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Stochasticity of the magnon parametron
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Unconventional computing schemes based on bistable systems (“Ising spins”) may supersede conventional
computing paradigms. The “magnon parametron” is an Ising spin that forms as a result of parametric excitation
of a ferromagnetic particle by microwaves beyond a certain threshold. This Ising spin becomes unstable at
a second threshold power at which a high-frequency telegraph noise emerges. We explain the experimentally
observed stochastic switching (“p-bit” characteristics) at room temperature by the Suhl instability of the uniform
magnetization precession.
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I. INTRODUCTION

An Ising spin is a magnetic moment with a large uniaxial
anisotropy that reduces the quantum degree of freedom of the
Heisenberg spin on the Bloch sphere to just 2, i.e., up and
down. Naturally, any bistable system with a phase space of
two distinct and stable configurations may be called a pseudo-
Ising spin, such as a fixed ferromagnetic needle in which
the magnetization can point only into the two directions that
minimize the free energy. An Ising spin with noise-activated
transitions can operate as a probabilistic bit (p-bit), which in
its steady state is a statistical mixture of the two levels. Ising
spins are not useful as qubits because the large energy barrier
prevents spin rotations on the Bloch sphere, but an ensemble
of them can form a platform for unconventional computing
algorithms. Switchable, but thermally stable, Ising spins are
elements of “Ising machines” that can solve hard optimization
problems [1–5], while networks of p-bits can factorize large
integers [6]. A large number (∼2000) of highly connected
pseudo-Ising spins formed by optical parametric oscillators
operate by phase measurements with feedback [2–4]. How-
ever, optical implementations have a large footprint and are
not scalable. Quantum coherent networks can perform addi-
tional tasks such as quantum annealing, adiabatic evolution, or
gated quantum operations [7–12], but are even more difficult
to realize. Here we explain the underlying physics of a recent
implementation of an Ising spin system, viz., the “magnon
parametron” [13], a promising device for alternative comput-
ing schemes.

Parametric pumping is a standard method to excite large
oscillations in a harmonic oscillator by a phase-matched drive
at twice its resonance frequency ω0. The minimum model
is the Hamiltonian H = h̄ω0a†a, where a†(a) creates (anni-
hilates) a boson, augmented by a nonlinear interaction with

the classical photon field H = Pe2iω0t a†a† + H.c. When the
amplitude P exceeds a certain threshold the system becomes
unstable. The steady state 〈a〉 has an amplitude limited by dis-
sipation and spontaneously acquires one of the energetically
equivalent phases of φP/2 + 0 or φP /2 + π, where φP =
argP and 2mod[arg〈a〉, 2π ] = mod[φp, 2π ]. Makiuchi et al.
[13] demonstrated Ising spin characteristics in a parametri-
cally pumped magnetic disk that above a second threshold
showed the controlled stochastic switching that qualifies it as
a p-bit. The underlying mechanism of this stochasticity has
not yet been explained, however. Magnons are set apart from,
e.g., phonons [14,15] by their highly tunable, anisotropic
and nonmonotonic dispersions, leading to phenomena such
as Bose-Einstein condensation and deterministic quantum en-
tanglement [16–20]. In this article, by analytic and numerical
calculations, we provide a microscopic picture of the observed
stochasticity in terms of the Suhl instability [16,21–23], i.e.,
the decay of the uniform (Kittel) magnon into a pair of degen-
erate “wing” magnons with opposite momenta ± k �= 0.

II. MODEL

Figure 1(a) sketches a thin ferromagnetic disk of thickness
d and radius r, uniformly magnetized along the in-plane mag-
netic field �Hext‖ ẑ. For parametric pumping, the microwave
magnetic field �hmw of a cavity or a coplanar waveguide mode
with frequency ωp is also parallel to the magnetization. Fig-
ure 1(b) shows the magnon frequency dispersions ω�k of the
lowest magnon subband of a d = 50-nm-thick film for in-
plane wave vectors θ�k = 0 (�k‖ẑ) and θ�k = π/2 (�k⊥ẑ) and
a constant as a function of position along x̂ [24–26], using
well-established parameters for yttrium iron garnet (YIG)
with the gyromagnetic ratio γ = 28 GHz/T and the spin
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FIG. 1. Model. (a) A magnetic disk of thickness d and radius
r under static and microwave magnetic fields. (b) The dispersion
envelope of magnons in a film with constant magnetization along
x̂ for d = 50 nm and Hext = 35 mT. The green arrows indicate
four-magnon scattering processes involving the Kittel mode. The
purple line indicates parametric pumping of the Kittel mode. (c) The
parametric excitation coefficient C�k of the magnon pairs overlaid on
the dispersion for several values of θ�k from 0 to π/2, only for the
modes that are nodeless along the thickness. (d) Similar to panel
(c) but for the four-magnon scattering coefficient D0,�k,0,−�k . The insets
of panels (c) and (d) plot the data of the main panels on a linear
momentum scale.

stiffness D = 5.5 × 10−17Tm2 [27]. ω0 is the frequency of
the Kittel mode, and higher subbands are not shown since
ω�kdip

+ 4γ D/d2 > ω0, where the frequency minimum ω�kdip
is

caused by the magnetodipolar interaction. The two valleys in
the magnon dispersion are instrumental for the Suhl instability
and (for d = 50 nm) exist when r � 0.5 μm. Here we adopt
r = 50 μm, large enough to adopt a continuous dispersion
for the θ�k = 0 modes degenerate with the Kittel mode (see
below).

�hmw(t ) of the photon with frequency ωp = 2ω0 paramet-
rically interacts with the Kittel mode and the degenerate
magnon pairs, γ |hmw|C�k (c†

−�kc†
�k + H.c.), where c�k annihilates

the �k magnon mode, and C�k is the coefficient plotted in
Fig. 1(c). With increasing |hmw| the mode with the largest
C�k becomes unstable at a critical value of γ |hmw|C�k = ξ�k/2,
where ξ�k ≈ αGω�k is the magnon dissipation rate in terms of
αG, the Gilbert damping constant. |C�k| is maximal for small
wave vectors [see Fig. 1(c)], which implies that the Kittel
mode becomes unstable first. The parametrically driven Kittel
mode excites other magnons via the four-magnon scattering
term c†

0c†
0c�kc−�k + H.c., with the corresponding coefficients

D0,�k,0,−�k [see Fig. 1(d)]. This is the threshold process intro-
duced first by Suhl [21]. The instability happens first for the
degenerate modes with the largest |D0,�k,0,−�k|, i.e., for θ�k = 0

and large |�k|, and thereby limits the effective system to three
modes, the parametrically pumped Kittel mode and a pair of
magnons with large wave vectors, ± �K. In the rotating frame

FIG. 2. Calculated steady-state dynamics of a magnet in a mi-
crowave cavity. (a) The dependence of the steady-state class on the
Kittel mode amplitude P0 driven by the mircrowaves and the dc
magnetic field Hext . (b)–(d) Examples for the three distinct classes,
corresponding to the stars of the same color in panel (a), P0/ξ0 = 0.7,
1.7, and 3.8, respectively, while Hext = 40 mT. (b) FP1: Fixed point,
the Kittel mode parametrically driven beyond threshold, while the
�Ks standing wave is at vacuum. (c) FP2: Fixed point, the Kittel mode
and the �Ks standing wave parametrically and Suhl instability driven,
respectively. In panels (b) and (c), T = 3 × 105 K for clarity. (d) LC:
Limit cycle to chaos. A case with large transition rate from one
attractor region of the Kittel mode to the other, at T = 300 K, and
no transition for T = 1 K is also shown. The two attractor regions A
and B are indicated.

of ωp/2, our Hamiltonians [16,28,29] are

H =
∑

�k∈{0,± �K}
	ω�kc†

�kc�k + Hm,NL + P0(c†
0c†

0 + H.c.),

Hm,NL =
∑

�k∈{0,± �K}

[
D�k,�k,�k,�kc†

�kc�kc†
�kc�k

+
∑

�k′∈{0,± �K}
(1 − δ�k,�k′ )D�k,�k,�k′,�k′c

†
�kc�kc†

�k′c�k′

]

+ [D0,− �K,0, �Kc†
0c†

0c− �Kc �K + H.c.], (1)

where 	ω�k = ω�k − ωp/2 and P0 = γ |hmw|C0. The dipolar
and exchange interactions and (if present) the magnetic
anisotropy all contribute to the four-magnon scattering co-
efficients D and the two-magnon–one-photon coupling with
coefficient C�k . We compute the numbers in Figs. 2(c), 2(d),
and 8(a) from complex but well-known expressions of these
coefficients for thin films [28,29].
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Theoretical approaches to the magnetization dynamics
usually start from the stochastic Landau-Lifshitz-Gilbert
equation that even with a quantum mechanical thermostat [30]
is not suited to address the physics of the emerging quantum
magnonics. Typical quantum effects emerge in the correla-
tions between two distinct orthonormal magnon modes. These
can be captured only by a model that tracks the dynamics of
individual and interacting modes. While we address here the
classical dynamics at room temperature, our method is well
suited to calculate quantum correlations [16] that appear when
the temperature is lowered [31]. We, therefore, start from the
(Lindblad) equation of motion of the density matrix ρ with
elements ρi, j = |i〉〈 j|, where |i( j)〉 is a many-body number
(Fock) state of the magnon system, that reads

ρ̇ = −i[H, ρ] + Ld , (2)

where Ld is the dissipation operator of the magnons in contact
with a thermal bath at temperature T [see Appendix A]. We
can solve this equation exactly only for small magnets [16,32],
but solve here a time-dependent Langevin equation with ap-
proximations that are valid under the experimental conditions
[13,33]. Without drive, ρ describes a magnon gas at thermal
equilibrium with the bath. Here we use a rather large damping
parameter ξ0 = 5 MHz corresponding to αG ∼ 2 × 10−3 for
computational convenience. A larger damping parameter ξ0

accelerates numerical convergence to the steady state. The
relevant parameter that governs the dynamics is P0/ξ0, which
does not change for a large range of ξ0.

III. STEADY-STATE CLASSES

We first classify the steady-state dynamics in terms of
a “phase diagram” of our three-mode system by inspec-
tion of the long-time solutions of the stochastic differential
(Langevin) equation of motion, derived from the Lindblad
equation (2) by disregarding the third-order derivatives of
the Wigner distribution function, as described in Appendix A
[34,35]. This approach captures Gaussian fluctuations, i.e.,
up to the second moment and is valid when sufficiently
damped (D � ξ0) and the steady state is not chaotic. It is
basically equivalent to the stochastic Landau-Lifshitz-Gilbert
equation to leading order in the nonlinearities, but uniquely al-
lows the tracking of individual magnon modes in the presence
of interactions.

We assume microwaves tuned to 	ω0 = 0 that drive the
Kittel mode to an amplitude P0. The other control parameter
is the applied static magnetic field Hext. The smallest positive
solution for x = |α0|2, where α0 = 〈c0〉 is the mean field of
the Kittel mode, governs θ �K and �K of the magnon pair that
reaches the Suhl instability first:(
D2

0, �K,0,− �K − D2
0,0, �K, �K

)
x2−2	 �KD0,0, �K, �Kx−ξ 2

�K/4−	2
�K = 0.

(3)

Below the Suhl instability but above the parametric instabil-

ity threshold, |α0|2 =
√

P2
0 − ξ 2

0 /4/2|D0,0,0,0|. By minimizing

Eq. (3) with respect to θ�k and |�k|, we find that the ± �K magnon
pair lies in the θ�k = 0 band. We may combine the ± �K pair
of propagating waves as c± �K = c �Ks

e∓iq/2 [36–38], where the

phase q is a free phase that governs the position of the standing
wave nodes and �Ks is its mode index.

Figure 2(a) shows the steady-state classes as a function
of Hext and P0 at T = 0 K. The green line in Fig. 2(a) is an
analytic solution of Eq. (3) using the four-magnon scattering
parameters of the unstable mode at each Hext [see Fig. 8(a),
Appendix D]. Figures 2(b)–2(d) illustrate the phase-space dy-
namics of each class for a fixed magnetic field. Figures 2(b)
and 2(c) show the trajectories in the time interval t = 50–
80 μs, starting from 100 random initial values of φ0( �Ks ) in

c0( �Ks ) = eiφ0( �Ks ) at t = 0. Here we chose a high temperature,

T = 3 × 105 K, to emphasize the dynamic stability. The tra-
jectories are the time-dependent x0(± �K) = (c0( �Ks ) + c†

0( �Ks )
)/2

and p0( �Ks ) = −i(c0( �Ks ) − c†
0( �Ks )

)/2 in phase space. The posi-

tion x0 and the momentum p0 of the harmonic oscillator that
represents the Kittel mode correspond to the amplitudes of
the dynamic magnetization, mx and my. We picture the steady
states of the excited system in the rotating frame of the Kittel
mode frequency. The two uniform precessional modes of the
magnetization are then mapped on two fixed points in (x0, p0)
phase space with equal modulus and phase difference of π .
The distinct classes of the Kittel mode are the fixed points
FP1 and FP2. For a given Hext and small P0 > ξ0/2 (FP1),
it has two equivalent stable fixed points, viz., the Ising spin
up and down states, while the standing wave mode fluctuates
around the origin [see Fig. 2(b)]. When P0 satisfies Eq. (3), the
Suhl instability drives the ± �K pair, leading to the FP2 steady
state in which the Kittel fixed points persist, and �Ks settles
into a fixed point at a distance from the origin with a phase
spontaneously chosen out of two mirror symmetric values
[see Fig. 2(c)]. A third distinct class is the limit cycle (LC)
illustrated in Fig. 2(d), now at realistic temperatures. Here
the Kittel mode follows large amplitude trajectories in mirror
symmetric regions of phase space (see also Appendix D).
With increasing P0, the paths cross the boundaries between
the attractor regions A and B, i.e., the Ising spin flips. The
thermal activation is evident in Fig. 2(d) in which we compare
switching at high T = 300 K (black curve) and low T = 1 K
(purple curve) by way of single representative trajectories in
the interval t = 20–320 μs. In Appendix D, we discuss the
dependence of the limit cycle trajectories on P0 (see Fig. 7
and Appendix D) and analytically explain the origin of FP2
to LC transition and its dependence on Hext (see Fig. 8 and
Appendix D).

Four-magnon scatterings are responsible for auto-
oscillation (limit cycle) steady states that with increasing
excitation power bifurcate and lead to chaotic dynamics [22].
Here we demonstrate that limit cycle dynamics of the magnon
parametrons lead to stochastic switching between two
otherwise isolated regions in phase space. The enhancement
of stochastic switching is unique; it has, for instance, not been
reported in photonic parametrons without analogous four
boson interactions.

For a fixed-input amplitude P0, an array of these magnets
in the stable Ising spin operation can operate as a coher-
ent Ising machine. In the following, we assess the potential
of the device as p-bit by a quantitative treatment of the
stochasticity.
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FIG. 3. Stochasticity. Panels (a)–(c) were obtained from classical calculations, while panels (d) and (e) were obtained from quantum
calculations. (a) The region of the Kittel mode state shown in Fig. 2(d) for T = 1 K and T = 300 K. (b) The dependence of the transition
frequency FC on T (black dots) and Q (red dots), for Hext = 40 mT and P0/ξ0 = 3.85, as in panel (a) and Fig. 2(d). (c) FC as a function of
Hext and P0/ξ0, at T = 3 × 105 K. The green star is the same (P0, Hext ) point as in the phase diagram plotted in Figs. 2(a) and 2(d). (d) The
dependence of the tunneling frequency FQ on Hext for two values of P0/ξ0 = 2.5 and 3. (e) The dependence of FQ on P0/ξ0 for Hext = 40 and
52 mT, respectively. The scaling coefficient Q = 5 × 109 in panels (d) and (e), and T = 0 K.

IV. STOCHASTICITY

Below the Suhl instability threshold, the Ising spin is re-
markably stable. The lower bound for the transition time τ

between the two stable fixed points (derived in Appendix C 2)
is

lnτ � ln[π (1 + 2nth )
√

(1 + 2R)/2R2/2ξ0]

+ [(1 + 2R)ln(1 + 2R) − 2R]|K0|(1 + 2nth )/2, (4)

where R =
√

μ2 − 1/2 + 1 − |K0|(1 + 2nth ) − 1, μ =
2P0/ξ0, and K0 = 2D0,0,0,0/ξ0. Above the parametric
instability threshold but below the Suhl instability
(μ = 1.1) for typical values of |D0,0,0,0| = 1.5 × 10−4 Hz
[see Fig. 8(a)], ω0/2π = 2.5 GHz [see Fig. 1(b)], and
T = 300 K, this number becomes astronomically large,
τ � exp(1.4 × 104) s. In the absence of four-magnon
scatterings, the Kittel mode hopping time in Eq. (4)
monotonically increases with increasing excitation power
P0 or μ. Therefore, the observation made by Makiuchi et al.
[13] that, beyond a second threshold above the parametric
instability, the hopping rate becomes large (hopping time
becomes small) cannot be explained by a macrospin. As
shown in the following, driving the system into a LC of the
Kittel plus ± �K modes by a sufficiently large μ enormously
enhances the switching rate [see Fig. 2(d)]. We, therefore,
conclude that the parametrically driven Suhl instability
and the LC dynamical phase explain the observation of
stochastic switching at the experimental power levels and
room temperature.

The telegraph noise of the Kittel mode at T = 300 K
in Fig. 3(a) reflects the thermally activated crossover trajec-
tories in Fig. 2(d). The calculated number of switches Nt

within te = 100 μs, averaged for several random initial condi-
tions, leads to the transition frequencies FC = Nt/te plotted in
Fig. 3(b) as a function of T (black dots). The form l1e−λ1/T +
l2e−λ2/T , with attempt frequencies l1 = 32 × 104 Hz and l2 =
8.1 × 104 Hz and energy well depths λ1 = 7.98 × 103 ×
kB/2π h̄ GHz and λ2 = 1.5 × 102 × kB/2π h̄ GHz fits the
calculations well (blue curve). We also compute the Q de-
pendence of the transition frequency at T = 1 K, where Q
is the scaling factor of the four-magnon scattering coefficient

QD that is inversely proportional to the volume of the magnet
Vm. The increased interaction reduces the magnon amplitudes
while preserving the topology in phase space. The red dots in
Fig. 3(b) show enhanced switching rates for either increasing
temperature or decreasing volume. Figure 3(c) shows the de-
pendence of FC on Hext and P0 at T = 3 × 105 K. Makiuchi
et al. [13] observed switching frequencies of ∼0.01–0.1 Hz at
room temperature, depending on the power beyond a second
threshold. As explained above, this is not possible without
the Suhl instability. The experimental sample is too large for
direct modeling, and the approximation of a constant magneti-
zation over the film thickness breaks down in thicker samples
in which higher perpendicular standing spin waves play a role.
Nevertheless, we can still draw conclusions from the identical
scaling of T and Q in Fig. 3(b). The experimental sample
volume is ∼30 times larger than the sample considered here.
Since Q ∝ 1/Vm, our model applies to the experiments for
Q = 1/30. By repeating the calculations for a scaling factor
of Q = 1/30, we effectively address a magnet that is 30 times
larger than that for Q = 1. The result of FC ∼ 0.01 Hz at T =
300 K agrees with the lower end of the experimental observa-
tions. The predicted strong and nonmonotonic dependence of
FC on Hext in Fig. 3(c) also agrees with experimental findings.
The substantial enhancement of the stochasticity is due to
the large-amplitude LC dynamics near the saddle node at
the origin. Since a limit cycle broadens the distribution func-
tion when compared to a fixed point, the thermally activated
switching through the saddle node becomes more efficient. At
a fixed Hext, increasing P0 leads to increasing LC oscillation
amplitude and doublings (see Fig. 7 and Appendix D) and,
therefore, to an increase in F . At fixed P0 the amplitude of the
LC oscillations depends on Hext via D [see Fig. 8(a)], with a
maximum at Hext ∼ 40 mT [see Appendix D and Fig. 8(d)] of
FC [see Fig. 3(c)]. From the dependence of F on Q ∝ 1/Vm

[see Fig. 3(b)] follows that reducing the sample to a dot with
a 1-μm radius enhances the hopping rate by 7–8 orders of
magnitude to ∼MHz.

The field of magnonics is moving to identify quantum
effects [39] by extending experiments to smaller systems
and low temperatures. Smaller samples correspond to larger
nonlinear coefficients [large Q, see Fig. 3(b)] and at low
temperature quantum fluctuations are enhanced, which means
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FIG. 4. Quantum steady states. The top (bottom) panels are the
Wigner function of the Kittel mode (K standing wave) normalized by
the maximum value. The left, middle, and right panels correspond to
the star of the same color as in Fig. 2(a) as well as Figs. 2(b)–2(d) of
the main text, i.e., in the FP1 (stable Ising), FP2, and stochastic (LC)
regions, respectively. The scaling of four-magnon scattering coef-
ficients Q = 5 × 108, 2 × 109, and 4 × 109 is shown in the panels
from left to right, respectively.

that the approximation used to derive the Langevin evolu-
tion breaks down. In order to gauge the limitations of our
method, we return to the original Lindblad equation and solve
it numerically exact in number (Fock) space to reliably treat
the quantum, classical, and crossover regimes. In order to
quantify the stochasticity from the exact solution, FQ, we
calculate up to 20 smallest amplitude eigenvalues E of the
right-hand side of Eq. (2). E = 0 corresponds to the ground-
state density matrix [see Fig. 4 and Appendix B]. The first two
eigenvalues with smallest but nonzero |ReE | while ImE = 0
determine the tunneling frequencies (see Appendix C 1). One
of these eigenvalues corresponds to the tunneling frequency
of the Kittel mode, FQ [40] [see top left panel of Fig. 6(a)], as
explained in Appendix C 1. The other corresponds to the tun-
neling frequency of the �Ks mode. Below the parametric and
Suhl instability thresholds, such an eigenvalue does not exist
for either of the modes and the �Ks mode, respectively. The
choice of Q = 5 × 109 allows us to limit the Hilbert space to
∼1000, which is our computational limit. Figure 3(d) shows
FQ as a function of Hext for two values of P0/ξ0 = 2.5 and 3
that crosses both the LC and FP2 regions [see Fig. 2(a)]. FQ

is peaked at Hext ∼ 40 mT, similar to that of FC in Fig. 3(c),
and decreases sharply for Hext in the FP2 region. Figure 3(d)
shows that FQ decreases monotonically with increasing P0 for
Hext = 52 mT where the classical steady state does not enter
the LC region. However, for Hext = 40 mT, where the steady
state changes from FP1 to FP2 and then becomes LC, by
increasing P0, FQ first decreases and then increases substan-
tially. Based on the fit in Fig. 3(b), for Q = 109, FC ∼ 1 MHz,
which is in the same range as expected from FQ in Figs. 3(d)
and 3(e). Therefore, the Langevin approach should be valid
to describe parametrically and resonantly driven ferromagnets
including a quantitative description of magnon quantum cor-
relations such as entanglement [16,31].

V. CONCLUSION

We study the bistable Ising spin system emulated by a fer-
romagnetic disk parametrically excited in a microwave cavity
as a function of temperature, magnetic field, and excitation
power. The Suhl decay of the Kittel mode into a degenerate
pair of magnons with large wave vectors drastically enhances
the random switching between pseudospin states, explain-
ing the recent experimental observation [13]. The discovered
stochasticity principle requires degeneracy of the paramet-
rically excited boson and nonlinear four-boson interactions
among the degenerate modes. The in-plane magnetized thin
films is a unique natural system that satisfies the latter condi-
tions. While the predicted phenomena are unique to magnetic
materials, results may be extrapolated to metamaterials and
quantum optics, in which parametrons are frequently modeled
as Ising spins. We conclude that parametrically excited mag-
netic particles are attractive building blocks for coherent Ising
machines, as well as stochastic information applications. Our
methods are also well suited to predict and describe the quan-
tum effects anticipated in the next generation of experimental
magnonics.
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APPENDIX A: EQUATIONS OF MOTION

In this section, we derive the Langevin equation of motion.
The starting point is the (Lindblad) equation of motion (EOM)
of the density matrix ρ,

ρ̇ = −i[H, ρ] + Ld , (A1)

where H ′ is the Hamiltonian for the interacting magnons in
which the Kittel mode is driven by P0,

H = Hm,L + Hm,NL + (P0c†
0c†

0 + H.c.),

Hm,L =
∑

�k∈0,±K

	ω�kc†
�kc�k

Hm,NL =
∑

�k∈0,±K

[
D�k,�k,�k,�kc†

�kc�kc†
�kc�k

+
∑

�k′∈0,±K

(1 − δ�k,�k′ )
1

2
D�k,�k,�k′,�k′c

†
�kc�kc†

�k′c�k′

]

+ [D0,−K,0,Kc†
0c†

0c−KcK + H.c.], (A2)

and

Ld =
∑

�k∈{0,±K}
ξ�k

[
nth(ω�k )(c�kρc†

�k + c†
�kρc�k − ρc�kc†

�k

− c†
�kc�kρ) + 1

2 (2c�kρc†
�k − c†

�kc�kρ − ρc†
�kc�k )

]
(A3)

is their dissipation into a thermal bath. Here nth(ω�k ) =
(eh̄ω�k/kBT − 1)−1, kB is the Boltzmann constant, T is the bath
temperature, and ξ�k are the dissipation rates.

054403-5



ELYASI, SAITOH, AND BAUER PHYSICAL REVIEW B 105, 054403 (2022)

We cover different regimes of the master equation (A1)
including the quantum-classical crossover in the form of an
equation of motion for the Wigner quasiprobability distribu-
tion function:

W (α0, α
∗
0 , α �K, α∗

�K, α− �K, α∗
− �K) = 1

π2

∫
d2z− �K

∫
d2z �K

×
∫

d2z0tr(ρeiz∗
0 c†

0 eiz0c0 eiz∗
�Kc†

�Keiz �Kc �Keiz∗
− �Kc†

− �Keiz− �Kc− �K )

× e−iz∗
0α∗

0 e−iz0α0 e−iz∗
�Kα∗

�Ke−iz �Kα �Ke−iz∗
− �Kα∗

− �Ke−iz− �Kα− �K , (A4)

where z�k and α�k are complex variables, and |αk〉 is the coher-
ent state of mode �k. Following textbook procedures [34,35]

∂W

∂t
= WHO + WD + WPE + WSK + WCK + WS, (A5)

where the contributions on the right-hand side represent, re-
spectively, the noninteracting magnons

WHO =
∑

k∈{0,± �K}

[
i	ωk

∂

∂αk
αk + H.c.

]
W, (A6)

the dissipation

WD =
∑

k∈{0,± �K}

[
ξk

2

∂

∂αk
αk + ξk

2

∂

∂α∗
k

α∗
k

+ ξk

(
nth,k + 1

2

)
∂2

∂αk∂α∗
k

]
W, (A7)

the parametric excitation of the Kittel mode

WPE =
[
−iP0

∂

∂α0
α∗

0 + H.c.

]
W, (A8)

the self-Kerr interaction

WSK =
∑

k∈{0,± �K}
iDk,k,k,k

[
2

∂

∂αk
|αk|2αk

+ 1

2

∂3

∂α∂α∗2
k

α∗
k + H.c.

]
W, (A9)

the cross-Kerr interactions

WCK =
∑

k∈{0,± �K}

∑
k′∈{0,± �K}

iDk,k,k′,k′ (1 − δk,k′ )

×
{[

∂

∂αk
|αk′ |2αk + 1

4

∂3

∂αk∂α∗
k ∂α∗

k′
α∗

k′

]
+ H.c.

}
W,

(A10)

and the four-magnon interactions that drive the Suhl instabil-
ity

WS = iD0,K,0,−K

[
2

∂

∂α0
α∗

0αKα−K − ∂

∂α∗
−K

α∗2
0 αK

+ ∂

∂α∗
K

α∗2
0 α−K − 1

4

∂3

∂α2
0∂α∗

−K
αK − 1

4

∂3

∂α2
0∂α∗

K
α−K

+1

2

∂3

∂α0∂α∗
K∂α∗

−K
α∗

0 + H.c.

]
W. (A11)

∂W/∂αk is of the order of W when the latter is a
peaked function such as a Gaussian. In our system the third-
order derivatives in Eqs. (A9)–(A11) are negligibly small
since |Dαk| � ξk (nth,k + 1

2 ). Introducing xk = (αk + α∗
k )/2

and pk = −i(αk − α∗
k )/2, the Wigner EOM of Eq. (A5) re-

duces to the Fokker-Planck equation (summing over repeated
indices)

Ẇ (X ) = − ∂

∂Xi
Ai(X ) + 1

2

∂2

∂Xi∂X j
Di, j, (A12)

in the variables X = [x0, p0, xK, pK, x−K, p−K]. Ai(X ) in the
first term (drift) follows by straightforward algebra from the
first derivatives in Eqs. (A5)–(A10), while the second-order
derivatives in Eq. (A7) lead to the second (diffusion) term
with Di, j = δi, jξi(nth,k + 1

2 ). The first and second moments
obtained from the FPE can also be obtained as the solution of
a set of associated (Ito) stochastic differential equations [34]
in which diffusion is obtained by Wiener increments dWt =
�i(t )dt , i.e., the differentials of Markovian Wiener processes
governed by the FPE with zero drift and unit diffusion, so

dXi = Aidt +
√

ξi

(
nth,k + 1

2

)
�i(t )dt, (A13)

where 〈�i(t )� j (t ′)〉 = δi, jδ(t, t ′). Therefore, the Langevin
equation of motion of the three-partite magnon system reads
v̇ = −i[H, v] + �, where v = [x0, p0, x �K, p �K, x− �K, p− �K],
and � collects fluctuating fields with Gaussian quantum
statistics as described above. We solve this six-dimensional
Langevin differential equation in real time using the stochastic
Runge-Kutta four algorithm. Starting from appropriate initial
conditions we update v in time steps of 0.1 ns until a steady
state is reached. Figures 8(a) and 8(b) plot the four-magnon
scattering parameters D and 	ω± �K, respectively, as a function
of the magnetic field, which we use in our calculations.

APPENDIX B: STEADY STATES FROM QUANTUM
MASTER EQUATION

We calculate up to 20 smallest amplitude eigenvalues
E � 0 of the right-hand side of Eq. (A1), in which the
E = 0 corresponds to the ground -state density matrix ρss.
We visualize the steady states by the Wigner distribution
function W (x0( �Ks ), p0(Ks ) ) = ∫ 〈x0( �Ks ) − y/2|ρss,0( �Ks )|x0( �Ks ) +
y/2〉eip0( �Ks )ydy of the Kittel ( �Ks) mode, where |x0( �Ks ) ± y/2〉
is the position eigenstate of the Kittel ( �Ks) mode, and ρss,0( �Ks )

is the density matrix after tracing out the �Ks (Kittel) mode.
The top (bottom) panels of Fig. 4 show W (x0( �Ks ), p0( �Ks ) ) for
Hext = 40 mT in each of the classical steady-state phases, as
indicated by stars of the same color in Fig. 2(a) of the main
text. The left and middle panels can be compared with the
classical phase space of FP1 and FP2 in Figs. 2(b) and 2(c),
respectively. The right panels of Fig. 4 should be compared
with the limit cycle region in the classical phase space, e.g.,
in Fig. 2(c). In the panels of Fig. 4, we used different scale
factors Q such that the distance between the extrema of W is
roughly the same.
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APPENDIX C: HOPPING FREQUENCY

As explained in the main text, the steady state of the
Kittel mode above the parametric instability threshold can
be mapped on a degenerate two-level Ising pseudospin that
is characterized by two opposite precesssion phases. The
transition between these two states is reminiscent of the ther-
mally activated or quantum tunneling of the magnetization
in uniformly magnetized nanoparticle or molecular magnets
[41–43]. In the absence of the ± �K modes, the physics of the
pseudospin of the Kittel mode is similar to a bistable magne-
tization, where the phase space of the former is the infinite
two-dimensional (2D) plane of the Kittel mode harmonic os-
cillator quasiposition and quasimomentum and the 2D Bloch
sphere in the latter. The details of the free energy landscape on
the phase spaces determine the competition between tunneling
or thermally activated hopping frequencies, but there are some
universal features as well. For example, with increasing the
parametric excitation power and in the absence of ± �K modes,
the pseudospin of the Kittel mode increases while the hopping
frequency decreases [see Appendix C 2], similar to the effect
of increasing the size of a nanomagnet that leads to decreas-
ing hopping rates. In this work, we control the Kittel mode
pseudospin by the mixing with ± �K modes.

1. Number states

We work with a finite basis set N = N0N �Ks
, where N0( �Ks )

is the cutoff number of Fock states of the 0( �Ks) mode. The
Lindblad master equation (A1) can then be written as ∂tZ =
LZ , where the Liouvillian L is an N2 × N2 matrix and Z
is the density matrix ρ rearranged into a vector with N2

elements. The steady state Zss is the eigenvector of L with the
eigenvalue Ess = 0. The time-dependent density matrix can be
expanded as

Zphys(t ) =
∑

i

Mie
EitZi, (C1)

where the sum runs over the N2 eigenstates, and Mi =
ZT

i Zphys(0). ∀i �= ss �⇒ ReEi < 0 and limt→∞ Zphys = Zss.
We may model the magnon parametron by two coherent

states of a harmonic oscillator separated by a high barrier in
the position-momentum phase space. An eigenvalue Etnl that
satisfies ImEtnl = 0 is then associated with hopping. Since this
rate is small compared to other fluctuations and so is |Etnl|
[40], we can calculate it accurately with a small basis set.
We analyze the associated tunneling eigenvector Ztnl start-
ing from an initial coherent state in one of the two Ising
valleys Zphys (t = 0). To leading order in the interaction
Zphys(0) ≈ Zss + MtnlZtnl and Zphys(∞) ≈ Zss. It is conve-
nient here to work with the non-negative Husimi function
Q(α) = 〈α|ρphys|α〉/π > 0, where |α〉 is a coherent state and
the N2 × N2 density matrix ρphys contains all elements of the
vector Zphys. Figure 3 shows that above the threshold and at
long times the two valleys become symmetrically occupied
with two identical maxima of Q(α) representing two mirror-
symmetric coherent states. The latter corresponds to Q(α,∞)
for Zphys(∞) = Zss, whereas the initial Q(α, 0) correspond-
ing to Zphys(0), which we assumed is a coherent state at
one of the valleys, has only one peak at that valley. The

FIG. 5. (a) The modulus of the overlap of the Liouvillian eigen-
vectors Zss(tnl) with the vector corresponding to the density matrix of
the coherent state Zα , α = x0 + ip0, i.e., |ZT

ss(tnl)Zα|. (b) Re[ZT
ssZα].

(c) Re[ZT
tnlZα].

decomposition Zphys(0) = Zss + MtnlZtnl implies that the
overlap of Ztnl with two coherent states at the two valleys
should have the opposite sign in order to cancel Zss at one
of the valleys and add to it at the other valley, for Q(α, 0) to
have only one peak at one of the valleys and the integration of
Q(α, 0) over the phase space to remain equivalent to that of
Q(α,∞).

Let us first ignore �Ks and only consider the parametrically
excited Kittel mode with self-Kerr nonlinearity. Figure 5(a)
shows the absolute value of the overlap |ZT

ssZα| between the
steady state with the elements of the coherent-state density
matrix |α〉〈α| arranged into the vector Zα , where α = x0 +
ip0. |ZT

tnlZα| = |ZT
ssZα|, as expected. Figure 5(b) shows that

ReZT
ssZα is symmetric with respect to (x0 = 0 and p0 = 0),

while Fig. 5(c) indicates that ReZT
tnlZα is antisymmetric (and

the same holds for the imaginary parts).
When the Suhl instability of the Kittel mode parametron

drives the �Ks mode, there are two tunneling eigenvalues
Etnl,1(2). The Kittel mode hopping frequency is F = −Etnl,1

when |ZT
tnl,1Zα| = |ZT

ssZα| ∀α, otherwise F = −Etnl,2.

2. Kittel mode parametric oscillator

Here, we address the parametrically driven Kittel mode
with the finite self-Kerr nonlinearity K0 but without interac-
tions with other magnons, equivalent to a Duffing oscillator.
The Fokker-Planck equation for the Wigner distribution func-
tion to leading order in the derivatives with respect to coherent
states α and α∗ then reduces to

Ẇ (α, α∗) = ∂

∂α
[α + iα∗(μ + 2K0α

2)]

+ 1

2

∂2

∂α∂α∗ (1 + 2nth ) + H.c., (C2)

where K0 = 2QD0,0,0,0/ξ0 and μ = 2P0/ξ0. With α = x0 +
ip0,

Ẇ (x0, p0) =
[
− ∂

∂Xi
Ai + 1

2

∂2

∂Xi∂X j
Di, j

]
W (x0, p0), (C3)

where X = [x0, p0], A1 = −[x0 − 4K0(x2
0 + p2

0) + 2μp0],
A2 = −[p0 + 4K0(x2

0 + p2
0) + 2μx0], and Di, j = δi, j (1 +

2nth )/2. The maxima of W are the steady-state mean-field
amplitudes α0 = |α0|eiφ0 that follow from the first term and
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its conjugate (drift) of Eq. (C2),

iμα∗
0 + α0 + 2iK0|α0|2α0 = 0,

−iμα0 + α∗
0 − 2iK0|α0|2α∗

0 = 0. (C4)

Hence, |α0|2 =
√

μ2 − 1|K0|/2, and 2φ0 =
arg[−K0

√
μ2 − 1/μ|K0| + i/μ].

In the steady state [34,35]

AiW = 1

2

∂

∂Xi
Di, jW. (C5)

Assuming a solution of the form W (x0, p0) = N e−�(x0,p0 ),
where N is the normalizing constant, we get

− ∂�

∂Xi
= 2D−1

i, j

[
Aj − 1

2

∂Dj,l

∂Xl

]
, (C6)

where � is a proper potential with ∂2�/∂x0∂ p0 =
∂2�/∂ p0∂x0, which ensures that the solutions of Eq. (C6) do
not depend on the path of integration, i.e.,

� = −
∫ x

0

∂�

∂Xi
dXi.

Strictly speaking ∂2�/∂x0∂ p0 = 4[−4K0(3p2
0 + x2

0 ) +
2μ]/(1 + 2nth ) and ∂2�/∂ p0∂x0 = 4[4K0(3x2

0 + p2
0) +

2μ]/(1 + 2nth ) are not equal. However, in the region between
the two minima (x0,m, p0,m), |4K0|(3x2

0,m + p2
0,m) � 2μ and

|4K0|(x2
0,m + 3p2

0,m) � 2μ. For very small μ > 1 above the
threshold φ0,m ≈ π/4, and (x0,m, p0,m) = (0,±|α0|). There-
fore, 12|K0α0|2 = 6

√
μ2 − 1 � 2μ, i.e., 1 < μ � √

9/8,
approximately satisfies the potential conditions. The transition
time in this potential barrier approximation [40,44] is obtained
as

τ = 2π

ξ0

[
�x0x0 (0, 0)

�x0x0 (0, |α0|)�p0 p0 (0, |α0|)�p0 p0 (0, 0)

]1/2

× exp [�(0, |α0|) − �(0, 0)], (C7)

where �XiXi = ∂2�/∂X 2
i . Hence,

τ = π (1 + 2nth )

2ξ0
exp

[ √
μ2 − 1

(1 + 2nth )|K0|

]
. (C8)

Kinsler and Drummond [40] studied the transition fre-
quency of a parametron in the presence of nonlinear damping
rather than self-Kerr nonlinearity, at zero temperature. Be-
cause of the similarity of the steady states governed by either
the self-Kerr interaction or the nonlinear damping (see below),
and the validity of the analytic treatment for a large μ interval
in the latter case, we extend the analysis in Ref. [40] to
nonzero temperatures through the Lindblad operator,

LNL = ξNL(nth + 1)
(
2c2

0ρc†2
0 − c†2

0 c2
0ρ − ρc†2

0 c2
0

)
+ ξNLnth

(
2c†2

0 ρc2
0 − c2

0c†2
0 ρ − ρc2

0c†2
0

)
, (C9)

where ξNL is the nonlinear dissipation parameter. Nonlinear
dissipation should exist under parametric excitation condi-
tions due to photon dissipation and four-magnon scattering
to thermal magnons, but in contrast to the self-Kerr term, its
value for YIG is unkown. For simplicity, we set K0 = 0 and
assume an imaginary parametric excitation, iP0c†

0c†
0 + H.c.,

where P0 and thereby μ = 2P0/ξ0 are real, i.e., a phase shift
of the drive by π/2 relative to the global phase reference. The
Wigner function then solves

dW

dt
=

{
∂

∂α

[
α − α∗(μ − gNLα2)]

+ (1 + 2nth )

2

∂2

∂α∂α∗ (1 + gNLαα∗) + H.c.

}
W,

(C10)

where gNL = 4ξNL/ξ0. In terms of (x0, p0), where α =
x0 + ip0, Eq. (C10) can be written in the form of
Eq. (C3), where A1 = −x0(1 + gNLx2

0 − μ), A2 = −p0(1 +
gNL p2

0 + μ), D11 = (1 + 2nth )(1 + 2gNLx2
0 )/4, and D22 =

(1 + 2nth )(1 + 2gNL p2
0)/4. The resulting 2D FPE does

not have a potential solution, because ∂2�/∂x0∂ p0 �=
∂2�/∂ p0∂x0 [see Eq. (C6)]. However, the states always relax
towards p0 = 0 because A2 has the sign opposite to that of p0.
The FPE for p0 = 0 is only a function of x0 [40]:

dW1D

dt
=

{
∂

∂x0

[
x0

(
1 + gNLx2

0 − μ
)]

+1

4

∂2

∂x2
0

[
(1 + 2nth )

(
1 + 2gNLx2

0

)]}
. (C11)

All 1D FPE equations have potential solutions [35], and
Eqs. (C6) and (C11) lead to

�(x0) = 1

(1 + 2nth )

[
x2

0 − 2R + 1

2gNL
ln

(
2gNLx2

0 + 1
)]

, (C12)

where R = μ − gNL(1 + 2nth ) − 1. The extrema of �x0 are at
x0,s = 0 (saddle point) and x0,m = ±√

R/gNL (the two min-
ima). The transition time between the two minima is

τ = 2π

ξ0

[
1

�x0x0 (x0,m)�x0x0 (x0,s)

]1/2

× exp [�(x0,s) − �(x0,m)], (C13)

which with Eq. (C12) leads to

τ = π

2ξ0

[
(1 + 2nth )2(1 + 2R)

2R2

]1/2

× exp

{
1

2gNL(1 + 2nth )
[(2R + 1) ln (2R + 1) − 2R]

}
.

(C14)

In Fig. 6(a), we compare the hopping frequency F from a
numerical solution of the master equation corresponding to ei-
ther gNL or K0 being finite, with the analytical equations (C8)
and (C14), respectively, for nth = 0 and a scaling coefficient
Q = 5 × 108 of the four-magnon scattering coefficients D →
QD that reduces the Hilbert space to a manageable size.
We illustrate the results by choosing gNL = |K0|. Figure 6(a)
shows that Eq. (C14) approximately agrees with numerical
calculation [40], whereas Eq. (C8) is too small for μ > 1,
i.e., above the parametric pumping threshold, because the
assumption of small μ is not valid anymore. We may improve
Eq. (C14) by adopting a distance between the two minima
for the nonlinear damping that equals that of the self-Kerr
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FIG. 6. (a) The dependence of the tunneling frequency F on
μ from quantum calculations for nonlinear damping and self-Kerr
nonlinearity. F values from analytical equations (C8), (C14), and
(C15) are also shown. nth = 0. (b) The dependence of F on nth for
μ = 1.4. In panels (a) and (b), Q = 5 × 108. (c) and (d) The Wigner
function for self-Kerr nonlinearity and nonlinear damping, respec-
tively, while μ = 1.4. (e) and (f) The quasipotential, �′ = − ln W ,
corresponding to panels (c) and (d). The stars are the minima of �′

and the dashed lines are along the minimal gradient path. In panels
(c)–(f), Q = 5 × 108. In panels (a)–(f), Hext = 40 mT.

nonlinearity, i.e., (μ′ − 1)/gNL =
√

μ2 − 1/2|K0|,

τ = π

2ξ0

[
(1 + 2nth )2(1 + 2R′)

2R′2

]1/2

× exp

{
1

2gNL(1 + 2nth )
[(2R′ + 1) ln (2R′ + 1) − 2R′]

}
,

(C15)

where R′ =
√

μ2 − 1/2 + 1 − gNL(1 + 2nth) − 1. The blue
dashed line in Fig. 6(a) shows that the transition frequency
from Eq. (C15) now overestimates F for the self-Kerr non-
linearity and can be used as an analytical upper bound when
nth = 0.

Figure 6(b) shows the dependence of F on nth for μ = 1.4
and Q = 5 × 108 for both cases of self-Kerr and nonlinear
damping. Figure 6(b) shows that, with increasing temperature,
F increases as expected. F according to Eq. (C14) mono-

tonically increases with temperature up to nth ≈ 0.5 and is
larger than the numerical calculations [see the green dashed
line in Fig. 6(b)]. Figure 6(b) is for Q = 5 × 108, which
means that the potential is 5 × 108 times shallower than that
of the physical (Q = 1) case [see Eq. (C12)]. Therefore, we
can estimate that nth = 0.5 when Q = 5 × 108 corresponds to
0.5 × 5 × 108 ∼ 2.5 × 108, i.e., T ≈ 107 K when Q = 1. We
confirm that for any μ, when Q = 5 × 108, and nth < 0.5, F
from Eq. (C15) is larger than the numerical calculation for the
case of self-Kerr nonlinearity. Therefore, for the physical case,
Eq. (C15) provides a reliable upper bound of F for T < 107 K
and every value of μ.

Figures 6(e) and 6(f) show the (quasi)potential �′ =
− ln W , corresponding to Figs. 6(c) and 6(d), respectively. The
white stars indicate the minima of �′, and the white dashed
line connects the two minima through the minimal gradient
path that governs the transition. The latter line is not straight
for the self-Kerr nonlinearity in contrast to that for nonlinear
damping, supporting the validity of the 1D assumption leading
to Eq. (C11). Apart from the twist in the quasipotential of
Fig. 6(e), it is approximately the same as that of Fig. 6(f),
leading to the similar scale of F for self-Kerr nonlinearity
and nonlinear damping. In conclusion, while a hypothetical,
substantial nonlinear damping should affect the numbers but
not the phenomenology and can be captured by rescaling the
Kerr constant.

APPENDIX D: SUHL INSTABILITY AND BIFURCATION
OF THE LIMIT CYCLES

In Appendix C 2, we discussed the hopping frequency F of
the Kittel mode parametron in the absence of interactions with
the ± �K pair. We showed in the main text that for P0 above the
Suhl instability that leads to the decay into finite-momentum
magnon pairs the transition rate increases substantially when
the steady state is a limit cycle (LC). Here, we discuss the
LC trajectories as a function of P0 up to just below the jump
in F . Figure 7(a) presents our results for the steady states
as a function of P0/ξ0 (see also Fig. 2), for Hext = 40 mT,
and indicates the respective values of P0/ξ0 corresponding
to Figs. 7(b)–7(g) in increasing order. In Figs. 7(b)–7(g), we
assumed T = 0 and an initial random (x0, p0) near the origin.
The black trajectories are from t = 0 to t = 40 μs, whereas
the purple ones are the steady-state trajectories from t = 30
μs to t = 40 μs. Figure 7(b) is the fixed-point FP1 steady state
below the Suhl instability. Figure 7(c) is the fixed-point FP2
steady state generated by the Suhl instability. The Ising spin
states of FP1 and FP2 are extremely stable, with astronomi-
cally small hopping frequencies.

Figure 7(d) corresponds to a microwave power just above
the bifurcation to a LC steady state. Initially, the LC has a
small amplitude that increases with P0/ξ0 to develop a pro-
nounced butterfly shape [see Fig. 7(e)]. For even larger P0/ξ0,
the limit cycle bifurcates. In the steady state in Fig. 7(f) we ob-
serve two LC butterflies and we observe four LC butterflies in
Fig. 7(g). The increase in the LC radius and its multiplying in-
dicates a shallower potential trench that confines the dynamics
and a much broader probability distribution that is definitely
not Gaussian. A shallower potential well or trench implies an
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FIG. 7. (a) The dynamical steady states of the magnetic dot cal-
culated as a function of P0/ξ0, for Hext = 40 mT. The blue dashed
lines indicate P0/ξ0 values that correspond to the time traces plotted
in panels (b)–(g). (b) P0/ξ0 = 0.86, FP1. (c) P0/ξ0 = 1.51, FP2.
The red dashed arrow indicates the Suhl instability due to para-
metric pumping. (d) P0/ξ0 = 2.06, LC. (e) P0/ξ0 = 2.34, LC. (f)
P0/ξ0 = 2.89, LC. (g) P0/ξ0 = 3.81, LC. In panels (b)–(g), the black
trajectories are from t = 0 to t = 40 μs, and the purple trajectories
are from t = 30 μs to t = 40 μs. The insets in panels (b)–(d) are
zooms of the main panels.

increase in the hopping over the saddle point between the two
Ising spin states.

Next, we discuss the field dependence of the steady-state
phase diagram of Fig. 2(a) and the associated Ising spin flip
rates. At a fixed P0, the steady states are governed by the four-
magnon scattering coefficients D and 	ω± �K, which in turn
depend on Hext. Figure 8(a) shows the dependence of D0,0,0,0,
K1 = D0,0,± �K,± �K, K2 = D0, �K,0,− �K, and K5 = 2K3 + K4 on
Hext, where K3 = D± �K,± �K,± �K,± �K and K4 = D± �K,± �K,∓ �K,∓ �K.
Figure 8(b) shows the dependence of 	ω± �K on Hext. As we
discussed in the main text, the boundary of FP1 and FP2
[the green line in Fig. 2(a)] is the Suhl instability threshold.
According to Eq. (4) of the main text,

|α0,Suhl|2 = 1

K2
2 − K2

1

[
	ω± �KK1

+
√

	ω± �K
2K2

1 + (K2
2 − K2

1 )
(
ξ 2

0 /4 + 	ω± �K
2
)]

.

(D1)

For ξ0 = 5 MHz, |α0,Suhl|2 ≈ ξ0/2
√

K2
2 − K2

1 decreases by a
factor of ∼1/1.3 when increasing Hext from 10 to 80 mT,
while |α0|2 ∝ 1/|D0,0,0,0| decreases by a factor of ∼1/1.7.
The P0 needed to drive the Suhl instability, therefore, increases
slightly by a factor of ∼1.7/1.3 in the field interval, as does
the green line in Fig. 2(a).

We proceed by the rather rough approximation that beyond
the Suhl instability the Kittel mode mean field α0 = |α0|eiφ0

FIG. 8. (a) The dependence of four-magnon scattering coeffi-
cients relevant to the dynamics on Hext . (b) The dependence of 	ω± �K
on Hext . (c) An analytical phase diagram [see Fig. 2(a)]. (d) The Hext

dependence of the peak of Fourier transform of x0(t ), Fω, at any
ω �= 0, for P0/ξ0 = 3.5 [see Figs. 2(a) and 3(c)].

is constant with

|α0|2 = 1

2|D0,0,0,0|

√
P2

0 −
(

ξ

2

)2

,

φ0 = − arg

[−i

P0

(
ξ

2
+ 2iD0,0,0,0|α0|2

)]/
2, (D2)

which is the steady state of the self-Hamiltonian
(P0c†

0c†
0 + H.c.) + D0,0,0,0c†

0c0c†
0c0. The mean field α �Ks

is then the steady state of the effective Hamiltonian
	′ω �Ks

c†
�Ks

c �Ks
+ (K2α

2
0c†

�Ks
c†

�Ks
+ H.c.) + K5c†

�Ks
c �Ks

c†
�Ks

c �Ks
,

where 	′ω �Ks
= 	ω �Ks

+ K1|α0|2. Here, K1 = D0,0,± �K,± �K,
K2 = D0, �K,0,− �K, K5 = 2K3 + K4, K3 = D± �K,± �K,± �K,± �K, and
K4 = D± �K,± �K,∓ �K,∓ �K, and

α �Ks
=|α �Ks

|eiφ �Ks , ‖α �Ks
|2 = 1

2|K5|

√
K2

2 |α0|4−
(

ξ

2

)2

−	′ω �Ks
,

φ �Ks
=arg

[ −i

2α2
0

(
−ξ

2
− 2iK5|α �Ks

|2 − i	′ω �Ks

)]
/2. (D3)

We can estimate the boundary between FP2 and LC phases
by the approximations for α0 and α �Ks

in Eqs. (D2) and (D3)
above the threshold. The transition for a limit cycle by the
mean-field term K1α

∗
0α

∗
�Ks
δc0δc �Ks

+ H.c. requires that

|K1α0,LCα �Ks,LC| = ξ0/2, (D4)

where α0,LC and α �Ks,LC are the mean fields at the
FP2 to LC transition. For the same magnetic-field
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interval and fixed P0, |α0|2 ∝ 1/|D0,0,0,0| decreases by
a factor of ∼1/1.7. In |α �Ks

|2 ∝ (K2 + K1)|α0|2/|K5| ∝
(K2 + K1)/|K5||D0,0,0,0|, (K2 + K1)/D0,0,0,0| decreases by a
factor of ∼0.3, while |K5| decreases to zero at around 40 mT
and then increases to ∼0.5 times the initial value, at 80 mT. K1

monotonically decreases by a factor of ∼1/8 with increasing
Hext in the same range. Therefore, P0 corresponding to
|K1α0,LCα �Ks,LC| has a minimum at Hext ∼ 40 mT and is larger
by a factor of ∼8 for Hext = 80 mT than Hext = 10 mT.
Figure 8(c) shows the boundaries between FP2, FP1, and
LC as calculated from Eq. (D4) and Eqs. (D2) and (D3) and
captures the main features of the numerically exact phase

diagram of Fig. 2(a). The differences such as the strong
drop of the FP2 | LC boundary at intermediate fields are a
consequence of the rough mean-field approximation.

We expect that for fixed P0 beyond the LC transition the LC
oscillation amplitudes would be enhanced at Hext ∼ 40 mT.
This is indeed consistent with the Ising spin hopping rate F
in Figs. 3(c) and 3(d). Fω, the Fourier transform of x0(t ), may
help to elucidate the correlation between the LC oscillation
amplitude and F since a peaked Fω indicates that the steady
state is a limit cycle. Figure 8(d) shows the dependence of
this peak amplitude, max(|Fω �=0|), on Hext that confirms the
expectations.
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