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Theory of quantum entanglement and structure of the two-mode squeezed
antiferromagnetic magnon vacuum
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Recently, investigations of the quantum properties of an antiferromagnet in the spin wave approximation have
identified the eigenstates as two-mode squeezed sublattice-magnon states. The uniform magnon states were
shown to display a massive sublattice entanglement. Here we extend this idea and study the squeezing properties
of all sublattice Fock states throughout the magnetic Brillouin zone. We derive the full statistics of the sublattice
magnon number with wave number �k in the ground state and show that sublattice magnons occur in pairs with
opposite wave vectors, hence, resulting in entanglement of both modes. To quantify the degree of entanglement
we apply the Duan-Giedke-Cirac-Zoller inequality and show that it can be violated for all modes. The degree
of entanglement decreases towards the corners of the Brillouin zone. We relate the entanglement to measurable
correlations of components of the Néel and the magnetization vectors, thus allowing one to experimentally
test the quantum nature of the squeezed vacuum. The distinct k-space structure of the entanglement shows
that the squeezed vacuum has a nonuniform shape that is revealed through the �k-dependent correlators for the
magnetization and the Néel vectors.
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I. INTRODUCTION

In recent years the desire to increase the computational
power, together with the need of electronic devices in a suit-
able size made it necessary for electric circuits to become
smaller and smaller [1]. Approaching the size, where quantum
effects come into play, it is necessary to come up with new
ideas to either limit the influence or use the beneficial effects
of the quantum nature.

One of these ideas is the use of spin transport to convey in-
formation. In metals [2] or semiconductors [3] spin transport
is achieved by diffusive transport of spin carrying electrons.
Interactions between electron spins and magnetic moments in
magnetic materials then gave birth to hard drives, based on
the giant magnetoresistance [4,5] or tunnel magnetoresistance
[6], as a way to store information.

In insulators containing magnetic moments, spin transport
can be mediated by collective excitations of spins [7–9], the
so-called spin waves [10–12]. Similar to light waves that
consist of photons, spin waves constitute superpositions of
elementary quantized, particlelike excitations—the magnons
[13,14].

Ever since the discovery of two-dimensional (2D) mate-
rials and the possibility to consistently produce them, they
are under extensive investigation [15–21]. Combining or gat-
ing single layers opened the door to tailor materials with
desired properties. One could then use different 2D mate-
rials and combine them in a van der Waals heterostructure
[22,23] to merge their properties or give rise to new ones. Re-
cently, magnetic 2D materials joined the zoo of 2D materials
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[24–27] making it possible to include magnetism into these
heterostructures. The so created 2D materials and their spin
transport properties are of great interest for future research
and spin information processing.

Bose-Einstein condensation (BEC) of magnons was re-
ported in [28] as a dynamical, quasiequlibrium state. Magnons
created by a strong drive, are subject to thermalization and
are assumed to collapse in the lowest-energy eigenstate re-
sulting in a BEC. The quantum nature of this effect is subject
to debate since alternative classical explanations were made
[29]. Another BEC of magnons occurs in a quantum magnet
[30]. Here the spin interaction is mapped onto a theory of hard
bosonic particles. In the case of an antiferromagnet (AFM)
an applied magnetic field �H can lower the magnon gap to
zero by spin flips. At a critical value Hsat all spins align with
�H . This spin-flipped state can be understood as containing

the maximum number of bosons and, hence, as condensate
forming the ground state of the AFM.

More recently, the field of quantum magnonics has gained
some momentum. It was shown that genuine quantum fea-
tures like squeezing and entanglement exist in several kinds
of magnetic insulators [31,32]. These quantum features can,
e.g., be probed by spin-current shot noise measurements [31].
Even more intriguing is the observation that antiferromagnets
constitute a massive source of quantum entanglement between
the two sublattices even in the vacuum state [33]. The investi-
gations so far have concentrated on the uniform magnon mode
and motivate our research to investigate quantum entangle-
ment at finite momentum.

To this end, we investigate squeezed magnons as eigen-
states of an AFM [34–36], which utilizes the well-known
optical concept of squeezing [37] in the domain of antifer-
romagnetism. Already before, squeezed magnons have shown
to be the eigenstates of ferromagnets [31,33] in the presence
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of dipolar interactions and were discussed in the context of
ferrimagnets [32] or, more generally, of magnetically ordered
materials [38]. The fact that the energy eigenstates of an AFM
are already squeezed states and it is not necessary to squeeze
them with an external drive is a distinct difference to photon
squeezed states.

Our discussion will be limited to the case of AFMs because
we expect the strongest quantum features in that case. The
paper is structured as follows. In Sec. II, we extend the theory
of the squeezed vacuum eigenstate to all possible wave vectors
in the magnetic Brillouin zone. Thereby we show that the
�k-dependent probability p�k to find at least one pair of sub-
lattice magnons in the squeezed vacuum is determined by the
�k-dependent squeezing parameter r�k . Further, we find that the
sublattice magnons are entangled and show that they violate
the Duan-Giedke-Cirac-Zoller (DGCZ) inequality [39], which
is a clear signature of the quantum nature of the squeezed
magnons. In Sec. III, we show how the k structure of the prob-
abilities p�k transfers to the spin-spin correlators and therefore
the correlators of magnetization and Néel-vector components.
Finally, in Sec. IV we will calculate the statistics of the
sublattice magnons and its dependence on the ratio between
exchange and anisotropy constants.

II. THEORETICAL MODEL

We cover a bipartite square lattice AFM with the nearest
neighbors of each spin being part of the other sublattice. We
do a Néel ordered ansatz along the z axis for both sublattices.
The Heisenberg interaction shall act only between nearest
neighbors. The Hamiltonian can then be written as

Ĥ = − J

h̄2

∑
〈i, j〉

�S(�ri ) · �S(�r j ) − K

h̄2

∑
i

(Ŝz(�ri ))
2, (1)

with the strength of the exchange interaction J < 0 for AFMs,
the strength of the uniaxial anisotropy along the z axis K , and
�S(�ri ) being the spin operator at position �ri, with components
Ŝα (�ri ), α ∈ {x, y, z}. The division by h̄2 ensures that both J
and K have the unit of energy.

Applying the standard techniques, with the Holstein-
Primakoff transformation [40] in linear approximation, the
Hamiltonian becomes

Ĥ =
∑

�k
A�k (â†

�k â�k + b̂†
�kb̂�k ) + C�k (â†

�k b̂†
−�k + â�kb̂−�k ). (2)

To use the linear spin wave approximation in the
Holstein-Primakoff transformation, which is an expansion of√

1 − n̂/2S in terms of small n̂/2S, we have to exclude the
case of S = 1/2. Further, we emphasize to pay attention to a
possible break down of the approximation in case of low spin
lengths/huge magnon numbers.

In the Hamiltonian, the different interactions are covered in
the two functions, which are given as A�k = A = S(2K − Jz),

C�k = −JSzγ�k , and γ�k =∑�δ ei�δ�k/z. Here, z is the number of
nearest neighbors at each lattice site, which depends on the
dimensionality of our system, and �δ are the connection vectors
to these nearest neighbors; and â�k (b̂�k) is the annihilation op-
erator of a magnon with wave vector �k in the A (B) sublattice.
We set the lattice constant to a = 1. The diagonal components

FIG. 1. Energy dispersion for a two-dimensional square lattice
antiferromagnet, with |J|/K = 104.

A�k can be �k dependent if one does not limit to nearest-neighbor
interaction. Terms arising during the manipulation of the
Hamiltonian and which result in a constant energy shift are
neglected.

We then perform a Bogoliubov transformation connecting
the sublattice operators with new creation and annihilation
operators α̂ and β̂ via(

â�k
b̂†

−�k

)
=
(

u�k v�k
v∗

�k u∗
�k

)(
α̂�k
β̂

†
−�k

)
. (3)

The Bogoliubov transformation will diagonalize the Hamil-
tonian, if we demand α̂ and β̂ to be bosonic operators and
choose the matrix elements such that they satisfy

u�k =
√

A + ε�k
2ε�k

,

v�k = −
√

A − ε�k
2ε�k

,

ε�k =
√

A2 − C2
�k , (4)

where ε�k is the energy of one α̂ (β̂) magnon with wave
vector �k (Fig. 1).

A. Magnon squeezing

We introduce the two-mode squeezing operator [37]

Ŝ2(r�k ) = exp [r�k (â�kb̂−�k − â†
�k b̂†

−�k )], (5)

with the positive squeezing parameter r�k , which can be con-
nected to the Bogoliubov transformation via cosh r�k = u�k and
sinh r�k = −v�k . Applying Ŝ(r�k ) to the sublattice vacuum state
|0〉sub creates an entangled state of both modes â�k and b̂−�k .
p�k = tanh (r�k )2 ∈ [0, 1] is the probability to find at least one
pair of magnons, consisting of one magnon with wave vector
�k in sublattice A and one magnon with wave vector −�k in sub-
lattice B. The application of the squeezing operator results in a
squeezing of the quadratures of superpositions of both modes.
In the picture of two harmonic oscillators this squeezing can
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be imagined as a squeezing of the relative and center of mass
coordinates.

The squeezing parameter determines the degree of squeez-
ing in our system and is determined by |J|/K . By changing the
anisotropy strength one can then tune the degree of squeezing
in our system, similar to the squeezing in a ferromagnet [36].

A straightforward calculation shows that one can write the
new magnon operators as

α̂�k = Ŝ2(r�k )â�kŜ2(r�k )−1, β̂�k = Ŝ2(r�k )b̂�kŜ2(r�k )−1, (6)

which is why we will call them “squeezed magnons” from
now on.

If we denote the ground state, or vacuum state of our
system, as |0〉sq and the Néel state, or sublattice vacuum state,
as |0〉sub and apply α̂�k|0〉sq = 0, one can show that we can
connect both vacua via [34]

|0〉sq =
∏

�k
Ŝ2(r�k )|0〉sub, (7)

resulting in the squeezed vacuum being an entangled,
squeezed state of sublattice modes.

By applying the squeezed annihilation operators, expressed
through the Bogoliubov transformation [Eq. (3)], onto the
squeezed vacuum a straightforward calculation shows

|0〉sq =
∞∑

�n=�0

∏
�k

(
(− tanh r�k )n�k

cosh r�k

)
|�n, �m(�n)〉sub. (8)

Here the components of �n ( �m) are the occupation numbers of
the different sublattice modes in the A (B) sublattice, with n�k
(m�k) being the number of magnons in the mode with wave
vector �k, m�k (�n) = n−�k and

|�n, �m(�n)〉sub =
⊗

�k
|n�k, m�k (�n)〉sub

=
⊗

�k

(|n�k〉A
sub ⊗ |n−�k〉B

sub

)
, (9)

where | · · · 〉A/B
sub is a state in sublattice A (B). We see that

we only have states with the same number of magnons in
the A and B sublattices for opposite wave vectors. This will
guarantee us an overall vanishing momentum in each mode.
Furthermore, one can show that the expectation value of the
spin of a magnon in the A and a magnon in the B sublattice
are antiparallel, resulting in an overall vanishing expectation
value for the spin operator.

If we want a spin-up magnon of wave vector �k in the
squeezed space, we have to act with a creation operator β̂

†
�k

onto the squeezed vacuum. Using the expression for β̂�k via
the squeezing operator and the expansion of the squeezed
vacuum, we get for the expansion of the one-magnon state

| ↑, �k〉sq =
∞∑

�n=�0

⎡
⎣∏

�k′ �=�k

(
(− tanh r�k′ )n�k′

cosh r�k′

)

×
√

n�k + 1(− tanh r�k )n�k

cosh2 r�k
|�n, �m(�n) + �e�k〉sub

⎤
⎦. (10)

In contrast to the squeezed vacuum state, we can see that
only sublattice states contribute, if they contain one magnon
with wave vector �k more in the B sublattice, than magnons
with wave vector −�k in the A sublattice. The only probability
amplitude, which is changed in the squeezed magnon state
with wave vector �k, is the probability amplitude for the �k
sublattice modes.

Applying α̂
†
�k onto the squeezed vacuum would lead to a

squeezed spin-down magnon with the same probability ampli-
tudes for the sublattice states, but we would get one magnon
with wave vector �k more in the A sublattice than −�k magnons
in the B sublattice. In Eqs. (8) and (10) we can see that the
probability amplitude and therefore the probability takes the
same form for all wave vectors, only differing through r�k .

For the squeezed vacuum the probability to find n pairs of
magnons, consisting of one magnon in sublattice A with wave
vector �k and one magnon in sublattice B with wave vector −�k,
can be given as

P�k (n) = tanh (r�k )2n

cosh (r�k )2 = (1 − p�k )pn
�k . (11)

The probability for a squeezed spin-up (-down) magnon with
wave vector �k containing n + 1 sublattice magnons of wave
vector �k in sublattice B (A) and n sublattice magnons of wave
vector −�k in sublattice A (B) can also be expressed through p�k
by

Q�k (n) = (1 − p�k )2(n + 1)pn
�k . (12)

Figure 2(a) shows the dependence of P�k (n) and Q�k (n) on
n for the two wave vectors �k = �0 and �k = π

200 (1, 1). While
in the vacuum state each P�k (n) falls off exponentially with the
maximum at n = 0, this changes for Q�k (n), in the case of a
squeezed magnon, where the function is nonmonotonic, with
a maximum at some n different from zero. This behavior is
similar for all �k, but the closer to the edge of the Brillouin
zone �k is, the steeper the probability falls off around n = 0
for the vacuum state and the closer is the maximum of Q�k (n)
to zero. This behavior can be seen in Fig. 2(b), which shows
p�k , i.e., the probability to find at least one pair of magnons
in the sublattices with corresponding wave vectors. As p�k
goes towards zero for large wave vectors, the expectation
value should be centered more around zero magnons, which
is confirmed by Fig. 2(a).

It is also worth noting the experimental verification of
squeezing in the AFMs MnF2 [41] and FeF2 [42] of Zhao
et al. Via pump-probe experiments they drove the AFMs into
a squeezed magnon state in which the probe pulse detects
the two-magnon squeezed state. We have to point out the
important difference of this light-driven squeezed state to
the squeezed eigenstates of our investigated system that exist
without an external drive. Further we note, using the formal-
ism of this paper, their ground state is already a squeezed
state of magnons and the light induced squeezing describes a
squeezing of the already squeezed magnons. The experiments
are nevertheless a proof of the existence of magnon squeezing.

Further, an application of magnon squeezing was sug-
gested by Skogvoll et al. [43]. They predicted an entanglement
of three spin qubits simultaneously coupled to the same ferro-
magnet. Due to the composite nature of squeezed magnons,

054406-3



D. WUHRER, N. ROHLING, AND W. BELZIG PHYSICAL REVIEW B 105, 054406 (2022)

FIG. 2. Both figures were made for |J|/K = 104. (a) Probabil-
ity P�k (n) to find n magnons in sublattice A/B with wave vector
�k = �0 (orange) and �k = π

200
�1 (purple) in the squeezed vacuum state

(dashed) and the probability Q�k (n) to find n magnons in sublattice
A/B and n + 1 in B/A in the squeezed magnon state (solid). Here
�1 = (1, 1)T . (b) Probability p�k to have at least one magnon in each
sublattice. We see a sharp peak at �k = �0, with p�0 ≈ 0.6, implying
that the probability to find any number of magnons different from 0
for the other wave vectors is very small.

which can be seen in Eq. (10), it is possible to excite all three
spin qubits by a single squeezed magnon, resulting in a three-
qubit entangled state, namely, a Greenberger-Horne-Zeilinger
state.

B. DGCZ inequality

From the full expansion of the squeezed vacuum and one-
magnon state, we can see that we cannot separate the â�k
and b̂−�k modes resulting in an entanglement of both modes.
This entanglement is confirmed by the DGCZ inequality [39],
which states that for any separable quantum state the total
variance of a pair of operators

û = |c|x̂1 + 1

c
x̂2, [x̂i, p̂ j] = iδi, j,

v̂ = |c| p̂1 − 1

c
p̂2, c ∈ R\{0} (13)

FIG. 3. Values for c, depending on p�k , which violate the DGCZ
inequality (purple area). The orange (solid) [purple (dashed)] line
satisfies the equality and corresponds to solution c1 (c2).

satisfies the inequality

〈(�û)2〉 + 〈(�v̂)2〉 � c2 + 1

c2
. (14)

If we use the sublattice annihilation and creation operators to
define

x̂1 = 1√
2

(â�k + â†
�k ), p̂1 = 1√

2i
(â�k − â†

�k ),

x̂2 = 1√
2

(b̂�k′ + b̂†
�k′ ), p̂2 = 1√

2i
(b̂�k′ − b̂†

�k′ ), (15)

then [x̂i, p̂ j] = iδi, j is obviously fulfilled. If we regard
the squeezed vacuum state, indicated through the subscript
“sq” further on, we can show for �k′ �= −�k

〈(�û)2〉sq + 〈(�v̂)2〉sq = c2 1 + p�k
1 − p�k

+ 1

c2

1 + p�k′

1 − p�k′

� c2 + 1

c2
(16)

the inequality is always fulfilled. For modes �k′ = −�k we get

〈(�û)2〉sq + 〈(�v̂)2〉sq =
(

c2 + 1

c2

)
1 + p�k
1 − p�k

− 4
|c|
c

√
p�k

1 − p�k
. (17)

If we use this equation and demand the DGCZ inequality to
be an equality, we can solve this for c,

c1/2 =
√

1√
p�k

(1 ±√1 − p�k ). (18)

Due to the absolute value of c, which plays a role in the DGCZ
equation, only the positive solutions c1/2 solve the problem at
hand. All values for c enclosed by both these branches, which
we can see in Fig. 3, violate the inequality. From this follows
that all modes â�k and b̂−�k are entangled, which supports our
earlier claim.
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FIG. 4. Correlators of the x components of the magnetization (left) and Néel vector (right) in the k space for |J|/K = 104. The kx and ky

values are limited to k0 = 0.076 in picture (b) to keep the focus on points with CN,x
�k > 1. For the value of k0 see Appendix B.

III. CORRELATORS

The k-space structure of p�k transfers to the k-space struc-
ture of the spin-spin correlation functions and therefore to the
correlators of the magnetization and Néel-vector components,
which includes the uncertainty of each variable. The magne-
tization of an AFM is defined as the sum of the sublattice
magnetizations, while the Néel vector is the difference of
them. At a point �r at the lattice both of them are defined as

�M(�r) = γ

{�SA(�r), �r ∈ A

�SB(�r), �r ∈ B,
(19)

�N (�r) = γ

{ �SA(�r), �r ∈ A

−�SB(�r), �r ∈ B.
(20)

Here γ is the gyromagnetic ratio. In �k space they are given by

�M�k = γ
(�SA

�k + �SB
�k
)
, �N�k = γ

(�SA
�k − �SB

�k
)
. (21)

As before, �SA
�k is connected to the sublattice creation and

annihilation operators via the linearized Holstein-Primakoff
transformation. This connection yields for the x, y compo-
nents of the magnetization and the Néel vector in terms of
creation and annihilation operators

Mx
�k = γ h̄

√
2S

2
(â�k + â†

−�k + b̂�k + b̂†
−�k ), (22)

My
�k = γ h̄

√
2S

2i
(â�k − â†

−�k − b̂�k + b̂†
−�k ), (23)

Nx
�k = γ h̄

√
2S

2
(â�k + â†

−�k − b̂�k − b̂†
−�k ), (24)

Ny
�k = γ h̄

√
2S

2i
(â�k − â†

−�k + b̂�k − b̂†
−�k ). (25)

The correlator of two operators �A and �B with components Âα

and B̂β (α, β ∈ {x, y, z,+,−}) at point �k in the k-space space
is defined as

CA,B|α,β

�k = 〈Âα
�k B̂β†

�k
〉− 〈Âα

�k
〉〈

B̂β†
�k
〉
. (26)

Due to translation symmetry, the same �k values in both
operators are the only points in the k space at which the cor-
relators for magnetization and Néel-vector components will
be nonzero. Keeping in mind that M̂x†

�k = M̂x
−�k and similar for

other components and the Néel vector, the correlators of the
same vector components become

CM,x
�k = CM,y

�k = Sh̄2γ 2 1 − √
p�k

1 + √
p�k

= Sh̄2γ 2e−2|r�k |, (27)

CN,x
�k = CN,y

�k = Sh̄2γ 2 1 + √
p�k

1 − √
p�k

= Sh̄2γ 2e+2|r�k |. (28)

The dependency of the correlation functions on the wave
vector components kx and ky can be seen in Fig. 4. The
strongest correlation for the magnetization is at the edge of
the Brillouin zone and the weakest at the center �k = 0, which
is the opposite as in the case of the Néel vector. For the Néel
vector the strongest correlations lie in a circle with radius k0 =√

2K/|J| around the origin. This value for |�k| determines the
point at which the energy dispersion relation can be assumed
to be linear, as shown in Appendix B.

Using the results from Sec. II one can connect them to the
correlators of the magnetization and Néel-vector components
by choosing c = ±1, �k′ = −�k and multiplying x̂i and p̂i with√

2Sh̄γ in Eq. (13), which results in

〈(�û)2〉sq + 〈(�v̂)2
〉
sq =

⎧⎨
⎩

4
〈
Mx

k Mx†
k

〉
sq (+)

4
〈
Ny

k Ny†
k

〉
sq (−),

(29)

where we used CN/M,x
�k = CN/M,y

�k [Eqs. (27) and (28)]. This is
in accordance with the choice of c and the earlier calculated
violation of the inequality. This means, for c = 1 the inequal-
ity is always violated, resulting in 〈Mx

k Mx†
k 〉sq � Sh̄2γ 2, as can

be seen from Eq. (27). For c = −1 the inequality is always
fulfilled, resulting in 〈Ny

k Ny†
k 〉sq � Sh̄2γ 2, as can be seen from

Eq. (28). From these inequalities we can see that the squeezing
property of the squeezed vacuum results in a squeezing of the
correlators of the x/y components of the magnetization and
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Néel vector. While one becomes smaller, the other becomes
bigger, but the product of both stays always the same:〈

Mx
k Mx†

k

〉
sq

〈
Ny

k Ny†
k

〉
sq = (Sh̄2γ 2)2. (30)

It is important to note here that the product of the uncer-
tainties of the same spatial components of the Néel vector
and the magnetization results also in (Sh̄2γ 2)2. While the
above relation seems to indicate a squeezing between, for
example, Mx

�k and Nx
�k , we want to emphasize that [Mα

�k , Nβ

−�k] =
2iSh̄2γ 2(1 − δα,β ), α, β ∈ {x, y}. Regarding the uncertainty
principle [44], the commutator yields that while for different
spatial components the uncertainty is minimal, this is not true
for the same spatial components.

For the correlators in the z direction, if we only regard
the terms up to order two in the creation and annihilation
operators, then the correlators between the z components van-
ish. The correlation function for different components of the
same vectors, e.g., CM|x,y

�k or CM|z,x
�k , also vanish, as well as the

correlators of the same component of different vectors.
The only other nonvanishing correlator is between the x

and y components of the magnetization and the Néel vector,
which is given as

CM,N |x,y
�k = iγ 2Sh̄2. (31)

This is a purely imaginary result. However, an expectation
value of a measurable quantity must be real. We want to note
that such a measurable quantity is expressed by the anticom-
mutator of Mx

�k and Ny
�k , which is a Hermitian operator and

therefore results in a real expectation value, which is equal
to 0.

The final result of this section is the relation between the
correlators of the x component of the magnetization modes an
the y components of the Néel-vector modes. It always holds
that

CM,x
�k � CN,y

�k . (32)

The relation between the correlation functions is of utmost
importance as measurement and comparison of the different
correlators can be used to determine a clear experimental
signature of a squeezed magnonic ground state.

One experimental method to investigate magnetic struc-
tures is the well established neutron scattering [45,46]. Here
the dynamic spin correlation function plays an essential role
in determining the differential scattering cross section. The so-
called static spin correlation functions, which we simply call
spin-spin correlation functions and which are given in Eq. (27)
and calculated in Appendix C, are connected to the dynamic
spin correlation function, by integrating its energy-dependent,
dynamic part out. The dynamic spin correlation function can
than be factorized into a frequency- (energy) and polarization-
dependent part and the static spin correlation function. This
offers a direct experimental approach to the result calculated
in our paper, if one knows the material parameters J and K .

We also want to mention the recent measurement done by
Bossini et al. [47]. They perform a pump-probe experiment
at the cubic (tetragonal) lattice AFM KNiF3 (K2NiF4), from
which especially the first one is of interest for our model.
They measure the Kerr rotation of a probe pulse after it is

reflected from the AFM surface. This Kerr rotation is directly
connected to the spin-spin correlators of spins in the different
sublattices. There, our results come into play. While they
themselves performed calculations to determine the correla-
tor, they did not interpret their theory in terms of magnon
squeezing, while it is, as we showed, strongly connected.
Therefore, we believe that connecting the Kerr rotation to
the spin-spin correlators could be a way to determine the
squeezing in the system.

IV. MAGNON NUMBER

Finally, we want to investigate the total number of magnons
per sublattice in the squeezed vacuum of our system. There-
fore, we calculate the expectation value and variance of
n̂ =∑�k â†

�k â�k , which is the number operator of all sublattice
magnons of sublattice A. The number of magnons in sublattice
B is equal in the squeezed vacuum. We use the expansion of
the squeezed vacuum in sublattice states in Eq. (8) and obtain
the expectation value

〈n̂〉sq =
∑

�k

p�k
1 − p�k

=
∑

�k
sinh2(r�k ) (33)

and the variance

〈(�n̂)2〉sq =
∑

�k
〈n̂�k〉sq(〈n̂�k〉sq + 1)

=
∑

�k

p�k
(1 − p�k )2 =

∑
�k

cosh2(r�k ) sinh2(r�k ). (34)

We can see from Eq. (33) that with the rising number of
possible magnon modes, i.e., with increasing system size, the
expectation value as well as the variance will rise. This shows
that these are extensive quantities as one would expect for the
number of particles.

To compare systems of different sizes we will divide these
quantities by the number of modes Nmod, i.e., the number of
possible �k values, with ñ = n̂/Nmod. The expectation value
〈ñ〉 can then be seen as the average occupation number and
the variance 〈(�n̂)2〉/Nmod as the average variance per mode.
Our system is fully characterized by the ratio |J|/K . This
characterization can be seen from Eq. (4) and the connection
of r�k to the Bogoliubov coefficients below Eq. (5). Therefore,
if we decide on a certain type of lattice, the ratio of |J|
and K determines the number of sublattice magnons which
are involved in the building of the squeezed states. Figure 5
shows the dependence of 〈ñ〉 and 〈(�n̂)2〉/Nmod on |J|/K
in a double logarithmic plot. The different graphs are given
for distinct system sizes, i.e., distinct number of sites N in
one dimension. For a two-dimensional square lattice, as was
assumed in Fig. 5, one gets Nmod = N2. Even for different
system sizes, one can see a few common features, e.g., the
overall form of 〈ñ〉 with a saturation around 〈ñ〉 ≈ 0.35. As
this can be interpreted as the average occupation number of
the different modes, we can assume the linear approximation
of the Holstein-Primakoff transformation, which demands a
small number of magnons per mode, to hold, especially for
larger spin lengths S. Only in the case of small samples one
gets a strong deviation. This is reasonable as we expect finite
size effects to become important and the approximation of
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FIG. 5. Double logarithmic plot of 〈ñ〉 (a) and 〈(�n̂)2〉sq/Nmod

(b) depending on |J|/K . The number of total modes Nmod = N2, with
N being the number of sites in one dimension, varies from graph to
graph. The vertical, dotted line in (a) shows the value for |J|/K , at
which the �k = �0 contribution to the total magnon number is as big as
the total contribution from all other modes. This indicates the start of
the linear behavior for the magnon number in the double logarithmic
plot.

periodic boundary condition becomes more and more inac-
curate. Further the huge number of magnons implies that in
this case the linear spin wave approximation breaks down and
higher terms in the creation and annihilation operators should
be considered.

To estimate a value of |J|/K at which we expect the
approximation to break down, which is estimated for the
10 × 10 sublattice by the dashed line in Fig. 5(a), we regard
the large |J|/K limit of the expectation value of the magnon
numbers for different �k values:

〈n̂�k〉
|J|/K�1=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2

√ |J|
K

,
∣∣�k∣∣ � √2K

|J|
1

2
√

1 − γ 2
�k

− 1

2
,
∣∣�k∣∣ � √ 2K

|J|.
(35)

The square root dependency comes from the modes with
|�k| � √

2K/|J|, which goes towards the sole mode of �k = �0
for |J|/K → ∞. This is the same point at which a linear

FIG. 6. Ratio of energy and |J| for different values of |J|/K and
J = −1 showing the lowering of the energy gap for smaller K and
the approach to a linear dispersion. Dashed black line gives the linear
dispersion with ε�k/|J| = 2

√
2|�k|.

dependence of the energy on the absolute value of the wave
vector is to be expected, as the contribution of the wave vector
dependent part begins to dominate the energy. See, therefore,
Appendix B. For modes with |�k| bigger than this value the
contribution saturates at a, with respect to |J|/K , constant
value.

From Eq. (35) it becomes clear that the increase of the
average magnon number for large J/K in Fig. 5 and, therefore,
a break down of the linear spin wave theory, will be dominated
especially by the �k = 0 magnon mode. The linear spin wave
approximation demands 〈n̂i〉 � 1. Clearly this condition will
be violated if the average magnon number diverges. To get a
quantitative value |J|/K at which this approximation becomes
invalid, we may have a look at the dominant �k = 0 mode
that has the highest occupation number, and the linear spin
wave approximation will be invalid for this mode first. The
condition 〈n̂i〉 � 1 in Fourier space implies for the �k = 0
mode that 〈n̂0〉 � Nmod. Using Eq. (35) we can calculate the
approximate break down of the theory at |J|/K ≈ N2

mod. This
is clearly confirmed by the data shown in Fig. 5 for different
systems sizes.

From Eq. (34) it can be seen that the variance, if plotted
double logarithmically, also starts to grow linearly in |J|/K
for large values. The slope will be two times as big as for the
expectation value. This implies, that even if the expectation
value of the average occupation number grows, its variance
grows even faster.

From a physical point of view the divergence of the
magnon number arises because the energy gap � goes to-
wards zero for K → 0 (see Fig. 6). Therefore, as magnons
are bosons, a huge number of magnons would be created that
populate the lowest energy level (�k = �0), similar to the Bose-
Einstein condensation studied in [28]. Again, the linearized
spin wave theory obviously fails in this regime. On the other
hand, if K becomes very large, i.e., |J|/K → 0, we find a
vanishing magnon number. This is obviously due to the fact
that the lowest magnon energy becomes huge and the spins
are fixed to the anisotropy direction.
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V. CONCLUSION

We picked up the work from Kamra et al. [34] and further
included all possible sublattice magnon states into the expan-
sion of the squeezed magnon states. We were able to show
that the probability amplitudes take the same form for each �k
component only differing in the squeezing parameter r�k .

From the squeezing parameter we determined the k-space
structure of the probability to find at least one pair of sublattice
magnons, which resulted in a k-space structure of the corre-
lators of the magnetization and the Néel-vector components.
This enables experimental access to the probability struc-
ture by measurement of these correlators. Further, we also
determined the correlators between the x component of the
magnetization and the y component of the Néel vector, which
is purely imaginary and vanishes if we regard a symmetrized
version, by using the anticommutator of the x component of
the magnetization and the y component of the Néel vector.

We determined the expectation value and the variance of
the occupation number of each magnon mode in each sub-
lattice and from this we obtained the |J|/K dependence of
the average occupation number of magnons in the system.
We found that the average occupation number behaves sim-
ilarly for different system sizes. From the expectation value
of the number of sublattice magnons it is possible to iden-
tify the strength of the influence of different interactions on
our Heisenberg AFM by their coupling either to sublattice
magnons or squeezed magnons.

Further investigations could concentrate on the effect of an
applied magnetic field on the number of sublattice magnons
participating in the squeezed Fock state. For a static magnetic
field we expect a change in the number of �k = �0 magnons,
which will result in a simultaneous tilt of all sublattice spins.

Note added in proof. Recently, the authors became aware
of the recent publication of Mousolou et al. [48], which has
a certain overlap with topics discussed above. While there
are common themes, such as the parametrization of relevant
quantities in terms of the squeezing parameter r�k , there are
also differences, such as the main focus on the entanglement
entropy and a suggestion for an experimental setup in the work
by Mousolou et al., while our publication is focused on the
correlators of the magnetization and the Néel vector as well
as the occupation number of magnons and their variance. We
therefore see both works as complementary to each other.
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APPENDIX A: EXPANSION OF SQUEEZED STATES
IN SUBLATTICE STATES

We start the expansion of the squeezed vacuum state in the
sublattice states by acting with α̂�k onto the squeezed vacuum

state and use the Bogoliubov transformation to determine the
expansion coefficients

α̂�k|0〉sq =
∞∑

�n, �m=0

A�n, �m(u�kâ�k − v�kb̂†
−�k )|�n, �m〉sub

= 0. (A1)

Here �n ( �m) contains the number of sublattice magnons with
certain wave vectors in the A (B) sublattice. Doing the same
with β̂�k results in the following two equations:

A�n, �m = − tanh(r�k )

√
m−�k
n�k

A�n−�e�k , �m−�e−�k , (A2)

A�n, �m = − tanh(r�k )

√
n−�k
m�k

A�n−�e−�k , �m−�e�k . (A3)

These two equations yield that the number of magnons with
opposite wave vector in each sublattice is the same and a
recursion relation, which lets us determine the factors A�n, �m
in terms of the lowest coefficient A0,0. A0,0 can then be
determined by the normalization condition of the squeezed
vacuum. This all together yields

A�n, �m = A�n =
∏

�k

[
[− tanh(r�k )]n�k

cosh(r�k )

]
. (A4)

APPENDIX B: LINEARITY OF THE ENERGY
DISPERSION RELATION

For Fig. 4(b) we limited the wave vector components on a
value k0. In Eq. (35) we referred to a value for the absolute
value of �k for the conditional occupation number. Both values
are the same and stem from the following analysis. If one
assumes small values for the wave vector �k in N dimensions,
one can approximate

∑
α

cos (kα ) ≈ N − �k2

2
, α ∈ {x1, . . . , xN }. (B1)

Regarding a square lattice with nearest-neighbor interaction,
we know that the dimension N is half the number of nearest
neighbors z of one lattice side and is set by the dimensionality
of the system. In the energy dispersion relation [Eq. (4)] this
yields

ε�k =
√

A2 − C2
0

(
1 − 2�k2

z

)
. (B2)

We now determine the value for |�k0| by demanding that the
term proportional to �k2 is as large as the other terms. This
yields

|�k0| =
√

z

2

A2 − C2
0

C2
0

=
√√√√ z

2

(
1 − Jz

K

)
(

Jz
2K

)2 (B3)

|J|/K�1=
√

2K

|J| . (B4)
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For wave vectors around this point we get a linear dispersion
relation for the energy, as we can approximate

ε�k ≈
√

2
(
A2 − C2

0

)+
√

2

z
C2

0 (|�k| − |�k0|)

=
√

A2 − C2
0 +
√

2

z
C2

0 |�k|. (B5)

APPENDIX C: CORRELATORS

We want to give a short derivation of the correlators. Start-
ing from Eq. (21), we define

�S�k = �SA
�k + �SB

�k , �Q = �SA
�k − �SB

�k . (C1)

The magnetization (Néel vector) is then given as �M�k = γ �S�k
( �N�k = γ �Q�k).

1. x-y components

We are interested in the correlators of the ladder compo-
nents Ŝ±

�k and Q̂±
�k as they determine the correlators of the x and

y components. Due to the definition of the Fourier components
of the ladder operators, we get

ŜA,+
�k =

√
1

Nmod

∑
�r∈A

ei�k�r
√

2Sh̄2â(�r) =
√

2Sh̄2â�k,

ŜA,−
�k =

√
1

Nmod

∑
�r∈A

ei�k�r
√

2Sh̄2â†(�r) =
√

2Sh̄2â†
−�k, (C2)

with a similar expression for the B sublattice. Nmod is the
number of modes in the system, which is half the number of
sites, as we have two different sublattices. We get for Ŝ+

�k

Ŝ+
�k = SA,+

�k + SB,+
�k =

√
2Sh̄2(â�k + b̂†

−�k )

= h̄
√

2S[(u�k + v∗
�k )α̂k + (u∗

�k + v�k )β̂†
−k]

= (Ŝ−
−�k )†, (C3)

Q̂+
�k = SA,+

�k − SB,+
�k =

√
2Sh̄2(â�k − b̂†

−�k )

= h̄
√

2S[(u�k − v∗
�k )α̂k − (u∗

�k − v�k )β̂†
−k]

= (Q̂−
−�k )†. (C4)

Now one calculates the different combinations of products,
i.e., ++, +−, −+, and −−, and takes the expectation value
with respect to the squeezed vacuum. Only terms which con-
tain the same number of creation and annihilation operators of
the same kind of magnons can contribute. Further, as we are
in the vacuum of the squeezed magnon modes, only modes
with all creation operators on the right and all annihilation
operators on the left are nonzero. This reduces the expectation
values to

〈Ŝ+
�k Ŝ−

�q 〉sq = 2Sh̄2(u�k + v∗
�k )(u∗

�q + v�q)〈α̂�kα̂
†
−�q〉sq

= 2Sh̄2|u�k + v∗
�k |2δ�k,−�q, (C5)

〈Q̂+
�k Q̂−

�q 〉sq = 2Sh̄2(u�k − v∗
�k )(u∗

�q − v�q)〈α̂�kα̂
†
−�q〉sq

= 2Sh̄2|u�k − v∗
�k |2δ�k,−�q, (C6)

〈Ŝ+
�k Q̂−

�q 〉sq = 2Sh̄2(u�k + v∗
�k )(u∗

�q − v�q)〈α̂�kα̂
†
−�q〉sq

= 2Sh̄2(|u�k|2 − |v�k|2)δ�k,−�q. (C7)

In the last line we dropped the resulting Im(u�kv�k ) part, be-
cause u�k and v�k are real, as can be seen in the main text.

All other combinations of ladder operators can be cal-
culated in a similar manner. The combination of the −+
operators yields the exact same result (except for the −+ cross
correlator, which gets a minus sign), while the combination of
the same operators (++ and −−) is always equal to zero due
to the absence of terms with the same number of annihilation
and creation operators of the same mode.

From the expectation values of the +− components we can
determine the expectation values of xx, yy, and xy combina-
tions due to their relation to the ladder operator components
via

Ŝx
�k = 1

2
(Ŝ+

�k + Ŝ−
�k ), Ŝy

�k = 1

2i
(Ŝ+

�k − Ŝ−
�k ). (C8)

Again, a similar relation holds for the components of �Q�k .
From this expression we can calculate the correlators to be
equal to the values in Eqs. (27) and (28). The second part in
the definition of the correlators will vanish, due to the fact
that each component is linear in the creation and annihilation
operator of the magnons and therefore their expectation value
will be zero.

2. z components

Left to show is that the correlators including z components
will vanish. From the definition we get

Ŝz
�k = h̄

√
1

Nmod

∑
�k1

(b̂†
�k1

b̂�k1+�k − â†
�k1

â�k1+�k ), (C9)

Q̂z
�k = 2h̄S

√
Nmodδ�k,0

− h̄

√
1

Nmod

∑
�k1

(b̂†
�k1

b̂�k1+�k + â†
�k1

â�k1+�k ). (C10)

As we only regard terms up to order two in the annihilation
and creation operators, it is obvious that all products con-
taining the z component of the magnetization will have a
zero expectation value. For the expectation value of each z
component, we have to consider〈∑

�k1

a†
�k1

â�k1+�k

〉
sq

=
∑
�k1

|v�k1
|2δ�k,0 =

〈∑
�k1

b†
�k1

b̂�k1+�k

〉
sq

, (C11)

which implies 〈Ŝz
�k〉sq = 0 and

〈
Q̂z

�k
〉
sq

= 2h̄

⎛
⎝S
√

Nmod −
√

1

Nmod

∑
�k1

|v�k1
|2
⎞
⎠δ�k,0. (C12)
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From this it is a short calculation to show that the correlator of
the z components of the Néel vector and of the z components
of the magnetization and the Néel vector vanishes. Further,

all products of other components (odd number of operators)
with the z components of the Néel vector (even number of
operators) will also vanish if we take the expectation value.
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