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Ferromagnetism in armchair graphene nanoribbon heterostructures
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We study the properties of flat bands that appear in a heterostructure composed of strands of different widths of
graphene armchair nanoribbons. One of the flat bands is reminiscent of the one that appears in pristine armchair
nanoribbons and has its origin in a quantum mechanical destructive interference effect, dubbed “Wannier orbital
states” by Lin et al. in Phys. Rev. B 79, 035405 (2009). The additional flat bands found in these heterostructures,
some reasonably closer to the Fermi level, seem to be generated by a similar interference process. After doing a
thorough tight-binding analysis of the band structures of the different kinds of heterostructures, focusing on the
properties of the flat bands, we use density functional theory to study the possibility of magnetic ground states
when placing, through doping, the Fermi energy close to the different flat bands. Our DFT results confirmed the
expectation that these heterostructures, after being appropriately hole doped, develop a ferromagnetic ground
state that seems to require, as in the case of pristine armchair nanoribbons, the presence of a dispersive band
crossing the flat band. In addition, we found a remarkable agreement between the tight-binding and DFT results
for the charge density distribution of the so-called Wannier orbital states.

DOI: 10.1103/PhysRevB.105.054416

I. INTRODUCTION

Strong correlations in magic-angle twisted bilayer
graphene (TBG), discovered in 2018 [1] (see Ref. [2] for
a review), were associated with the presence of strongly
correlated states in flat minibands of the hexagonal Moiré
superlattice, as previously predicted by band structure
calculations [3–5]. Recently, ARPES measurements [6] have
provided direct evidence for the existence of flat bands
in magic-angle TBG. These developments have greatly
increased the interest in the study of low-dimensional systems
presenting bands with zero (or quasizero) dispersion.

Indeed, in the last one year alone, there has been new
flat-band research in many different areas, like their exper-
imental observation in atomically precise one-dimensional
(1D) chains [7], as well as the study of flat bands in strongly
correlated systems [8–16], search for flat bands in kagome-
type lattices [17,18], study of symmetry aspects of flat-band
systems [19–21], holographic construction of flat bands [22],
flat bands in pyrochlore lattices [23,24], analysis of random-
ness in flat-band Hamiltonians [25], topological aspects of
flat-band systems [26–31], construction of flat-band tight-
binding models starting from compact localized states [32],
and study of flat bands in graphene and graphenelike lattices
[33–37].

For a brief review of the research in flat bands, describing
initial theoretical proposals in the late 1980s [38,39], their
association with topological phases [40,41], and their possible
realization in superconducting wire networks, cold atoms in
optical lattices, and photonic systems, see Ref. [42]. For a
description of strongly correlated ground states associated
with dispersionless bands, see Ref. [43].

Following the development of a bottom-up procedure
for atomically precise synthesis of semiconducting graphene

nanoribbons (GNRs) with different width, edge, and end ter-
mination [44], a seminal paper by Louie’s group in 2017
[45] showed that these synthesized armchair GNRs (AGNRs)
strands belonged to different topological phases, protected
by spatial symmetries and with a Z2 topological invariant
whose value was dictated by their width and terminating
unit cell. Thus, the bulk-boundary correspondence princi-
ple [46–51] imposes that at the interface between two finite
AGNRs, with different Z2 values, a topologically protected
localized state should exist, with its energy located in-
side the AGNR gap. This expectation was confirmed by
density functional theory (DFT) calculations [45]. The fol-
lowing year, two experimental groups, one in Europe [52]
and the other in the USA [53], published side-by-side Na-
ture papers presenting DFT and tight-binding simulations
of scanning tunneling spectroscopy (STS) measurements in
superlattices of short AGNR strands, alternating between fi-
nite and vanishing Z2 values that indicated the presence,
inside the (overall) AGNR gap, of a dimerized chain band
structure. A Su-Schrieffer-Heeger (SSH) effective model (ini-
tially proposed to describe polyacetylene [54], and recently
revived as a prototypical model for a one-dimensional topo-
logical insulator [55]), was shown to qualitatively describe
the experimental results. Thus, in what was described as a
hierarchically engineered one-dimensional topological system
[52], the AGNR heterostructure, with topologically nontrivial
properties (i.e., a topologically protected end state), is itself
composed of alternating topologically trivial and nontrivial
building blocks. Besides the ability of considerably decreas-
ing the AGNR’s spectral gap (with the recent observation of
metallicity in an AGNR heterostructure [56]—notice that all
AGNRs are actually semiconducting [57]), the properties of
these heterostructures, as implied by the results presented in
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Refs. [52,53], have generated much attention, as they repre-
sent one of the first stable materials (besides polyacetylene)
that simulates the SSH model, which up to now had been
simulated mainly in cold-atom [58], engineered atomic lat-
tices [59,60], photonic [61], acoustic [62], and mechanical
[63,64] experimental configurations. Very recent work, ex-
tending the results in Refs. [52,53], may be found in Refs.
[65,66].

A much less studied aspect of these AGNR heterostruc-
tures is the presence of dispersionless bands in their band
structure. In this work, using the tight-binding method and
DFT, we systematically analyze how the presence or not of
flat bands, their proximity to the Fermi energy, their interplay
with nearby dispersive bands, as well as if they give origin
or not to a ferromagnetic ground state, depends on the pa-
rameters that define the AGNR heterostructure. Our results
show that, indeed, the majority of the heterostructures studied
through tight-binding present several flat bands that can be
associated with “Wannier orbital” states, as formerly seen
in pristine AGNRs [67]. By appropriately hole doping these
heterostructures, i.e., bringing the Fermi energy close to a flat
band, a ferromagnetic ground state is observed through DFT
simulations. The ferromagnetic exchange coupling at the flat
band appears to be mediated by a dispersive band that crosses
it [67].

We want to emphasize that we did not investigate the
topological properties of the heterostructures studied here.
However, in the discussion of the results, possible connections
between ferromagnetism and the SSH effective model were
pointed out to motivate further research on that particular
aspect.

The organization of the paper is as follows: In Sec. II we
introduce the AGNR heterostructure parameters N , n, and
m, together with the tight-biding Hamiltonian that models it,
while in Sec. III, to illustrate the appearance of flat bands in
these heterostructures, we present the tight-binding results for
heterostructures with the second smallest unit cell, i.e., N = 3,
n = 1, and m = 3, showing the presence of four valence flat
bands (with respective particle-hole symmetric conduction
band partners). Then, in Sec. IV, we show that flat bands
survive for “backbones” N = 5 and N = 7, and also present
the profile of the Wannier orbital states associated with each
one of the four lowest energy flat bands. For N = 9, the flat
bands present for smaller values of N acquire dispersion. In
Sec. V, we keep N = 3 and vary the other two parameters,
n and m, and analyze their influence over the flat bands and
the corresponding Wannier orbital states (which, from now
on, will be called Wannier-like states). This will set the stage
for an ab initio DFT analysis of the ferromagnetic ground
state present for varying hole doping in Sec. VI. Finally,
in Sec. VIII we present a summary of the results obtained
and our concluding remarks. For completeness sake, in Ap-
pendix A we present the Hamiltonian in real and reciprocal
space for an N-AGNR(1,3) heterostructure (see next section,
for notation). In addition, in Appendixes B and C we discuss
the effects of adding a next-nearest-neighbor (NNN) hopping
to the main-text tight-binding calculations and briefly present
tight-binding and DFT band structures for an alternative (less
symmetric) type of heterostructure that has also been synthe-
sized in the laboratory [52,53].

FIG. 1. Schematic representation of the meaning of the parame-
ters N , n, and m in an N-AGNR(n, m) heterostructure. See text for
details.

II. MODEL FOR THE HETEROSTRUCTURES

A. The geometry of the N-AGNR(n, m) heterostructures

In Ref. [53], two types of AGNR heterostructures were in-
troduced, the so-called “inline” and “staggered” heterostruc-
tures. In this paper we will analyze the properties just of
inline heterostructures (which we will name N-AGNR(n, m)
heterostructures), since they present more flat bands than the
staggered heterostructures.

In Fig. 1 we schematically show how the unit cell of an
N-AGNR(n, m) heterostructure is built. In the top panel, the
parameter n indicates how many adjacent unit cells (delimited
by vertical dashed lines) of the so-called backbone (a pristine
N-AGNR, depicted in white), containing N = 5 dimers in
each unit cell, as indicated in the right, will be extended into
unit cells containing N + 4 dimers. As indicated in Fig. 1,
this is done, for the first of the n unit cells, by adding six
carbons to the top and bottom of the unit cell. This adds three
extra benzene rings, colored in cyan, to the top and bottom
of the unit cell. To extend the next unit cell (adjacent to the
right), just four extra carbon atoms are needed to add two more
benzene rings, colored in green. This second step is repeated
until all n adjacent unit cells are extended. The top panel in
Fig. 1 shows the result for n = 3. Finally, in the bottom panel,
m indicates how many unit cells away from the last extended
unit cell we will repeat the process of extending n unit cells.
There is an important detail here: we count m from the center
of the last extended unit cell to the center of the first extended
unit cell of the next n group to the right (notice the positioning
of the vertical dashed lines in the bottom panel, see Fig. S2
in Ref. [53]). Therefore, the unit cell of the N-AGNR(n, m)
heterostructure thus obtained will contain n + m − 1 unit cells
of the original backbone. It is clear that m � 2, since m = 1
produces a uniform AGNR with a width equal to N + 4.

B. Tight-binding Hamiltonian

The band structure of these N-AGNR(n, m) heterostruc-
tures will be simulated using a tight-binding Hamiltonian

Htb = −t
∑
〈i, j〉σ

c†
iσ c jσ , (1)
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FIG. 2. Tight-binding band structure of a 3-AGNR(1,3) het-
erostructure. The flat bands are indicated by labels 1, 2, 3a, 3b, and
4, starting from the Fermi energy at half-filling (E = 0). Note that
band 3 is double degenerate.

where c†
iσ (ciσ ) creates (annihilates) an electron in site i

with spin σ and 〈i, j〉 runs over nearest-neighbor sites. This
Hamiltonian describes nearest-neighbor hoppings with trans-
fer integral t , where a typical value found in the literature for
this parameter is t ∼ 3.0 eV [68]. In Appendix A, a specific
expression will be given for Eq. (1) for a 3-AGNR(1,3) het-
erostructure, in real and reciprocal space.

In Sec. VI, long-range Coulomb interactions will be
added within the DFT framework. A hybrid functional for
the exchange-correlation term will be included in the DFT
to better describe the Coulomb interactions as well as the
Wannier-like states. The calculation methodology will be de-
tailed in Sec. VI as well.

In the next section we will present tight-binding results for
the band structure of a 3-AGNR(1,3) heterostructure. Note
that the tight-binding and DFT band structures will be given
in units of eV.

III. FLAT BANDS FOR A 3-AGNR(1,3)
HETEROSTRUCTURE

In Fig. 2 we show the tight-binding band structure
for a 3-AGNR(1,3) heterostructure, for t = 3.00 eV (the
nearest-neighbor hopping integral value we will use for all
tight-binding calculations). For the energy interval shown, we
label the negative energy flat bands as 1, 2, 3a, 3b, and 4, start-
ing from the closest one to the Fermi energy (at half-filling).
Their respective energies are E1 = −0.56, E2 = −1.61, E3a =
E3b = −3.00 = −t , and E4 = −4.08 eV, where the band at −t
is double degenerate.

It is relatively well known [67] that N-AGNRs (pristine,
with no extensions) with odd-N present two perfectly flat
bands at ±t , and Fig. 2 shows that this also happens for
the 3-AGNR(1,3) heterostructure (energy E3a = E3b = −t).
As a matter of fact, this is true for all odd-N N-AGNR(1,3)
heterostructures we have investigated, with the difference that
for N = 3, 5 and 7 there are additional flat bands at higher and

FIG. 3. Charge density of the Wannier-like state for the −t flat
band on a pristine 3-AGNR.

lower energies, as shown in Fig. 2. For N � 9, these additional
flat bands acquire dispersion (see Sec. IV). One interesting
point is that, in the N-AGNR(1,3) heterostructures, the ±t
bands are double degenerate for N = 3 and 5, however, this
degeneracy is lifted for N � 7 (see Sec. IV).

In Ref. [67], a very interesting analysis is done of the
magnetism of these ±t flat bands that are present in the odd-N
AGNR (without extensions, i.e., pristine AGNR). Indeed, the
origin of the zero dispersion is that the Bloch states associ-
ated with the ±t bands are formed by “isolated” clusters of
charge inside each unit cell (the so-called “Wannier orbital”
states, or Wannier-like states), which have zero overlap with
the clusters in adjacent unit cells. This happens because of
destructive quantum interference [67]. This phenomenon is
shown in Fig. 3, which shows the integrated charge density
(over all k values) for E = −t in each site of an N = 3 pristine
AGNR. Figure 3 simulates the local density of states (LDOS)
an scanning tunneling microscope tip would observe in case
its parameters were set to capture just the E = −t states of
a 3-AGNR. It is remarkable that each and every one of the
different Bloch states (for different k values in the Brillouin
zone) at E = −t has the same LDOS profile as the one shown
in Fig. 3 (see Ref. [67] for details). It is worth mentioning that
these so-called Wannier-like states are also called “compact
localized states” [19], which, as shown in Fig. 3, are localized
on a subset of lattice sites, with zero amplitude in the rest of
the lattice. As shown in the Introduction, they have recently
attracted a great deal of attention. A discussion of their prop-
erties and the relevant literature may be found in Ref. [19].

Our tight-binding results for the 3-AGNR(1,3) heterostruc-
ture (Fig. 4) show that these Wannier-like −t states, which
exist in the odd-N pristine AGNRs, survive (basically
unaffected) the (n, m) extensions that give origin to the het-
erostructure. This can be seen in the LDOS (charge density)
profile shown in Fig. 4(c) for state E3a, which shows exactly
the same structure as the one in Fig. 3, with the difference that
now the extended unit cell is wider, thus it accommodates four
occupied dimers along the vertical direction, in contrast to the
pristine 3-AGNR, where the Wannier-like state is composed
of just two dimers (see Fig. 3). On the other hand, Fig. 4(d)
shows the other Wannier-like state (E3b) that is degenerate
at E = −t . Interestingly, its charge profile near the edge of
the extended unit cell is clearly reminiscent of the pristine
3-AGNR, while, at the center of the unit cell, it is a mixture
of the E3a state and some charge density occupying the maxi-
mally separated sites that are left empty by the E3a state.

The interesting result shown in the other panels of Fig. 4,
for the remaining three flat bands [Figs. 4(a), 4(b), and 4(e)], is
that they seem to also originate from Wannier-like states with
different charge configurations [when compared to Figs. 4(c)
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FIG. 4. Wannier-like states for all four flat bands in a 3-
AGNR(1,3). From top to bottom, corresponding band energies are
E1 = −0.56, E2 = −1.61, E3a = E3b = −3.00, and E4 = −4.08 eV.

and 4(d)] that also do not have overlap between adjacent unit
cells. Thus, in principle, they may produce similar magnetic
ground states as the one theoretically predicted for the ±t
bands in pristine N-AGNRs [67], as long as these flat bands
are crossed by dispersive bands. Section VI presents a DFT
analysis of this possibility.

IV. WANNIER-LIKE STATES FOR N � 5

In Figs. 5(a), 5(b), and 5(c) we see the band structure
for N-AGNR(1,3) heterostructures, for N = 5, 7, and 9, re-
spectively. Despite the fact that the complexity of the band
structures increases with N , we can ascertain some facts [69]:
(i) flat-band 1, seen in Fig. 2, remains perfectly flat for N = 5
and 7, although at a different energy position, while flat-band
2 has acquired a tiny dispersion; (ii) for all three values of N
the −t flat band is present. In reality, as far as we can tell, the
±t flat bands occur for any odd value of N ; (iii) for N = 5
and 7, flat-band 4 has already acquired some dispersion; (iv)
likewise, for N � 9, except for −t flat band, the other three
flat bands (1, 2, and 4) have acquired dispersion; (v) finally,
the −t flat band for N = 5 is still double degenerate, while
it is not anymore for N = 7. It is possible that farther from
the Fermi level (E = 0, at half-filling) there are additional
flat bands (besides the ±t ones) for N � 9, but we have not
investigated this possibility.

In Figs. 6 and 7 we show the flat-band Wannier-like states
corresponding to bands 1, 2, and 3 presented in Figs. 5(a) and
5(b), for a 5-AGNR(1,3) and a 7-AGNR(1,3) heterostructure,
respectively. A careful comparison of Figs. 4, 6, and 7 shows

FIG. 5. Band structures for N-AGNR(1,3) heterostructures for
N = 5, 7, and 9 in (a), (b) and (c), respectively. Although it is not
so apparent, for N = 9 the only flat bands left is the pair ±t . Aside
from the −t flat band, the other three flat bands in (a) and (b) have
changed their positions in relation to the N = 3 results (see Fig. 2).
Note the scale, with only negative energies, to improve readability.
The band labeled 4 in (a) has acquired dispersion (compare to the
corresponding band in Fig. 2.)

that the Wannier-like states for the same band at different val-
ues of N are semiquantitatively the same, indicating that the
maximum N for which we can look for these interesting states
is N = 7, which is an N-AGNR(n, m) heterostructure size
that can be faithfully obtained in the laboratory [44,52,70],
suggesting that the results obtained here can be tested experi-
mentally.

As mentioned above, there is an interesting point regarding
the −t flat-band Wannier-like states E3a and E3b as we vary N
in an N-AGNR(1,3) heterostructure: they are still degenerate
for N = 5, as can be seen in Fig. 6(c), where we show the
combined charge density for both bands E3a and E3b, how-
ever, for N = 7, it is not degenerate anymore. Notice that in
Fig. 7(c) we show the charge density just for the E3a band,
since band E3b does not exist anymore. We speculate that,

FIG. 6. Wannier-like states for three flat bands in a 5-
AGNR(1,3). Numbers 1 to 4 in (c) indicate destructive quantum
interference sites that prevent a continuous nearest-neighbor path
from existing, which would connect all unit cells across the het-
erostructure, rendering state E3b dispersive.
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FIG. 7. Wannier-like states for three flat bands in a 7-AGNR(1,3).

as may be inferred from the charge density distribution in
Fig. 6(c), the Wannier-like state E3b for N = 5 seems on the
verge of losing its Wannier-like character. This occurs because
there are only 4 sites (indicated by numbers 1 to 4, and
showing perfect destructive quantum interference) preventing
the existence of a continuous nearest-neighbor path that con-
nects all unit cells with each other, which would result in a
dispersive state.

V. DEPENDENCE ON PARAMETERS n AND m

A. Band structure dependence with n

In Fig. 8 we see tight-binding band-structure results for 3-
AGNR(n,3), for n = 1 to 4, in Figs. 8(a) to 8(d), respectively.
In Fig. 8(a) we repeat the results shown in Fig. 2 [for 3-
AGNR(1,3)] to facilitate comparison. A trend with increasing
n (size of the extended region of the heterostructure) can be
clearly discerned. Indeed, we see that the ±t flat bands survive

the increase in the unit cell, and a cluster of flat bands (and
some bands with very little dispersion) develops in the energy
range −2.0 � E � −1.0. It is also interesting to remark that
flat-band E1 (the one closest to the Fermi energy) tends to
approach the Fermi energy as n increases. We also did an
analysis for larger values of n. For example, for n = 10 (not
shown), bands at higher energies seem to become less dis-
persive. In addition, the flat band closest to the Fermi energy
remains flat and approaches the Fermi energy even more,
sitting basically at the Fermi energy for a 3-AGNR(10,3)
heterostructure. Finally, for n = 10, the cluster of flat bands
mentioned above becomes more dense and somewhat closer
to the Fermi energy.

We also investigated the band structure dependence with n
for 5-AGNR(n,3) heterostructures (not shown) and obtained
qualitatively the same results as the ones shown in Fig. 8
for N = 3, which may be considered reasonable, since we
can intuitively expect a lesser dependence of the electronic
structure on N than on n and m.

B. Band structure dependence with m

In Fig. 9 we see the band structures for 3-AGNR(1,m) het-
erostructures for m = 2 to 5 in Figs. 9(a) to 9(d), respectively.
Here we also reproduced Fig. 2(b), to facilitate comparison.
As seen with the variation of n (but to a lesser degree), we
see in Fig. 9, for 3-AGNR(1,m), that increasing m from 2 to
5 results in an accumulation of flat bands close to the Fermi
energy. In addition, as observed for the n variation, the results
for the m variation of the 5-AGNR(1,m) heterostructures (not
shown) are qualitatively similar to the trend seen in Fig. 9 for
3-AGNR(1,m).

We wish to call attention to the band structure in Fig. 9(a)
for 3-AGNR(1,2). In it we see that the flat band closest to
the Fermi energy is crossed by a dispersive band that may be
topologically nontrivial [52,53]. In case this dispersive band is
indeed topologically nontrivial, it would be very interesting to
study the interplay of topology and ferromagnetism once this
system is doped.

Before presenting the DFT results, we compile below the
results presented in Figs. 4–9. This may serve as a guide to the
reader to relate the presence (or absence) and behavior of flat
bands with the variation of parameters N , n, and m:

FIG. 8. Band structures for 3-AGNR(n,3) heterostructures for n = 1 to 4, in (a) to (d), respectively.
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FIG. 9. Band structures for 3-AGNR(1,m) heterostructures for m = 2 to 5, in (a) to (d), respectively.

(1) The ±t flat bands, present in the pristine AGNRs, are
also present for all values of N , n, and m investigated here,
and they are associated with the same Wannier-like states
identified in the pristine AGNRs [67].

(2) For N-AGNR(1,3) (N = 3 and 5), the ±t bands are
double degenerate (in contrast to the pristine AGNRs) and
the partner state is also a Wannier-like state, similar to the
one mentioned in the item above. This degeneracy is lifted for
N > 5.

(3) Additional flat bands appear around the ±t flat bands
for all heterostructures analyzed, and to each different flat
band it was possible to associate a Wannier-like state that
seems like a variant of the ±t Wannier-like state.

(4) Regarding the variation of these additional flat bands
with N , we see that they survive (i.e., have zero dispersion) up
to N = 7 for all heterostructures studied here.

(5) With increasing n, we see that the overall number of
flat bands increases, with a cluster of them forming gradually
closer to the Fermi energy, with one of them seating almost at
the Fermi energy already for the 3-AGNR(10,3) heterostruc-
ture. This description of the n dependence applies to all prime
values 3 � N � 7.

(6) Similar to the n dependence, there is an increase in
the number of flat bands with m, with a similar accumulation
close to the Fermi energy. As well, this description qualita-
tively applies to all prime values 3 � N � 7.

We should also mention that a brief study of the so-called
“staggered” heterostructures, which are less symmetric than
the ones analyzed here (see Refs. [52,53]), has shown a ten-
dency to form considerably less flat bands, indicating that
the heterostructures discussed here are the ones that should
receive more attention in the quest for quasi-1D ferromag-
netism.

VI. FERROMAGNETIC PHASE OBTAINED WITH DFT

To address the possible existence of any magnetic phase
under hole doping, we will use DFT, which is a more realistic
calculation than tight binding and that can treat correlations
at the mean-field level. We will search for indications of
a ferromagnetic ground state on two heterostructures, viz.,
3-AGNR(1,3) and 5-AGNR(1,3). According to Ref. [67], the

presence of itinerant carriers is important to mediate ferro-
magnetism between the isolated magnetic moments in each
unit cell of the Wannier-like states. The 3-AGNR(1,3) and
5-AGNR(1,3) heterostructures present dispersive bands inter-
cepting the flat bands, as can be seen in Figs. 2 and 5(a),
respectively. We will postpone a careful DFT analysis of the
ferromagnetic ground-state dependence on the parameters n
and m to a future publication.

A. Details of the DFT calculations

We do a DFT calculation within the projector augmented
wave scheme [71] for the pseudopotentials. The total ener-
gies and electronic structures are self-consistently computed
within a plane-wave basis set with a kinetic energy cutoff
of 350 eV. We used the Vienna ab initio simulation package
(VASP) [72,73]. For a better description of the exchange-
correlation term of the DFT, we use a hybrid functional to
improve the description of the many-electron interactions and
charge localization [74]. The HSE06 hybrid functional has
been used [75], where the screened functional contains part
of the exact Hartree-Fock exchange that has been shown
to give accurate results for the exchange splitting, which is
crucial to understand the magnetic properties in our system.
Interestingly, our results show that the inclusion of the hybrid
functional puts the E3a flat band around 3 eV from the Fermi
energy, matching the tight-binding results (see Fig. 10). By
suppressing the hybrid functional, using just the generalized
gradient approximation [76], the E3a band stays around 2.5 eV
from the Fermi level. As we are using the periodic supercell
approach within the first-principles calculations, the exchange
interactions between adjacent unit cells are also included.

B. Band structure for 3-AGNR(1,3):
Comparison DFT/tight binding

Figures 10(a) and 10(b) show a comparison of the DFT and
tight-binding band structures for a 3-AGNR(1,3) heterostruc-
ture, respectively. Contrary to the tight-binding bands, the
DFT bands are not mirror symmetric around E = 0. Note that
the tight-binding bands would also lack mirror symmetry if a
next-nearest-neighbor hopping had been introduced (breaking
chiral symmetry). Some details of the negative energy DFT
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FIG. 10. DFT and tight-binding band structures for a 3-
AGNR(1,3) heterostructure, at half-filling, in (a) and (b), respec-
tively. As expected, the DFT bands are not particle-hole symmetric,
but, other than that, there is a good qualitative agreement between
DFT and tight binding. The numbered bands are discussed in the
text.

bands are worthy of mention. First, we see that the DFT band
closest to the Fermi energy (numbered 1 in Fig. 10), which
is flat in the tight-binding results, has acquired dispersion.
Figure 4(a) shows the tight-binding Wannier-like state for
this band. Since its charge density is mostly accumulated at
the edges of the unit cell (and it does not completely vanish
at its center either), one may argue that small perturbations
introduced by the DFT calculations to the tight-binding results
may create an overlap between the Wannier-like states in
adjacent unit cells and result in dispersion [as discussed above
in relation to the E3b tight-binding band for a 5-AGNR(1,3)
heterostructure]. On the other hand, the Wannier-like states
[see Figs. 4(b) and 4(c)] for the bands denoted 2 and 3a in
Fig. 10 are much more concentrated at the center of the unit
cell [especially for band 3a, see Fig. 4(c)] and thus they should
be more robust against perturbations that could create an
overlap between adjacent unit cells. Thus, as expected, DFT
bands 2 and 3a are perfectly flat. Finally, the same reasoning
leads us to expect that the DFT bands 3b and 4 should acquire
dispersion, as they do indeed, the latter less so than the former.

A final point can be made, along the lines of the qualitative
discussion above, if we compare our DFT results with the
DFT results in Ref. [67]. There, it was obtained, for a pristine
(no extensions) 5-AGNR, that the ±t DFT flat bands, at zero
doping, acquire a dispersion of ≈0.4 eV (see Fig. 4(a) in
Ref. [67]). On the other hand, the DFT ±t bands for N-
AGNR(1,3), for N = 3 [band 3a in Fig. 10(a)] and N = 5 (not
shown), are perfectly flat. This seems to indicate that in an N-
AGNR(n, m) heterostructure, which has a wider unit cell than
a pristine AGNR, the charge density of the ±t Wannier-like
states in each unit cell [like the ones shown in Figs. 4(c), 6(c),
and 7(c)] is even more insulated from the charge density in

FIG. 11. DFT band structures for a 3-AGNR(1,3) heterostructure
at different hole dopings: (a) xh = 0.10, (b) xh = 0.0 (half-filling),
and (c) xh = 0.23. In (a) and (c), majority-spin bands are in blue and
minority-spin bands are in red.

adjacent unit cells, and thus can result in a more robust (more
massive) DFT flat band.

C. DFT bands at finite doping and ferromagnetic ground state

To bring the Fermi energy close to the flat bands, and
thus investigate their properties, we start hole doping the
3-AGNR(1,3) heterostructure. We measure the hole doping
xh from the half-filling point, thus xh = 1 − 〈n〉 (therefore,
xh = 0 at half-filling), where 〈n〉 is the electron average site
occupancy.

In Fig. 11 we show the DFT bands for xh = 0.10, 0.0
(half-filling), and 0.23, in Figs. 11(a) to 11(c), respectively.
The Fermi energy is at E = 0.0 in each panel. In Fig. 11(b)
we repeat the results shown in Fig. 10(a) to better illustrate
the hole-doping effects. In Figs. 11(a) and 11(c), at finite dop-
ing, we show the spin-decomposed band structure obtained
through a hybrid DFT calculation, where the majority-spin
bands are denoted in blue and the minority-spin bands are
in red. The cyan arrows connecting the center panel to each
one of the adjacent panels indicate the extent of the exchange
splitting of each flat band. The arrows connecting band 2
[in Fig. 11(b)] to the corresponding exchange-split bands in
Fig. 11(a) indicate the extent of the exchange splitting energy
acting over band 2 for xh = 0.1, given by E2,0.1 ≈ 1.0 eV.

FIG. 12. �E = EFM − EPM as a function of hole doping xh for
3-AGNR(1,3) (blue circles) and 5-AGNR(1,3) (purple left triangles).
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FIG. 13. Wannier-like state for flat-band E1 for a 3-AGNR(1,3)
heterostructure. Top panel: Tight-binding result; bottom panel: DFT
result.

Likewise, the arrows connecting Figs. 11(b) and 11(c) indi-
cate the exchange splitting energy of band 3a for xh = 0.23,
corresponding to E3a,0.23 ≈ 2.0 eV.

In Fig. 12 we show the energy difference between the fer-
romagnetic and paramagnetic states, �E = EFM − EPM, for
both a 3-AGNR(1,3) (blue circles) and a 5-AGNR(1,3) (pur-
ple left triangles), where �E < 0 indicates a ferromagnetic
ground state. The most stable ferromagnetic configuration
occurs when the hole doping reaches the 3a flat band, for both
3- and 5-AGNR(1,3). The inverse dependence of the ferro-
magnetic stability with N can be attributed to the reduction of
the overall band flatness as N increases (see Figs. 2 and 5).

From Ref. [67] we obtain that the gain in energy due
to ferromagnetic ordering of a pristine 5-AGNR is �Ep ≈
−37.5 meV (per unit cell). Since the number of occupied car-
bon atoms in the ferromagnetic state in each unit cell is Nocc =
6 (see Fig. 5(b) in Ref. [67]), we obtain �Ep

Nocc
= −6.25 meV.

The corresponding results for the two heterostructures we
analyzed through DFT, i.e., 3-AGNR(1,3) and 5-AGNR(1,3),
were �E3 = −150 meV, Nocc = 8 and �E5 = −105 meV,
Nocc = 10. This results in �EN

Nocc
= −18.8 and −10.5 meV, re-

spectively. This shows that, if we compare the ferromagnetic
energy gain for the pristine 5-AGNR and the 5-AGNR(1,3),
the heterostructure had almost 70% more energy gain than
that of the pristine AGNR. We believe that to be the case for
two main reasons. First, the N-AGNR(n, m) heterostructures
studied here through DFT present true flat bands, contrary to
what was seen in the pristine N-AGNRs studied in Ref. [67].
Second, the pristine N-AGNRs show a single low-dispersion
band, while our N-AGNR(n, m) heterostructures show mul-
tiple perfectly flat bands [two in the case of 3-AGNR(1,3),
bands labeled 2 and 3a in Fig. 10(a)] and multiple almost
flat bands [two in the case of 3-AGNR(1,3), bands 3b and 4
in Fig. 10(a)], which should clearly result in a more robust
ferromagnetic ground state.

VII. WANNIER-LIKE STATES: COMPARISON BETWEEN
DFT AND TIGHT BINDING

In this section we want to highlight the fact that it is not
only the DFT and tight-binding band structures that are quali-
tatively similar (as shown in Fig. 10), but also the Wannier-like
states associated with the flat bands obtained by either method
that are qualitatively similar too.

FIG. 14. Wannier-like states for flat bands E2, E3a, E3b, and E4

for a 3-AGNR(1,3) heterostructure. Top panel: Tight-binding result;
bottom panel: DFT result, for all pairs of results.

In the top panel of Fig. 13 we reproduce Fig. 4(a), with the
tight-binding result for the flat-band E1 Wannier-like state for
a 3-AGNR(1,3) at half-filling. In the bottom panel we show
the corresponding DFT result. Close inspection indicates that
there is a semiquantitative agreement between tight binding
and DFT. Figure 14 makes the same comparison for flat bands
2, 3a, 3b, and 4, and close inspection of the plots shows that
the tight-binding results are surprisingly close to the DFT
results in all cases.
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FIG. 15. Site labeling of a unit cell for an N-AGNR(1,3) het-
erostructure. The sites are labeled pαq, where α = A/B, 1 � p �
N + 4, and 1 � q � 3, see text for details.

VIII. SUMMARY AND CONCLUSIONS

We have used the tight-binding and DFT methods to
study the electronic properties of recently synthesized N-
AGNR(n, m) graphene heterostructures [52,53], which have
been shown to present, for specific values of N , n, and m,
topological properties at low energy that can be simulated
by the SSH model. We found out that the heterostructures
show a multiplicity of flat bands, whose properties can be
reasonably well controlled by the parameters N , n, and m.
We see flat bands in our heterostructures up to N = 7. We
have strong indications that the quantum interference mech-
anism that gives origin to the ±t single flat band in pristine
AGNRs [67] is at play in all the flat bands analyzed in our
heterostructures. The pristine AGNR ±t bands are still present
in the heterostructures, but with the interesting presence of
a degenerate partner (for N = 3 and 5) in the tight-binding
simulations. This degeneracy is slightly lifted in the DFT
results for all values of N . Importantly, our DFT results show
that a few of the flat bands observed in the tight-binding
simulations remain perfectly flat in the DFT simulations as

FIG. 16. (a) Tight-binding band structure for 3-AGNR(1,3) with
NN hoppings only [reproduced from Fig. 10(b)]. (b) Same as in (a),
but adding a NNN hopping tNNN to the calculations, with tNNN =
0.1 eV [68]. (c) DFT results for 3-AGNR(1,3) [reproduced from
Fig. 10(a)].

FIG. 17. (a) Tight-binding band structure for 5-AGNR-S(1,3).
(b) Tight-binding band structure for 5-AGNR(1,3). The unit cell of
each heterostructure is shown at the top of each panel.

well. Thus, the ferromagnetism observed in our DFT results
is considerably stronger than that observed in pristine AGNRs
[67]. As a bonus, we found that the charge density associated
with the flat bands obtained via tight binding agree surpris-
ingly well with the corresponding results obtained through
DFT.

Given the experimental availability of these heterostruc-
tures, our results suggest that it would be interesting to

FIG. 18. (a) DFT band structure for 3-AGNR-S(1,3). (b) Tight-
binding band structure for 3-AGNR-S(1,3).
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experimentally explore the possibility of ferromagnetism
in these systems, which, given the variety of parameters
that can be manipulated, opens up the possibility of look-
ing for nontrivial topology in a ferromagnetic quasi-1D
system.
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APPENDIX A: TIGHT-BINDING HAMILTONIAN
FOR AN N-AGNR(1,3) HETEROSTRUCTURE

In this Appendix we present explicit expressions for the
Hamiltonian of an N-AGNR(1,3) heterostructure, in real and
reciprocal spaces. The modifications necessary to obtain the
Hamiltonian for a general N-AGNR(n, m) heterostructure are
straightforward. In Fig. 15 we show the lth unit cell of an
N-AGNR(1,3) heterostructure, where the A sublattice is rep-
resented by blue solid dots and the B sublattice by red solid
dots. The sites are labeled pαq, where α = A/B, with 1 �
p � N + 4 and 1 � q � 3, where p runs along the y direction,
as indicated on the right-hand side, and q runs along the x
direction (starting at the center of the unit cell and moving to
its borders).

Using the labeling defined above, we can write the N-
AGNR(1,3) Hamiltonian in real space as

H = −t
∑

l

⎡
⎣

N∑
p∈odd

b†
l,1(p)al,1(p) +

N−1∑
p=2

b†
l,1(p + 1)al,1(p) +

N−1∑
p=2

a†
l,1(p + 1)bl,1(p) + H.c.

⎤
⎦

− t
∑

l

⎡
⎣

N−2∑
p=2

b†
l,2(p + 1)al,2(p) +

N−2∑
p=2

a†
l,2(p + 1)bl,2(p) + H.c.

⎤
⎦

− t
∑

l

⎡
⎣

N−1∑
p=2

m∈even

b†
l,1(p)al,2(p) +

N−1∑
p=2

m∈even

b†
l,2(p)al,1(p) + H.c.

⎤
⎦

− t
∑

l

⎡
⎣

N−3∑
p=3

b†
l,3(p + 1)al,3(p) +

N−3∑
p=3

a†
l,3(p + 1)bl,3(p) + H.c.

⎤
⎦

− t
∑

l

⎡
⎣

N−2∑
p=3

m∈odd

b†
l,2(p)al,3(p + 1) +

N−2∑
p=3

m∈odd

b†
l,3(p + 1)al,3(p) +

N−3∑
p=4

m∈even

b†
l−1,3(p)al,3(p) + H.c.

⎤
⎦, (A1)

where al,q(p) [bl,q(p)] annihilates an electron on site pAq (pBq) on the lth unit cell. Assuming periodic boundary conditions
along the x direction, we take a Fourier transform along that direction and obtain the reciprocal space Hamiltonian

H = − t
∑

k

⎡
⎣

N∑
m∈odd

v1β
†
k,1(p)αk,1(p) +

N−1∑
p=2

v2β
†
k,1(p + 1)αk,1(p) +

N−1∑
p=2

v3α
†
k,1(p + 1)βk,1(p) + H.c.

⎤
⎦

− t
∑

k

⎡
⎣

N−2∑
p=2

v2β
†
k,2(p + 1)αk,2(p) +

N−2∑
p=2

v3α
†
k,2(p + 1)β,2(p) + H.c.

⎤
⎦

− t
∑

k

⎡
⎣

N−1∑
p=2

m∈even

v1β
†
k,1(p)αk,2(p) +

N−1∑
p=2

m∈even

v1β
†
k,2(p)αk,1(p) + H.c.

⎤
⎦

− t
∑

k

⎡
⎣

N−3∑
p=3

v1β
†
k,3(p + 1)αk,3(p) +

N−3∑
p=3

v1α
†
k,3(p + 1)βk,3(p) + H.c.

⎤
⎦

− t
∑

k

⎡
⎣

N−2∑
p=3

m∈odd

v2β
†
k,2(p)αk,3(p + 1) +

N−2∑
p=3

m∈odd

v3β
†
k,3(p + 1)αk,3(p) +

N−3∑
p=4

m∈even

v1β
†
k,3(p)αk,3(p) + H.c.

⎤
⎦, (A2)
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where αk,q(p) and βk,q(p) are the Fourier transformed opera-
tors, and v1 = e−ikaT /9, v2 = eikaT /18, and v3 = e−ikaT /18, with
aT = 1 the unit cell size.

APPENDIX B: TIGHT BINDING WITH
NEXT-NEAREST-NEIGHBOR HOPPING

In Fig. 16 we present tight-binding and DFT results to asses
the stability of the tight-binding flat bands to the addition of a
NNN hopping tNNN to the calculations. In Fig. 16(a) we repro-
duce the tight-binding bands shown previously in Fig. 10(b)
for 3-AGNR(1,3), which included just nearest-neighbor (NN)
hoppings. In Fig. 16(b) we add NNN hoppings tNNN = 0.1 eV
[68] to the calculations. As expected, the results are not
particle-hole symmetric anymore. However, all the flat bands
(in the interval of energy shown) remain flat. Thus, since the
DFT results [in Fig. 16(c), reproduced from Fig. 10(a)] show
that flat-band 1 (the closest to the Fermi energy) has acquired
dispersion, we conclude that longer hoppings than NNN are
necessary in the tight-binding calculations to produce disper-
sion in flat-band 1. This can be understood by looking at the
Wannier-like state for this band, shown in Fig. 4(a). There we
clearly see that, to connect two unit cells, it is necessary at
least a third NN hopping. This may explain too why flat-band
3b has acquired a small dispersion, while flat-band 4 has
acquired just a slight dispersion.

APPENDIX C: RESULTS FOR STAGGERED
HETEROSTRUCTURES

In Refs. [52,53] a second type of heterostructure has been
introduced, less symmetric than the one we analyzed in this
work. The reason we did not focus our attention in these
so-called staggered heterostructures is that they show less

flat bands than the so-called inline heterostructures (which
were the focus of this work). To exemplify that, in Fig. 17(a)
we compare the tight-binding band structure results for a
5-AGNR-S(1,3) heterostructure [Fig. 17(a)] with that for a
5-AGNR-(1,3) one [Fig. 17(b)]. Notice the inclusion of an “S”
(in bold, for staggered) to the label for the heterostructure. On
top of Fig. 17(a) we show a single unit cell for the 5-AGNR-
S(1,3) heterostructure. By comparing it to the single unit cell
on top of Fig. 17(b) [for 5-AGNR-(1,3)], which was described
in Sec. II A, it is easy to understand the meaning of the (1,3)
nomenclature, since the idea is the same as the one introduce
in Sec. II A.

By comparing the two panels, one notices that only the ±t
flat bands have survived in the staggered heterostructure. We
have checked that what appears to be two flat bands (touched
by a dispersive band, located, respectively, between energies
−1 and −2 eV, and below energy −3 eV) are in reality two
slightly dispersive bands, and not perfectly flat, like the ±t flat
bands. Our conclusion also rests in the fact that we could not
discern a clear Wannier-like state associated with them. Thus,
in the 5-AGNR-S(1,3) heterostructure there are just 1/4 of the
flat bands present in the (inline) 5-AGNR(1,3) heterostructure,
shown in Fig. 17(b).

Finally, for completeness sake, in Fig. 18 we show a com-
parison of the DFT band structure for 3-AGNR-S(1,3), with
the tight-binding band structure, in Figs. 18(a) and 18(b),
respectively. Aside from the expected broken particle-hole
symmetry in the DFT bands, it is easy to see the very good
agreement between the two results. A careful analysis of the
DFT results shows that the only flat band that is perfectly
nondispersive is the ±t flat band (located just below −3 eV),
reinforcing our claim that the inline heterostructures have
more robust flat bands.
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