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We propose using maximum coherence (QCmax) to study quantum phase transition (QPT). We investigate
several well-known models, such as the XXZ model, J1-J2 model, and one-dimensional spin Kitaev model. The
results show that QCmax can be used to detect different types of QPTs, including the Berezinskii-Kosterlitz-
Thouless and topological types. In addition, QCmax is more robust against interferences, such as thermal
fluctuations and measurement interferences, than any existing detector. This property enables QCmax to identify
QPTs in experiments, where temperature effects and measurement interferences always exist. Thus, QCmax might
be an ideal tool for studying QPTs because of its measurability, universality, and robustness against interferences.

DOI: 10.1103/PhysRevB.105.054424

I. INTRODUCTION

Quantum phase transition (QPT) [1] plays a very important
role in condensed matter physics. Understanding this pro-
cess is beneficial in exploring the microscopic mechanism
behind various macroscopic phenomena of materials. The
discovery of magnetically mediated superconductivity in a
heavy-fermion system [2] and the superfluid–Mott insulator
phase transition for an ultracold-atom system [3] greatly en-
hanced our interest in QPT studies.

Given the inherited quantum nature, a close link is gener-
ally believed to exist between QPT and quantum information.
This link has been widely explored and elucidated. A good
example is the success in describing QPT of the XY model
by the concurrence [4]. Studying QPT based on the quantum
information is advantageous and has led to the fast devel-
opment in this field, because no prior knowledge on the
order parameter of the system is needed for this process.
By contrast, prior knowledge is required for the traditional
Ginzburg-Landau symmetry breaking theory [1]. Many con-
cepts adopted from quantum information have been used as
detectors to characterize QPTs. These concepts include the
von Neumann entropy (Ev) [5], fidelity and its related fidelity
susceptibility [6,7], quantum discord (QD) [8,9], and quantum
coherence (QC) [10,11]. Two main issues exist for this pro-
cess. One is to find a universal physical quantity as a detector
that can identify all kinds of QPTs, and the other one is to
experimentally achieve this process. Resolving these issues
will not only improve the extensive development and deep
understanding of QPT study but will also help in determining
the mechanism of a QPT, the essence of genuine quantum-
ness, and the relationship between quantumness and QPT.
The results might be useful in determining how to control
quantumness using a QPT in a quantum computer.
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However, such a detector has not yet been successfully
determined. Comprehensive studies have shown that any
previous proposed detector has limitations on uniquely char-
acterizing different kinds of QPTs, such as in detecting the
Berezinskii-Kosterlitz-Thouless (BKT)-type QPT in the XXZ
model and the critical point (CP) at J2 ≈ 0.241 of the J1-J2

model [12,13]. Moreover, most related works have only per-
formed theoretical studies, and few factors, such as thermal
fluctuation and measurement interference, have been consid-
ered for experimentation. Although QD and QC have been
applied to detect QPTs at finite temperature (T ) [9,14–16],
these quantities were only tested under some specific condi-
tions. Their universality needs further study.

In this paper, we propose using maximum quantum co-
herence (QCmax) as a QPT detector. We investigated its
performance on three main aspects of QPT study, namely, its
effectiveness on detecting different types QPTs, robustness
against thermal fluctuations during experiments, and ability
against a measurement interference. Compared with other
detectors, QCmax is advantageous in all aspects. Thus, it may
serve as an ideal tool to theoretically and experimentally study
QPTs.

II. INTERACTION ANISOTROPY CAUSED QPTS

A. The XXZ Model

The Hamiltonian for the XXZ model is defined as follows:

HXXZ =
N∑
j

σ x
j σ

x
j+1 + σ

y
j σ

y
j+1 + �σ z

j σ
z
j+1, (1)

where N is the number of spins in the chain, � describes the
anisotropy of the spin-spin interaction, and σ j are the usual
Pauli matrices at site j. This model has two critical points
at T = 0, namely, a continuous BKT-type phase transition at
� = 1, and a first-order transition caused by the ground state
level crossing at � = −1 [17].
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We use the transfer matrix renormalization group (TMRG)
technique to simulate an infinite XXZ spin chain. This method
is based on a Trotter-Suzuki decomposition of the parti-
tion function of a system and can directly handle infinite
chains [18]. The reduced density matrix ρab for the nearest
neighbors a and b can be obtained from a set of thermal aver-
ages of correlation functions [19,20]. Then, all QPT detectors
C, Ev , QD, and QC can be obtained from ρab as follows:

(1) The concurrence between a and b, C(ρab) =
max{0, λ1 − λ2 − λ3 − λ4}, where λn (n = 1, 2, 3, and 4) are
the square roots of the eigenvalues of ρabρ̃ab in descending
order, and ρ̃ab = (σ y

a ⊗ σ
y
b )ρ∗

ab(σ y
a ⊗ σ

y
b ) is the time-reversed

matrix of ρab [4].
(2) The entanglement entropy Ev , Ev (ρab) =

−Trρablnρab [5].
(3) The QD, D(ρab) = Ev (ρb) + min{bk} Ẽv (ρab|{bk}) −

Ev (ρab), where Ẽv (ρab|{bk}) = ∑
k pkEv (ρk

ab) with ρk
ab =

1
pk

(I ⊗ bk )ρab(I ⊗ bk ) and pk = Tr[(I ⊗ bk )ρab(I ⊗ bk )] is
the conditional entropy, and the minimum is achieved from
a complete set of projective measures {bk} on site b [9,21,22].

(4) The last detector QC is related to a specific observable
K , such as σx. The K coherence of a quantum state is defined
as follows:

I (ρab, K ) = − 1
4 Tr[ρab, K]2, (2)

where [...] denotes the commutator. For state ρab, if we choose
the observable at a, K is then written as Ka

⊗
Ib [23].

The measurable quantity QC reflects the information of a
state skewed to the observable. Given the possible anisotropy
and different bond interactions in a system, the value of QC
must depend on measurement directions and positions. For a
quantum system, there must be competitions from different
quantum states and the final exhibition must be the dominant
one. Therefore, to well reflect the coherence condition and its
relationship with QPTs, we should consider the maximum QC
in the system. That is, instead of a given measurement direc-
tion and position [10], we should measure the QC on different
directions and positions to capture the dominant coherence
condition. There are three cases: (i) For an anisotropic system,
we consider the spin operator σn with an arbitrary direction �n
to reconstruct the quantum coherence, the maximum of which
reflects the maximum skewed information and will be used
as a new detector for the QPT study. We name this quantity
QCmax, which is determined as follows:

QCmax = max I(ρab, σn) = max − 1
4 Tr[ρab, σn]2. (3)

Given that the observable σn is

σn =
(

cos θ sin θe−iϕ

sin θeiϕ − cos θ

)
, (4)

the maximum is determined by traversing θ from 0 to π and ϕ

from 0 to 2π . (ii) For an isotropic system but with different
bond interactions, the value of QC is independent of mea-
surement directions. The difference of coherence is just from
measured positions. Thus, the QCmax is gotten by comparing
different coherences on different interacted bonds. (iii) For a
system with both anisotropy and different bond interactions,
both case (i) and case (ii) should be considered. The QCmax

FIG. 1. (a) Entanglement entropy Ev , (b) σ x coherence QCx,
(c) concurrence C, and (d) the maximum quantum coherence QCmax

[see Eq. (3)] at different temperatures (T = 0.2, 0.5, 1.0, and
2.5) are plotted as functions of �. Plotted data in all figures are
dimensionless.

is gotten by comparing σn QCs in different directions and
different interacting bonds.

For comparison, we plot QCmax and other detectors for
the XXZ model under different T in Fig. 1. At very low
temperatures, the first-order critical point at � = −1 is clearly
identified by the singularity of Ev and σ x coherence QCx,
as shown in Figs. 1(a) and 1(b), respectively. However, the
singular behavior quickly becomes a round peak and dis-
appears as temperature increases. For the continuous-order
phase transition at � = 1, Ev and QCx do not exhibit any
signatures even at very low temperatures. For the concurrence
C, although this quantity shows apparent signatures of QPT at
low temperatures, it is zero at � = −1 and reaches maximum
at � = 1; both signatures lose their ability to identify QPTs as
temperature increases [Fig. 1(c)]. This behavior is consistent
with the results from Refs. [9,10].

By contrast, QCmax shows an excellent behavior in iden-
tifying QPTs [Fig. 1(d)]. The two critical points are clearly
signatured by the singular behaviors even at very high tem-
peratures. This remarkable feature of QCmax shows absolute
superiority over the other detectors. Here, QCmax yields an
efficiency equivalent to that of the QD in Refs. [9,10]. QD
measures the minimum difference of two expressions of mu-
tual information. Thus, QD actually reflects the influence of
measured directions to the quantum correlation. Similarly,
the proposed QCmax also reflects the influence but based on
quantum coherence. However, the singularity of QD does
not always correspond to a QPT as shown in Ref. [24].
This singularity actually peaks at a noncritical point in the
Su-Schrieffer-Heeger (SSH) model with interactions [25],
while the singularity of QCmax always corresponds to the
transition points (the results are not shown here). Therefore,
QCmax might be more credible than QD as a QPT detector.
In addition, although the quantum coherence spectrum was
proposed to detect the QPTs of the XXZ model [26], as a
direct extension of the definition of quantum coherence based
on Wigner-Yanase-Dyson skew information, QCmax possesses
the original meaning of quantum coherence to measure the
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FIG. 2. (a) The maximum quantum coherence QCmax as a
function of γ at N = 2001, λ = 0.5, and different values of T ;
(b) derivative of σx quantum coherence QCx with respect to γ at
λ = 0.5 and different values of T .

key resource in quantum information theory. Compared with
the quantum coherence spectrum, there is a more general
understanding and application for QCmax in plenty of fields,
such as quantum optics, quantum calculation, and information
processing. QCmax can also be implementable experimentally
with current technology [15]. Therefore, we believe it is a
better detector choice for QPTs.

B. The XY Model

We studied the XY model to further demonstrate the ef-
fectiveness of QCmax in detecting QPTs. Its Hamiltonian is as
follows:

HXY =
N∑

j=1

(
1 + γ

2
σ x

j σ
x
j+1 + 1 − γ

2
σ

y
j σ

y
j+1 + λσ z

j

)
, (5)

where N , σ x, σ y, and σ z are the same as those in Eq. (1),
γ describes the anisotropy in the spin-spin interaction on the
XY plane, and λ is the external magnetic field. This model can
be exactly diagonalized [1], and the two-site reduced density
matrix ρab needed for the calculations of the QPT detectors
were obtained in Ref. [27].

This model possesses two distinct critical regions, namely,
the critical line along γ = 0 between −1 < λ < 1 and the
continuous critical lines lines along |λ| = 1 [28,29]. Simi-
lar to the XXZ model, the CP along γ = 0 is also caused
by anisotropy. Therefore, CP might be detected directly by
QCmax. Given that the anisotropy only comes from the XY
plane, we focus n in Eq. (4) on this plane, i.e., we set θ = π/2
and take ϕ changing from 0 to 2π . The results are shown in
Fig. 2. Two particular features are notable. First, the valleys of
QCmax clearly indicate the critical points at γ = 0, as shown
in Fig. 2(a) for λ = 0.5. This behavior remedies the defect of
QC, including the σx coherence QCx and σy coherence QCy.
Contrary to other detectors, such as entanglement and fidelity,
QCx and QCy need the peak of their derivatives other than
themselves to spotlight the CPs [10,16]. In addition, the CP
can be precisely identified by QCmax regardless of the size
of the system, while the pseudocritical phenomenon cannot
be avoided for QC when N is small [29]. Second, QCmax

detects the critical point at different T values [Fig. 2(a)], while
the peak of dQCx/dγ disappears as temperature increases,
namely, it cannot detect the CP anymore [Fig. 2(b)].

III. LATTICE STRUCTURE ASYMMETRY CAUSED QPTS

The QPTs discussed above are caused by interaction
anisotropy. Similarly, if the cause of a QPT is from the asym-
metry of the lattice structure, then QCmax should be achieved
by comparing QCs along two competing driving bonds.

The first example is the one-dimensional SSH model [30].
Its Hamiltonian is written as follows:

HS = −
∑

j

(1 + η)c†
B, jcA, j + (1 − η)c†

A, j+1cB, j + H.c., (6)

where A and B are sublattice indices, and η denotes the
dimerization. A topological phase exists at η < 0, while a
topological trivial phase exists at η > 0.

Following the solution of the XXZ model, we use the
TMRG numerical method to determine the reduced density
matrix for the two sublattices A and B by replacing the spin-
up and spin-down states with the occupied and empty ones,
respectively. Then, we choose the observable in Eq. (2) as
c† + c, namely, the transformation of a state between occupied
and empty, and QCmax can be obtained directly. The results are
shown in Fig. 3(a). No derivative or size-dependent scaling
analysis, similar to that performed for the QC [16], is neces-
sary. The topological critical point is directly indicated by the
singularity of QCmax even at high T .

The second example is the one-dimensional spin Kitaev
model [31], with its Hamiltonian determined as follows:

H =
N∑
j

(
J1σ

x
2 j−1σ

x
2 j + J2σ

y
2 jσ

y
2 j+1

)
, (7)

where J1 and J2 describe the spin-spin interactions alterna-
tively along the chain (J1 is set to 1 as the energy unit). This
model has a topological QPT at J2 = 1, and this QPT is sep-
arated by two states containing two hidden string orders. We
calculate QCmax (the maximum of QC from spins connected
by J1 and J2) using the TMRG method. The results of QCmax

under different temperatures are plotted in Fig. 3(b). The sin-
gularity of the QCmax curve clearly identifies the topological
CP even at a relative high T .

The third example is the spin-1/2 antiferromagnetic
Heisenberg J1-J2 model, and its Hamiltonian is as follows:

H =
N∑

j=1

(J1S j · S j+1 + J2S j · S j+2), (8)

where S j denotes a spin-1/2 operator at site j. This model
has a BKT-type QPT at Jc

2 ≈ 0.241, which is controlled by
a marginal operator and difficult to observe [13,32,33]. At a
special point, the Majumdar-Ghosh (MG) point, J2/J1 = 0.5,
the model has an exact analytical solution. Its ground state is
the uniformly weighted superposition of two nearest-neighbor
dimer states [34]. We use the TMRG method to process an
infinite chain. QCmax (the maximum of σ x QCs from J1 and
J2 connected spins) is shown in Figs. 3(c) and 3(d). The MG
point is clearly spotlighted by the singularity even at relatively
high temperatures. Meanwhile, a round peak appears at the
left side of the MG point at relatively low T , namely, T = 0.2
[Figs. 3(c)]. As T further decreases, the peak is promoted and
moves toward J2 ≈ 0.24 [Fig. 3(d)], which clearly indicates
the BKT-type CP of this model.
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FIG. 3. QCmax as functions of driving parameters at different values of T : (a) SSH model, (b) one-dimensional spin Kitaev model, and
(c) and (d) spin J1-J2 model [(d) shows the behavior of the round peak near J2 = 0.2 in (c) at lower temperatures].

IV. DETECTING QPTS AGAINST INTERFERENCE

Any measurements related to QPTs should consider not
only the influence of temperature but also the interference,
such as the coupling of a probe to the system. A possible way
to detect QPTs or control qubits on quantum computations
and quantum communications is the interacting of a probe or
ancillary control qubit with the system [35]. Thus, the influ-
ence of the ancilla on the quantum states of the system cannot
be neglected. Therefore, assuming that the interference comes
from the probe, we study the influence of the environment on
different detectors in detecting QPTs.

First, we consider the XY and XXZ models, where the
anisotropy leads to the QPTs. The Hamiltonians of these
models can be unified as follows:

H = Ho + H ′, (9)

where Ho represents the original Hamiltonian of the XY and
XXZ models in Eqs. (1) and (5), respectively, and H ′ is
the probing term. To unchange the driving source of QPTs,
H ′ = δσ z

I σ z
A for the XY model and H ′ = δσIσA for the XXZ

model, and σI and σA are the Pauli matrices of the probe I
and an arbitrary measured site A of the system, respectively.
The superscript z indicates that only the z direction is chosen,
while δ describes the interaction strength between I and A.
The two-site reduced density matrix refers to site A and its
nearest neighbor.

The results from the exact diagonalization (ED) for N =
16 are shown in Fig. 4. The CP at γ = 0 for the XY
model is always indicated by the turning point of QCmax

[Fig. 4(a)], while for the other detector, the minimum of
dQCx/dγ goes away from the CP as δ increases [Fig. 4(b)].
The same result is observed for the XXZ model. The BKT-
type QPT at � = 1 is precisely indicated even at relatively
high δ values [Fig. 4(c)], while the round peak of the concur-
rence, which is a possible indicator for the QPT [Fig. 1(c)],
moves to the right side of the critical point as δ is increased
[Fig. 4(d)].

Second, we consider the spin SSH model, where the lattice
structure asymmetry causes the QPTs. The Hamiltonian of

this model is as follows:

H = −
∑

j

(1 + η)
(
σ x

2 j−1σ
x
2 j + σ

y
2 j−1σ

y
2 j

)
+ (1 − η)

(
σ x

2 jσ
x
2 j+1 + σ

y
2 jσ

y
2 j+1

) + δσ z
I σ z

A, (10)

where η denotes the dimerization similar to that in the spinless
SSH model, and δ, σ z

I , and σ z
A have the same definitions as

those in Eq. (9). Similar to that in the spinless SSH model, this
system has a topological QPT at η = 0 when the interference
term is absent.

The exact diagonalization results are plotted in Figs. 4(e)
and 4(f). For the SSH model studied here, QCmax is defined
as the bigger one of the two neighboring QCs. The valley in
Fig. 4(e) remains at η = 0 as δ increases. This phenomenon
clearly illustrates the effectiveness of QCmax in detecting
QPT against the interference. For comparison, the results of

FIG. 4. QCmax as functions of driving terms under different
strengths of measurement interference δ and N = 16 for (a) XY,
(c) XXZ, and (e) spin SSH models. The second row shows the
results of the other detectors for the same models and values of δ:
(b) dQCx/dγ , (d) concurrence C, and (f) −dEv/dη. The inset in (f)
shows the scaling behavior of the peak position ηm of −dEv/dη.
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−dEv/dη at the same values of δ are plotted in Figs. 4(f), in
which the peak of −dEv/dη moves away from the CP as δ

increases. The results of dQD/dη show a behavior similar to
that of −dEv/dη (not shown here). These quantities cease to
reflect the occurrence of the QPT.

In addition, to overcome the finite-size effect, −dEv/dη

at δ = −4 under different N values are calculated. The CP
deviation of the peak always exists as N increases. The peak
position ηm (here, the η value of the pseudo CP, that is the
peak position of −dEv/dη at δ = 0, is subtracted from the
value of ηm to avoid the influence of the pseudo CP.) does
not vanish even at the thermodynamic limit [as N → ∞, the
extrapolated value is 0.07 as shown in the inset of Fig. 4(f)].
This phenomenon indicates that the deviation of the peak of
−dEv/dη from the CP is due to δ, not to the finite-size effect.
The same behavior exists in QD. Thus, QCmax is more robust
against interference than other detectors to have practical sig-
nificance in the study of QPT.

V. SUMMARY

In summary, several types of QPTs in different systems are
studied using TMRG, ED, and analytical methods. QCmax,
instead of QC, can precisely identify the QPTs caused by
anisotropy or asymmetrical lattice structures. The BKT-type

QPT in the J1-J2 model was also indicated. Moreover, the
QCmax can not only detect QPTs at finite T as effective as QD
but can also indicate QPTs under a measurement interference,
while other detectors, including QD, lose their ability. We
explain the mechanism as follows: QCmax catches the max-
imum information that skewed to the observable, making it
more comprehensive than QC itself in reflecting the changes
of a quantum state. Moreover, QCmax considers not only the
anisotropy similar to the QD but also the lattice asymmetry.
This characteristic leads to the more robust behavior of QCmax

against measurement interference than QD. Given that tem-
perature perturbations and measurement interferences cannot
be avoided in an experiment, QCmax may serve as a potential
ideal detector for QPTs.
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