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Magnetization switching in the inertial regime
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We have numerically solved the Landau-Lifshitz-Gilbert (LLG) equation in its standard and inertial forms
to study the magnetization switching dynamics in a 3d thin film ferromagnet. The dynamics is triggered by
ultrashort magnetic field pulses of varying width and amplitude in the picosecond and Tesla range. We have
compared the solutions of the two equations in terms of switching characteristic, speed, and energy analysis.
Both equations return qualitatively similar switching dynamics, characterized by regions of slower precessional
behavior and faster ballistic motion. In the case of inertial dynamics, ballistic switching is found in a 25% wider
region in the parameter space given by the magnetic field amplitude and width. The energy analysis of the
dynamics is qualitatively different for the standard and inertial LLG equations. In the latter case, an extra energy
channel, interpreted as the kinetic energy of the system, is available. Such an extra channel is responsible for a
resonant energy absorption at THz frequencies, consistent with the occurrence of spin nutation.
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I. INTRODUCTION

The traditional method of writing information to magnetic
hard disk drives consists of reversing the magnetization di-
rection via the application of magnetic fields produced by
external currents and localized via a so-called “write-head.”
In order to achieve efficient switching, the magnetic field is
applied nearly antiparallel to the direction of the initial mag-
netization state, and the switching process thus obtained is
often referred to as “damped” switching [1–3]. The switching
time in this process is limited by the macroscopic relaxation
time of the magnetization of the order of 100 ps, and correctly
described by the standard Landau Lifhitz Gilbert (LLG) equa-
tion [4]. Geritts et al. [5] demonstrated instead a technique
by which ultrafast magnetization reversal can be achieved
using picosecond-long magnetic field pulses transverse to the
magnetization direction. Such a switching technique was also
reported in other studies [6,7]. The switching times reported in
these works depend on the amplitude of the magnetic field and
on the duration of the pulse, with a general trend that a pulse
of larger amplitude will reduce the switching time. Coinci-
dentally, at the same time, a series of experiments performed
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at the Stanford linear accelerator demonstrated the ultrafast
switching of magnetization by intense magnetic fields created
by relativistic electron bunches. In the paper published by
Tudosa et al. [8], it was argued that deterministic magneti-
zation switching cannot occur faster than 2 ps, setting this
as the ultimate speed for magnetic reversal. However, due to
the complexity of such an accelerator based experiment, direct
observation of such an ultrafast switching in the time domain
was not possible.

A few years later, it was shown that a novel idea, i.e.,
using magnetic inertia, can greatly enhance the switching
speed in antiferromagnets [9], up to 10 times faster than that
reported in the above-mentioned studies. So far, nutation-type
magnetization motions in ferromagnetic systems have been
studied mostly theoretically, in the framework of classical
LLG dynamics at GHz frequencies [10], as well as in other
numerical studies considering the inertial version of the LLG
[11–18], sometimes referred to as the iLLG equation. These
works predicted the appearance of a spin nutation with an
intrinsic resonance in the 1011–1015 Hz range. The direct
detection of spin nutation in ferromagnets recently achieved
experimentally [19] has allowed us to narrow down the rather
broad frequency range to the 1012 Hz one, i.e., in the THz
region, for typical 3d ferromagnetic alloys such as NiFe and
CoFeB.

In this work we explore the role of inertia in the mag-
netization switching of a thin film ferromagnet triggered
by magnetic field pulses in the picosecond range. Using
macrospin simulations, we create a map of the magnetization
dynamics as a function of the pulse duration and amplitude.
The dynamics is obtained and analyzed solving both the stan-
dard LLG equation and the iLLG equation. We used realistic
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material parameters for an archetypal ferromagnet, namely
Ni81Fe19 (permalloy), but they are valid for all thin film ferro-
magnets with similar characteristics. We show that the iLLG
simulations predict a larger stability region than the LLG one
for one of the two characteristic switching processes, and
that the effect of the nutation resonance can be detected in
switching experiments. We discuss our results analyzing the
dynamics of the classical energy terms.

II. METHODS

Until recently, the dynamics of magnetization switching
in ferromagnetic systems has been mostly described by the
conventional LLG equation [4], which can be written as

dM
dt

= −|γ |M ×
(

Heff − α

|γ |Ms

dM
dt

)
, (1)

where |γ |/(μ02π ) ≈ 28 GHz/T is the gyromagnetic ratio,
Heff is the effective magnetic field, calculated as the varia-
tional derivative of energy with respect to the magnetization,
Ms is the saturation magnetization, and α is the Gilbert
damping. The first term on the right-hand side describes the
precession motion while the second describes the damping
of precession [4]. Recent theoretical studies suggested the
inclusion of an extra inertial term [11,20–24] to write the
iLLG equation

dM
dt

= −|γ |M ×
[

Heff − α

|γ |Ms

(
dM
dt

+ τ
d2M
dt2

)]
, (2)

where τ is the angular momentum relaxation time. The ex-
tra term is the second derivative of the magnetization vector
which leads to spin nutation, in addition to precession and
damping. The microscopic origin of inertia is still not clearly
understood and several theoretical studies have been pre-
sented [17,23,24]. Mondal et al. [24] have suggested that
the inclusion of higher order spin-orbit coupling terms in the
Hamiltonian of the system will produce an equation of this
kind.

In order to understand the dynamical behavior of magneti-
zation shown by Eqs. (1) and (2), we perform simulations on
an infinite thin magnetic film, assuming that the magnetization
is spatially homogeneous (macrospin approximation). The
effective magnetic field Heff appearing in Eq. (2) takes into
account the different interactions occurring among elementary
magnetic moments, namely

Heff = Ha + Hani + Hm, (3)

where Ha is the applied magnetic field, Hani = 2K1/(μ0Ms)ey

is the uniaxial magnetocrystalline anisotropy field with K1

being the anisotropy constant, and Hm = −D · M is the
magnetostatic (demagnetizing) field. D is the demagnetizing
tensor, with D = diag(Dx, Dy, Dz ) when referred to the princi-
pal axes of the system. For the case of a thin film infinite in the
xy plane, the demagnetizing field takes the form Hm = −Mzez

[25–27]. We consider a thin film with an in-plane easy and
hard axis, with an anisotropy field of μ0Hani = 0.1 T, as
shown in Fig. 1(b). This anisotropy field defines two equilib-
rium magnetization states in the system along the y axis.

We solve the LLG and iLLG differential equations,
respectively, Eqs. (1) and (2), using two independent numeri-
cal codes. The first one is based on a classical Runge-Kutta
fourth-order method in spherical coordinates defined by a
set of three unit vectors {ex, ey, ey} as shown in Fig. 1(a).
Details are given in Appendix A. The second code relies
on the appropriate extension to the iLLG dynamics of the
implicit midpoint rule time stepping [28] in Cartesian coor-
dinates. We consider the case of a uniform magnetic layer
with uniaxial anisotropy, at 0 K, in order to isolate the ef-
fect of inertia from all other possible terms in the equations.
The considered magnetic thin film has material parameters
similar to those of polycrystalline permalloy, i.e., α = 0.023,
μ0Ms = 0.92 T, τ = 11.3 ps [19]. The applied magnetic field
has a Gaussian-like shape with a full-width at half-maximum
(FWHM) varying from 0 to 3 ps in steps of 10 fs, while the
amplitude (μ0Ha) is varied in steps of 100 mT from 0 to 10 T.
The field is always applied along the x axis, i.e., perpendicular
to the easy magnetization axis and equilibrium states.

III. RESULTS AND DISCUSSION

For a thin film system, magnetization switching without
inertia is typically described as a three-step process [3]. (i)
An applied pulse Ha lying in the film plane and perpendicular
to M will exert a Zeeman torque, and will lead M to precess
out of the in-plane easy axis. (ii) This torque will simultane-
ously create a demagnetizing field perpendicular to the film
plane. The demagnetizing field will further lead to precession
of M around the axis perpendicular to the film plane. (iii)
Eventually, once the applied magnetic field is turned off, the
magnetization relaxes along the direction of the effective mag-
netic field defined in Eq. (3). We show below that the same
description is accurate also in the case of inertial dynamics,
given that the nutation is a comparatively small perturbation
to the precession.

Figure 1(c) shows the diagram of the magnetization switch-
ing obtained by numerically solving the iLLG equation.
Similar diagrams have been extensively used for studying
magnetization switching in different case studies [29–32], but
not yet for the case of inertial dynamics in ferromagnets. The
diagram, which at first sight appears quite similar to those
based on the standard LLG equation, shows the state of mag-
netization with respect to the applied Gaussian pulse width
and amplitude, with the yellow and blue regions representing
the nonswitched and, respectively, the switched state of mag-
netization. It should be noted that the presence of an in-plane
hard axis creates an energy landscape characterized by two
stable states along the y axis, two saddle-type equilibria along
the x axis, and two unstable equilibria along the z axis.

In all the regions of the diagram we can extract the full
magnetization dynamics, as shown in the trajectories on the
unitary sphere in Fig. 1(c) for a few characteristics cases. Case
1 is representative of the region where the magnetization state
after excitation relaxes back to its initial equilibrium state.
In case 2, the applied pulse deposits enough energy into the
system for the magnetization to cross the barrier created by
the presence of the in-plane hard axis, and to switch to the
opposite magnetization state. We denote this type of switching
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(a) (c)

(b)

FIG. 1. (a) Spherical coordinates used for the numerical simulations described in the main text. (b) Geometry of the thin film system
considered. The easy magnetization axis lies along the y direction, and the in-plane hard magnetization axis is along the x direction. (c) Main
plot: Magnetization state diagram for different magnetic pulse amplitude and FWHM obtained by numerically solving the iLLG equation. Side
plots: Magnetization precession trajectories in selected points of the diagram. The color bar shows the y component of the magnetization vector
at the end of the simulation. The magnetization starts always from the positive y direction, i.e., aligned parallel to the easy magnetization axis.

as precessional switching. For cases 3 and 4, the magnetiza-
tion reaches just close to the energy barrier (i.e., the top of
the sphere) of the out-of-plane hard axis where it precesses
several times before relaxing to the initial and, respectively,
opposite state. It is worthwhile to point out that this type of
switching exhibits quasirandom relaxation behavior as a result
of the multistability and the low dissipation of magnetization
dynamics. In fact, the presence of multiple stable points, to-
gether with the low damping, results in a high sensitivity to the
initial conditions. As a consequence, small perturbations are
amplified, leading to a probabilistic behavior of the switching
process. A more detailed description of this phenomenon can
be found in Ref. [33]. The most peculiar region is the one
represented by case 5, where the magnetization is able to cross
the energy barrier of the out-of-plane hard axis and switches
to the opposite magnetization state with negligible preces-
sion. We denote this type of switching as ballistic switching.
Note that in literature the terms precessional and ballistic are
sometimes used interchangeably [34–36] to denote switch-
ing processes that can be described in terms of separation
between slow and fast degrees of freedom [13]. This can be
explained noting that previous studies considered only slower
timescales, where switching such as the one depicted in case 5
was never observed. Here, considering much faster dynamics,
we are able to identify the qualitative difference between the
two switching processes.

From the dynamical response of the magnetization to dif-
ferent Gaussian pulses, the magnetization switching time can

be obtained. The exact definition of switching time reported
in literature is ambiguous and no convention is reported [3].
In some studies the switching time is defined to be the time
taken by the magnetization to completely reach equilibrium
along the opposite easy axis direction. In this study we define
the magnetization switching time as the time taken for mag-
netization to cross the energy barrier for the last time before
relaxing on either side of the easy axis (+y or −y axis in our
geometry). Based on this definition (see Appendix B for the
details) we calculate a diagram of the magnetization switching
time for different FWHM and amplitude of the externally
applied magnetic field pulse as shown in Fig. 2. Figures 2(a)
and 2(b) were obtained by solving the LLG and, respectively,
the iLLG equation.

In both plots, region 1 corresponds to the region where the
magnetization never crosses the energy barrier, and therefore
there is no switching. On the other hand, region 2 indi-
cates the area of relatively longer switching times, where
the magnetization precesses several times around the unitary
magnetization sphere before relaxing to either one of the two
equilibrium states. Once again, as in Fig. 1, the most peculiar
observation is found in region 3, which corresponds to the
case of ballistic switching. Here we notice that the switching
time is the fastest and is largely independent of the magnetic
pulse width and amplitude. We selected a logarithmic scale to
properly highlight the different orders of magnitude between
the switching times in regions 2 and 3. A closer look at the
difference in the two simulation results shows that the width
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FIG. 2. Magnetization switching times calculated for different
pulse amplitude and FWHM width using (a) the LLG and (b) the
iLLG equations. All axes and amplitudes are in logarithmic scale.
(c) Switching time along the diagonal line cuts (i.e., perpendicular to
the lines of constant pulse energy) shown by the black-dashed lines
in (a) and (b). The dashed vertical lines indicate the boundaries of
the ballistic switching region for the two simulations.

of region 3 for the case of the iLLG dynamics is larger than
that of the LLG one, as highlighted by the dashed vertical
lines in Fig. 2(c). The figure is obtained taking a diagonal cut
of Figs. 2(a) and 2(b). The width of the ballistic switching
region is approximately 3.34 T ps for the LLG dynamics, and
4.16 T ps for the iLLG one, i.e., approximately 25% larger
in the latter case. We also notice that, for the LLG dynamics,
the ballistic region starts at lower μ0Ha × FWHM values than
for the iLLG case. We can interpret these observations with
analogies taken from classical mechanics. For a given driving
force, a system at rest with larger inertia will show a slower
response to that force, but then inertia helps in preserving the
motion of the system once the dynamics has started.

In addition to the speed of the switching process, it is
equally important to understand the energy associated with
it. In order to do this, we calculated the work per unit volume
�W performed by the field pulse on the magnetic system as

�W =
∫ tp

0
μ0Ha · dM

dt
dt = μ0

γ Ms

∫ ∞

0
α

∣∣∣∣dM
dt

∣∣∣∣
2

dt, (4)

where tp is the time instant at which the external pulse am-
plitude goes back to zero after reaching its maximum. The
latter formula comes from the energy balance equation (see
the derivation in Appendix C), i.e.,∫ t

0
μ0Ha · dM

dt
dt =

∫ t

0

(
dA

dt
+ dK

dt
+ α μ0

γ Ms

∣∣∣∣dM
dt

∣∣∣∣
2)

dt .

(5)
The left-hand side of Eq. (5) is the energy deposited by

the pulse as a function of time t after turning the field on.
This is equal to the energy density absorbed by the system,
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FIG. 3. Temporal evolution of the kinetic, potential, dissipated,
and deposited energy terms for a few selected simulation parameters.
(a) LLG and (b) iLLG dynamics of the different energy terms for
an applied magnetic field of 2 T amplitude and 1 ps FWHM, i.e.,
in the precessional switching region. (c) LLG and (d) iLLG energy
dynamics for 8 T, 2.1 ps magnetic field pulse, i.e., in the ballistic
switching region.

which in turn is the sum of the potential energy A = K1[1 −
(My/Ms)2] + 1

2μ0M2
z , kinetic energy K = μ0

2γ Ms
ατ | dM

dt |2, and

dissipated energy
∫ t

0
μ0

γ Ms
α| dM

dt |2 dt . Equation (5) is derived
for the iLLG case but it is directly applicable to LLG equa-
tion without the kinetic term, since τ = 0 in this case. We
stress that this is a purely formal analogy arising from the
fact that the potential energy depends on the magnetization,
which formally plays the role of the generalized coordinate,
while the kinetic term is quadratic in the time derivative of
magnetization, formally acting as the generalized velocity. A
connection with a classical mechanical system, such as the
spinning top investigated in detail in Ref. [12], will be the
objective of a future work.

Using Eq. (5), we plot in Fig. 3 the temporal evolution
of the energy transfer from the magnetic field pulse into the
system without (LLG) and with inertia (iLLG), and for the
case of precessional (magnetic field with amplitude 2 T and
1 ps FWHM duration) and ballistic switching (8 T, 2.1 ps
FWHM). In all cases, at long enough times, the dissipated en-
ergy converges to the value of the deposited energy, indicated
with solid and, respectively, dashed-black lines. However, the
way such values are reached is remarkably different for the
four cases.

In the case of precessional switching in the standard LLG
dynamics [Fig. 3(a)], the energy is dissipated rather slowly,
consistent with the comparatively long switching times shown
in Fig. 2. In the energy picture, the potential energy of the
precession is dissipated away by the Gilbert damping in
the hundreds of ps range. For the precessional switching in
the case of iLLG dynamics [Fig. 3(b)], the dissipation of the
deposited energy is again a slow process, but there are two
key differences with the LLG case. First, the total deposited
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FIG. 4. Total energy deposited by a 8 T magnetic field pulse
as a function of pulse FWHM. The plot is computed for different
values of the angular momentum relaxation time constant τ used in
the iLLG dynamics. Inset: Amplitude of peak energy absorbed as a
function of τ .

energy is approximately twice as large, owing to the fact that
an additional energy channel, i.e., the kinetic one, is now
available, which also creates a fast overshoot at the beginning
of the dynamics. Second, in addition to the slow dissipation
of energy, there is now a relatively fast periodic exchange
between potential and kinetic energies. This takes place at
THz rates and it is the signature of spin nutation in the energy
dynamics. Interestingly, the kinetic energy relaxes faster than
the potential energy.

We now turn to the case of the ballistic switching, i.e.,
Figs. 3(c) and 3(d). Here the dissipated energy for the LLG
and iLLG dynamics is almost identical, but in the case of the
iLLG dynamics in Fig. 3(d) there is, similarly to Fig. 3(b), a
larger overshoot than for the LLG case. This is again due to
the additional contribution of the kinetic energy term. This
overshoot is intriguing and it is a rather general feature of
the iLLG dynamics. We demonstrate this by calculating the
LLG and iLLG diagrams for all magnetic field amplitudes and
widths considered in Figs. 1 and 2, and we plot this in Fig. 6
in Appendix C. In order to further investigate this observation,
we take a horizontal line cut in Fig. 6(b) in correspondence
of the 8 T value, and we plot it in Fig. 4. A peak is present
in the deposited energy value for a pulse FWHM of around
0.5 ps and τ = 10 ps. By varying the value of τ , we observe
that the maximum work is performed by the applied field
when the pulse duration 6σ , with σ ≈ FWHM/2.4, approx-
imately matches the period of the nutation resonance 2πατ .
Hence, we can attribute the occurrence of the peak to the
resonant absorption of the nutation resonance. In the inset of
Fig. 4 we also plot the peak energy value for the different τ ,
observing a monotonic increase. This is generally consistent
with a torque-driven dynamics with a constant gyromagnetic
ratio γ where, for a given magnetic field amplitude, the larger

torque on the magnetization, hence its maximum displace-
ment, is achieved when the magnetic field varies more slowly.

IV. SUMMARY AND CONCLUSION

From our LLG and iLLG simulations we explored the
different switching dynamics triggered by ultrafast magnetic
field pulses of different FWHM and amplitude in the ps and
Tesla ranges. Depending on those parameters, the magnetiza-
tion exhibits precessional or ballistic switching. The ballistic
switching is always much faster than the precessional switch-
ing, for both the LLG and iLLG equations. We also observed
that the width of the ballistic switching region for the iLLG
case is 25% larger than the LLG one. From an application
perspective, this difference in width of the ballistic region may
turn out to be useful for the reliability of ultrafast switching,
and guide the choice of materials for magnetic storage devices
with larger inertia.

We further showed how the energy is deposited into the
system by the external magnetic field pulse. For the iLLG
dynamics, the external pulse drives the spin nutation with a
characteristic resonant feature, and the deposited energy has
an additional kinetic energy channel not available in the stan-
dard LLG dynamics, where instead only the potential energy
channel exists.

Our results will be useful for the design of devices re-
lying on ultrafast magnetization switching using picosecond
magnetic field pulses. The realization of such short and
intense magnetic fields have been suggested recently design-
ing magnetic-field enhancing metamaterials [37], by the use
of vector laser beams [38] or thanks to ultrafast electronic
switches [39]. Finally, we anticipate that our findings will
be relevant to much of the recent works in the magnetism
community aimed at the understanding of inertial spin dynam-
ics [40–54], and to assess the role of inertia in fundamental
problems in magnetic dynamics, such as the one of chaos
[55,56].
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APPENDIX A: MAGNETIZATION DYNAMICS
IN SPHERICAL COORDINATES

The dynamical Eqs. (1) and (2) can be decomposed in the
reference frame of a spherical coordinate system defined by a
set of three unit vectors {er, eθ , eφ}. The magnetization vector
in this reference frame is defined by the set of coordinates
M = (Ms, θ, φ), where the unit vector er is aligned with M
while eθ and eφ point in the direction of increasing θ and
φ, respectively. They are both tangent to the unit sphere, as
shown in Fig 1(a). The expression for the net magnetic field
in angular components can be written in terms of the Cartesian
coordinates as

Hr = Hx cos φ sin θ + Hy + sin φ cos θ + Hz cos θ, (A1)

Hθ = Hx cos φ sin θ + Hy + sin φ cos θ − Hz sin θ, (A2)
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Hφ = −Hx sin φ + Hy cos φ. (A3)

1. LLG equation in spherical coordinates

Since dM
dt is perpendicular to M, a vector multiplication of

Eq. (1) by M will give

( − γ ηM2
s + M

) × dM
dt

= −M2
s Heff⊥, (A4)

where Heff⊥ is the component of effect field perpendicular to
M. The time derivative of the magnetization in spherical coor-
dinates is written as dM

dt = Ms
dθ
dt eθ + Ms

dφ

dt sin θeφ . Plugging
this into Eq. (A4) and reordering the terms will give the time
derivative of angular components in the following canonical
form:

dθ

dt
= κ (−Hφ + αHθ ), (A5)

dφ

dt
= κ

2

sin θ
(−Hθ + αHφ ), (A6)

where κ = γ

1+α2 .

2. Inertial LLG equation in spherical coordinates

Similarly, the iLLG equation can be written in spherical
coordinates. As in the last section, vector multiplication of
Eq. (2) by M will give

γ ητM2
s

d2M⊥
dt2

= γ M2
s Heff⊥ − γ ηM2

s
M
dt

+ M × M
dt

, (A7)

where the subscript ⊥ indicates the perpendicular component
of M. Now the second derivative of the magnetization in
spherical coordinates can be written as

d2M
dt2

= −Ms

(
dφ2

dt
sin2 θ + dθ2

dt

)
er

+ Ms

(
d2φ

dt2
− dφ2

dt
sin θ cos θ

)
eθ

+ Ms

(
2

dθ

dt

dφ

dt
cos θ + d2φ

dt2
sin θ

)
eφ. (A8)

Substituting this relation into Eq. (A7) gives

d2θ

dt2
= 1

ατ

(
ατ

dφ2

dt
+ γ Hθ − α

dθ

dt
− dφ

dt
sin θ

)
, (A9)

d2φ

dt2
= 1

ατ sin θ

(
− 2ατ

dθ

dt

dφ

dt
+ γ Hφ − α

dφ

dt
sin θ

− dθ

dt
sin θ

)
. (A10)

The equilibrium condition in our simulation is defined as
{θ = π/2, φ = π/2, dθ/dt = 0, dφ/dt = 0}.

APPENDIX B: MAGNETIZATION DYNAMICS
IN TIME DOMAIN

Figure 5 shows the temporal evolution of the y component
of the magnetization when triggered by the magnetic field
pulses represented in the inset. The black circular marker
shows the point in time when the magnetization state is
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FIG. 5. Temporal evolution of the y component of the magneti-
zation for the LLG and iLLG dynamics for a case of precessional
switching. The red circle indicates the point used to calculate the
switching time, and the black circle the time where the magnetization
state (switched or not switched) was determined. The inset is the
magnetic field pulse used to trigger the dynamics in the main figure.

recorded to plot the diagram shown in Fig. 1(c). The switching
time in this study is defined as the time when the magneti-
zation crosses the equator for the last time before reaching
the steady state, red circle in Fig. 5. In the following, the
derivation of Eq. (4) in the main text is reported.

APPENDIX C: ENERGY DIAGRAM

In Fig. 6 we plot the energy deposited by the pulse for
the LLG and iLLG equations as a function of applied pulse
width and amplitude. The energy is calculated using Eq. (4),
by taking a direct integral over a time duration of the full pulse
width 6σ , with σ ≈ FWHM/2.4.
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FIG. 6. Diagram of the energy density deposited by a magnetic
field pulse as a function of its amplitude and width, calculated using
(a) the LLG equation and (b) the iLLG equation. The horizontal
white dashed line in correspondence of the 8 T value is the line cut
plotted in Fig. 4 in the main text.
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1. Energy balance in iLLG dynamics

For the sake of simplicity of notation, we consider the
iLLG dynamics in its dimensionless form:

dm
dt

= −m ×
(

heff − α
dm
dt

− ξ
d2m
dt2

)
, (C1)

where m(t ) is the magnetization unit vector (normalized by
the saturation magnetization Ms), time is measured in units
of (γ Ms)−1, γ = 2.21 × 105 A−1 s−1 m is the absolute value
of the gyromagnetic ratio, α is the dimensionless Gilbert
damping parameter, and ξ measures the strength of the inertial
effects in the magnetization dynamics. The effective field is

heff = − ∂g

∂m
= −D · m + ha, (C2)

which is expressed as the gradient of the free energy
g(m, ha) = 1

2 m · D · m − ha · m, with D = diag(Dx, Dy, Dz )
being the effective demagnetizing tensor (referred to principal
axes and also including anisotropy) and ha the external ap-
plied field. ξ is related to the timescale of inertial dynamics
and can be expressed as ξ = γ Msατ to be consistent with
Eq. (2) and Ref. [19].

In order to investigate the energy aspects of the inertial
magnetization dynamics, we dot-multiply Eq. (C1) by the
term in brackets, so that the right-hand side vanishes:(

heff − α
dm
dt

− ξ
d2m
dt2

)
· dm

dt
= 0. (C3)

By recalling Eq. (C2), and after some algebra, we obtain

−dg

dt
− m · dha

dt
− α

∣∣∣∣dm
dt

∣∣∣∣
2

− d

dt

(
ξ

2

∣∣∣∣dm
dt

∣∣∣∣
2)

= 0. (C4)

Recasting terms, one arrives at the following equation for
the energy balance in iLLG dynamics:

d

dt

(
g + ξ

2

∣∣∣∣dm
dt

∣∣∣∣
2)

= −m · dha

dt
− α

∣∣∣∣dm
dt

∣∣∣∣
2

. (C5)

It is apparent that, for constant-in-time applied field, and when
the Gilbert damping is zero (α = 0), the magnetization dy-
namics preserves the quantity:

g̃(m, dt m, ha) = g(m, ha) + k(dt m), (C6)

where

k(dt m) = ξ

2

∣∣∣∣dm
dt

∣∣∣∣
2

, (C7)

and where dt m is a compact notation for dm/dt . We note that
the form of g̃ is analogous to the the total mechanical energy
(potential + kinetic). For later use we also introduce the
following total energy defined by using, as potential energy,
the Helmholtz free energy a(m):

ã(m, dt m) = a(m) + k(dt m), (C8)

where we recall that g(m, ha) = a(m) − m · ha. On the basis
of the the above considerations, we can conclude that Eq. (C1)
with α = 0 describes a conservative dynamical system with
energy equal to g̃(m, dt m, ha).

2. Energy dissipation during magnetization switching
for LLG and iLLG dynamics

In order to compare the work to be done by the exter-
nal field during magnetization switching in the presence or
absence of inertia, one has to use Eq. (C5). Thus, the rate
of change of the free energy g during the switching process
becomes

dg̃

dt
= −m · dha

dt
− α

∣∣∣∣dm
dt

∣∣∣∣
2

. (C9)

By using in Eq. (C9) the expression of g in terms of
Helmholtz free energy, one can be easily convinced that
Eq. (C9) can be recast in a form which allows the interpre-
tation of the involved terms in the framework of the laws of
thermodynamics, i.e.,

da

dt
= −α

∣∣∣∣dm
dt

∣∣∣∣
2

− d

dt

(
ξ

2

∣∣∣∣dm
dt

∣∣∣∣
2)

+ ha · dm
dt

. (C10)

Let us now consider the work performed by the field during
a generic evolution of magnetization in the interval [t1, t2]. By
integrating Eq. (C10) with respect to time in that interval, we
obtain

�W =
∫ t2

t1

ha · dm
dt

dt = �a +
[
ξ

2

∣∣∣∣dm
dt

∣∣∣∣
2]

t2

−
[
ξ

2

∣∣∣∣dm
dt

∣∣∣∣
2]

t1

+
∫ t2

t1

α

∣∣∣∣dm
dt

∣∣∣∣
2

dt, (C11)

where

�a = a[m(t2)] − a[m(t1)], (C12)

and where we have denoted with �W the work performed on
the magnetic particle during the process.

In computing �W for a switching process, it is convenient
to use the initial time instant t0, i.e., the instant before which
the applied magnetic field is zero. At t0 the magnetization is
in an equilibrium point m0, which corresponds to a minimum
of the Helmholtz free energy a(m) and dm/dt = 0. Now, if
tp is the time instant when the external field pulse is again
zero after reaching a finite value, one could choose t2 = tp,
and compute �W as

�W =
∫ tp

t0

ha · dm
dt

dt . (C13)

This computation has the difficulty that from Eq. (C11) one
is required to know the values of m and dm/dt in both t0
and tp. A simplified formula can be obtained by taking into
account that

�W =
∫ tp

t0

ha · dm
dt

dt ≈
∫ ∞

t0

ha · dm
dt

dt, (C14)

assuming that the applied field is negligible for t > tp, which
is a good approximation for a Gaussian-like magnetic field
pulse if one takes tp ≈ 6σ . In addition, in the typical switching
process, the asymptotic magnetization state (t → ∞) and the
initial magnetization state are rest states (with dm/dt = 0)
and they have the same value of the Helmholtz free energy.
By using this fact in Eqs. (C11) and (C14), we arrive at the
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equation

�W =
∫ tp

t0

ha · dm
dt

dt ≈
∫ ∞

t0

α

∣∣∣∣dm
dt

∣∣∣∣
2

dt . (C15)

Equation (C15) is the dimensionless version of Eq. (4) used
for computations in this paper.

An analogous result can be obtained in cyclic transfor-
mations starting and ending in the same magnetization state
(e.g., as in the case of an hysteresis loop). In this case

we obtain

0 = −
∮ [

α

∣∣∣∣dm
dt

∣∣∣∣
2

+ d

dt

(
ξ

2

∣∣∣∣dm
dt

∣∣∣∣
2)]

dt +
∮

ha · dm
dt

dt,

(C16)

�W =
∮

α

∣∣∣∣dm
dt

∣∣∣∣
2

dt � 0. (C17)

The right-hand side represents the amount of energy dissi-
pated into heat through intrinsic entropy production.
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