-site unit cell, see Fig. 3(i).

Restricting to these quantum spin liquid ansätze first,
the results for the self-consistently obtained nearest-neighbor
hopping amplitudes χ as a function of �̄ are shown in
Fig. 4. At a pure mean-field level (�̄ = ∞), the two monopole
states have the largest amplitudes, with a slight advantage
for the (π/2,−π/2, 0) state, in confirmity with the Rokhsar
rules [30,76]. Interestingly, this preference for the monopole
states remains qualitatively unchanged as �̄ is lowered i.e.,
as more effects of renormalization are taken into account, a

fact, which is also corroborated by Gutzwiller projection of
the corresponding mean-field states, cf. Appendix C, whereby
the two monopole type states give the lowest variational en-
ergies, with a slightly lower energy for the (π/2,−π/2, 0)
monopole-antimonopole state of Ref. [30], in agreement with
the findings from PFFRG [77], see Table I. The overall size
of amplitudes, however, is renormalized to smaller values be-
low �̄ ≈ 0.4, which is generally expected when incorporating
fluctuations beyond mean field. On a technical level, this is
a consequence of the imaginary on-site self-energy γ �(ω) in
PFFRG, which acts as a finite lifetime for the pseudofermions.
Surprisingly, the hierarchy of the amplitudes and their ratios
remain largely unchanged upon varying �̄. In total, these
results indicate that on the level of spin liquid states, pre-
vious results finding a preference for the chiral flux states
is confirmed, with our study indicating a slight preference
for the monopole-antimonopole state (in contrast to previous
studies), and this property seems relatively robust with respect
to renormalization effects.

Next, we extend our analysis by including various ansätze,
which explicitly break the system’s lattice symmetries, see
Figs. 3(d)–3(h). These states restrict the pseudofermions to
be localized on dimers, trimers, tetramers, fourfold loops, and
extended 1D lines. The ansätze can be characterized by the
lattice symmetries they break, particularly inversion i, which
transforms r → −r (where the origin coincides with a py-
rochlore lattice point) and C3 rotation, which performs a 2π/3
rotation around an axis connecting the midpoints of two adja-
cent tetrahedra (this axis passes through the pyrochlore lattice
point common to both tetrahedra). The pattern in Fig. 3(d)
[Fig. 3(e)] then breaks only inversion i [only C3 rotation]
while the ansätze in Figs. 3(f)–3(h) break both i and C3. Note
that the dimer and tetramer states have been recently discussed
in Refs. [25,26] and both papers find a tendency for their
realization in the ground state of the pyrochlore Heisenberg
antiferromagnet. Our results in Fig. 4 likewise show that the
dimer state yields by far the largest amplitudes throughout the
entire range of �̄ and also outperforms the spin liquid an-
sätze. One can interpret this as an indication for dimerization,
however, we explicitly stress that at this stage of the analysis
one needs to be careful with this conclusion. Particularly,
our approach, while unbiased when comparing amplitudes
of different quantum spin liquids among each other may be
biased with respect to finding explicit symmetry breaking. Our
large intradimer hopping amplitudes χdimer certainly imply
that dimer formation leads to a significant reduction of energy
on the dimer bonds. However, all other “non-dimer” bonds
may be energetically unfavorable, which is not captured in
our approach such that dimerization may appear more favor-
able than it actually is (as mentioned before, the total energy
would serve as an ultimate diagnostic measure). Please confer
Sec. IV for a more detailed discussion. A definite conclusion
on possible dimerization cannot be drawn solely based on
these results. We therefore, consult a different approach in the
next section.

B. Investigation of symmetry breaking patterns

We continue probing the Hamiltonian in Eq. (1) with re-
spect to various symmetry breaking perturbations using the
approach explained in Sec. II C. Particularly, we impose the
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TABLE I. The Gutzwiller projected ground-state energies per site E/J of the four U(1) ansätze obtained by variational Monte Carlo
(VMC) calculations on a 6912-site (= 4×12×12×12) cluster, which respects the full symmetry of the pyrochlore lattice. The ansätze with
η = 1 do not enlarge the four-site geometrical unit cell while the one with η = −1 involves a doubling of the unit cell along two tetrahedral
axis, i.e., it has a 16-site unit cell. The ansätze are completely characterized by specifying the gauge fluxes through three plaquettes, namely,
the triangular faces of up tetrahedra (��), the triangular faces of down tetrahedra (��), and the hexagons (��). The last two columns show
the PFFRG-enhanced mean-field amplitudes at a large and a small decoupling scale �̄ ≈ 450 J and �̄ ≈ 0.01 J .

Symmetry η (��, ��, ��) Energy (VMC) χ�̄→450 J χ�̄→0.01 J

Fully symmetric +1 (0, 0, 0)a [30,31] −0.37502(6) 0.1329 0.0450
Fully symmetric +1 (0, π, π ) −0.37457(5) 0.1063 0.0356

Chiral (IT ) +1 ( π

2 , π

2 , 0)b [30,31] −0.457354(5) 0.1397 0.0472

Chiral (ST ) −1 ( π

2 , − π

2 , 0)c [30] −0.459402(6) 0.1404 0.0475

aThis ansatz is labeled as [0,0,0] in Ref. [30], and referred to as the uniform state in Ref. [31].
bThis ansatz is referred to as the monopole flux state in Ref. [31]. However, despite careful checking and benchmarking of our code, we find
a different VMC energy [E/J = −0.458525(4)] of this state than given in Table I of Ref. [31] [E/J = −0.4473(9)] on the 500-site cluster
employed therein. In Ref. [30], this state is labeled as [ π

2 , π

2 , 0] and is referred to as the uniform flux state.
cIn Ref. [30], this ansatz is referred to as the staggered flux state and labeled as [ π

2 ,− π

2 , 0].

patterns of Figs. 3(d), 3(e), and 3(f) by strengthening the
blue bonds and weakening the other ones. This probes the
system with respect to inversion symmetry breaking only [see
Fig. 3(d)], C3 rotation symmetry breaking only [see nematic
pattern in Fig. 3(e)] and a combination of both [see dimer
pattern in Fig. 3(f)].

Note that for the patterns in Figs. 3(d) and 3(e) all weak
bonds are symmetry equivalent (i.e., they can all be mapped
onto each other by applying symmetry transformations of
the remaining unbroken symmetries) and the same is true
for the strong bonds. Hence, there is a unique way of defin-
ing the corresponding response functions χD,i and χD,C3 [see
Eq. (15)] by comparing the spin correlations on weakened and
strengthened bonds. On the other hand, for the dimer pattern
in Fig. 3(f), the weakened bonds cannot all be mapped onto
each other due to the reduced number of point symmetries.
Therefore, there are two distinct possibilities to compare the
spin correlations on weakened and strengthened bonds, the
intertetrahedron response χ

(1)
D,C3,i

and the intratetrahedron re-

sponse χ
(2)
D,C3,i

, which are defined as illustrated in Fig. 5.
A first important observation is that the response func-

tion χD,i, which probes pure inversion symmetry breaking
decreases as � flows towards zero. This clearly indicates
that the system rejects this pattern, which is in agreement
with the relatively small hopping amplitudes found in our
PFFRG-enhanced parton approach. In stark contrast, but again
in agreement with our previous analysis, the nematic and
dimer response functions χD,C3 , χ

(1)
D,C3,i

, and χ
(2)
D,C3,i

exhibit a
pronounced increase at small �, where the initial perturba-
tion gets amplified by roughly one order of magnitude. As
expected, χ

(1)
D,C3,i

�= χ
(2)
D,C3,i

since there is no symmetry relation
connecting them. We find that the intratetrahedron response
χ

(2)
D,C3,i

is larger, indicating the system’s strong propensity for
symmetry breaking already within one tetrahedron. Interest-
ingly, χ

(2)
D,C3,i

and χD,C3 are numerically indistinguishable such
that our results are compatible with both patterns. Based on
this analysis we conclude that the system shows tendencies
for the realization of either a dimer or a nematic ground
state.

FIG. 5. Renormalization group flows of response functions χD

[see Eq. (15)] for the three symmetry breaking perturbations illus-
trated in Figs. 3(d), 3(e), and 3(f). In the bottom part of the figure,
the colored bonds illustrate which weakened (gray) and strength-
ened (black) bonds are compared to each other (the colors in these
illustrations match the ones of the curves). Note that for the dimer
pattern in Fig. 3(f) two different response functions χ

(1)
D,C3,i and χ

(2)
D,C3,i

can be defined, depending on the precise choice of weakened and
strengthened bonds that are compared (bottom part of the figure).
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IV. DISCUSSION

Several comments on the applied methods and our results
are in order. As explained before, the PFFRG-enhanced mean-
field approach may have a bias towards detecting symmetry
breaking dimerization patterns. Despite this possible bias, we
believe that the large dimer amplitude in Fig. 4 still points
towards a valence bond solid formation. Our investigation of
symmetry breaking perturbations in Sec. III B substantiates
this conclusion. Another indication comes from calculating
and comparing dimer amplitudes for other well-studied frus-
trated models such as Heisenberg models on the square lattice
(with first and second-neighbor couplings) and on the kagome
lattice. For these two systems we observe similar trends of
overpredicting dimer states. However, dimerization tenden-
cies are found to be significantly stronger on the pyrochlore
lattice than for the square and kagome lattice systems. Par-
ticularly, taking the amplitude χuniform of a uniform hopping
model (equal real-valued hopping amplitudes on all nearest-
neighbor bonds) as a reference, we find that the ratio r =
χ�̄→0

dimer /χ
�̄→0
uniform is largest for the pyrochlore lattice: rpyrochlore ∼

2.8, rsquare ∼ 2.4, rkagome ∼ 2.2 (where for the square lattice
a ratio between second and first neighbor antiferromagnetic
interactions of J2

J1
= 1

2 is assumed and for the kagome lattice
only nearest-neighbor couplings are considered).

Before we move on to our conclusions, it is worth dis-
cussing the PFFRG-enhanced parton approach from a more
general perspective. Instead of interpreting it as an improve-
ment of a bare mean-field theory, one can take the opposite
viewpoint and consider it as a simplification of a rather so-
phisticated “itinerant spinon FRG”. In this latter scheme the
spinon degrees of freedom would be treated more explicitly
by allowing the fermions to hop already on the level of the
FRG (which implies making a gauge fixing). This, however,
makes the numerical efforts vastly more complicated, since
one can no longer benefit from the simplifying locality of
free fermionic propagators (one possibility to proceed is to
sacrifice frequency resolution for including itinerant spinons
[78]). Starting from an “itinerant spinon FRG” our PFFRG-
enhanced parton approach would be obtained by restricting
spinon hopping only to the fermionic particle-hole ladder
channel while neglecting it in all other channels (diagram-
matic contributions without any spinon hopping processes
would still be treated in all FRG channels). This is be-
cause singling out one decoupling channel is equivalent to a
mean-field treatment in this channel, therefore restoring our
PFFRG-enhanced parton approach. With these properties, our
technique is well adapted to describe nonmagnetic ground
states of quantum spin models, including quantum spin liq-
uids, but at the same time avoids the difficulties associated
with the explicit description of itinerant fractional excitations.
In the present implementation, however, the ground state is
identified as the state with the largest mean-field amplitudes
ui j . This criterion is borrowed from a bare mean-field ap-
proach [see Eq. (12)] and could be improved in more advanced
schemes where the minimization of the free energy is taken as
a diagnostic tool. We defer this to future work as it requires
more in-depth method development.

V. CONCLUSION

In this paper, we have investigated the ground-state prop-
erties of the nearest-neighbor S = 1/2 pyrochlore Heisenberg
antiferromagnet using principally the PFFRG method and
variants thereof. We have first introduced and discussed in
detail the PFFRG-enhanced parton mean-field technique on
which parts of our analysis are based. This method uses a
parton ansatz for the system’s spinon degrees of freedom
and determines the parameters of the corresponding bilinear
parton Hamiltonian (spinon hopping and pairing amplitudes)
self-consistently. Compared to a standard parton mean-field
treatment, our approach makes explicit use of renormalized
vertices from PFFRG and, hence, includes important effects
of quantum fluctuations not contained at the bare mean-field
level. As an improvement of an earlier implementation in
Ref. [28], we have further resolved a technical difficulty as-
sociated with an overcounting of fermionic diagrams.

The PFFRG-enhanced parton mean-field technique is pri-
marily designed to probe the spin liquid nature of frustrated
quantum spin systems. Applying it in this context first, we
have found that, among the previously proposed spin liquid
ansätze, the monopole-antimonopole state of Ref. [30] is the
preferred one, with the monopole flux state of Ref. [31] being
a close competitor, and finally the symmetric spin liquids
are found to be noncompetitive. Interestingly, apart from an
overall reduction of spinon amplitudes, fluctuations beyond
mean-field turn out to have a rather small effect. The hierarchy
of spin liquids has been validated by our large-scale varia-
tional Monte Carlo calculations, which find the Gutzwiller
projected wave function energies of the two chiral spin liquids
as the lowest, with the monopole-antimonopole state having
a slightly lower energy [E/J = −0.459402(6)] compared to
the monopole state [E/J = −0.457354(5)], while the two
symmetric spin liquids are found to have comparatively higher
energies, E/J = −0.37502(6) and E/J = −0.37457(5) for
the (0,0,0) and (0, π, π ) flux states, respectively. It is also
worth mentioning that these energies are considerably larger
than the ground-state energies found in Refs. [25,26] and
references therein, providing an independent argument against
a spin liquid ground state.

In the next step, we have applied our PFFRG-enhanced
parton mean-field theory to ansätze, which explicitly break
the system’s lattice symmetries mimicking valence bond solid
formations. The spinon amplitudes for dimer patters are found
to be dominant and even outperform the ones of our spin
liquid ansätze. While we have argued that due to a possible
methodological bias this result should not be overinterpreted
as an indication for dimerization, a comparison to square
and kagome models still suggests that dimer tendencies are
particularly strong on the pyrochlore lattice. This observation
is underpinned more rigorously within a direct investigation of
symmetry breaking patterns where PFFRG has been applied
to model Hamiltonians with slightly weakened or strength-
ened bonds according to the dimerization pattern to be probed.
With this technique we have identified a clear tendency for
either C3 rotation symmetry breaking or a combination of
both C3 and inversion symmetry breaking. On the other hand,
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inversion symmetry breaking alone is clearly not supported.
In total, all these results indicate that the ground state of
the nearest-neighbor antiferromagnetic Heisenberg model on
the pyrochlore lattice is either given by a dimer or a lattice
nematic state.

It is interesting to put this result into its context in the
field of quantum magnetism. The classical nearest-neighbor
pyrochlore Heisenberg model remains disordered at all tem-
peratures. Therefore, a symmetry broken state in the quantum
limit is an example where quantum fluctuations reduce the
system’s symmetries, similar to the well-known order-by-
disorder effect [79]. This is surprising since for the kagome
lattice, which likewise consists of corner sharing building
blocks, the opposite behavior is observed: The classical
nearest-neighbor model shows nematic symmetry breaking
(which corresponds to the selection of coplanar states) [80]
while the quantum model is widely believed to realize a sym-
metric quantum spin liquid (see Refs. [81–88] for a selection
of recent papers). Some models add even more complexity to
this puzzling situation. A seemingly innocent rearrangement
of the corner sharing kagome triangles into a lattice called
the shuriken network is again believed to realize a symmetry
broken valence bond crystal ground state in the quantum case
[89–91]. It will be an interesting future task to explain these
behaviors and identify an overarching systematics.

Experimentally, a dimer state has a spin gap, which can
be observed in the spin structure factor via neutron scatter-
ing. If the gapped excitations are not measurable by neutrons
because the gap is too small it should still be observable in
the heat capacity and the DC magnetic susceptibility as a
distinctive exponential increase from lowest temperatures. Al-
ternatively, the dimerization may be accompanied by a lattice
distortion for which sensitive experimental probes exist.

Here, we have exclusively concentrated on a single model
without varying any coupling parameters. However, exploring
how the ground state of this model is embedded in a wider
phase diagram remains an interesting problem. For example,
by interpolating between the Heisenberg and the Ising model
the system will undergo a phase transition to a U(1) spin
liquid at an unknown Ising interaction strength. Studying the
fate of the putative symmetry broken dimer/nematic state
upon adding longer-range Heisenberg couplings constitutes
another possible future research direction. Since dimer states
show the largest energy reduction on bonds occupied by a
dimer, longer-range couplings on bonds without dimers may
be energetically unfavorable in a valence bond solid. The
associated destabilization of symmetry breaking states may
induce quantum spin liquid behavior and possibly realize the
monopole-type states, which we found to be the preferred
quantum spin liquid ansätze in the nearest-neighbor model.

From a methodological perspective, we have demonstrated
the applicability of the PFFRG-enhanced parton mean-field
theory to complex quantum spin models and showed its ca-
pability to smoothly interpolate between a bare mean-field
scheme and a fully one-loop renormalized approach. The
surprisingly small effect of the renormalized vertices, which
only amounts to an overall reduction of mean-field amplitudes
raises questions about whether the system has an intrinsic
mean-field character or whether the current level of renormal-
ization is insufficient to have a more significant impact on the

spinon amplitudes. Since our PFFRG-enhanced parton mean-
field approach is formulated in a very general way and can
be based on arbitrary types of renormalized vertex functions
(as long as a diagrammatic overcounting is prevented), plenty
of possibilities for improvements are opened up. Particularly
interesting would be the use of vertex functions from the
recently developed multiloop schemes [60,61], which could
yield further insight into the ground-state properties of frus-
trated quantum spin systems.

ACKNOWLEDGMENTS

We thank Chunxiao Liu, Leon Balents, and Federico
Becca for illuminating discussions on fermionic spin liq-
uid ansätze. Y. I. acknowledges financial support by Science
and Engineering Research Board (SERB), Department of
Science and Technology (DST), India through the Startup
Research Grant No. SRG/2019/000056, MATRICS Grant No.
MTR/2019/001042, and the Indo-French Centre for the Pro-
motion of Advanced Research (CEFIPRA) Project No. 64T3-
1. This research was supported in part by the National Science
Foundation under Grant No. NSF PHY-1748958, the Abdus
Salam International Centre for Theoretical Physics (ICTP)
through the Simons Associateship scheme funded by the
Simons Foundation, IIT Madras through the Institute of Emi-
nence (IoE) program for establishing the QuCenDiEM group
(Project No. SB20210813PHMHRD002720), FORG group
(Project No. SB20210822PHMHRD008268), and Interna-
tional Travel Grant, the International Centre for Theoretical
Sciences (ICTS), Bengaluru, India during a visit for partici-
pating in the program Novel phases of quantum matter (Code:
ICTS/topmatter2019/12). Y. I. acknowledges the use of the
computing resources at HPCE, IIT Madras. F. F. acknowl-
edges support from the Alexander von Humboldt Foundation
through a postdoctoral Humboldt fellowship. V. N. would
like to thank the HPC service of ZEDAT, Freie Universität
Berlin, for computing time. J.R. acknowledges financial sup-
port by the German Research Foundation within the CRC 183
(Project No. A04). M.H. thanks the Department of Physics,
Freie Universität Berlin, for computing time at the tron cluster
and, in particular, Jörg Behrmann for outstanding IT support.

APPENDIX A: NUMERICAL SOLUTION
OF THE BETHE-SALPETER EQUATION

In this Appendix, we explain how we solve the Bethe-
Salpeter equation [Eq. (10) from the main text]. In real space,
the convolution integral over internal momenta turns into a
direct product

	̃�
k−q −

∫
BZ

dp
VBZ

	̃�
k−p	

�
p−q → 	̃�

i j − 	̃�
i j 	

�
i j . (A1)

This decouples the different real-space components of 	�

yielding one Fredholm integral equation of the second kind in
Matsubara space for each component. Numerically, we deal
with discretized Matsubara frequencies ωκ and the required
vertex functions depend on a single frequency argument.
We abbreviate 	�(ωκ,−ωκ, 0) → 	�(ωκ ) from now on and
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rewrite the integral equations as

	�
i j (ωκ ) = 	̃�

i j (ωκ ) +
∑
κ ′

W �
i j (ωκ, ωκ ′ )	̃�

i j (ωκ ′ ), (A2)

where W �
i j (ωκ, ωκ ′ ) are weights to approximate the contin-

uous integral in Eq. (10). We assume a locally parabolic
behavior of the integrand, which, for equidistant frequencies,
would be identical to using Simpson’s numerical integration
rule [92]. In the discretized Matsubara space, Eq. (A2) is a
matrix equation and can be solved for the desired two-particle
irreducible vertex

	̃�
i j (ωκ ) =

∑
κ ′

[
1 + W �

i j

]−1
(ωκ, ωκ ′ )	�

i j (ωκ ′ ). (A3)

The inverse of 1 + W �
i j can be computed efficiently from

a lower-upper decomposition. The resulting vertex function
	̃�

i j (ωκ ) is then plugged into the self-consistent Fock equa-
tion [Eq. (11) from the main text].

APPENDIX B: COMPUTATION OF SELF-CONSISTENT
MEAN-FIELD AMPLITUDES

Here we discuss how we numerically solve the self-
consistency equation of our PFFRG-enhanced parton mean-
field approach for a given ansatz ui j . The left-hand side
(LHS) and the right-hand side (RHS) of Eq. (11) have iden-
tical structures in sublattice and momentum space if ui j is
inserted from a PSG classification. This is also true for
the local and quasi-one-dimensional hopping patterns pre-
sented in Figs. 3(d)–3(h). For example, the uniform hopping
ansatz from Fig. 3(a) is diagonal in Nambu space u�̄

k =
diag(χ† �̄

k ,−χ�̄
k ) due to the absence of pairing terms. The

hopping terms χ
† �̄
k have the following structure in sublattice

and momentum space:

χ
† �̄
k = χ�̄

⎡
⎢⎣

⎛
⎜⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞
⎟⎠

+

⎛
⎜⎜⎜⎝

0 e−ik·r1 e−ik·r2 e−ik·r3

eik·r1 0 e−ik·(r2−r1 ) e−ik·(r3−r1 )

eik·r2 eik·(r2−r1 ) 0 e−ik·(r3−r2 )

eik·r3 eik·(r3−r1 ) eik·(r3−r2 ) 0

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦.

(B1)

Here, r1, r2, r3 are the Bravais lattice vectors and the first
(second) term in square brackets corresponds to nearest-
neighbor hoppings within (in between) unit cells. The
real-valued prefactor χ�̄ denotes the magnitude of the hop-
pings, which is identical on all bonds by virtue of the PSG
classification. This is the only free mean-field parameter for
the uniform hopping ansatz, which needs to be determined
self-consistently. In order to compute an arbitrary free mean-
field hopping or pairing amplitude of a given ansatz, it is
therefore sufficient to evaluate Eq. (11) for a specific com-
ponent of u�̄

k in momentum and sublattice space, which is

proportional to this amplitude, which we call ξ from now on
for brevity. By singling out one amplitude, the integrand on
the RHS of Eq. (11) should only contain the Fourier transform
of the according vertex function due to the real-space structure
of contributing Feynman diagrams [see Fig. 2(c)], i.e., the
vertex function 	̃�̄

k−q only contains the Fourier transform of
the nth-neighbor vertex function if an nth-neighbor hopping
or pairing term is considered.

For an efficient momentum integration, the Brillouin zone
is chosen to be cuboidal and we compute the RHS inte-
grand on an equidistant and symmetric mesh containing (nk )3

points in momentum space. In Matsubara space, the integrand
is computed for nω symmetric points between −�max and
�max where we call the largest (infrared) cutoff scale used
within the PFFRG framework �max. The frequency points
include the discrete mesh points ωl from PFFRG, which
are more densely distributed in the infrared ω → 0 limit, if
|ωl − ωl+1| < 2�max/nω and for equidistant frequencies oth-
erwise. We also insert ω = 0 as well as kμ = 0 with μ ∈
{x, y, z} to our grids such that we have an odd number of
points on all integration axes. On these frequency and mo-
mentum grids, the inverse of the matrix iω + iγ �̄(ω) − u�̄

q is
evaluated with the built-in matrix inversion of numpy. The
integration is then carried out via Simpson’s integration in
scipy.

Typically, we compute the RHS at two different points in
parameter space ξ = ξ− and ξ = ξ+ = ξ− + �ξ > ξ− yield-
ing the two values f (ξ−) and f (ξ+). We use an iterative
scheme in which we start with ξ− = 0 and ξ+ = �ξ as well
as some fixed nω and nk . If the conditions

f (ξ−) > ξ− and f (ξ+) < ξ+ (B2)

are fulfilled, we find a solution of the self-consistency equa-
tion at

ξsol = f (ξ−)�ξ − ξ−( f (ξ+) − f (ξ−))

�ξ − ( f (ξ+) − f (ξ−))
, (B3)

where the two lines connecting either ξ− and ξ+ or f (ξ−) and
f (ξ+), respectively, intersect. If the conditions in Eq. (B2) are
not met, we repeat the previous procedure after increasing ξ±
by �ξ [93].

In all simulations, we keep the number of frequencies nω

sufficiently large and, in particular, larger than the number
of frequencies at which the vertex functions are computed
within PFFRG. If we find a solution it will thus still depend
on the discretization parameters �ξ and nk . In order to elim-
inate these dependencies, we repeat the above procedure for
a given nk after sending �ξ → �′

ξ = �ξ/2. The solution is
considered to be converged if

|ξsol(�
′
ξ , n′

k ) − ξsol(�ξ, nk )| < δξ, (B4)

where δξ is absolute error that we allow for. Once con-
vergence is reached in �ξ , we repeat this procedure after
increasing nk → n′

k = nk + 2 until Eq. (B4) is also fulfilled
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for nk . For all results presented in this paper, we set δξ =
10−4.

APPENDIX C: VARIATIONAL MONTE CARLO

As discussed in Sec. II, the parton representation of spin
operators introduced by Eq. (2) is accompanied by an artificial
enlargement of the Hilbert space, with the inclusion of un-
physical S = 0 fermionic states with doubly-occupied and/or
empty sites. As a consequence, mean-field wave functions de-
fined within the pseudofermionic framework do not represent
well-defined quantum states for the original spin Hamiltonian.
A way to overcome this drawback and define appropriate
variational states for the spin problem is constraining the
pseudofermionic wave functions to the spin Hilbert space.
This can be achieved by the application of the Gutzwiller

projector,

PG =
∏

i

( f †
i↑ fi↑ − f †

i↓ fi↓)2, (C1)

to the mean-field state |�MF〉. The resulting wave function,

|�var〉 = PG|�MF〉, (C2)

can be employed as a faithful variational state for the Heisen-
berg Hamiltonian [Eq. (1)]. The Gutzwiller projection can
be easily implemented within a Monte Carlo scheme where
the sampling of the mean-field state is limited to the con-
figurations with one fermion per site. In Table I, we report
the variational energies obtained by Gutzwiller-projecting the
mean-field spin-liquid ansätze defined in Sec. III A.
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