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Curvature-induced drift and deformation of magnetic skyrmions: Comparison of the
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The influence of the geometrical curvature of chiral magnetic films on the static and dynamic properties of
hosted skyrmions is studied theoretically. We predict the effects of the curvature-induced drift of skyrmions under
the action of the curvature gradients without any external stimuli. The strength of the curvature-induced driving
force essentially depends on the skyrmion type, Néel or Bloch, while the trajectory of motion is determined by the
type of magnetic ordering: ferromagnetic or antiferromagnetic. When moving on the surface, skyrmions undergo
deformations that depend on the type of skyrmion. In the small-curvature limit, using the collective-variable
approach we show that the driving force acting on a Néel skyrmion is linear in the gradient of the mean curvature.
The driving acting on a Bloch skyrmion is much smaller: it is proportional to the product of the mean curvature
and its gradient. In contrast to the fast Néel skyrmions, the dynamics of the slow Bloch skyrmions is essentially
affected by the skyrmion profile deformation. For the sake of simplicity, we restrict ourselves to the case of zero
Gaussian curvature and consider cylindrical surfaces of general type. Equations of motion for ferromagnetic and
antiferromagnetic skyrmions in curved magnetic films are obtained in terms of collective variables. All analytical
predictions are confirmed by numerical simulations.
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I. INTRODUCTION

The recently established intimate relation between chiral
magnetic interactions and the system geometry [1,2] opens
up a new direction for the study of curvature-induced prop-
erties of magnetic skyrmions, as well as other topological
solitons. It was shown that an effective Dzyaloshinsky-Moriya
interaction (DMI) appears in the isotropic Heisenberg model
considered in a curvilinear space [1–3]. Moreover, a curvi-
linear magnetic film is equivalent to a planar film, where the
curvature is replaced by the effective DMI and anisotropy
interactions [4,5]. These features make chiral magnetism
similar in spirit to the general relativity [1]. Curvature of
magnetic films breaks symmetries related to the topolog-
ical charge [6,7] and the chirality [8–10] of topological
solitons. Magnetic skyrmions, being a topological soliton
in chiral magnets [11–13], naturally appeared in the fo-
cus of study of curvature effects. On one hand, skyrmions
are promising key elements for realization of nonvolatile
memory and logic devices [12–16]. On the other hand, the
three-dimensional generalization of traditional one- and two-
dimensional magnetic elements anticipates novel features in
the spintronic devices, e.g., miniaturization, increased ca-
pacity, and speed of the data processing [17–19]. In this
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situation, the emergence of numerous questions about proper-
ties of skyrmions on curved surfaces has stimulated noticeable
research activity in the skyrmionic branch of modern mag-
netism [20,21]. A number of interesting results are already
obtained. It was demonstrated that skyrmions can be stabi-
lized on a curvilinear shell without intrinsic DMI [4,22–24].
Skyrmions can be pinned by a local curvature defect [25,26].
The pinned skyrmion can demonstrate a multiplet of equi-
librium states with different radii and one of these states
can be the ground state of the system [25]. The latter of-
fers the possibility to fabricate zero-field skyrmion lattices of
arbitrary symmetry [25]. Furthermore, on closed cylindrical
surfaces, the current-driven skyrmion dynamics is achiev-
able in the high current density regime [27], thus reaching
stable transport with high speeds. This is in contrast to
the case of planar stripes, where for high current densities,
skyrmions annihilate at the boundary due to the skyrmion Hall
effect [28].

This paper contributes to the study of curvature effects
on magnetic skyrmions. Here, we propose a comprehensive
theory of the curvature-induced drift of skyrmions along
cylindrical surfaces with curvature gradients. This effect is
analogous to the curvature-induced drift of domain walls in
curvilinear wires [29] and intuitively can be understood in
the following way: the curvature gradients result in the in-
homogeneous distribution of the effective curvature-induced
DMI [2,3]. Skyrmion drifts towards regions with higher DMI
since it possesses negative DMI energy. Note that the gradient-
induced dynamics is common for skyrmions; previously it was
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found for gradients of magnetic field [30–32], gradients of
anisotropy [33–36], and gradients of temperature [37–39].

We consider two different types of magnetic ordering,
ferromagnetic (FM) and antiferromagnetic (AFM), and two
types of skyrmions, Néel and Bloch. Our analysis is based on
the collective variables approach generalized for curvilinear
coordinates [40] and on micromagnetic simulations.

The general dynamical properties of FM and AFM
skyrmions are formulated in Secs. IV and V, respectively. We
show that both types of skyrmions experience a curvature-
induced deformation of their profiles, and that the dynamics
of Bloch skyrmions is strongly affected by the deformation.
The corresponding theory of the curvature-induced skyrmion
deformation is provided in Sec. III. We illustrate our general
results on two examples of cylindrical surfaces with sinusoidal
and spiral directrices. The formulation of the model for FM
and AFM curvilinear films is provided at the very beginning in
Sec. II. Details of analytical calculations, as well as details of
micromagnetic simulations, are explained in Appendixes A–
E. In Supplemental Material we provide four movies, which
show the curvature-induced skyrmion dynamics of Néel and
Bloch skyrmions in different regimes.

II. MODEL OF A CURVILINEAR MAGNETIC FILM

In the following we consider two cases of chiral mag-
nets with different types of magnetic ordering: ferromagnetic
and antiferromagnetic. The temperature is assumed to be
well bellow the ordering point: Curie and Néel temperatures
for ferromagnets and antiferromagnets, respectively. In this
case, the local order parameter for a FM can be presented
by means of a continuous unit-vector field �(r, t ) = M/Ms,
where M(r, t ) is the magnetization density and Ms is the
saturation magnetization. Considering an AFM we restrict
ourselves to the fully compensated two-sublattice AFMs in
the so-called exchange approximation [41–43], i.e., the ex-
change field, which keeps the magnetization of the two AFM
sublattices M1 and M2 antiparallel,1 is much larger than all
other effective magnetic fields in the system. In this case
the AFM can also be described by a single unit-vector field
�(r, t ) = (M2 − M1)/(2Ms), that is the Néel order param-
eter. Here, Ms denotes the saturation magnetization of each
of the sublattices. In the considered limit, energy of both
FM and AFM films can be modeled by means of the same
Hamiltonian [44]

E [�] = L
∫
S

[
AEX + DED + K

(
1 − �2

n

)]
dS, (1)

where the integral is taken over the area of the film surface
and we assumed that the film thickness L is small enough
to ensure a uniform magnetization in the direction of the
film normal n. The first term in (1) is the energy density of
the nonuniform exchange EX = ∑

i=x,y,z(∂i�)2, where A is
the exchange stiffness. The second term in (1) corresponds

1The action of the exchange field BX can be expressed in terms
of the uniform exchange interaction between two sublattices. The
interaction energy density is E U

X = BX(M1 · M2)/(2Ms ).

to the DMI, with D being the DMI constant. In the follow-
ing we consider two types of DMI, namely, the interfacial
E N

D = �n∇ · � − � · ∇�n and isotropic E B
D = � · [∇ × �]

types which support the formation of skyrmions of Néel and
Bloch types, respectively. Here �n = n · �. The last term
in (1) represents the uniaxial anisotropy with K > 0 being the
easy-normal anisotropy constant.

For the case of a ferromagnet, we limit ourselves to the
case of ultrathin film in which the dipole-dipole interaction is
reduced the local easy-surface anisotropy [45–48] and, there-
fore, it shifts the anisotropy term in (1) as K → K − μ0M2

s /2.
For the sake of simplicity we consider generalized cylin-

drical surfaces as cases of study. Let the cylinder generatrix is
directed along ẑ and directrix γ lies in a perpendicular plane
x0y. The cylinder surface is determined by the parametrization
ς(x1, x2) = γ (x1) − x2ẑ, where ẑ · ∂x1γ = 0 [see Fig. 1(a)].
Let coordinate x1 be the arc length of the curve γ and
coordinate x2 = −z. The parametrization ς(x1, x2) induces
Euclidian metric gαβ = δαβ on the surface and the tangential
basis eα = ∂ας, where e1 = ∂x1γ is the unit vector tangential
to γ and e2 = −ẑ. The unit surface normal we introduce
as n = e1 × e2. Curvilinear properties of the surface ς are
completely determined by the only parameter: the signed
curvature κ (x1) of the curve γ . We define the sign of κ by
means of the convention ∂2

x1
γ = −κn, i.e., κ > 0 and κ < 0

for convexities and concavities, respectively [see Fig. 1(a)].

III. STATIC SKYRMIONS IN CYLINDRICAL SURFACES

Our aim is to estimate the skyrmion energy in the limit of
small curvature

1 � |κ|r0 � |κ ′|r2
0 � |κ ′′|r3

0 . . . , (2)

where the prime denotes the derivative with respect to x1, and
r0 is the skyrmion radius. To this end we introduce the angular
parametrization

� = sin θε + cos θn, ε = cos φe1 + sin φe2 (3)

for the order parameter and consider two successive approxi-
mations of the curvature effect.

A. Rigid skyrmion: First-order perturbation in curvature

Let us first neglect possible deformations of the skyrmion
profile caused by the curvature. We consider the curvature
as a small perturbation which does not change the skyrmion
profile; however, it can shift the skyrmion energy. In other
words, we are looking for the energy corrections induced by
the curvature in the first-order perturbation theory. Taking the
advantage of Euclidean metric we apply the following ansatz
for the skyrmion structure:

θ = θ0(r), r =
√

(x1 − X1)2 + (x2 − X2)2,

φ = χ + �0, χ = arctan
x2 − X2

x1 − X1
(4)

which structurally coincides with the planar skyrmion solu-
tion. Here, θ0(r) represents the profile of the planar skyrmion
and X1, X2 are curvilinear coordinates of the skyrmion center
on the surface. The constant �0 depends on the skyrmion type:
�0 = �N

0 = (1 − σ )π/2 for Néel and �0 = �B
0 = σπ/2 for
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FIG. 1. (a) The cylindrical film with sinusoidal directrix (9) shown by the orange line. Magenta and cyan lines demonstrate possible
trajectories of FM and AFM Bloch skyrmions discussed in Secs. IV and V, respectively. (b), (c) Show the variation of energies of Néel EN

crv

and Bloch EB
crv skyrmions along the directrix (direction ξ1) obtained by means of (6a) and (6b), respectively. Tγ is the period of the directrix

in terms of the arc length. Green and orange vertical dashed lines correspond to the position of the convexities and concavities, respectively.
(d), (e) Quasiequilibrium distribution of FM Néel and Bloch skyrmions on the curved film, respectively. Green dashed lines in (d) and (e)
correspond to the curvature κ = 0. Data in (d) and (e) are obtained by means of numerical simulations for A = 10�, T = 35� (corresponds
to Tγ ≈ 55.1�), and d = 1, ηG = 0.1. Skyrmion dynamics preceding the presented states is shown in the Supplemental Material movies [49].
Total simulation time in both cases is tsim = 104/ωFM.

Bloch skyrmions. σ = sign(D) = ±1, and the boundary con-
ditions assumed for the skyrmion profile are θ0(0) = π ,
θ0(∞) = 0.

As a next step we calculate the energy of the skyrmion on
the curved film. To this end, we substitute ansatz (4) into the
Hamiltonian (1) and perform integration over the film area.
Note that the energy densities EX and ED depend on curvature
κ (x1), which in the limit (2) can be presented in form of series

κ (x1) = κ (X1) + κ ′(X1)r cos χ + κ ′′(X1)

2
(r cos χ )2 + · · · .

(5)
The polar coordinates (r, χ ) used here are defined in (4).
Using (5) under the integral (1) we obtain the energy of the
skyrmion as a function of its position X1 (for details see Ap-
pendix A). The normalized total energy EN,B = E N,B/(8πAL)
of Néel (EN), as well as Bloch (EB) skyrmions, can be pre-
sented as a sum EN,B = EN,B

pl + EN,B
crv + const of the skyrmion

energy in planar film EN
pl = EB

pl = C0 − C2 and the curvature-
induced corrections

EN
crv = CN

1κ + CN
2
κ

2

2
+ O(κ′′, κ

′2), (6a)

EB
crv = CB

2
κ

2

2
+ O(κ′2). (6b)

Here, κ(X1) = κ (X1)� is the dimensionless curvature at
the point of the skyrmion location X1 = X1/�. The mag-
netic length is � = √

A/K . As seen from Eqs. (6) the
total skyrmion energy depends on the skyrmion posi-
tion. Constants C0 = 1

4

∫ ∞
0 [θ ′

0(ρ)2 + ρ−2 sin2 θ0(ρ)]ρ dρ and
C2 = 1

4

∫ ∞
0 sin2 θ0(ρ)ρ dρ are determined by the profile of

skyrmions in a planar film, where ρ = r/� is the dimensional
distance from the skyrmion center. Coefficients in the expan-
sions (6) are CN

1 = −C2(2 + d2)/d and CN
2 = CB

2 = −C2 with
d = D/

√
AK being the dimensionless DMI constant. Note

that |d| < 4/π is the only control parameter of the model (1).
Details of the derivation of expansion (6) and its higher-order
terms can be found in Appendix A.

Equations (6) show the principal difference between Néel
and Bloch skyrmions in the curved films, namely, the leading
terms in expansions (6) are linear and quadratic in curvature
for the Néel and Bloch skyrmions, respectively. Since the cur-
vature is small, Néel skyrmions experience a much stronger
influence by the curvature compared to Bloch skyrmions.
The reason is that the curvature-induced effective DMI orig-
inating from the isotropic exchange interaction is of the
interfacial DMI (Néel) type [22,25]. So, for the case of Néel
skyrmions, a direct competition between the intrinsic and
the curvature-induced DMIs takes place. This makes Néel
skyrmions more sensitive to the film curvature as compared
to Bloch skyrmions.

Since C2 > 0, the sign of the coefficient CN
1 at the leading

term in (6a) coincides with the sign of the DMI constant. This
enables us to expect a drift of Néel skyrmions towards maxima
(minima) of the curvature for D > 0 (D < 0). From (6a) we
conclude that the position of stable equilibrium X0

1 for a Néel
skyrmion is determined by the condition

κ
′|X0

1
= 0, σκ

′′|X0
1
< 0. (7)

Note that X1 = X0
1 determines a straight line parallel to ẑ on

the cylindrical surface.
Regardless of the DMI sign, the coefficient CB

2 at the
leading term in (6b) is negative. This means that the Bloch
skyrmion drifts towards curvature extremes. However, the
driving force is expected to be much smaller as for the Néel
skyrmion. From (6b) we conclude that the position of the
stable equilibrium X0

1 for a Bloch skyrmion is determined by
the condition

κκ
′|X0

1
= 0, κ

′2 + κκ
′′|X0

1
< 0. (8)
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It follows from (8) that the line X1 = X0
1 determined by

κ(X0
1) = 0 always corresponds to an unstable equilibrium.

We verify the predictions (7) and (8) about different equi-
librium positions for Néel and Bloch skyrmions by means of
micromagnetic simulations performed for a sinusoidal cylin-
drical surface with directrix

γ = xx̂ + A sin(qx)ŷ. (9)

Using the expression for the directrix curvature κ =
Aq2 sin(qx)/[1 + A2q2 cos2(qx)] and conditions (7) and (8)
we obtain that the positions of stable equilibrium for Néel
and Bloch skyrmions correspond to x0 = ( 1

4 + n)T and x0 =
( 1

4 + n
2 )T, respectively. Here T = 2π/q is period of the sur-

face and it was assumed that D > 0. As an initial state for
the simulations we choose a diluted skyrmion lattice with the
uniform skyrmion distribution along the surface. The numer-
ical time integration of the Landau-Lifshitz equation leads to
skyrmion dynamics which results in the essentially nonuni-
form final skyrmion distribution shown in Figs. 1(d) and 1(e).
See also the Supplemental Material movies [49]. Namely,
Néel skyrmions are concentrated near convexities of the sur-
face, while Bloch skyrmions are pinned at convexities as well
as at concavities. This is in complete agreement with the equi-
librium stationary positions obtained from (7) and (8), and it is
also consistent with the recent prediction about pinning of the
Bloch skyrmion on the top of the Gaussian-shaped cylindrical
defect of a planar stripe [50]. For details of micromagnetic
simulations see Appendix E. Note that the curvature-induced
potential EB

crv for Bloch skyrmions is very flat in the vicinity
of the unstable equilibrium line κ = 0 [see Fig. 1(c)]. Due
to the vanishing driving force, the Bloch skyrmions in this
region move extremely slow. Although, Bloch skyrmions do
not leave the vicinity of unstable equilibrium during sim-
ulation time tsim = 104/ωFM [Fig. 1(e)], the Supplemental
Material video [49] shows that they move away from the line
κ = 0. Here, ωFM is frequency of the uniform ferromagnetic
resonance in the planar film (see Sec. IV for the explicit
definition).

The described above effect of skyrmion pinning on the
curvature extremes is a two-dimensional generalization of the
previously described effect of pinning of domain wall on a
local bend of the wire [51]. Although the model of rigid
skyrmion enables us to find positions of stable equilibrium,
the noticeable radial and elliptical deformations of skyrmions
were found in simulations. In the following subsection we
study this effect in details.

B. Deformed skyrmion: Second-order perturbation in curvature

In order to take into account possible skyrmion deforma-
tions we consider the following modification of the ansatz (4):

θ = θ0{ρ[1 + s̃ + f cos(2χ + λ)]},
φ = χ + �0 + ϕ̃ + g sin(2χ + λ). (10)

Here, five additional collective variables are introduced. Vari-
ables s̃ and ϕ̃ describe the out-of-surface and in-surface
components of the radial symmetrical skyrmion deformation,
respectively, while f and g are out-of-surface and in-surface
amplitudes of the elliptical deformation, respectively. Variable

λ controls orientation of the elliptically deformed skyrmion
core. Here, we utilized the fact that the in-plane and out-of-
plane components of the skyrmion excitations have the phase
shift π/2 [52,53]. For small values of the deformation am-
plitudes, ansatz (10) reflects the deformation of the skyrmion
profile caused by the excitation of the breathing and elliptical
modes [52–58]. We restrict ourselves by these two modes
because they have the lowest energy (with the exception of the
translation mode) for a wide range of skyrmion radii [52,53].
The translation mode is taken into account by means of the
collective coordinates X1 and X2.

On the next step we substitute the ansatz (10) into the
total-energy expression (1) and minimize it with respect to the
five additional collective variables assuming that the skyrmion
position is fixed, i.e., that the shape variables s̃, ϕ̃, f , g, and λ

are fast as compared to the position variables (X1, X2). This
assumption is supported by the recent finding [40] that the
translation mode of the skyrmion pinned on the curvilinear
defect has much smaller frequency as compared to the shape
modes, e.g., breathing and elliptical modes. Mathematical de-
tails of this analysis can be found in Appendix B.

For Néel skyrmion, the equilibrium amplitudes of
the radial-symmetrical deformation are ϕ̃N = 0, and s̃N ≈
−κ(d + d−1) in the linear in κ approximation. Here we also
assumed that |κ/d| � 1. Note that if |κ| is comparable or
larger than |d|, then Néel skyrmion can collapse and switch
its helicity [22]. The latter is consistent with the divergent
behavior of the parameter s̃N for vanishing d . Positive (neg-
ative) sign of parameter s̃N corresponds to decrease (increase)
of the skyrmion radius. So, if d > 0 then the skyrmion radius
increases for a skyrmion located on a convexity (κ > 0) and
decreases for a skyrmion located on a concavity (κ < 0). This
is in full agreement with the previous results obtained for Néel
skyrmions on spherical shells [22] and Gaussian bumps [40].
The vanishing amplitude of the in-surface deformation ϕ̃N

means that the skyrmion helicity is not affected, i.e., skyrmion
stays of purely Néel type. This also agrees with the previous
results [22,25,40].

For the elliptical deformation we obtain λN = 0 and

f N ≈ κ

d

αg + 2

α f αg − 4
, gN ≈ −κ

d

α f + 2

α f αg − 4
, (11)

where α f = 1 + C−1
2

∫ ∞
0 θ ′

0(ρ)2ρ dρ and αg = 1 +
C−1

2

∫ ∞
0 sin2 θ0(ρ)ρ−1dρ. For details of the derivation

see Appendix B. The deformation amplitudes are shown in
Fig. 2(d) by solid lines. For model (1), there is a one-to-one
correspondence between parameter d and radius r0 of
skyrmion on planar film [52,59]. Since the skyrmion radius
is easily observable in experiments, here and below we plot
the quantity of interest as a function of r0. The skyrmion
radius is defined as θ0(r0) = π/2. Figure 2(d) shows
that sign( f N) = sign(κ), so basing on (10) we conclude
that the long axis of the elliptically deformed skyrmion
core is directed along e2 for convexities and along e1 for
concavities.2 This agrees with our micromagnetic simulations
[see Fig. 2(c)]. Note that according to (7), concavity extremum

2Note that angle χ is measured from direction e1.
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(a)

(b)

(c)

(d) (e)

FIG. 2. Deformations of Bloch skyrmions in stable equilibrium positions with positive and negative curvatures are shown in (a) and
(b), respectively. Deformation of the Néel skyrmion in the position of stable equilibrium is shown in (c). Data are obtained by means of
micromagnetic simulations for the case of FM, geometrical parameters of the surface are the same as in Fig. 1, DMI constant d = 1 and 0.9
for the Bloch and Néel skyrmions, respectively. Deformations and equilibrium positions of AFM and FM skyrmions are the same. Amplitudes
of the elliptical and radially symmetrical deformations are shown in (d) and (e) for the Néel and Bloch skyrmions, respectively. Lines show the
theoretical predictions (11) and (12) for elliptical and (14) and (15) for radially symmetrical deformations. In the latter case κ = 0.1. Markers
show the data extracted from the simulations (see Appendix E 1 a).

of a cylindrical surfaces is a position of unstable equilibrium
for the Néel skyrmion. For this reason we were able to relax
Néel skyrmions in our simulations only for convexities.

For Bloch skyrmion, the equilibrium amplitudes of the
radial-symmetrical deformation are ϕ̃B ≈ −κ/d , and s̃N ≈
0 in the linear in κ approximation and under assumption
|κ/d| � 1. So, the radial-symmetrical part of the Bloch
skyrmion deformation is opposite as for the Néel skyrmion,
namely, deformation of the out-of-surface component van-
ishes while the skyrmion helicity is strongly affected. The
latter effect can be interpreted as a result of competition of
the intrinsic DMI of Bloch type and the effective curvature-
induced DMI of Néel type resulting in skyrmion of an
intermediate type.

For the elliptical deformation we obtain λB ≈ π/2 and

f B ≈ κd

α f αg − 4

[
αg

2

(
1 + 2

d2

)
− 1 + 2

d2

]
,

gB ≈ κd

α f αg − 4

[
α f

2

(
1 − 2

d2

)
− 1 − 2

d2

]
. (12)

This means that the elliptically shaped skyrmion core makes
angle π/4 with the directions e1 and e2. Corresponding val-
ues of the deformation amplitudes are shown in Fig. 2(e) by
dashed lines. Details of the derivation are presented in Ap-
pendix B. The analogous elliptical deformation of skyrmion
cores was found in micromagnetic simulations for skyrmions
on the surface of circular cylinder [27,60].

In the next step we substitute the obtained above equi-
librium values of deformation amplitudes into the energy
expression and derive the energy of the deformed skyrmion
(see Appendix B for details). The resulting energy structurally
coincides with (6), but coefficients CN,B

2 at the terms quadratic
in curvature. Coefficient CN

1 at the linear term remains un-
changed; it means that in the limit of small curvature, one
can neglect the deformation effects of the Néel skyrmion.
This is in strong contrast to the case of the Bloch skyrmion,
whose energy is essentially affected by the curvature-induced
deformation. Coefficient CB

2 = −C2(1 + �cB) obtains the
deformation-induced correction

�cB =
(
C0
C2

− 1
2

)(
4

d2 + d2
) + αg − α f + 2 α f αg

d2

α f αg − 4
(13)

(for details see Appendix B 3). The comparison of the leading-
term coefficients in (6) is presented in Fig. 3, which illustrates
strong impact of deformation on coefficient CB

2.
For both types of skyrmions the deformations of different

types are independent if the deformation amplitudes are found
in approximation linear in κ, i.e., the elliptical deformation is
not influenced by the radially symmetrical one and vice versa;
and the corresponding corrections to the energy coefficients
are additive, e.g., �cB = �cB

rs + �cB
el, where the contributions

�cB
rs and �cB

el come from the radially symmetrical and ellipti-
cal deformations, respectively. For the proof see Appendix B.
Above, we considered the case when both types of deforma-
tion take place in the same time. However, it is known [52,53]
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(rigid)

FIG. 3. The comparison of the leading terms coefficients in (6):
CN

1 = −C2(2 + d2)/d , coefficient CB
2 = −C2(1 + �cB ) is presented

for �cB determined by (13) (solid line), and for �cB = 0 (dashed
line). The latter case corresponds to rigid skyrmion, when the defor-
mation effects are neglected.

that for small-radius skyrmions the elliptical mode is much
more energetic as compared to the radially symmetrical mode.
This is correct for both FM and AFM cases (see Fig. 2 in
Ref. [52] and Fig. 6 in Ref. [53]). This leads us to the as-
sumption that the elliptical deformation can be neglected for
small-radius skyrmions. This assumption we explicitly verify
in Appendix B 4. The neglect of the elliptical deformation sig-
nificantly reduces the number of collective variables, from five
to two. This enables us to build the nonlinear (in κ) theory of
the radially symmetrical deformation and find the deformation
amplitudes beyond the restriction |κ/d| � 1. For the Néel
skyrmion we obtain

cos ϕ̃N = sign(1 + κ/d ), s̃N = 1 − κd − κ
2

2

|1 + κ/d| − 1 (14)

(see Appendix B 1). Note that the case κ = −d corresponds
to the complete compensation of the intrinsic DMI by the
effective curvature-induced one. In this point the skyrmion
collapses and changes its helicity afterwards. This is reflected
by the jump of ϕ̃N from 0 to π , and by divergence of the scal-
ing parameter s̃N. The effect of the curvature-induced helicity
switching mediated by the skyrmion collapse was previously
described for Néel skyrmions on spherical shells [22].

In the same manner we obtain

tan ϕ̃B = −κ

d
, s̃B = 1 − κ

2

2√
1 + κ

2/d2
− 1 (15)

for a Bloch skyrmion (see Appendix B 1). Note that for the
vanishing intrinsic DMI d → 0 one obtains ϕ̃B → ±π/2,
i.e., the Bloch skyrmion is transformed into the Néel one.

This agrees with the previous observation that the curvature-
induced effective DMI is of interfacial (Néel) type.

IV. CURVATURE-INDUCED DYNAMICS OF FM
SKYRMIONS

Since the skyrmion energy on curvilinear film is coordi-
nate dependent, the skyrmion experiences a curvature-induced
driving force. The latter results in drift of the skyrmion along
the surface, analogous to the drift of a domain wall in a wire
under the action of gradients of the wire curvature [29]. The
aim of this section is to provide an analytical description of
the curvature-induced skyrmion drift. The following analysis
is based on the assumption that two dynamical processes of
the change of skyrmion position and change of its form have
different timescales which can be well separated. Namely, we
assume that the typical equilibration time of the skyrmion
deformations is much smaller as compared to the typical times
of the skyrmion displacements. This assumption is supported
by the fact that the translation mode of the skyrmion on a
curvilinear film is much less energetic as compared to the
shape modes [40].

The dynamics of a ferromagnetic media is governed by
Landau-Lifshitz-Gilbert equation [61,62]

∂t� = γ0

Ms

[
� × δE

δ�

]
+ ηG[� × ∂t�], (16)

where � is unit magnetization vector, γ0 is gyromagnetic
ratio, and ηG is the Gilbert damping parameter. For the
description of the skyrmion dynamics, we use a collec-
tive variable approach based on the traveling-wave ansatz
(TWA) formulated for the curvilinear coordinates: �α =
�α[x1 − X1(t ), x2 − X1(t )], �n = �n[x1 − X1(t ), x2 − X1(t )],
where �α and �n are the tangential and normal components
of �, respectively. Note that � 	= �[x1 − X1(t ), x2 − X1(t )],
in contrast to the case of a planar film. This is because the
TWA is formulated for the magnetization components �α , �n

defined in the coordinate-dependent basis. Substitution of the
TWA into Eq. (16) with the subsequent integration over the
space domain results in the Thiele equation for collective co-
ordinates [40,63], which has the following normalized form:

(Ntopεαβ − ηDαβ )Ẋβ = ∂E

∂Xα

(17)

(for details see Appendix C). Here, we use the advantage
of the orthonormalized basis and do not distinguish between
the contravariant and covariant indices. Units for energy and
distance are the same as for Eq. (6). The overdot means the
derivative with respect to the dimensionless time τ = ωFMt
with ωFM = 2Kγ0/Ms. Damping in Eq. (17) is described by
the rescaled constant η = C0ηG and the damping tensor whose
components are different for different skyrmion types:

[
DN

αβ

] ≈
[

1 − δN 0
0 1 + δN

]
,

[
DB

αβ

] ≈
[

1 δB

δB 1

]
. (18)

Here, the linear in curvature corrections δN,B = C2
2C0

[gN,B(αg −
1) − f N,B(α f − 1)] appear due to the elliptical deformation of
the skyrmion shape, and terms of the order o(κ) are neglected.
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FIG. 4. Curvature-induced drift of FM skyrmions along cylindrical Euler spiral. Time dependencies of coordinates of Néel (a) and Bloch
(b) FM skyrmions obtained by means of micromagnetic simulations (markers) are compared with analytical predictions of the collective
variables model (solid lines), namely, coordinates of Néel and Bloch skyrmions are obtained by means of Eqs. (C3) and (C4), respectively.
Skyrmion trajectories on the central panel are extracted from simulations (see Appendix E for details). In simulations, velocities of skyrmions
are determined as explained in Appendix E. For simulations we use d = 1, k = 6 × 10−3, ηG = 0.1, initial skyrmion positions are X1(0) = −15
and X2(0) = 0. The dynamics of both skyrmions is shown in Supplemental Material movies [49]. (c) Demonstrates dependence of skyrmion
velocity on the curvature gradient. Markers represent the velocity averaged during the simulation time τsim = 6 × 103. Solid and dashed lines
in (c) are analytical estimations of velocities of Néel |V N

FM| ≈ k|CN
1 | and Bloch |V B

FM| ≈ k2|CB
2X1(0)| skyrmions, respectively. Note that the

approximation of the constant velocity for the Bloch skyrmion is valid since τs � τ ∗ ∼ 104–105.

Note that the corrections δN,B are coordinate dependent be-
cause of curvature dependence of the deformation amplitudes
f N,B and gN,B.

Since the skyrmion effective energy depends on the sin-
gle coordinate E = E(X1), one can conclude from (17) that
the skyrmion always moves along a trajectory X1 − X1(0) ≈
− η

Ntop
[X2 − X2(0)] which is linear in the curvilinear coordi-

nates. Here and in what follows, we assume that the damping
is small and we neglect terms proportional to η2 and ηδN,B.
An example of a skyrmion trajectory obtained as a numerical
solution of Eqs. (17) for the case of a Bloch skyrmion is shown
in Fig. 1(a). The skyrmion velocity

V FM ≈ E′(X1)

N2
top

[−ηe1 + Ntope2], (19)

with E′(X1) = ∂E/∂X1, is determined by the skyrmion posi-
tion only. For the limit case of vanishing damping (ηFM → 0)
the skyrmion moves along the cylinder generatrix with veloc-
ity V FM = ẑE′(X1)/Ntop. The generatrices {X1 = X0

1, X2 ∈ R}
where X0

1 : E′(X0
1) = 0 are stationary lines. Linearization of

the equations of motion (17) in vicinity of the stationary
lines results in solution X̃1(τ ) ≈ X̃1(0) exp[−ηN−2

top E
′′(X0

1)τ ],
where X̃1 = X1 − X0

1 is a small displacement from the sta-
tionary line. Thus, one can conclude that the stationary line
is stable if E′′(X0

1) > 0, and unstable if E′′(X0
1) < 0. Taking

into account the form of the energy (6) for different types
of skyrmions, one can reduce the obtained stability condition
to (7) and (8) for Néel and Bloch skyrmions, respectively.

FM skyrmion in the cylindrical Euler spiral

As an example, we consider a cylindrical surface with
a shape of Euler spiral (also known as a Cornu spiral or

clothoid) [64], and it is determined by the directrix

γ (ξ1) =
√

2

k

[
x̂ C

(√
k

2
ξ1

)
− ŷ S

(√
k

2
ξ1

)]
, (20)

where C(x) = ∫ x
0 cos(y2)dy and S(x) = ∫ x

0 sin(y2)dy are the
Fresnel integrals (see Fig. 4). The directrix curvature κ = kξ1

has constant gradient, so the cylindrical Euler spiral is the sim-
plest surface for analysis of the curvature-induced skyrmion
drift.

Energy of the Néel skyrmion is approximated as
E(X1) ≈ −|CN

1 |kX1 + const, where we take into account
that CN

1 < 0 assuming D > 0. In this case the equa-
tions of motion (17) result into the skyrmion trajectory
X(τ ) = ς(X1(τ ),X2(τ )) with X1(τ ) ≈ X1(0) + |CN

1 |kητ and
X2(τ ) ≈ X2(0) + |CN

1 |kτ . Here we substitute Ntop = −1 be-
cause the quantity CN

1 obtained in Sec. III and shown in Fig. 3
is valid only for this case. The predicted trajectory is in good
agreement with micromagnetic simulations [Fig. 4(a)]. Note
that due to small damping, the Néel skyrmion moves mainly
along the generatrix. The absolute value of skyrmion velocity
is approximately a constant |V N

FM| ≈ k|CN
1 |, which is linear in

the curvature gradient [see Fig. 4(c)]. Here the terms o(ηFM)
are neglected. Since E′ 	= 0, there are no stationary lines for
Néel skyrmions on the cylindrical Euler spiral.

The energy of a Bloch skyrmion on the cylindrical Euler
spiral is approximated as E(X1) ≈ − 1

2 |CB
2|k2X2

1 + const. For
this case, the equations of motion (17) result into the skyrmion
trajectory X(τ ) with coordinates (C4). In contrast to the Néel
skyrmion, velocity (C5) of a Bloch skyrmion is not a constant.
However, for initial moments of time τ � τ ∗, where τ ∗ =
1/(η|CB

2|k2), one can approximate |V B
FM| ≈ |CB

2X1(0)| k2. In
contrast to the Néel skyrmion, velocity of the Bloch skyrmion
is quadratic in the curvature gradients and, for this reason, it
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is much smaller [see Fig. 4(c)]. Note also different scales of
the vertical axes in Figs. 4(a) and 4(b).

The dynamics of a Bloch skyrmion essentially depends
on its initial position X1(0). In Fig. 4 we choose X1(0) < 0,
for this reason, the Bloch skyrmion moves in the direction
opposite to the Néel skyrmion. In contrast, direction of motion
of the Néel skyrmion is independent on its initial position.

For a Bloch skyrmion there is single unstable stationary
line X0

1 = 0 on the surface (20). One can see from (C5) that
V B

FM = 0 if X1(0) = 0.

V. CURVATURE-INDUCED DYNAMICS OF AFM
SKYRMIONS

Within the exchange approximation a two-sublattice fully
compensated AFM can be described by the Néel order param-
eter � whose dynamics is determined by the equation [41–43]

[
2Ms

γ 2
0 BX

∂2
t � + δE

δ�
+ ηG

2Ms

γ0
∂t�

]
× � = 0. (21)

Here Hamiltonian E is defined in (1), and it is assumed that the
exchange field BX (see footnote 1) much exceeds all the other
effective fields in the system, e.g., BX � BA with BA = K/Ms

being the anisotropy field.
Applying TWA to (21) we proceed to the equation of

motion for the collective coordinates

Mαβ

(
Ẍβ + η̄Ẋβ

) = − ∂E

∂Xα

, Mαβ = C0Dαβ. (22)

For details, see Appendix D. Here, the overdot denotes deriva-
tive with respect to dimensionless time τ̄ = tωAFM, where
ωAFM = γ0

√
BXBA is frequency of the uniform antiferromag-

netic resonance. The rescaled damping coefficient is η̄ =√
BX/BAηG. In contrast to the FM case, the role of tensor Dαβ

is significant in Eq. (22) even in the small-damping limit since
it determines the tensor of skyrmion mass Mαβ . Since tensor
Dαβ has different structure for the Néel and Bloch skyrmions,
these cases must be considered independently.

Néel skyrmion. Utilizing the fact that the energy E in (22)
depends on single coordinate X1, we present the equations of
motion in the form

Ẍ1 + η̄Ẋ1 + 1

C0
E′(X1) ≈ 0, (23a)

Ẍ2 + η̄Ẋ2 = 0, (23b)

where Eq. (23a) is written in the leading approximation in
curvature. Equation (23b) has the general solution X2(τ̄ ) =
X2(0) + V2(0)(1 − e−η̄τ̄ )/η̄, where Vα = Ẋα . So, for zero ini-
tial velocity one has X2 = const and the skyrmion moves
only in direction e1, i.e., along the directrix. Equation (23a)
results in stationary lines X1 = X0

1 determined by the equa-
tion E′(X0

1) = 0. The stationary line is stable (unstable) if
E′′(X0

1) > 0 [E′′(X0
1) < 0]. For the energy (6a), the latter sta-

bility condition is equivalent to (7) in the leading in curvature
approximation.

In the vicinity of a stable stationary line the
skyrmion demonstrates the oscillatory dynamics X1(τ̄ ) ≈
X0

1 + a cos(ωN
p τ̄ + ψ0)e−η̄τ̄ /2 and X2(τ̄ ) = const with

frequency ωN
p =

√
C−1

0 E′′(X0
1). In the leading in curvature

FIG. 5. Eigenfrequency of oscillations of the AFM skyrmion in
vicinity of the stable equilibrium for the case of sinusoidal cylinder
with generatrix (9). Solid and dashed lines correspond to the eigen-
frequencies of Néel and Bloch skyrmions plotted for predictions (24)
and (26), respectively. Symbols correspond to the data obtained by
means of numerical simulations for sinusoidal film with T = 35�,
d = 1, and ηG = 10−4.

approximation, one obtains from (6a)

ωN
p =

√∣∣CN
1

∣∣
C0

∣∣
κ

′′(X0
1

)∣∣. (24)

Note that frequency is measured in units of ωAFM.
For the sinusoidal surface with generatrix (9) the sta-
ble stationary lines are x0 = (1/4 + n)2π/q with ωN

p =√
|CN

1 |C−1
0 A�3q4(1 + 3A2q2). The obtained frequency is in

good agreement with micromagnetic simulations (see Fig. 5
and the Supplemental Material [49]).

Bloch skyrmion. Assuming that the damping is small, we
neglect terms of the order η̄2, η̄δB and higher. For this case,
we approximate Eqs. (22) as follows:

Ẍ1 + η̄Ẋ1 + 1

C0
E′(X1) ≈ 0, (25a)

Ẍ2 + η̄Ẋ2 − δB(X1)

C0
E′(X1) ≈ 0. (25b)

In contrast to the equations of motion (23) for the Néel
skyrmion, Eq. (25b) for the coordinate X2 obtains a driving
determined by the solution for X1(τ̄ ). This means that the
Bloch skyrmion always experiences a drift in e2 direction, in
contrast to the Néel skyrmion.

For the case of Bloch skyrmion in the leading in cur-
vature approximation we have E = − 1

2 |CB
2|κ2(X1) and the

stable equilibrium lines are determined by (8). In vicinity of a
stable stationary line the Bloch skyrmion demonstrates oscil-
lations X1(τ̄ ) ≈ X0

1 + a cos(ωB
pτ̄ + ψ0)e−η̄τ̄ /2 and X2(τ̄ ) =

054425-8



CURVATURE-INDUCED DRIFT AND DEFORMATION OF … PHYSICAL REVIEW B 105, 054425 (2022)

FIG. 6. Correction δN,B for the damping tensors (18) as functions
of (a) the DMI constant and (b) the skyrmion radius.

δB(X0
1)a cos(ωB

pτ̄ + ψ0)e−η̄τ̄ with frequency

ωB
p =

√∣∣CB
2

∣∣
C0

∣∣
κ

′(X0
1

)2 + κ
′′(X0

1

)
κ

(
X0

1

)∣∣. (26)

In the local basis {e1, e2}, this solution corresponds to the
oscillations along a straight line which makes angle α =
arctan δB(X0

1) with the direction e1. For the sinusoidal surface
with generatrix (9) the stable stationary lines are x0 = (1/4 +
n/2)2π/q with ωB

p =
√

|CB
2|C−1

0 A2�4q6(1 + 3A2q2). The ob-
tained frequency is in good agreement with micromagnetic
simulations (see Fig. 5 and the Supplemental Material [49]).

Note the drastically different behavior in the small-
amplitude limit: ωN

p ∝ √
A and ωB

p ∝ A.

A. AFM skyrmion in the cylindrical Euler spiral

Trajectory of a Néel skyrmion can be found as a solution
of equations of motion (23) for the energy (6a) with the form

of curvature κ = kX1 taken into account. If the curvature
gradients are small k � η̄, then the Néel skyrmion demon-
strates a uniformly accelerated motion with the acceleration
aN = −CN

1k/C0e1 for the initial moments of time τ̄ � 1/η̄,
and it reaches the regime with constant velocity V N

AFM ≈ aN/η̄

in the opposite limit of long times τ̄ � 1/η̄ (see Appendix D
for details). Here it was assumed that the initial skyrmion
velocity vanishes.

In the same manner, one obtains the trajectory for the
Bloch skyrmion solving equations of motion (25) for the
energy (6b). Similarly to the Néel skyrmion, in the limit of
small-curvature gradients, the Bloch skyrmion demonstrates
a uniformly accelerated motion with the acceleration aB =
X1(0)k2|CB

1|C−1
0 [e1 + X1(0)k�Be2] for the initial moments of

time, and it reaches the regime with constant velocity V B
AFM ≈

aB/η̄, in the opposite limit of long times τ̄ � 1/η̄ (see Ap-
pendix D for details). Here �B = δB/κ, see Fig. 6 and zero
initial velocity was assumed.

Thus, in the long-time limit, both skyrmions reach the
regime of constant velocity which is linear and quadratic in
k (curvature gradient) for Néel and Bloch skyrmions, respec-
tively. The Bloch skyrmion moves much slower, in agreement
with our simulations (see Fig. 7). Both skyrmions mainly
move along the directrix (in direction e2), however, the Bloch
skyrmion obtains small velocity component along the genera-
trix (direction e1) [see Fig. 7(b)]. The latter effect is attributed
to the elliptical skyrmion deformation, which results in a weak
nondiagonality of the mass tensor.

VI. CONCLUSIONS

We have built a theory of curvature-induced drift of mag-
netic (FM and AFM) skyrmions along curvilinear surfaces

FIG. 7. Curvature-induced drift of AFM skyrmions along cylindrical Euler spiral. Time dependencies of coordinates of Néel (a) and Bloch
(b) FM skyrmions obtained by means of micromagnetic simulations (markers) are compared with analytical predictions of the collective
variables model (solid lines), namely, coordinates of Néel and Bloch skyrmions are obtained by means of Eqs. (D4) and (D7) and (D9),
respectively. Skyrmion trajectories on the central panel are extracted from simulations (see Appendix E for details). For simulations we use
d = 1, k = 6 × 10−3, ηG = 0.1, initial skyrmions positions are X1(0) = −15 and X2(0) = 0, and initial velocity vanishes. The dynamics of
both skyrmions is shown in the Supplemental Material [49]. (c) Demonstrates the skyrmion velocities in the long-time limit τ̄ � 1/η̄. Solid
and dashed lines in (c) are absolute values of velocities of Néel |V N

AFM| ≈ k|CN
1 |/(η̄C0) and Bloch |V B

AFM| ≈ k2|CB
2X1(0)|/(C0η̄) skyrmions,

respectively, in the limit of small-curvature gradients k � η̄. Markers show the velocities extracted from the simulations and averaged during
the simulation time.
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of cylindrical geometry. Néel skyrmions experience a much
stronger influence of the curvature gradients and have larger
drift velocities compared to Bloch skyrmions. Both types
of skyrmions experience curvature-induced deformations of
their profiles. This deformation has a different impact on the
skyrmion dynamics: it significantly influences dynamics of
the slow Bloch skyrmions, while it can be neglected for the
description of dynamics of fast Néel skyrmions. We have also
developed the theory of skyrmion deformations on cylindrical
surfaces. Two types of deformations can be distinguished:
radially symmetric and elliptical ones.

The predicted redistribution of density of skyrmion gas
along the sinusoidally deformed film (see Fig. 1) does not
require strong curvature gradients and, therefore, it can be
used for an experimental verification of the curvature-induced
skyrmion drift. The magnetic films of the required sinusoidal
shape can be produced by means of the physical [65] or
chemical [66,67] vapor deposition techniques or by means
of atomic-layer deposition [68,69]. These techniques enable
one to cover the nonmagnetic substrate by a magnetic film.
The periodically shaped substrate can be produced by means
of the laser interference lithography [70–72]. The interfacial
DMI can be introduced into the system by depositing the
magnet/heavy metal bilayer film, e.g., Pt/Co [73].
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APPENDIX A: ENERGY OF A RIGID SKYRMION IN
CURVED FILM

In terms of the angular parametrization (3), the exchange
energy density is [2] EX = [∇θ − �]2 + [sin θ ∇φ −
cos θ∂φ �]2, where � = eαhαβεβ with hαβ being the
Weingarten map. For the case under consideration
hαβ = diag(−κ, 0) and � = −e1κ cos φ. The DMI
energy densities are E N

D = 2(∇θ · ε) sin2 θ + κ cos2 θ

and E B
D = sin2 θ [(2∇θ − �) × ε] · n for the interfacial

(Néel) [25] and isotropic (Bloch) [74] DMI, respectively. The
anisotropy energy density is trivial EA = 1 − �2

n = sin2 θ .
For ansatz (4) the exchange energy density obtains the form

E N
X = θ ′2

0 + sin2 θ0

r2
+ κ2[1 − sin2 χ sin2 θ0]

+ σκ

[
2θ ′

0 cos2 χ + sin 2θ0

r
sin2 χ

]
(A1)

and

E B
X = θ ′2

0 + sin2 θ0

r2
+ κ2[1 − cos2 χ sin2 θ0]

+ σκ sin 2χ

[
−θ ′

0 + sin θ0 cos θ0

r

]
(A2)

for Néel and Bloch skyrmions, respectively. Integration over
the film area results in the following total exchange energies
E N,B

X = AL
∫∫

E N,B
X dx1dx2:

E N
X = 8πAL

{
C0 + σκ (X1)C1 − 1

2κ2(X1)C2

+O
(
κ ′′r3

0

) + F [κ]
}

(A3)

and

E B
X = 8πAL

{
C0 − 1

2κ2(X1)C2 + O
(
κ ′2r4

0 , κκ ′′r4
0

) + F [κ]
}
.

(A4)
In order to obtain (A3) and (A4) we present the curvature
in the form of series (5) and utilize the fact that func-
tions sin θ0(r) and θ ′

0(r) are exponentially localized, and
use the approximation (2). Note that the area element dS =
dx1dx2 because of the Euclidean metric. Functional F [κ] =
1
4

∫∫
κ2dx1dx2 is independent on the skyrmion position. Con-

stants Cn are as follows:

C0 = 1

4

∫ ∞

0

[
θ ′

0(r)2 + sin2 θ0(r)

r2

]
r dr,

C1 = 1

4

∫ ∞

0

[
θ ′

0(r) + sin θ0(r) cos θ0(r)

r

]
r dr,

C2 = 1

4

∫ ∞

0
sin2 θ0(r)r dr. (A5)

Using the scaling transformation θ0(r) → θ0(r/r0) one can
roughly estimate Cn ∝ rn

0 , where r0 is skyrmion radius.
For ansatz (4) the DMI energy densities obtain the form

E N
D = sin2 θ0[2σθ ′

0 − κ] + κ,

E B
D = sin2 θ0[2σθ ′

0 − κ sin χ cos χ ]. (A6)

Under the same assumptions as above we obtain for the total
DMI energies E N,B

D = DL
∫∫

E N,B
D dx1dx2:

E N
D = 8πDL

{
σC1 − κ (X1)C2 + O

(
κ ′′r4

0

) + F̄ [κ]
}
,

E B
D = 8π |D|LC1. (A7)

Here functional F̄ [κ] = 1
4

∫∫
κ dx1dx2 is independent on the

skyrmion position. Skyrmions of both types have the same
anisotropy energy EA = 8πKLC2.

Applying Derick’s scaling transformations [75] to (1), one
obtains the following virial relation between different energy
contributions ED + 2EA = 0 of the planar skyrmion. This re-
sults in the relation

|D|C1 = −2KC2 (A8)

which enables us to exclude constant C1 from consideration.
Summing up the obtained energy contributions we present the
total skyrmion energy in form of a sum of the planar and
curvilinear parts [see Eqs. (6) and the discussion above]. Note
that for the dimensionless constants Cn = Cn/�

n the virial
relation has the form |d|C1 = −2C2.

Corrections of higher order in curvature. Condition (2)
is violated in the vicinity of special lines on the surface
where κ = 0. If a skyrmion crosses such a kind of line during
its dynamics, the higher-order corrections in curvature must
be taken into account. Performing the same procedure as

054425-10



CURVATURE-INDUCED DRIFT AND DEFORMATION OF … PHYSICAL REVIEW B 105, 054425 (2022)

described above we obtain for (6)

EN
crv ≈ CN

1κ + CN
2
κ

2

2
+ B1

8
σκ

′′ − B2

8
[κ′2 + κ

′′(κ + 2d )],

(A9a)

EB
crv ≈ CB

2
κ

2

2
− 3

8
B2(κ′2 + κκ

′′), (A9b)

where coefficients CN,B
n are the same as in (6) and

B1 = 1

4

∫ ∞

0

[
3θ ′

0(ρ) + sin θ0(ρ) cos θ0(ρ)

ρ

]
ρ3dρ,

B2 = 1

4

∫ ∞

0
sin2 θ0(ρ)ρ3dρ (A10)

with ρ = r/�.

APPENDIX B: CURVATURE-INDUCED SKYRMION
DEFORMATION

The aim of this Appendix is to obtain equilibrium values of
the deformation amplitudes and the corresponding corrections
to the energies of the deformed skyrmions. In order to be able
to compare the influence of different types of deformations
in different regimes, we first consider radially symmetrical
and elliptical deformation separately and then we consider the
case when both these deformations are present at the same
time.

1. Taking into account the radially symmetrical deformation

Possible curvature-induced radially symmetrical deforma-
tion by means of the ansatz

θ = θ0(rs), � = χ + ϕ, (B1)

where scaling factor s > 0 controls the change of the out-
of-surface skyrmion component, while helicity ϕ describes
the conjugated change of the in-surface component. The dy-
namics of the variables s and ϕ reflects the dynamics of the
breathing magnon mode bounded on the skyrmion [52,53].

Under the same assumptions as for the rigid skyrmion
model one obtains

E N,B
X = 8πAL

{
C0 + κ (X1)

s
C1 cos ϕ − C2

2

κ2(X1)

s2

+O
(
κ ′′r3

0

) + F [κ]

}
(B2)

for the exchange energies and

E N
D = 8πDL

{
−κ (X1)

s2
C2 + cos ϕC1

s
+ O

(
κ ′′r4

0

) + F̄ [κ]

}
,

E B
D = 8πDL

C1 sin ϕ

s
(B3)

for the DMI energies. The anisotropy energy reads as EA =
8πKLC2/s2. The total normalized energies are

EN ≈ C0 − C2

s

[
2σ cos ϕ − 1

s
+ κ

(
2

|d| cos ϕ + d

s

)
+ κ

2

2s

]
,

(B4a)

EB ≈ C0 − C2

s

[
2σ sin ϕ − 1

s
+ 2κ

|d| cos ϕ + κ
2

2s

]
. (B4b)

Here we used the virial relation (A8).
Néel skyrmion. First of all, one can make sure that for

the case κ = 0 the energy expression (B4a) is minimized for
cos ϕ = σ and s = 1. This corresponds to the undeformed
planar Néel skyrmion with energy EN

pl = C0 − C2. For the
nonzero curvature, energy (B4a) is minimized for

cos ϕ = sign(d + κ), s = |d|1 − κd − κ
2

2

|d + κ| . (B5)

The corresponding expressions for ϕ̃N = ϕ − (σ − 1)π/2 and
s̃N = s − 1 are presented in (14).

Substituting (B5) into (B4a) we obtain the equilibrium
energy in the form EN = EN

pl + EN
crv, where the curvature-

induced correction is EN
crv = CN

1κ + CN
2
κ

2

2 + O(κ3) with the
coefficients CN

1 = −C2(2 + d2)/d and CN
2 = −C2(1 + �cN

rs).
Thus, the coefficient CN

1 at the leading term is not affected by
the radial deformation, while the coefficient at κ

2 obtains the
deformation-induced correction �cN

rs = 2(d−1 + d )2.
Bloch skyrmion. First of all, one can make sure that for

the case κ = 0 the energy expression (B4b) is minimized
for sin ϕ = σ and s = 1. This corresponds to the undeformed
planar Bloch skyrmion with energy EB

pl = C0 − C2. For the
nonzero curvature, energy (B4b) is minimized for

tan ϕ = d

κ

, s = |d| 1 − κ
2

2√
d2 + κ

2
. (B6)

The corresponding expressions for ϕ̃B = ϕ − σπ/2 and s̃B =
s − 1 are presented in (15).

Substituting (B6) into (B4b) we obtain the equilibrium en-
ergy in the form EB = EB

pl + EB
crv, where the curvature-induced

correction is EB
crv = CB

2
κ

2

2 + O(κ4). Here the coefficient CB
2 =

−C2(1 + �cB
rs) obtains the deformation-induced correction

�cB
rs = 2/d2. It is important to note that the deviations of s

from 1 determined by (B6) result in the energy corrections
∝κ

4. This means that the only in-plane deformation ϕ of the
skyrmion profile can be taken into account for an approach
with the terms O(κ4) neglected.

2. Taking into account the elliptical deformation

In order to describe purely elliptical deformation we use (4)
with s̃ = ϕ̃ = 0. In this case we obtain the following expres-
sions for the exchange energy:

E N
X =8πAL

{
C0+C1κσ − C2

κ2

2
+ f 2

2

∫ ∞

0
θ ′2

0 r dr+g2

2

∫ ∞

0

sin2 θ0

r
dr+C1

σκ

2
( f − g) cos λ + O

(
f κ2r2

0 , gκ2r2
0 , κ

′′r2
0

) + F [κ]

}
,

E B
X =8πAL

{
C0 − C2

κ2

2
+ f 2

2

∫ ∞

0
θ ′2

0 r dr+g2

2

∫ ∞

0

sin2 θ0

r
dr + C1

σκ

2
( f − g) sin λ + O

(
f κ2r2

0 , gκ2r2
0 , κ

′′r2
0

) + F [κ]

}
(B7)
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for the DMI energy

E N
D = 8πDL

{
C1σ + C1σ

4
(2 f 2 − g2) − σC1 f g − κC2 + O

(
f 3r0, g3r0, κ

′′r4
0

)}
,

E B
D = 8πDL

{
C1σ + C1σ

4
(2 f 2 − g2) − σC1 f g − C2κ

2
( f + g) sin λ + O

(
f 3r0, g3r0, κ

′′r4
0

)}
, (B8)

and for the anisotropy energy

E N,B
A = 8πKLC2

{
1 + 3

2 f 2 + O( f 4)
}
. (B9)

Using the virial relation (A8) we present the total normalized energy in the form

EN ≈ EN
pl + C2

{
α f

f 2

2
+ αg

g2

2
− κ

d
cos λ( f − g) + 2 f g − κ

(
d + 2

d

)
− κ

2

2

}
, (B10a)

EB ≈ EB
pl + C2

{
α f

f 2

2
+ αg

g2

2
+ 2 f g − κ

2

2
+ κd sin λ

[
g

(
1

d2
− 1

2

)
− f

(
1

d2
+ 1

2

)]}
, (B10b)

where α f and αg are introduced in the main text.
Néel skyrmion. First of all, one can make sure that for the case κ = 0 the energy expression (B10a) is minimized for f N = 0

and gN = 0. This corresponds to the undeformed planar Néel skyrmion with energy EN
pl = C0 − C2. For the nonzero curvature,

energy (B10a) is minimized if cos λN = 1 and f N, gN coincide with (11) [76]. The corresponding curvature-dependent correction
to the equilibrium energy coincides with (6a). Coefficient CN

1 is the same as in (6a) and coefficient CN
2 = −C2(1 + �cN

el) has the
deformation-induced correction

�cN
el = 1

d2

α f + αg + 4

α f αg − 4
. (B11)

Bloch skyrmion. First of all, one can make sure that for the case κ = 0 the energy expression (B10b) is minimized for f B = 0
and gB = 0. This corresponds to the undeformed planar Bloch skyrmion with energy EB

pl = C0 − C2. For the nonzero curvature,
energy (B10b) is minimized if sin λ = 1 and the expressions for f B and gB are the same as in (12) [77].The corresponding
equilibrium energy coincides with (6b) where the coefficient CB

2 = −C2(1 + �cB
el) has the deformation-induced correction

�cB
el = d2

(
C0
C2

− 1
2

) + αg − α f + 4
d2

(
C0
C2

+ 3
2

)
α f αg − 4

. (B12)

Here we used that α f + αg = 2 + 4C0
C2

.
For both types of skyrmions, the dependencies of the deformation amplitudes on DMI constant is shown in Fig. 8.

3. Taking into account the combined elliptical and radial-symmetrical deformations

Here we consider the combined elliptical and radial-symmetrical deformations of Néel and Bloch skyrmions described by
ansatz (10). Performing the same steps as in the previous two subsections we obtain the following expression for the total
normalized energies:

EN ≈ EN
pl + C2

{
α f

f 2

2
+ αg

g2

2
− κ

d
( f − g) cos (λ − ϕ̃) +

(
2 + f 2 − g2

2
− 2s̃ + 3s̃2

)
(1 − cos ϕ̃)

+ (2 f g + s̃2) cos ϕ̃ − dκ(1 − 2s̃) − 2κ

d
(1 − s̃) cos ϕ̃ − κ

2

2

}
, (B13a)

EB ≈ EB
pl + C2

{
α f

f 2

2
+ αg

g2

2
− κ

d
( f − g) sin (λ − ϕ̃) +

(
2 + f 2 − g2

2
− 2s̃ + 3s̃2

)
(1 − cos ϕ̃)

+ (2 f g + s̃2) cos ϕ̃ − dκ

2
( f + g) sin (λ − 2ϕ̃) + 2κ

d
(1 − s̃) sin ϕ̃ − κ

2

2

}
, (B13b)

where we assumed that the shape parameters f , g, s̃, and κ are of the same order of smallness and keep terms up to the second
order.

Néel skyrmion. First, note that energy (B13a) coincides
with energy (B10a) of the elliptically deformed Néel skyrmion
for ϕ̃ = 0 and s̃ = 0, and it coincides with energy (B4a) of
radially symmetric Néel skyrmion if we substitute f = g = 0,

ϕ̃ = ϕ − (1 − σ )π/2 in (B13a) and s = 1 + s̃ in Eq. (B4a)
and keep the terms up to the second order in s̃. Assuming that
ϕ̃ is of the same order of smallness as the other shape pa-
rameters we minimize energy (B13a) for cos λN = 1, ϕ̃N ≈ 0,
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(a) (b)

FIG. 8. Dependencies of amplitudes of elliptical deformation on DMI strength (a) and on skyrmion radius (b).

s̃N = −κ(d + d−1), and f N, gN defined in (11) [76]. For the
Néel skyrmion the tangential component of the deformation
ϕ̃ is negligible while the normal component s̃ is not. The
corresponding curvature-dependent correction to the equilib-
rium energy coincides with (6a). Coefficient CN

1 is the same
as in (6a) and coefficient CN

2 = −C2(1 + �cN) obtains the
deformation-induced correction �cN = �cN

rs + �cN
el.

We conclude that the radial-symmetrical as well as ellip-
tical deformations result in the energy corrections of order
O(κ2), while the leading term remains independent on the
deformations.

Bloch skyrmion. First, note that energy (B13b) coin-
cides with energy (B10b) of the elliptically deformed Bloch
skyrmion for ϕ̃ = 0 and s̃ = 0, and it also coincides with
energy (B4b) of radially symmetric Bloch skyrmion if we
substitute f = g = 0, ϕ̃ = ϕ − σπ/2 in (B13b) and s = 1 + s̃
in (B4b) and keep terms up to the second order in s̃. Assuming
that ϕ̃ is of the same order of smallness as the other shape
parameters we minimize energy energy (B13b) for sin λB ≈
1, s̃B ≈ 0, ϕ̃B ≈ −κ/d , and expressions for f B, gB coincide
with (12) [77]. Here we assumed that |κ/d| � 1. The cor-
responding curvature-dependent correction to the equilibrium
energy coincides with (6b) with the coefficient CB

2 = −C2(1 +
�cB), where �cB = �cB

rs + �cB
el.

4. Comparison of different models

As it was shown in the previous sections the curvature-
induced energy corrections are linear EN ≈ EN

pl + CN
1κ and

quadratic EB ≈ EB
pl + CB

2
κ

2

2 in curvature for the Néel and
Bloch skyrmion, respectively. Deformations of the skyrmion
shape lead to the energy corrections which are quadratic in
curvature for both types of skyrmions. This means that the
effects of the shape deformation can be neglected for Néel
skyrmions in the small-curvature limit. This is in contrast
to Bloch skyrmions for which the shape deformations must
be taken into account. In order to determine which type of
deformation is the most important one for the given Bloch
skyrmion we compare the constants CB

2 obtained for different

deformation types (see Fig. 9). Both deformation types reduce
skyrmion energy as compared to the rigid skyrmion. How-
ever, the relative impact of different deformations significantly
depends on skyrmion radius r0, which is unambiguously
determined by the value of d [52,59]. From Fig. 9 one can con-
clude that the radially symmetrical deformation is dominant
for small values of DMI strength d < dc|elliptic+r-symm ≈ 0.85
(r0 < rc

0 ≈ 0.83�), while for larger DMI values the combined
elliptical and radially symmetrical deformations must be taken
into account. The value of dc|elliptic+r-symm was found as solu-
tion of equation 1 − CB

2|r-symm[d]/CB
2|elliptic+r-symm[d] = 10−1.

APPENDIX C: DYNAMICS OF FM SKYRMIONS

Substitution of TWA into Eq. (16) with the subsequent
integration over the space domain results in the Thiele equa-
tion for collective coordinates [40,63]

(Gαβ − ηGDαβ )∂t X
β = ∂E

∂X α
. (C1)

For details see Ref. [40]. Here Gαβ = εαβG is the anti-
symmetric gyrotensor, whose magnitude G = 4πL Ms

γ0
Ntop is

proportional to the skyrmion topological charge Ntop. Due to
the Euclidean metric, the topological charge has the com-
mon form [40], which in the angular parametrization reads
as Ntop = 1

4π

∫
[∇θ × ∇φ]n dx1dx2.

The dissipation tensor is Dαβ = LMsγ
−1
0 Dαβ , where

Dαβ =
∫∫

[∂αθ∂βθ + sin2 θ∂αφ∂βφ]dx1dx2. (C2)

Note that for a constant metric tensor the expressions for
Gαβ and Dαβ are exact consequences of TWA, i.e., the
small-curvature assumption is not required [40]. For Néel
and Bloch skyrmions the dissipation tensors are DN,B

αβ =
4πC0D

N,B
αβ , where tensors DN,B

αβ are defined in (18). Introducing
dimensionless time and distance (explained in Sec. IV) we
write Eq. (C1) in form (17).

For the cylindrical Euler spiral, the energy of the Néel
skyrmion (6a) can be approximated as a linear function of
the directrix arc length: EN ≈ CN

1κ + const = CN
1kX1 + const.
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FIG. 9. Influence of the skyrmion deformation on coefficient CB
2. Blue, red, purple, and green lines correspond to the rigid skyrmion,

radially symmetrical deformation, elliptical deformation, and combined elliptical and radially symmetrical deformations, respectively. Here,
dc = 4/π is a critical DMI value for planar systems.

Substituting this energy into (17) results in the equation of
motion which in the low-damping limit has the solution

X1(τ ) ≈ X1(0) − CN
1kη

N2
top

τ, X2(τ ) ≈ X2(0) + CN
1k

Ntop
τ. (C3)

Here the terms η2 and ηκ were neglected.
The energy of a Bloch skyrmion is approximated as EB ≈

CB
2
κ

2

2 + const = − 1
2 |CB

2|k2X2
1 + const. This results into the

following solutions of the equations of motion (17):

X1 ≈ X1(0)exp

(
η|CB

2| k2

N2
top

τ

)
,

X2 ≈ X2(0) + X1(0)Ntop

η

[
1 − exp

(
η|CB

2| k2

N2
top

τ

)]
. (C4)

The absolute value of skyrmion velocity is∣∣V B
FM

∣∣ ≈
∣∣X1(0)CB

2

∣∣ k2

|Ntop| exp

(
ηFM

∣∣CB
2

∣∣ k2

N2
top

τ

)
. (C5)

APPENDIX D: DYNAMICS OF AFM SKYRMIONS

Equation (21) can be obtained as the Euler-Lagrange equa-
tion for the Lagrange function

L = Ms

γ 2
0 BX

∫
�̇2dr − E (D1)

and Rayleigh dissipation function

R = ηG

Ms

γ0

∫
�̇2dr (D2)

with the constraint |�| = 1 taken into account.
Substitution of TWA in (D1) and (D2) and integration

over the spatial coordinates result in the following effective
Lagrange and Rayleigh functions

Leff = Ms

γ 2
0 BX

LDαβ Ẋ αẊ β − E , Reff = ηG

Ms

γ0
LDαβ Ẋ αẊ β.

(D3)

Equations of motion generated by (D3) and written in the
dimensionless units have the form (22).

Cylindrical Euler spiral. In the leading in curvature ap-
proximation, energy of a Néel skyrmion is EN ≈ CN

1κ + const,
where κ(X1) = kX1. In this case Eqs. (23) have the solution

X1(τ̄ ) = X1(0) + V1(0)
1 − e−η̄τ̄

η̄
− aN 1 − η̄τ̄ − e−η̄τ̄

η̄2
,

X2(τ̄ ) = X2(0) + V2(0)
1 − e−η̄τ̄

η̄
, (D4)

where Vα = Ẋα and aN = −CN
1k/C0. For the time intervals

τ̄ � 1/η̄ skyrmion demonstrates the uniformly accelerated
dynamics

X1(τ̄ ) ≈ X1(0) + V1(0)τ̄ + aNτ̄ 2

2
, X2(τ̄ ) ≈ X2(0) + V2(0)τ̄ ,

(D5)
while in the long-time limit τ̄ � 1/η̄, the skyrmion reaches a
regime with constant velocity V N

AFM ≈ e1aN/η̄ [see Fig. 7(c)].
For a Bloch skyrmion we estimate EB = − 1

2 |CB
2|κ2 +

const. For this case Eqs. (25a) has the solution

X1(τ̄ ) = X1(0)
[
cosh(�τ̄ ) + η̄

2�
sinh(�τ̄ )

]
e− η̄

2 τ̄ , (D6)

where � = √
k2|CB

2|/C0 + (η̄/2)2 and we assume the van-
ishing initial velocity. Note that for the vanishing curvature
gradient k = 0, Eq. (D6) results in X1(τ̄ ) = X1(0), i.e., the
skyrmion is immobile. In the limit of small-curvature gradi-
ents, solution (D6) has the form

X1(τ̄ ) ≈ X1(0)

[
1 + k2

∣∣CB
2

∣∣
C0

e−η̄τ̄ + η̄τ̄ − 1

η̄2

]
. (D7)

Thus, in the initial time moments τ � 1/η̄, the skyrmion
demonstrates a uniformly accelerated motion in the e1 direc-
tion: X1(τ̄ ) ≈ X1(0) + aBτ̄ 2/2, where aB = X1(0)k2|CB

2|/C0.
In the opposite limit of long times τ̄ � 1/η̄, the velocity com-
ponent in the X1 direction reaches constant value Ẋ1 ≈ aB/η̄.
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Using the fact that δB is a linear function of the curvature,
we present Eq. (25b) in the form

Ẍ2 + η̄Ẋ2 = �Bk3
∣∣CB

2

∣∣
C0

X2
1(τ̄ ), (D8)

where �B = δB/κ (this quantity is shown in Fig. 6). Substi-
tuting (D6) into (D8) we obtain a solution, which in the limit
of small gradients has the form

X2(τ̄ ) ≈ X2(0) + ãB e−η̄τ̄ + η̄τ̄ − 1

η̄2
(D9)

with ãB = X1(0)k�BaB. Solving (D9) we assumed vanishing
initial velocity. Thus, we have the uniformly accelerated mo-
tion in the initial moments of time and the reaching of constant
velocity Ẋ2 ≈ ãB/η̄ for τ̄ � 1/η̄. Finally, we conclude that
in the long-time limit the Bloch skyrmion reaches a constant
velocity V B

AFM ≈ (e1aB + e2ãB)/η̄.

APPENDIX E: NUMERICAL SIMULATIONS

1. Spin-lattice simulations

In order to verify our analytical calculations we perform
a set numerical simulations for FM and AFM curved films.
We consider the generalized cylindrical surface as a square
lattice with lattice constant a. Each node is characterized by
a magnetic moment mp(t ) which is located at the position rp.
Here p = (i, j) ∈ N × N defines the magnetic moment and
its position on the lattice with size N1 × N2, i.e., i ∈ [1, N1]
and j ∈ [1, N2]. The dynamics of magnetic system is govern
by discrete Landau-Lifshitz-Gilbert equations

dmp

dt
= γ0

μs

[
mp × ∂H

∂mp

]
+ ηG

[
mp × dmp

dt

]
, (E1)

where μs is a magnetic moment of a magnetic site. The Hamil-
tonian of a magnetic system has the following form:

H = −J

2

∑
mp · mp − K

2

∑
(mp · np)2

+ D

2

∑
d p,p · [mp × mp]. (E2)

Here J is an effective exchange integral (J > 0 for FM and
J < 0 for AFM ordering), D is an effective DMI strength
constant, K > 0 is an effective easy-normal anisotropy con-
stant, p runs over nearest neighbors, d p,p is a DMI vector
[d p,p = np × up,p for the interfacial DMI with up,p = (rp −
rp)/a, and d p,p = up,p for isotropic DMI], and np = n(ai, a j)
is a normal unit vector to the surface. Note that the normal
np introduces the information about the surface shape into the
model (E2).

The length scale in simulations is defined with the mag-
netic length as � = a

√|J |/K , the dimensionless DMI
strength is d = D/

√|J |K , the dimensionless time for FM
system is τ = 2γ0K t/μs, and the dimensionless time for the
AFM system is τ = 2γ0t

√
2|J |K /μs.

The magnetization dynamics is simulated by means of
numerical solution of the set of ordinary differential equa-
tion (ODE) (E1) for the initial conditions determined by the
initial magnetization.

a. Simulations of sinusoidal-shaped film

Skyrmion condensation. We considered the sinusoidal sur-
face with directrix γ defined with (9). In simulations we
considered sinusoidal surface with N1 = 401 and N2 = 201,
amplitude A = 10�, period T = 35�, DMI strength d = 1,
Gilbert damping ηG = 0.1, and magnetic length � ≈ 7.5a.
These parameters result in one period along the e1 direction.
In order to simulate more than one period we impose the
periodic boundary conditions along e1 and e2 directions.

We performed four different simulations: (i) FM film with
Néel DMI; (ii) FM film with Bloch DMI; (iii) AFM film with
Néel DMI; (iv) AFM film with Bloch DMI. All simulations
for sinusoidal surface were performed in the same manner.
Namely, we set initial state of a system with a hexagonal
skyrmion lattice with the distance between the skyrmions 80a.
Afterwards, we simulate the relaxation dynamics (see Supple-
mental Material [49]). Equilibrium states for the sinusoidal
surfaces are presented in Fig. 1.

Calculations of the skyrmion deformation. We simulate a
sinusoidal surface with the period T = 35�, amplitudes A =
2.5� and A = 7.5�, and DMI strength d ∈ [0.8; 1.1]. The Néel
and Bloch skyrmions were placed in position with X1(0) =
X 0

1 ; afterward, we simulate free dynamics of skyrmion in an
overdamped regime (ηG = 0.5). In order to obtain amplitudes
of radially symmetrical and elliptical deformations we ex-
tract curvilinear magnetization components �1(ρ, χ ) = � ·
e1, �2(ρ, χ ) = � · e2, and �n(ρ, χ ) = � · n from the sim-
ulation data, and apply fitting with the ansatz (10). Namely,
the parameters g and ϕ̃ were determined as fitting parameters
for the equation tan φ(χ ) = �2(r0, χ )/�1(r0, χ ), the param-
eters f and s̃ were determined as fitting parameters for the
equation �n(χ ) = cos θ0(r0, χ ). The resulting parameters are
presented in Figs. 2(d) and 2(e).

Oscillation of AFM skyrmion. We simulated sinusoidal sur-
faces with the period T = 35�, DMI strength d = 1, Gilbert
damping parameter ηG = 10−4, and amplitude in range A ∈
[0.1, 1]� with �A = 0.1�. Here we simulate film with the
dimensions N1 = 401 and N2 = 201 (here we did not impose
periodic boundary conditions). The Néel and Bloch skyrmions
were placed in position with X1(0) = X 0

1 + 2�, where X 0
1 is

the position of stable equilibrium. Afterward, we observed
free dynamics of the skyrmion, which corresponds to the
decaying oscillations with well-pronounced oscillations ωp

(see Fig. 5). The corresponding curvature-induced motion of
the skyrmions is presented in the Supplemental Material [49].

b. Simulations of Euler spiral-shaped film

We considered the Euler spiral-shaped film with direc-
trix defined in (20). In simulations we considered surfaces
with N1 = 301 and N2 = 501, DMI strength d = 1, magnetic
length � = 5a, and gradient of the curvature k ∈ [2, 10] ×
10−3 with �k = 2 × 10−3.

Similarly to the case of sinusoidal geometry, here we also
performed four sets of different simulations. The simulations
were performed in two steps. First, we relaxed magnetic
skyrmion in an overdamped regime with ηG = 0.5. The initial
positions were set as follows:

(i) FM Néel skyrmion: X1(0) = 0 and X2(0) = −30;
(ii) FM Bloch skyrmion: X1(0) = −15 and X2(0) = 0;
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(iii) AFM Néel skyrmion: X1(0) = X2(0) = 0;
(iv) AFM Bloch skyrmion: X1(0) = −15 and X2(0) = 0.
The initial position for Néel skyrmions corresponds

to the mean curvature with κ[X1(0)] = 0, while for the
Bloch skyrmions we shifted skyrmions to the position with
κ[X1(0)] 	= 0 in order to avoid the unstable equilibrium.

On the second step, we observed free dynamics with
Gilbert damping ηG = 0.1. The corresponding curvature-
induced motion of the skyrmions are presented in the
Supplemental Material [49]. The trajectories of the skyrmions
are presented in Figs. 4 and 7 for FM and AFM ordering,
respectively. The center of the skyrmions was defined as the
first moment of the gyrovector density

Xα = 1

4πNtop

∫
S

ξαg dS, g = εi jkmi∂1mj∂2mk . (E3)

Alternatively, one can write g = [∇θ × ∇φ] · n.

c. Movies of the skyrmion motion

For a better illustration of the skyrmion motion induced
by the curvature gradients, we prepared movies of skyrmion
dynamics. Movies are based on data obtained by means of the
numerical simulations.

(i) FM_skyrmion_latt_d_0.95_A_10ell_T_35ell.
avi shows the dynamics of the FM Néel and Bloch skyrmions
in the sinusoidal-shaped film with the amplitude A = 10�,
period T = 35�, DMI strength d = 0.95, and Gilbert damping
ηG = 0.1.

(ii) AFM_skyrmions_osc_d_1_A_1ell_T_35ell.avi
shows the dynamics of the AFM Bloch skyrmions in
the sinusoidal-shaped film with the amplitude A = 1�,

period T = 35�, DMI strength d = 1, and Gilbert damping
ηG = 10−4.

(iii) FM_skyrmions_cornu_spiral_d_1_k_6e-3_
eta_0.1.avi shows the dynamics of the FM Néel and
Bloch skyrmions in the Euler spiral with the gradient of the
curvature k = 6 × 10−3, DMI strength d = 1, and Gilbert
damping ηG = 0.1.

(iv) AFM_skyrmions_cornu_spiral_d_1_k_6e-3_
eta_0.1.avi shows the dynamics of the AFM Néel and
Bloch skyrmions in the Euler spiral with the gradient of the
curvature k = 6 × 10−3, DMI strength d = 1, and Gilbert
damping ηG = 0.1.

2. Full-scale micromagnetic simulations

In order to cross-check our results we also performed
a series of full-scale micromagnetic simulations using our
GPU accelerated finite-element code TETRAMAG [78]. The
static equilibrium states of the skyrmions on the sinusoidal-
shaped films and Euler spiral-shaped films as well as their
dynamics (curvature-induced drift) were obtained by the nu-
merical integration of the Landau-Lifshitz-Gilbert equation.
The following material parameters were considered in the
simulations: A = 1.6 × 1011 J/m being the exchange con-
stant, μ0Ms = 1.38 T the saturation magnetization, Ku =
1.3 × 106 J/m3 for the uniaxial anisotropy constant pointing
along the surface normal, and d = D/

√
AKeff for the dimen-

sionless DMI constant. The effective anisotropy constant for
the renormalized magnetostatic case was set to Keff = Ku −
2πM2

s = 5.1 × 105 J/m3. The magnetic length is therefore
� = √

A/Keff = 5.6 nm. The thickness of all studied films is
set to 1.5 nm and the samples discretized with an average
tetrahedron edge length of 1 nm.
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A. Sarkar, M. Giesen, C. M. Schneider, C. A. Volkert, and S.
Mathur, Magnetic field-assisted chemical vapor deposition of
iron oxide thin films: Influence of field–matter interactions on
phase composition and morphology, J. Phys. Chem. Lett. 10,
6253 (2019).

[68] K. J. Dorsey, T. G. Pearson, E. Esposito, S. Russell, B. Bircan,
Y. Han, M. Z. Miskin, D. A. Muller, I. Cohen, and P. L.
McEuen, Atomic layer deposition for membranes, metamate-
rials, and mechanisms, Adv. Mater. 31, 1901944 (2019).

[69] Y. T. Chong, E. M. Y. Yau, K. Nielsch, and J. Bachmann, Direct
atomic layer deposition of ternary ferrites with various magnetic
properties, Chem. Mater. 22, 6506 (2010).

[70] D. Weber, R. Heimburger, D. Hildebrand, T. Junghans, G.
Schondelmaier, C. Walther, and D. Schondelmaier, Use of
beam-shaping optics for wafer-scaled nanopatterning in laser
interference lithography, Appl. Phys. A 125, 307 (2019).

[71] M. Lorens, Y. Zabila, M. Krupiński, M. Perzanowski, K.
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