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Driven Hubbard model on a triangular lattice: Tunable Heisenberg antiferromagnet
with a chiral three-spin term

Samudra Sur,1 Adithi Udupa,1 and Diptiman Sen 1,2

1Center for High Energy Physics, Indian Institute of Science, Bengaluru 560012, India
2Department of Physics, Indian Institute of Science, Bengaluru 560012, India

(Received 28 December 2021; revised 8 February 2022; accepted 8 February 2022; published 22 February 2022)

We study the effects of a periodically varying electric field on the Hubbard model at half filling on a triangular
lattice. The electric field is incorporated through the phase of the nearest-neighbor hopping amplitude via the
Peierls prescription. When the on-site interaction U is much larger than the hopping, the effective Hamiltonian
Heff describing the spin sector can be found using a Floquet perturbation theory. To third order in the hopping,
Heff is found to have the form of a Heisenberg antiferromagnet with three different nearest-neighbor couplings
(Jα, Jβ, Jγ ) on bonds lying along the different directions. Remarkably, when the periodic driving does not have
time-reversal symmetry, Heff can also have a chiral three-spin interaction in each triangle, with the coefficient C
of the interaction having opposite signs on up- and down-pointing triangles. Thus periodic driving which breaks
time-reversal symmetry can simulate the effect of a perpendicular magnetic flux which is known to generate
such a chiral term in the spin sector, even though our model does not have a magnetic flux. The four parameters
(Jα, Jβ, Jγ ,C) depend on the amplitude, frequency, and direction of the oscillating electric field. We then study
the spin model as a function of these parameters using exact diagonalization and find a rich phase diagram of the
ground state with seven different phases consisting of two kinds of ordered phases (collinear and coplanar) and
disordered phases. Thus periodic driving of the Hubbard model on the triangular lattice can lead to an effective
spin model whose couplings can be tuned over a range of values thereby producing a variety of interesting
phases.

DOI: 10.1103/PhysRevB.105.054423

I. INTRODUCTION

Periodically driven quantum systems have been studied
extensively over the last several years, both theoretically
[1–38] and experimentally [39–50] (see Refs. [51–57] for
reviews). Such systems can exhibit a wide variety interesting
phenomena such as dynamical freezing [1,4,7,10–12,16–18],
the generation of nontrivial band structures and states lo-
calized at the boundaries of the system [58–84], and time
crystals [30,32,85]. While periodic driving of systems of non-
interacting electrons has been studied very extensively, the
effects of interactions along with periodic driving have also
been studied by several groups [12,19–38,48–50,84].

For undriven (time-independent) systems, it is often of
interest to consider a subset of states such as the ground
state and low-lying excitations which dominate the low-
temperature properties of the system. For this purpose it is
convenient to find an effective low-energy Hamiltonian Heff

which describes such states; the derivation of Heff usually
involves taking into account all the other states in a pertur-
bative way. For a system in which the Hamiltonian changes
with time, we cannot define energy eigenstates and there is
no concept of low-energy states. However, as we will see, we
can define an effective time-independent Hamiltonian which
describes a particular sector of the system, such as the spin
sector in which each site is occupied by only one electron
whose spin can point up or down.

In this paper, we will consider the Hubbard model of spin-
1/2 electrons on a triangular lattice with a nearest-neighbor
hopping amplitude g and an on-site interaction U . In the
absence of periodic driving, it is known that when the system
is at half filling and U � g, then up to order g2, the low-energy
Hamiltonian takes the form of a Heisenberg antiferromagnet
with nearest-neighbor interactions of the form J �Si · �S j where
J = 4g2/U . We will consider what happens when this model
is subjected to a periodically varying electric field which
points in some direction in the plane of the lattice. The effect
of the electric field will be incorporated in the model using the
Peierls prescription [86]. We will show that up to order g3, the
Floquet Hamiltonian which describes Floquet eigenstates in
the spin sector (i.e., with large weights for states in which ev-
ery site is singly occupied) has the following form. At order g2

and g3 there is a Heisenberg antiferromagnetic term Ja �Si · �S j

which couples nearest neighbors but the coupling Ja has three
different values depending on the orientation of the bond
joining the two sites. In addition, if the periodically varying
electric field is not time-reversal symmetric, a chiral three-
spin interaction of the form C �Si · �S j × �Sk can appear at order
g3 on each triangle, with C having opposite values ±C on up-
and down-pointing triangles. The values of the four couplings,
Ja and C, can be tuned by varying the time dependence and
direction of the periodically varying electric field and the driv-
ing frequency ω. A spin model with four such couplings has
not been studied earlier to the best of our knowledge although
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Refs. [87–90] have studied models with different values of Ja

and C = 0, and models with all Ja’s equal and C having the
same sign on up- and down-pointing triangles have been stud-
ied in Refs. [91] and [92]. We will then study the ground state
phase diagram of our four-parameter spin model using exact
diagonalization (ED) of systems with 36 sites. We find a rich
phase diagram consisting of three collinear ordered phases,
one coplanar ordered phase, and three disordered (spin-liquid)
phases. These phases can be distinguished from each other
in several ways including the locations of the peaks of the
static spin structure function S(�q) in the Brillouin zone of �q,
the minimum value of the correlation function C(�r) in real
space, the fidelity susceptibility of the ground state [93], and
crossings of the energies of the ground state and first excited
state.

The plan of the paper is as follows. In Sec. II we introduce
the Hubbard model on a triangular lattice in the presence of
a periodically varying electric field. In Sec. III we derive the
effective spin Hamiltonian using a Floquet perturbation theory
which works in the limit that the nearest-neighbor hopping is
much smaller than the Hubbard interaction U and the driving
frequency ω. We will find that there are nearest-neighbor
Heisenberg antiferromagnetic terms with three different cou-
plings Jα, Jβ, Jγ and a chiral three-spin term with coefficient
±C on up- and down-pointing triangles. In Sec. IV, we study
the ground state phase diagram of the effective Floquet Hamil-
tonian in the classical limit and then use spin-wave theory to
look at the excitations in the collinear phases. This is followed
by Sec. V in which we study the spin model in detail using
ED for various values of Jα, Jβ, Jγ , and C. We look at several
quantities derived from the ground state wave function such as
the static structure function in both real and momentum space
and the fidelity susceptibility to obtain the ground state phase
diagram. A rich phase diagram is found with four ordered
phases and three spin-liquid phases. We conclude in Sec. VI
by summarizing our main results and pointing out possible
directions for future studies.

II. HUBBARD MODEL WITH PERIODIC DRIVING
BY ELECTRIC FIELD

We consider the one-band Hubbard model of spin-1/2
electrons on a triangular lattice at half filling. The Hamiltonian
is given by

H = −g
∑

〈i, j〉,σ
(c†

i,σ c j,σ + H.c.) + U
∑

i

ni,↑ni,↓, (1)

where g is the hopping amplitude between neighboring sites,
and U > 0 is the on-site repulsive interaction. In the ab-
sence of driving and in the limit of large interaction, U � g,
the lowest energy sector of the Hamiltonian is described by
an antiferromagnetic Heisenberg spin model at half filling
and by the t-J model away from half filling. Additionally,
we drive the Hamiltonian periodically with a time varying
in-plane electric field �E (�r, t ) = �E (�r, t + T ). To consider the
most general cases, we will assume that the electric field
is not time-reversal symmetric, i.e., that there is no t0 such
that �E (�r, t ) = �E (�r, t0 − t ). This property of the electric field
will turn out to be important for our study since, as we will
see, it gives rise to an additional term in the effective spin

FIG. 1. A schematic of the triangular lattice model with the sub-
lattices marked in three different colors. The sites are labeled in the
anticlockwise direction 1, 2, and 3 as shown. The time-dependent
electric field �E (t ) points along a direction n̂ which makes an angle θ

with the x̂ axis.

Hamiltonian. (Such an electric field can be realized by, say,
superposing two sinusoidal electric fields with different fre-
quencies and a phase difference as we will see in Sec. V).
We will take the form of the electric field to be �E (t ) = n̂E (t ),
where n̂ denotes a unit vector in the plane of the triangular
lattice, and we will parametrize the direction of n̂ by an angle
θ with respect to the x̂ axis.

The time-dependent electric field is incorporated in our
model through a vector potential in the phase of the
nearest-neighbor hopping following the Peierls prescription.
Since �E = −(1/c)∂ �A/∂t , the vector potential is �A(t ) = n̂A(t )
where A(t ) = −c

∫ t
0 dt ′E (t ′). [We will assume that the elec-

tric field does not have a dc component, i.e.,
∫ T

0 dtE (t ) = 0.
Then A(t ) will also be a periodic function of t .] The phase
of the hopping from a site at �r j to a site at �ri is given
by (q/h̄c) �A · (�ri − �r j ) where q is the charge of the electron.
Hence the periodic driving modifies the term −gc†

i,σ c j,σ in the

Hamiltonian to −gei(q/h̄c)A(t )n̂·(�ri−�r j )c†
i,σ c j,σ .

Figure 1 illustrates how the different quantities look for a
single triangle with sides of unit length whose sites are labeled
as 1, 2, and 3. (We have chosen the triangle to be up-pointing
along the ŷ axis.) If ti j is the hopping amplitude from site j to
site i, we have

t12 = ge i(q/h̄c)A(t ) cos(π/3−θ ),

t23 = ge i(q/h̄c)A(t ) cos(π−θ ),

t31 = ge i(q/h̄c)A(t ) cos(π/3+θ ), (2)

and t ji = t∗
i j . Then the periodically driven Hamiltonian for

this triangle is

H
(t ) = −
∑

σ

(t12 c†
1,σ c2,σ + t23 c†

2,σ c3,σ + t31 c†
3,σ c1,σ + H.c.)

+U
3∑

i=1

ni,↑ni,↓. (3)

To obtain the Hamiltonian for the entire triangular lattice,
we sum up the Hamiltonians for all triangles, both up-pointing
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FIG. 2. The nine basis states in sector (b) are labeled from |ψ1〉
to |ψ9〉 as shown.

and down-pointing, with Hamiltonians H
(t ) and H∇(t ). In
the next section we will use Floquet perturbation theory to
derive the effective model in the large U (Mott insulator) limit
of this driven model. We shall see that the states in the spin
sector (in which all sites are occupied by only one electron)
are governed by a Heisenberg Hamiltonian with different ex-
change couplings on different bonds and an additional chiral
three-spin term whose sign is opposite for up-pointing (
) and
down-pointing triangles (∇).

III. OBTAINING THE EFFECTIVE SPIN HAMILTONIAN
USING FLOQUET PERTURBATION THEORY

To obtain the effective Hamiltonian in the large U limit
using Floquet perturbation theory, we start with the Hubbard
model on a single triangle. We write the Hamiltonian in
Eq. (3) as H
 = H0 + V where

H0 = U
3∑

i=1

ni,↑ni,↓,

V (t ) = −
∑

σ

(t12 c†
1,σ c2,σ + t23 c†

2,σ c3,σ + t31 c†
3,σ c1,σ + H.c.).

We now consider the eigenstates of the static part of the
Hamiltonian, H0, which will serve as the basis for subsequent
calculations. For a half-filled system we can have three elec-
trons on the triangle. Then the total number of basis states is
20. They can be classified according to the number of up and
down spins (in Sz basis) which are listed below:

(a) One state with all three spins pointing up.
(b) Nine states with two up spins and a down spin. Six of

these states have a double occupancy.
(c) Nine states with one up and two down spins. Here also

six states have a double occupancy.
(d) One state with all the three spins pointing down.
The reason for this classification is that these four sectors

do not mix with each other since they have different values
of the z component of the total spin Sz, which commutes with
both H0 and V (t ).

Sectors (a) and (d) are identical in terms of the eigenvalues
of H0 as are the sectors (b) and (c). Since the states in sector (a)
and (d) are exact eigenstates of V (t ), the nontrivial eigenstates
of H0 are governed by states in sectors (b) and (c) which are
related by the spin rotation operator which takes Sz → −Sz.
Hence we will derive the effective Hamiltonian for only sector
(b). The nine basis states |ψn〉 in sector (b) are labeled as
shown in Fig. 2. A general state |ψ (t )〉 with two up spins
and one down spin can be written as a linear combination of
these basis states as |ψ (t )〉 = ∑9

n=1 cn(t ) |ψn〉 e−iEnt , where
En’s are the eigenvalues of H0. (We will set h̄ equal to 1 in
the rest of this paper.) According to our notation E1 = E2 =
E3 = 0 and En = U for n = 4, 5, . . . , 9. We will follow the

convention of defining the basis states in terms of the creation
operators as follows. In Fig. 2, the state |ψ1〉 = c†

1↓c†
2↑c†

3↑ |0〉,
whereas |ψ4〉 = c†

1↑c†
1↓c†

3↑ |0〉, namely, the three site labels are
nondecreasing as we go from left to right, and at the same site,
↑ appears to the left of ↓.

Next, |ψ (t )〉 satisfies the time-dependent Schrödinger
equation i∂ |ψ (t )〉 /∂t = (H0 + V (t )) |ψ (t )〉. Using the ex-
pansion of |ψ (t )〉, we obtain a set of linear differential
equations for the coefficients cn,

i
dcn

dt
=

9∑
m=1

〈ψn|V (t ) |ψm〉 ei(En−Em )t cm(t ), (4)

where n = 1, 2, . . . , 9. In our chosen basis, the matrix
〈ψn|V (t ) |ψm〉 matrix looks like⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 t21 −t31 0 t12 −t13 0
0 0 0 −t21 0 t32 −t12 0 t32

0 0 0 0 t31 −t32 0 t13 −t23

t12 −t12 0 0 −t32 0 0 0 t13

−t13 0 t13 −t23 0 t12 0 0 0
0 t23 −t23 0 t21 0 −t13 0 0

t21 −t21 0 0 0 −t31 0 t23 0
−t31 0 t31 0 0 0 t32 0 −t21

0 t32 −t32 t31 0 0 0 −t12 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5)

Since the ti j’s are periodic functions of time, they can be
expanded as a Fourier series. The expressions for the time-
dependent hoppings are therefore

t12 = g
∞∑

m=−∞
γm eimωt ,

t23 = g
∞∑

m=−∞
αm eimωt ,

t31 = g
∞∑

m=−∞
βm eimωt , (6)

where αm, βm, and γm are generally complex.
In Floquet theory, we define a Floquet operator which

unitarily evolves the system through one time period T as

UT = T e−(i/h̄)
∫ T

0 dtH (t ), (7)

where T denotes time ordering. If |ψ (t )〉 is an eigenstate of
UT , we have

|ψ (T )〉 = UT |ψ (0)〉 = e−iεT |ψ (0)〉 , (8)

where ε is the quasienergy for the state |ψ (t )〉. Then in terms
of the basis states |ψn〉 and coefficients cn(t ), we have

cn(T ) e−iEnT =
9∑

m=1

〈ψn|UT |ψm〉 cm(0) (9)

for n = 1, 2, . . . , 9. In the following subsections, we will
solve Eq. (4) perturbatively in powers of g to obtain an effec-
tive Hamiltonian Heff such that e−iHeffT = UT up to the desired
power of g.
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A. Second-order calculation for effective Hamiltonian

Starting from Eq. (4) we solve for the coefficients of the
low-energy states c1(T ), c2(T ), c3(T ) up to order g2 per-
turbatively. To begin with, the equations for c4(t ) . . . c9(t )
are solved at an arbitrary time t assuming the coefficients
c1(t ), c2(t ), c3(t ) to be constant and given by their values
at t = 0. This is because c4(t ) . . . c9(t ) are coefficients of
the states |ψ4〉 . . . |ψ9〉 which lie in the high-energy sector
and thus appear with coefficients which are of order g times
the coefficients of c1(t ), c2(t ), c3(t ). This procedure gives
equations of the form

c4(t ) − c4(0) = −g
∑

m

γm
(e i(U+mω)t − 1)

U + mω
c1(0)

+ g
∑

m

γm
(e i(U+mω)t − 1)

U + mω
c2(0) (10)

and similar equations for c5(t ) . . . c9(t ). We now have to
impose the Floquet condition Eq. (8) for the coefficients. We
have c4(T ) = e−iεT e iUT c4(0). The Floquet eigenvalue e−iεT

gives the amplitude 〈ψ (T )|ψ (0)〉, which is the amplitude to
start at time t = 0 with a combination of the nine basis states
and come back to the same combination of states (up to overall
phase) at time t = T . However this is either an order 1 or order
g2 process. This allows us to approximate e−iεT = 1 + O(g2).
Hence, up to first order in g, we can write

c4(T ) − c4(0) = (e iUT − 1) c4(0). (11)

Using this Floquet condition at t = T in Eq. (10) we obtain
the order g expression for c4

c4(t ) = −g
∑

m

γm
e i(U+mω)t

U + mω
c1(0)

+ g
∑

m

γm
e i(U+mω)t

U + mω
c2(0). (12)

We get similar expressions for the coefficients c5(t ) . . . c9(t ).
In the next step we substitute these O(g) expressions for

c4(t ) . . . c9(t ) in the right hand side of Eq. (4) to obtain the
O(g2) equations for c1(T ), c2(T ), c3(T ), which eventually
gives the second-order effective Hamiltonian for the Floquet
system. We can write down final equations in a matrix form,⎛

⎝c1(T )
c2(T )
c3(T )

⎞
⎠ = (1 − iT H (2)

eff )

⎛
⎝c1(0)

c2(0)
c3(0)

⎞
⎠, (13)

where

H (2)
eff = g2

⎛
⎝− fβ − fγ fγ fβ

fγ − fα − fγ fα
fβ fα − fα − fβ

⎞
⎠,

fα =
∑

m

|αm
2|

(
1

U + mω
+ 1

U − mω

)
,

fβ =
∑

m

|βm
2|

(
1

U + mω
+ 1

U − mω

)
,

fγ =
∑

m

|γm
2|

(
1

U + mω
+ 1

U − mω

)
. (14)

Comparing with Eq. (9) and noting that E1 = E2 = E3 = 0,
we infer that (1 − iT H (2)

eff ) approximates UT to O(g2).
We note that the quantities in Eq. (14) diverge if U/ω

approaches any integer values. This corresponds to a reso-
nance condition, and the coefficients c4(t ) . . . c9(t ) of the
high-energy states will then not be much smaller than
c1(t ), c2(t ), c3(t ). In our numerical calculations, we will
choose U and ω in such a way that U/ω is not close to an
integer.

B. Third-order calculation for effective Hamiltonian

The third-order effective Hamiltonian is obtained by solv-
ing for c1(T ), c2(T ), c3(T ) to O(g3). Here we start with the
O(g) expressions for c4(t ) . . . c9(t ) which have already been
calculated in Eq. (12). We now use these expressions in the
right hand side of the equations involving c4(t ) . . . c9(t ) in
Eq. (4) to find the same expressions to the next order in g.
We again use the Floquet condition to finally end up with the
O(g2) expressions for c4(t ) . . . c9(t ). The final expression for
c4(t ) in Eq. (15) is given by

c4(t ) = −g2
∑
m,n

α∗
nβ

∗
m e i(U−mω−nω)t

(U − mω)(U − mω − nω)
(c1(0) − c3(0))

+ g2
∑
m,n

α∗
mβ∗

n e i(U−mω−nω)t

(U − mω)(U − mω − nω)
(c2(0) − c3(0)).

(15)

Next, we use this expression along with similar expressions
for c5(t ) . . . c9(t ) in the right hand side of Eq. (4) which
finally gives us O(g3) expressions for c1(T ), c2(T ), c3(T ).
The third-order effective Hamiltonian H (3)

eff obtained from this
calculation is given by

H (3)
eff =g3

⎛
⎝ (dα + d∗

α ) − (eα + e∗
α ) (e∗

α + e∗
β + d∗

γ ) − (dα + dβ + eγ ) (eα + dβ + eγ ) − (d∗
α + e∗

β + d∗
γ )

(eα + eβ + dγ ) − (d∗
α + d∗

β + e∗
γ ) (dβ + d∗

β ) − (eβ + e∗
β ) (d∗

α + e∗
β + e∗

γ ) − (eα + dβ + dγ )
(e∗

α + d∗
β + e∗

γ ) − (dα + eβ + dγ ) (dα + eβ + eγ ) − (e∗
α + d∗

β + d∗
γ ) (dγ + d∗

γ ) − (eγ + e∗
γ )

⎞
⎠, (16)

where we define

dα =
∑
l,m

α−(l+m) βm γl

(U − mω)(U + lω)
,

dβ =
∑
l,m

β−(l+m) γm αl

(U − mω)(U + lω)
,

dγ =
∑
l,m

γ−(l+m) αm βl

(U − mω)(U + lω)
,
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eα =
∑
l,m

α−(l+m) βm γl

(U + mω)(U − lω)
,

eβ =
∑
l,m

β−(l+m) γm αl

(U + mω)(U − lω)
,

eγ =
∑
l,m

γ−(l+m) αm βl

(U + mω)(U − lω)
. (17)

Thus, by considering the lowest energy states for a single
triangle pointing upwards, we obtain the effective Hamilto-
nian for this driven system H eff


 = H (2)
eff + H (3)

eff up to O(g3).
We can now rewrite this Hamiltonian in terms of spin oper-
ators at the three sites. Our original Hamiltonian Eq. (1), as

well as the driven Hamiltonian Eq. (3) are SU (2) invariant,
hence the effective Hamiltonian will also have the same spin
rotational symmetry. The form of our Hamiltonian for three
spin-1/2’s on a triangle can therefore have only the following
terms,

H eff

 = Jα �S2 · �S3 + Jβ �S3 · �S1 + Jγ �S1 · �S2

+C �S1 · �S2 × �S3 + D 1, (18)

where Jα , Jβ , Jγ are the two-spin exchange couplings, C is
a chiral three-spin term, and D is a constant. In the basis
states of sector (b), (|ψ1〉 , |ψ2〉 , |ψ3〉), at sites 1, 2, and 3,
this Hamiltonian has the following form:

H eff



⎛
⎝|ψ1〉

|ψ2〉
|ψ3〉

⎞
⎠ =

⎛
⎜⎜⎝

1
4 (Jα − Jβ − Jγ ) + D 1

2 Jγ + i
4C 1

2 Jβ − i
4C

1
2 Jγ − i

4C 1
4 (Jβ − Jα − Jγ ) + D 1

2 Jα + i
4C

1
2 Jβ + i

4C 1
2 Jα − i

4C 1
4 (Jγ − Jα − Jβ ) + D

⎞
⎟⎟⎠

⎛
⎝|ψ1〉

|ψ2〉
|ψ3〉

⎞
⎠. (19)

Comparing this equation with Eq. (18), we obtain expres-
sions for Jα , Jβ , Jγ , and C. We further obtain the expression
for D using the special state of sector (a) with all three spins
pointing up. This state has an eigenvalue equal to 1

4 (Jα + Jβ +
Jγ ) + D for the Hamiltonian in Eq. (18). But for our original
Hamiltonian, this gives an energy eigenvalue equal to zero.
Equating the two, we obtain D. The expressions for the five
parameters are therefore given by

Jα = 2g2 fα − 2g3 Re [(dα + eβ + eγ ) − (eα + dβ + dγ )],

Jβ = 2g2 fβ − 2g3 Re [(eα + dβ + eγ ) − (dα + eβ + dγ )],

Jγ = 2g2 fγ − 2g3 Re [(eα + eβ + dγ ) − (dα + dβ + eγ )],

C = −4g3 Im [dα + dβ + dγ + eα + eβ + eγ ],

D = − 1
4 (Jα + Jβ + Jγ ). (20)

Interestingly, we observe that C is zero when the d’s
and e’s defined in Eq. (17) are real. This is the case if
the Hamiltonian is time-reversal symmetric, i.e., H (t0 − t ) =
H∗(t ) for some value of t0. Then the Fourier expansions
for the time-dependent hoppings obey

∑∞
m=−∞ αm eimω(t0−t ) =∑∞

m=−∞ α∗
m e−imωt . This implies that α∗

m = αm eimωt0 for all m
and similarly for βm’s and γm’s. This makes the d’s and e’s
defined in Eq. (17) completely real.

However, for circularly polarized radiation where the vec-
tor potential is of the form �A(t ) = A[cos(ωt )x̂ + sin(ωt )ŷ],
time-reversal symmetry is broken, but we find from Eqs. (2)
and (20) that C vanishes at order g3 for all values of A and ω.
(It turns out that we get a nonzero contribution to C at order
g4 as shown in Refs. [94–96].) Thus breaking time-reversal
symmetry is a necessary but not sufficient condition to have a
nonzero C at order g3.

The expressions for the second-order and third-order ef-
fective Hamiltonians in Eqs. (14) and (16) indicate that the
perturbative expansion is valid if g is much smaller than U , ω

and U + nω for any integer value of n. The condition that g
should be much smaller than U + nω for any n is required to
avoid resonances.

C. Total effective Hamiltonian for the lattice

The effective Hamiltonian for a single up-pointing trian-
gle, as derived above in the spin operator language, can be
extended to the entire lattice. The important observation to
note here is that the coefficient of the chiral three-spin term
written in the the anticlockwise direction is opposite on up-
and down-pointing triangles. (This is unlike the case of a
time-independent magnetic field applied perpendicular to the
plane of the lattice which gives the same sign of the chiral term
for all triangles, both up- and down-pointing. This is because
the chiral three-spin term then only depends on the magnetic
flux through each triangle, and this has the same sign for all
triangles [97].) The reason for the sign flip in our model is that
when we go from 
 → ∇, the angle that the external electric
field makes with x̂ changes as θ → π + θ . This changes the
hoppings as ti j → t∗

i j and thus, dk, ek → d∗
k , e∗

k . From Eq. (20)
we see that this gives a negative sign on the right hand side in
the expression for C. Hence C → −C when we go from an 

triangle to a ∇ triangle.

The complete triangular lattice is made up of up-pointing
and down-pointing triangles placed adjacently to each other.
The total Hamiltonian for the lattice in the spin operator
language can thus be written as

HL =
∑

�n
[Jα �S�n · �S�n+�u + Jβ �S�n · �S�n+�v + Jγ �S�n · �S�n+�w]

+ C

[ ∑
�n,


�S�n · �S�n+�u × �S�n+�w

−
∑
�n,∇

�S�n · �S�n+�w × �S�n+�v

]
, (21)
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FIG. 3. A schematic of the triangular lattice model with the
nearest-neighbor position vectors �u, �v, and �w and effective Heisen-
berg couplings Jα , Jβ , and Jγ for three different bonds as shown. The
chiral three-spin term has opposite signs of C for up-pointing (123)
and down-pointing (345) triangles.

where �n = m1�u + m2�v is the vector position of a site on the
lattice, and

�u = ax̂,

�v = a

(
−1

2
x̂ +

√
3

2
ŷ

)
,

�w = a

(
1

2
x̂ +

√
3

2
ŷ

)
(22)

as shown in Fig. 3. (We will henceforth set the nearest-
neighbor lattice spacing a = 1.) The order of spin operators
for the three-spin terms is conventionally taken to be in the
anticlockwise direction. This convention gives a negative sign
for C for the down-pointing triangle. For instance, in Fig. 3,
the three-spin term for the down-pointing triangle marked by
sites 3, 4, and 5 is −C �S3 · �S4 × �S5.

IV. CLASSICAL ANALYSIS AND SPIN-WAVE THEORY

In this section we will consider the spin-1/2 Hamiltonian
on the triangular lattice and study its classical limit where the
value of the spin S at each site is taken to infinity. Having
found the classical ground state we will then use spin-wave
theory to study the excitations above the classical ground
state.

In the large-S limit, we have to put a factor of 1/S in
front of the three-spin term so that it scales in the same way
(i.e., as S2) as the two-spin terms. We therefore consider the
Hamiltonian

HS =
∑

�n
[Jα �S�n · �S�n+�u + Jβ �S�n · �S�n+�v + Jγ �S�n · �S�n+�w]

+ C

S

[ ∑
�n,


�S�n · �S�n+�u × �S�n+�w

−
∑
�n,∇

�S�n · �S�n+�w × �S�n+�v

]
. (23)

Since we are looking at the classical limit, we can take the
components of spin to be commuting objects. We will now
look at some classical spin configurations and find the ranges
of parameters (Jα, Jβ, Jγ ,C) where each of these is stable.

Before proceeding further, we note that �w = �u + �v, and the
coordinates �n of any site can be uniquely written as

�n = m1�u + m2�v, (24)

where m1, m2 are integers.
We first consider a collinear spin configuration in which all

the spins point along the ±ẑ direction in the spin space, and
they also satisfy

�S�n · �S�n+�u = −S2,

�S�n · �S�n+�v = S2,

�S�n · �S�n+�w = −S2 (25)

for all values of �n. Following Fig. 3 and Eq. (24), we see that
a spin configuration which satisfies Eq. (25) is given by

�S�n = S(0, 0, (−1)m1 ). (26)

For a large system with N sites and periodic boundary condi-
tions, we find that the classical energy of this configuration is
given by

Ecl = NS2(−Jα + Jβ − Jγ ). (27)

[Note that the three-spin term in Eq. (23) does not contribute
to the energy in any collinear spin configuration. We will
therefore set C = 0 in the rest of this analysis.] We will now
use spin-wave theory [98,99] to find the energy-momentum
dispersion of the excitations around the classical ground state
in Eq. (26). We use the Holstein-Primakoff transformation
[100] to write the spin operators in terms of bosonic operators
as

Sz
�n = S − a�n

†a�n,

S+
�n =

√
2S − a†

�na�na�n

S−
�n = a†

�n

√
2S − a†

�na�n (28)

at the sites where �S�n = S(0, 0, 1), and

Sz
�n = −S + a†

�na�n,

S+
�n = a†

�n

√
2S − a†

�na�n,

S−
�n =

√
2S − a†

�na�na�n, (29)

at the sites where �S�n = S(0, 0,−1). Making the standard

large-S approximation of replacing
√

2S − a†
�na�n → √

2S, we
find that Eq. (23) takes the form

HS = NS2(−Jα + Jβ − Jγ )

+ S
∑

�n
[(2Jα − 2Jβ + 2Jγ )a†

�na�n

+ Jα (a†
�na†

�n+�u + H.c.)

+ Jβ (a†
�na�n+�v + H.c.)

+ Jγ (a†
�na†

�n+�w + H.c.)]. (30)
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Fourier transforming to momentum space, we obtain

HS = NS2(−Jα + Jβ − Jγ )

+ S
∑

�k
[(2Jα − 2Jβ + 2Jγ )a†

�ka�k

+ Jα cos(�k · �u)(a†
�ka†

−�k + a�ka−�k )

+ 2Jβ cos(�k · �v)a†
�ka�k

+ Jγ cos(�k · �w)(a†
�ka†

−�k + a�ka−�k )], (31)

where the sum over �k runs over the complete Brillouin zone.
The above Hamiltonian couples modes at �k and −�k. Using the
Bogoliubov transformation to diagonalize the Hamiltonian,
we find that the spin-wave spectrum is given by

E�k = S
√

(C�k + D�k )(C�k − D�k ),

C�k = Jα + Jγ − Jβ + Jβ cos(�k · �v),

D�k = Jα cos(�k · �u) + Jγ cos(�k · �w). (32)

We see that the spin-wave energy vanishes at �k = (0, 0) and
�k = π (1, 1/

√
3) which correspond to Goldstone modes. We

therefore expect that in this phase the static structure function
S(�q) should have a peak at �q = π (1, 1/

√
3). We can also see

this directly from the form of the classical spin configura-
tion in Eq. (26). Since the two-spin correlation between sites
�0 = (0, 0) and �n is equal to �S�0 · �S�n = S2(−1)m1 , we see from
Eqs. (22) and (24) that the Fourier transform,

S(�q) =
∑

�n
e−i �q·�n �S�0 · �S�n, (33)

will have a peak at �q = π (1, 1/
√

3). We will see later that this
agrees with our numerical results based on ED.

Expanding around �k = (0, 0), we find that

E2
�k = S2a2(Jα + Jγ )(kx ky)M�k

(
kx

ky

)
,

M =
(

Jα + 1
4 (Jγ − Jβ )

√
3

4 (Jβ + Jγ )
√

3
4 (Jβ + Jγ ) 3

4 (Jγ − Jβ )

)
. (34)

The above analysis clearly breaks down if any of the eigenval-
ues of M�k becomes negative since that would make the energy
E�k imaginary. This happens if

det(M�k ) = 3
4 (JαJγ − JβJγ − JαJβ ) (35)

turns negative. We thus conclude that the spin-wave spectrum
near the ground state spin configuration given in Eq. (25) is
real if

1

Jβ

>
1

Jα

+ 1

Jγ

, (36)

and a transition must occur to some other phase when

1

Jβ

= 1

Jα

+ 1

Jγ

. (37)

As we approach the line in Eq. (37) from the region in
Eq. (36), we find from Eq. (34) that one of the spin-wave

energies remains finite while the other approaches zero as
some finite constant times

√
λ|�k|, where

λ ≡ 1

Jβ

− 1

Jα

+ 1

Jγ

. (38)

The above analysis was based on an expansion of the spin
Hamiltonian in Eq. (23) up to order S, assuming that the
ground state expectation value of a†

�na�n appearing in Eqs. (28)
and (29) are much smaller than S. We can now check for the
self-consistency of this assumption [98]. We find that

〈a†
�na�n〉 ∼

∫
d2k

E�k
. (39)

Near the vicinity of the line in Eq. (37) and �k = (0, 0),
we see from Eq. (38) that the integral in Eq. (39) diverges as
1/

√
λ. Hence, for large S, the spin-wave analysis is expected

to break down in a region appearing before the phase transition
line where the integral in Eq. (39) is not much smaller than S.
We may expect this region to form a disordered phase. We will
see in the next section that the ground state phase diagram for
our model with S = 1/2 indeed has some disordered phases
lying between the ordered phases.

By permuting between the three couplings Jα, Jβ , and
Jγ , we find that there must be two other regions similar to
Eq. (36), namely,

1

Jα

>
1

Jβ

+ 1

Jγ

(40)

and

1

Jγ

>
1

Jα

+ 1

Jβ

, (41)

where a possible ground state spin configuration is given by

�S�n = S(0, 0, (−1)m2 ) (42)

and

�S�n = S(0, 0, (−1)m1+m2 ), (43)

respectively. The three collinear ordered phases given by
Eqs. (36), (40), and (41) are shown in Fig. 4 (see also
Ref. [89]).

We will now briefly discuss the remaining region in Fig. 4,
still setting C = 0. We will assume that the ground state spin
configuration in this region is given by a coplanar configura-
tion of the form

�S�n = S(cos φ�n, sin φ�n, 0),

where φ�n = m1φ1 + m2φ2, (44)

for �n = m1�u + m2�v. This implies that

�S�n · �S�n+�u = S2 cos φ1,

�S�n · �S�n+�v = S2 cos φ2,

�S�n · �S�n+�w = S2 cos(φ1 + φ2). (45)

The classical ground state energy for a system with N sites is
then given by

Ecl = NS2[Jα cos φ1 + Jβ cos φ2 + Jγ cos(φ1 + φ2)]. (46)
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FIG. 4. The classical ground state phase diagram as a function
of Jβ/Jα and Jγ /Jα for C = 0. There are three collinear (or striped)
phases where Eqs. (36) (shown in maroon), (40) (dark green), and
(41) (violet) are satisfied. The rest of the diagram, shown in yellow,
describes a coplanar (or spiral) phase.

Minimizing Eq. (46) with respect to the angles φ1, φ2, we
obtain

Jα sin φ1 + Jγ sin(φ1 + φ2) = 0,

Jβ sin φ2 + Jγ sin(φ1 + φ2) = 0. (47)

Given some values of Jα, Jβ , and Jγ , we can numerically solve
Eqs. (47) for φ1, φ2 to find a classical ground state configu-
ration. We will not discuss here the spin-wave theory about
such a ground state. For Jα = Jβ = Jγ , there are two solutions
of Eqs. (47) given by φ1 = φ2 = 2π/3 and φ1 = φ2 = 4π/3.
We also note that the collinear spin configurations given in
Eqs. (26), (42), and (43) are, after doing a rotation which
transforms the x̂ axis into the ẑ axis, special cases of Eq. (44)
corresponding to (φ1, φ2) = (π, 0), (0, π ), and (π, π ), re-
spectively.

For the spin configuration given in Eq. (44), we have
�S�0 · �S�n = S2 cos(m1φ1 + m2φ2). Then an argument similar to
the one around Eq. (33) implies that S(�q) will have δ-
function peaks at �q = ±(φ1, (φ1 + 2φ2)/

√
3). Equation (47)

implies that the locations of the peaks will move around
as the parameters Jα, Jβ , and Jγ are changed. In con-
trast to this, we will see later that our numerical results
show peaks which are fixed at �q = ±(2π/3, 2π/

√
3) for all

points in the coplanar phase. This is a qualitative differ-
ence between the classical (large S) and quantum (S = 1/2)
models.

Finally, we consider the case C �= 0 and equal two-spin
interactions, Jα = Jβ = Jγ . Now we find that the classical
ground state configuration is neither collinear nor coplanar.
We assume that the ground state spin configuration is given
by

�S�n = S(sin θ cos φ�n, sin θ sin φ�n, cos θ ),

where φ�n = (m1 + m2)
2π

3
, (48)

for �n = m1�u + m2�v. This implies that

�S�n · �S�n+�u = �S�n · �S�n+�v = �S�n · �S�n+�w
= S2(cos2 θ − 1

2 sin2 θ
)
, (49)

�S�n · �S�n+�u × �S�n+�w = �S�n · �S�n+�v × �S�n+�w

= S3 3
√

3

2
cos θ sin2 θ. (50)

For a system with N sites, the ground state energy is then

Ecl = NS2[3Jα (cos2 θ − 1
2 sin2 θ ) + 3

√
3C cos θ sin2 θ

]
,

(51)

where we have used the fact that for each site, there is one
up-pointing and one down-pointing triangle. [It is important
to note here that this calculation works only because the
coefficient C of the three-spin term in Eq. (23) has opposite
signs for the two kinds of triangles; if the sign had been the
same for all triangles, the analysis of the classical ground state
spin configuration would have been significantly more com-
plicated.] Minimizing Eq. (51) with respect to θ , we obtain

cos θ = 1

2
√

3C

[
Jα −

√
J2
α + 4C2

]
. (52)

We find that for C = 0, θ = π/2 which agrees with the dis-
cussion in the previous paragraph (with φ1 = φ2 = 2π/3); we
thus recover a coplanar spin configuration with the expres-
sions in Eqs. (49) and (50) being equal to −S2/2 and zero,
respectively. For C/Jα → ±∞, θ → arccos(−sgn(C)/

√
3),

where sgn(C) = +1(−1) for C > 0(< 0). Hence Eqs. (49)
and (50) are equal to zero and −sgn(C) S3, respectively, i.e.,
in each triangle the three spins are perpendicular to each other.

V. NUMERICAL ANALYSIS OF THE MODEL

Having derived the lattice Hamiltonian for our model, we
will now do an ED study to look at the ground state properties
as a function of the parameters (Jα, Jβ, Jγ ,C). The triangular
lattice is spanned by the primitive unit cell vectors �u and �v as
shown in Fig. 3. We choose to perform our ED calculations
on a 6×6 lattice system with total number of lattice sites,
N = 36 with periodic boundary conditions applied in both
the directions. This system size is particularly well suited for
our purpose since this ensures there is no frustration in the
sublattice symmetry of the triangular lattice in both the direc-
tions and the number of spin-1/2’s is even. This enables us
to work in the zero magnetization sector for the ground state
calculations. We make use of the following symmetries in the
system: (i) translation along û direction, (ii) translation along
v̂ direction, (iii) total magnetization m in the ẑ direction in
spin space, and (iv) spin inversion by the operator Z = eiπ��nSx

�n

which flips Sz
�n → −S�n at every site (with Z = 1 for the even

sector and Z = −1 for the odd sector).
For the ground state, we work in the momentum sector

(qx, qy) = (0, 0), zero magnetization sector m = 0, and even
spin inversion sector with eigenvalue of Z = 1. In addition,
for the case when C = 0, we also have (v) simultaneous spa-
tial inversion symmetry P along the û and v̂ directions. The
operator P = PxPy acting on the state takes x → Lx − x and
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(a)

(b)

(c)

(d)

FIG. 5. Plots of Jα , Jβ , Jγ , and C as functions of θ , for g = 1, U =
20, ω = 17, and a1 = 35. We have taken (a) a2 = 30, (b) a2 = 105,
(c) a2 = 140, and (d) a2 = 175. The values of a2 have been chosen
so as to show four qualitatively different behaviors versus θ .

y → Ly − y, where Lx and Ly are the lengths of the system
along �u and �v, respectively. The ground state has an even
parity for this operator enabling us to do the diagonalization
in this sector. The use of these symmetries reduces the Hilbert
space dimension from 236 (about 6.8×1010) down to about
6.3×107. We then examine in detail at the spatial correlation
function, static spin structure function (SSSF), and fidelity
susceptibility for the ground state as a function of the param-
eters Jα , Jβ , Jγ , and C.

For our numerical studies, we will consider an electric field
which does not have time-reversal symmetry. As an example,
we will take the electric field to be

�E (t ) = n̂[E1 cos(ωt ) + E2 sin(2ωt )]. (53)

We note that this electric field is not time-reversal symmetric
unless E2 = 0. Following the steps leading up to Eq. (2), we
now find that the hopping amplitudes are given by

t12 = ge (i/ω) [a1 sin(ωt )+(a2/2) cos(2ωt )] cos(π/3−θ ),

t23 = ge (i/ω) [a1 sin(ωt )+(a2/2) cos(2ωt )] cos(π−θ ),

t31 = ge (i/ω) [a1 sin(ωt )+(a2/2) cos(2ωt )] cos(π/3+θ ), (54)

where a1 = −qE1/h̄ and a2 = qE2/h̄, and t ji = t∗
i j .

A. Numerical values of Jα, Jβ, Jγ , and C from periodic driving

The four parameters Jα , Jβ , Jγ , and C depend on the am-
plitudes of driving a1 and a2, the frequency of driving ω, the
direction of the electric field θ , and the interaction strength
U . We will set g = 1 in all the numerical calculations. A
simple parameter to vary in an experimental setup would be
the electric field direction. Hence, we first fix the values of
a1, a2, ω, and U and look at the variation of Jα , Jβ , Jγ ,
and C with θ . Figure 5 shows the plots of these parameters
obtained using the expressions from third-order perturbation
theory given in Eq. (20). We notice that the couplings Jα ,
Jβ , and Jγ vary with a periodicity of π . Further, the values
of Jα , Jβ , and Jγ get cyclically interchanged when θ changes
by π/3 due to the underlying triangular lattice structure. The
periodicity of C on the other hand is 2π/3, and its sign

(a) (b)

(c) (d)

FIG. 6. Plots of Jα , Jβ , Jγ , and C as functions of θ and a2, for
g = 1, U = 20, ω = 17, and a1 = 35. The plots show the behaviors
of (a) Jα , (b) Jβ , (c) Jγ , and (d) C.

changes when θ changes by π . In Fig. 5(a) for a2 = 30, we
can see that there are interesting points at θ = π/3 and 2π/3
where the three two-spin coupling parameters have the same
value. The value of C at these points is also the largest in
magnitude, equal to about 0.15. In Fig. 5(b), we see ranges of
θ where the magnitude of C is greater than one of the nearest-
neighbor couplings. In Figs. 5(c) and 5(d) we notice that one
of the coupling parameters is much larger than the other two.
We also observe in Figs. 5(c) and 5(d) that one or two of
the coupling parameters has almost the same value over a
range of θ .

We note in Fig. 5 that whenever θ is equal to (2πn/3) ±
π/6 (where n is an integer), two of the J’s are equal and C =
0. This is because for these values of θ , the electric field is
perpendicular to one of the sides of each triangle. Then the
system is invariant under a reflection about the direction of
the electric field. Hence the two J’s which are related by the
reflection must be equal, and C must vanish since the chiral
three-spin term is odd under the reflection.

The variation of the four couplings as a function of both a2

and θ is shown in Fig. 6, where we have fixed g = 1, U = 20,
ω = 17, and a1 = 35. We have varied a2 from 0 to 60 and θ

from 0 to π . This interval of θ is sufficient to clearly show the
periodicity of Jα , Jβ , Jγ , and C. We again see from these plots
that Jα , Jβ , and Jγ get cyclically interchanged as θ changes by
π/3, while C has a period of 2π/3.

In Fig. 7, we show plots of the couplings as functions
of θ obtained directly from the Floquet operator for g = 1,
U = 20, ω = 17, and a1 = 35, and a2 = 30. This calcula-
tion is done as follows. We consider a triangle of three sites
containing three electrons, two with spin-up and one with
spin-down; the basis states are shown in Fig. 2. We first
calculate the Floquet operator UT in Eq. (7) by discretizing the
time t and multiplying N terms with time steps �t = T/N (we
have taken N = 201). We then examine the nine eigenstates of
UT and find which three of them have the smallest amplitudes
of the states with doubly occupied sites (the last six states in
Fig. 2). We truncate these eigenstates to states with only singly
occupied sites (the first three states in Fig. 2) and carry out
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FIG. 7. Plots of Jα , Jβ , Jγ , and C as functions of θ , for g = 1,
U = 20, ω = 17, a1 = 35, and a2 = 30, obtained by a numerical
calculation of the Floquet operator for a single triangle with two
spin-up electrons and one spin-down electron, and truncating its
eigenvalues and eigenvectors to states with only singly occupied
sites. The figure shows a good match with Fig. 5(a) obtained from
the third-order effective Hamiltonian presented in Eq. (20).

a Gram-Schmidt orthogonalization to obtain three states |ψi〉,
i = 1, 2, 3 (the orthogonalization alters the states only slightly
since the amplitudes of the six states which have been left
out are small). Using the states |ψi〉 and their corresponding
Floquet quasienergies εi (these lie near zero since we have
chosen g to be much smaller than U and ω), we construct the
effective Hamiltonian

H eff

 =

3∑
i=1

εi|ψi〉〈ψi|. (55)

We then fit this to the form given in Eq. (18) to extract Jα ,
Jβ , Jγ , and C. These are plotted in Fig. 7. Note that these
plots also exhibit the symmetries mentioned above for various
values of θ . A comparison between Figs. 5(a) and 7 shows a
good match, indicating that the results that we have obtained
from the third-order effective Hamiltonian in Eq. (20) agree
well with exact numerical calculations.

B. Classification of different phases using static spin
structure function

The numerical values of the parameters Jα , Jβ , Jγ , and C
obtained for different driving parameters give us an idea of
the ranges of values that they can have. To find the different
phases of the system using ED, we have varied the parameters
Jβ , Jγ , and C independently, yet consistent with the values
obtained by driving. (We have fixed Jα = 1 for convenience.)
For each set of parameters, we have calculated the static
two-spin correlation function in the ground state, given by the
formula C(�rn, �r0) = C(�rn − �r0) = 〈�S0 · �Sn〉. This correlation
function tells us the kind of order present in the ground state.
In the case of ordered ground states, the SSSF, defined as the

Fourier transform of the correlation function

S(�q) = 1√
N

∑
�rn

e−i �q·(�rn−�r0 )C(�rn − �r0) (56)

(where N is the number of lattice sites) peaks sharply at
particular points �q in the Brillouin zone. The positions of these
peaks indicates the nature of the order. On the other hand,
SSSF does not have a well-defined peak at any point in the
Brillouin zone for a disordered ground state.

For our choice of the lattice vectors �u and �v, the Brillouin
zone in reciprocal space in spanned by the reciprocal lattice
vectors �qx and �qy which run from 0 to 2π and 0 to 4π/

√
3,

respectively, as shown in Fig. 8. From the SSSF calculations
we have classified a total of seven possible phases, of which
four are ordered and the other three are disordered. We have
shown representative plots of SSSF for each of these phases in
Fig. 8. To summarize the ordered phases, we have shown the
�q points where the SSSF has peaks for the different ordered
phases in the top left figure in Fig. 8. In Sec. V D, we will
confirm the different phases obtained from the SSSF using
other quantities like the fidelity susceptibility and real-space
correlation values at large distances.

C. Ground state phase diagram

We now present the phase diagram as a function of Jβ/Jα

and Jγ /Jα in Fig. 9. We saw in Sec. V A that the values
obtained for C by driving is usually small compared to (Jα, Jβ ,
and Jγ , except in some small regions where the C is com-
parable to one of the couplings. Further, we have found
numerically that the SSSF calculated for the ground state does
not change significantly on including the values of C obtained
by driving even when it is comparable to one of the two-spin
couplings. Hence the phase diagram is practically independent
of the value of C. We have therefore set C = 0 in Fig. 9.

D. Verification of different phases: Fidelity susceptibility,
minimum real-space correlation function, and energy levels

Quantum phase transitions can often be captured by look-
ing at the ground-state fidelity as a function of the parameters
of the system. Fidelity is a concept borrowed from quantum
information theory. It is defined as

F (λ) = | 〈ψ0(λ)|ψ0(λ + δλ)〉 |, (57)

where |ψ0(λ)〉 and |ψ0(λ + δλ)〉 are the ground states of the
many-body Hamiltonian H with slightly different parameters
λ and λ + δλ, respectively. For a fixed and small value of δλ,
F generally exhibits a prominent dip whenever a phase tran-
sition occurs between λ and λ + δλ. As a result, the second
derivative of the fidelity with respect to λ usually shows large
changes near a quantum critical point. This leads us to define
another measure called the fidelity susceptibility [101,102]

χF (λ) = − ∂2 lnF
∂ (δλ)2

∣∣∣∣
δλ→0

. (58)

At a critical point χF generally shows a maximum or a
divergence. To confirm the phase boundaries shown in Fig. 9,
we have chosen three vertical lines A, B, and C which, taken
together, cover all the seven phases, and we have calculated
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FIG. 8. The first figure in the top row shows the locations of the peaks in the SSSF for different ordered phases in the Brillouin zone of
the triangular lattice. The peaks at (π/3, 2π/

√
3) and (4π/3, 4π/

√
3) indicated by correspond to the peaks in SSSF in the spiral phase, as

shown in the first figure in the bottom row. The peaks located at the points marked at (0, 2π/
√

3) and (2π, 4π/
√

3) shown by , (π, π/
√

3)

and (π, 5π/
√

3) shown by , and (π, 3π/
√

3) represented by correspond to the collinear phases called stripe �u, stripe �v, and stripe �w, and
the last three figures in the bottom row show plots of the SSSF in these three phases, respectively. The SSSFs for the spin-liquid phases are
shown in the last three figures in the top row. We see that the largest values of the SSSF are spread out over many �q points in the spin-liquid
phases. In the third figure in the top row, the apparent fringes are only due to the interpolation scheme used while plotting, and the SSSF values
are actually highest all along the two parallel lines in this figure.

χF along these lines. The top row in Fig. 10 shows plots
of χF as a function of the parameter Jγ . The locations of
phase boundaries obtained from the peaks in χF and from
the SSSF calculations agree well with each other. For line A,
with Jβ = 0.6, we see from Fig. 9 that it passes from stripe �w
through a spin liquid to stripe �v. The fidelity susceptibility
along this line shows two maxima at Jγ = 0.475 and 0.77
which mark the phase transitions to and from the spin-liquid
phase. Similarly line C shows maxima in χF at Jγ = 0.775
and 1.5 indicating a similar phase transition from stripe �w
through a spin liquid to stripe �u. On line B, however, we find
a divergence in χF at Jγ = 0.82 and 1.18. These points match
the phase transitions seen in Fig. 9 when the system goes from
stripe �w to the spiral phase to a spin liquid. The divergences
in χF in this case suggests discontinuous transitions and these
may occur because the transitions here are from a spiral phase
(which has a very different kind of structure as shown by the
SSSF in Fig. 8) to a striped phase or to a spin liquid.

We have also used the minimum value of the two-spin
correlation function (the value at the largest possible distance
between two spins, namely, halfway across the system) as a
tool to distinguish between different phases. In the ordered
phases, 〈�S�0 · �S�n〉 at large separation |�n| goes to a finite value,

while in a spin-liquid phase the correlation approaches zero
quickly with increasing separation. The minimum value of
the two-spin correlation function captures the correlation at
the largest distance possible in our 6×6 lattice. In the bottom
row of Fig. 10 we have shown the variation of the minimum
correlation versus Jγ along the lines A, B, and C. In each
of the lines we see a rapid drop in the value whenever it
is in a spin-liquid phase. The minimum correlation is of the
order of 10−1–10−2 in the ordered phases and of the order of
10−3–10−4 in the spin-liquid phases. The phase boundaries
obtained by this method are not as sharp as ones obtained
from χF ; however, they still agree quite well with each other.
Both the fidelity susceptibility and the minimum value of the
real-space correlation function in Fig. 10 suggest that transi-
tions between a striped phase and a spin liquid are continuous
(lines A and C), while a transition between the spiral phase
and either a striped phase or a spin liquid is discontinuous
(line B).

We have also studied the first excited state energy along
the lines A, B, and C as shown in Fig. 11. While the ground
state has momentum (0,0) and is in the even parity (P = 1)
and even spin-inversion sector (Z = 1) for all values of the
parameters, the excited state has different momenta and lies
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FIG. 9. The phase diagram of the effective spin model as a function of Jβ/Jα and Jγ /Jα , for C = 0. The different phases classified by the
SSSF are shown in the figure on the right. We have seven phases altogether, of which four are ordered and three are disordered or spin-liquid
phases. The stripe phases are separated from each other by intermediate spin-liquid phases as shown in the figure on the left. The phases
boundaries remain the same on interchanging Jβ and Jγ , only the directions of the spin configurations change as expected from the geometry of
the triangular lattice. We have marked three lines A, B, and C in the phase diagram which encompass all seven phases. We have calculated the
fidelity susceptibility, real-space correlation function, and energy gaps along these lines to verify the phase boundaries obtained using SSSF.
Note that we used a resolution of 0.1 in both directions while constructing the phase diagram; this explains the discrete stair-like structure of
the phase boundaries.

in different parity sectors in different regions in the parameter
space. Along line A, which is at Jβ = 0.6, we find that as we
vary Jγ from 0 to 1, the excited state is in the momentum sec-
tor �q = �q3 = (π, 3π/

√
3) with P = 1 and Z = −1. We then

have a transition at Jγ = Jβ = 0.6 after which the excited state
has momentum �q = �q2 = (π, π/

√
3) with P = −1 and Z =

−1. The plot for line C is quite similar. Here we have fixed

Jβ = 2.0 and Jγ is varied from 0.4 to 2. The symmetry sec-
tor of the excited state changes from �q = �q3 = (π, 3π/

√
3),

P = 1, Z = −1 to �q = �q1 = (0, 2π/
√

3), P = −1, Z = −1
at Jγ = 1. Along both lines A and C, we cannot comment
on the nature of the transition from ordered to spin liquid or
vice versa by looking at the energy gap between the ground
state and first excited state. However, we expect that in the

FIG. 10. Plots of the fidelity susceptibility (top row) and the minimum value of the real-space correlation function (bottom row) along the
lines A, B, and C shown in Fig. 9. The fidelity susceptibility shows significant changes at all the phase transition lines. However, the change is
extremely large at the transitions on line B; note that the scale of the y axis in the plot for line B is quite different from the scales for lines A
and C. Similarly, the minimum value of the real-space correlation function seems to change continuously at the transitions on lines A and C
but discontinuously at the transitions on line B.
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FIG. 11. Plots of the ground state and first excited state energies along the lines A, B, and C shown in Fig. 9. The gap between the ground
state and first excited state remains finite all along lines A and C but becomes close to zero at the transitions on line B. The ground state
always lies in the symmetry sector with even parity (P = 1), even spin inversion (Z = 1) and momentum (0,0). However, the symmetry sectors
of the excited state changes as Jγ is varied. For line A, the excited state has P = −1 and Z = −1 with the momentum sector changing from
�q3 = (π, 3π/

√
3) to �q2 = (π, π/

√
3) at Jγ = 0.6. Similarly for line C at Jγ = 1.0, the momentum sector switches from �q3 to �q1 = (0, 2π/

√
3)

with P = −1 and Z = −1. Along line B, the excited state changes once from �q = �q3, P = 1, Z = −1 to �q = �q0 = (0, 0), P = 1, Z = 1, and
then again to �q = �q1, P = −1, Z = −1. These changes occur in the vicinity of the energy gap closing points.

stripe phases the energy gap will vanish in the thermody-
namic limit since spin-wave theory about the classical stripe
phases predicts a gapless dispersion. For line B, we have fixed
Jβ = 1.1 and varied Jγ from 0.4 to 2. This line contains the
spiral phase and the energy gap closes at its phase boundaries.
Along this line the excited state changes its symmetry sector
twice, once from �q = �q3, P = 1, Z = −1 to �q = �q0 = (0, 0),
P = 1, Z = 1, and then again to �q = �q1, P = −1, Z = −1.
These changes occur near the transition from stripe-w phase
to the spiral phase and from the spiral phase to one of the spin-
liquid phases, respectively. For this line also we expect that
the energy gap will vanish in the thermodynamic limit for the
ordered phases. Moreover, the spin-liquid phase on line B has
a small gap (of the order of or smaller than the inverse system
size); hence it is like to be gapless in the thermodynamic limit.
For line B, we have shown in Fig. 12 how S(�q) varies for the �q
points in the three phases that the line covers. We see that the
maximum value of S�q is at �q = (π, 3π/

√
3) corresponding

FIG. 12. SSSF plotted at different values of �q in the Brillouin
zone which are shown in the inset. The SSSF is plotted along line B
in Fig. 9, with Jα = 1 and Jβ = 1.1 held fixed. Line B goes across
three phases as Jγ is increased, and the SSSF shows corresponding
transitions in its values at the two phase boundaries. S(�q) has the
maximum value for the stripe-�v phase at �q = from Jγ = 0 to Jγ �
0.82, for the spiral phase at �q = from Jγ � 0.82 to Jγ � 1.2, and
for the spin-liquid phase at �q = from Jγ � 1.2 onwards.

to the stripe- �w phase until Jγ = 0.82, and at (2π/3, 2π/
√

3)
and (4π/3, 4π/

√
3) corresponding to the spiral phase until

Jγ = 1.2. Beyond this we find that the maximum value of S�q
is spread across the two lines as shown in the inset of Fig. 12
which correspond to a spin-liquid phase. This further confirms
the phase boundaries for this line.

We note that all the three spin-liquid phases are similar in
the sense that one can obtain one from the other by permuting
or exchanging the parameters Jα, Jβ , and Jγ . Hence, since the
spin-liquid phase on line B appears to be gapless (Fig. 11), all
the spin-liquid phases are likely to be gapless.

E. Effect of C

Although the chiral three-spin term with coefficient C does
not seem to play an important role in the phase transitions
between ordered and spin-liquid phases, it does have some
effect on the ground state. The classical calculation in the
large-S limit suggests that the effect of the three-spin term is
to make the spin configuration noncoplanar in every triangle.
In addition, the staggered structure of the three-spin term for
up- and down-pointing triangles ensures that the energy can
be minimized for all triangles simultaneously by having a
particular noncoplanar three-sublattice order. We can measure
this noncoplanarity using an order parameter given by the
ground state expectation value of the chiral three-spin term
�S1 · �S2 × �S3 on any triangle in the lattice, taken in an anti-
clockwise (clockwise) sense for up-pointing (down-pointing)
triangles. This is shown in Fig. 13 for values of C (and the
corresponding values of Jα, Jβ and Jγ ) obtained as a function
of θ in Fig. 5(a). As expected, we find that this order parameter
is an odd function of C and it vanishes if C = 0.

VI. DISCUSSION

In this paper we have studied the effects of a periodi-
cally varying in-plane electric field on the Hubbard model
at half filling on a triangular lattice. In the limit that the
nearest-neighbor hopping amplitude g is much smaller than
the interaction strength U and the driving frequency ω, we
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FIG. 13. Plot of chiral three-spin term 〈�S1 · �S2 × �S3〉 for any tri-
angle versus C, for a system with g = 1, U = 20, ω = 17, a1 = 35,
and a2 = 30.

have used a Floquet perturbation theory to derive the effective
Hamiltonian up to order g3 in the spin sector, namely, the sec-
tor of states in which all sites are singly occupied. Assuming
that there is no resonance, i.e., U is not close to an integer
multiple of ω, we find that the Hamiltonian is given by a sum
of nearest-neighbor Heisenberg interactions at orders g2 and
g3, and, if the electric field is not time-reversal symmetric,
a chiral three-spin interaction on each triangle at order g3.
Indeed, the reason we chose to study the Hubbard model on
a triangular lattice is that it is known that a magnetic field
which is perpendicular to the plane of the lattice gives rise, at
order g3 in time-independent perturbation theory, to a chiral
three-spin interaction with a coefficient which depends on the
magnetic flux passing through each triangle [97]. Thus an
oscillating electric field in our model can simulate the effect
of a magnetic flux in a time-independent system. Interestingly
however, while the sign of the three-spin term written in the
anticlockwise direction is the same for up- and down-pointing
triangles in the time-independent magnetic flux problem, the
sign is opposite in the two kinds of triangles in our periodi-
cally driven problem.

In our numerical calculations we have chosen the oscillat-
ing electric field to be linearly polarized with two different
frequencies in order to break time-reversal symmetry. This is
in contrast to earlier work which showed that chiral three-spin
terms can be generated when circularly polarized radia-
tion with a single frequency is applied to certain frustrated
Mott insulators, and these terms appear at fourth order in g
[94–96,103]. It has also been shown that partially polarized
and unpolarized radiation with a single frequency can gener-
ate chiral three-spin and other multi-spin terms at fourth order
in g in various Mott insulators [104,105].

The coefficients of the two-spin Heisenberg interactions
in our effective spin Hamiltonian are found to have different
values, Jα, Jβ, Jγ , for bonds pointing along the three different
directions on the triangular lattice. The values of Jα, Jβ, Jγ

and the coefficient C of the three-spin term depend on all the
driving parameters such as the amplitude and frequency of
driving and the direction of the electric field. (Typically, C
is found to be smaller than Jα, Jβ and Jγ .) We thus obtain an
interesting spin model whose parameters can all be tuned by

the driving. We then study this spin model in detail. We first
carry out a classical analysis (by taking the spin at site to be
very large instead of 1/2) to find the possible ground state
spin configurations. Depending on the spin model parameters
we find that there are three collinear and one coplanar ordered
state. We then use spin-wave theory to find the excitation spec-
trum about one of the collinear ground states; we find that this
theory breaks down close to the transition to a different phase,
which hints at the possibility of some disordered phases.

Next, we use ED to numerically study systems with 36
sites with periodic boundary conditions. We concentrate on
the ground state and use various symmetries of the system
to reduce the Hilbert space dimension, by working in the
sector with zero momentum in both directions, zero total spin
in the z direction, even spin inversion, and, if C = 0, even
spatial inversion. After finding the ground state, we look at
the two-spin correlation function in real space, the SSSF, and
the fidelity susceptibility. We also look at the energies of the
ground state and the lowest excited state. Putting together all
this information, we find a rich ground state phase diagram
consisting of three collinear and one coplanar ordered phase
(in agreement with the classical analysis) as well as three
disordered phases. We find transitions between the coplanar
phase and all the other six phases. In each of the ordered
phases, the SSSF in momentum space has a peak at one or
two points in the Brillouin zone, while in each of the dis-
ordered phases, the SSSF is large along some lines. Away
from the phase transition lines, the peak values of the SSSF
are significantly smaller in the disordered phases compared
to the ordered phases. In real space, the two-spin correlation
function at the largest possible separation (namely, between
two points separated by half the system size in both direc-
tions) is found to be finite in the ordered phases and very
small in the disordered phase; this is expected for systems
with and without long-range order respectively. The ground
state fidelity susceptibility is found shows significant changes
whenever a phase transition line is crossed; the changes are
much larger at the transitions between the coplanar phase and
the other phases, compared to the changes which occur at
transitions between collinear ordered and disordered phases.
This is related to the observation that the ground state and first
excited state remain well separated in energy for at transitions
between collinear ordered and disordered phases but come
very close to each other at transitions between the coplanar
phase and the other phases. For C = 0, our phase diagram is
in broad agreement with the ones reported in Refs. [87–89].
Finally, we have found that the values of C that are typically
generated by periodic driving are not large enough to signifi-
cantly modify the ground state phase diagram.

The effective Hamiltonian that we have studied in this
paper applies only to the spin sector where each site is oc-
cupied by a single electron. This description is valid in a
prethermal regime, and it is known that in systems with short-
range interactions, the duration of this regime is exponentially
large when the frequency is much larger than the hopping
[106–108], as we have assumed in our numerical calculations.
Eventually, after an exponentially long time, the periodic driv-
ing is expected to heat up our system to infinite temperature
where all states are equally probable; then the analysis in this
paper will break down.
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In summary, our work proposes a way of simulating a
tunable spin model by periodically driving a fermionic sys-
tem with strong interactions. Earlier theoretical works have
studied the effects of chiral three-spin terms generated by
circularly polarized radiation applied to kagome Mott insu-
lators such as herbertsmithite [94,95] and magnetic systems
like CrI3 [96]. The values of the Hubbard interaction U
and the photon energy h̄ω considered in these systems are
typically of the order of 1 eV, and the ratio U/g is about
20–30.

In this work we have considered a closed system which is
not coupled to a thermal bath at some temperature. Coupling
to a bath is generally expected to lead to a Floquet-Gibbs
distribution of the states when a periodically driven system is
not integrable [109,110]. The effects of a bath on our system
may be an interesting problem for future studies.

We would like to end by mentioning some of the recent ex-
periments where spin-liquid and magnetically ordered phases
have been realized on a triangular lattice. When ultracold
bosonic atoms on a triangular optical lattice are periodically
shaken in an elliptical manner [111,112], it is found that
the system is effectively governed by a spin model whose

couplings can be tuned at will. This allows for the realiza-
tion of various ordered and disordered phases at high enough
temperatures. On the other hand, there are several magnetic
materials like the organic salts Me4−nEtnPn[Pd(dmit)2]2,
[113] TMTTF, [114] and BaAg2Cu[VO4]2 [115] where
first-principle calculations have shown that they can be de-
scribed by a triangular lattice antiferromagnet with spatially
anisotropic exchange couplings similar to the ones studied in
our paper.
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