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Many-body constraints and nonthermal behavior in one-dimensional open systems
with Haldane exclusion statistics
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We study the impact of the interlevel energy constraints imposed by Haldane exclusion statistics on energy
relaxation processes in one-dimensional systems coupled to a bosonic bath. By formulating a second-quantized
description of the relevant Fock space, we identify certain universal features of this relaxation dynamics, and
show that it is generically slower than that of spinless fermions. Our study focuses on the Calogero-Sutherland
model, which realizes Haldane Exclusion statistics exactly in one dimension; however, our results apply to any
system that has the associated pattern of interlevel occupancy constraints in Fock space.
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I. INTRODUCTION

The impact of constraints on the dynamics of quantum
mechanical systems has received a resurgence of interest in
recent years [1–11]. Much of this interest has focused on
whether, and when, constraints facilitate or even necessi-
tate violations of the entanglement thermalization hypothesis
(ETH) [12,13]. Notably, in low dimensions, constraints can
effectively isolate certain sectors of the Hilbert space [1,7–
9] thereby preventing at least some eigenstates from being
thermal.

In the study of constrained dynamics, attention to date
has focused primarily on systems with spatially local con-
straints, or constraints arising from symmetry. (See, however,
Refs. [14,15].) Here, we focus on another interesting possibil-
ity: constraints due to unconventional exclusion statistics. The
possibility of exclusion statistics that are neither fermionic
nor bosonic was first raised by Haldane [16], following the
discovery that quasiparticles exhibiting fractional (or anyonic)
exchange statistics [17,18] are likely realized in the fractional
quantum Hall effect [19,20]. Inspired by counting arguments
relevant to Laughlin states[19], Haldane proposed a growth
of the many-body Hilbert space with particle number that is
intermediate between fermions and bosons. This counting,
and the corresponding exclusion statistics, subsequently be-
came known as Haldane exclusion statistics (HES). Though in
the FQHE HES is related to anyonic exchange statistics [21],
unlike the latter HES is not specific to two spatial dimensions.
In fact, it occurs generically in one-dimensional integrable
models that can be solved by the thermodynamic Bethe ansatz
[22,23]. Several higher-dimensional realizations [24–26] are
also known.

A surprising feature of HES is that, unlike fermionic and
bosonic statistics, it appears to require the existence of occu-
pancy constraints involving particles in multiple energy states.
There are two key pieces of evidence supporting this. First, al-
though the partition function can be well approximated using a
distribution function that treats different energy levels as inde-
pendent [27], this approximation generically assigns negative

probabilities to some configurations, indicating that the ap-
proximation overcounts the available states [28–30]. Second,
HES is realized exactly in the Calogero-Sutherland model
[31–36], as first observed by Ha [37]. Murthy and Shankar
[38] observed that in this case, HES can be directly attributed
to occupancy constraints between particles in different energy
levels. The resulting occupancy constraints dictating which
patterns of single-particle orbitals can be occupied represent
a qualitatively different class of constraints in many-body
quantum systems, whose impact on dynamics has received
little attention to date.

In this work, we undertake to study how this new class of
constraints affects the dynamics of open quantum systems. We
focus on open quantum systems because there the impact of
occupancy constraints in energy space on dynamics is most
transparent. Further, coupling our system to a bath that breaks
all conservation laws allows us to work with a specific model
(the Calogero-Sutherland model) exhibiting exact HES with-
out having to contend directly with the impact of integrability
on the dynamics of our system. Even in this simple setting,
however, we find that the constraints implied by HES can have
a significant impact on relaxation dynamics.

To elucidate the details of the constraint structure that
causes HES, we focus on the Calogero-Sutherland model
(CSM) [31–36], where HES can be derived explicitly from
the exact solution [37–40]. We develop an exact microscopic
description of the occupancy constraints that is condusive
to developing a second quantized formalism for HES par-
ticles. This second-quantized description allows us to study
the Lindblad dynamics of the CSM both numerically and
analytically. Moreover, by mapping states in the HES Fock
space to states in the Fock space of spinless fermions, we use
our second-quantized formalism to analytically derive several
qualitative features of the relaxation dynamics in these sys-
tems, and compare the resulting dynamics to that of fermionic
systems.

Using this approach we are able to prove analytically the
following key results. First, we show that under Lindblad
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dynamics, the energy relaxation of HES particles coupled to
a bosonic bath cannot be faster than that of spinless fermions,
and that in generic conditions, it is strictly slower. Second,
we find that the relaxation dynamics is universal for different
species of HES particles. Third, though typically our Lind-
blad dynamics eventually thermalizes the energy of all HES
systems, we show that under certain (fine-tuned) conditions it
is possible to initialize the system in configurations whose en-
ergy will never thermalize, essentially because all relaxation
paths are blockaded by the constraint.

The fact that constraints lead to slower energy relaxation
dynamics may not surprise the reader; however, the universal-
ity of dynamics for HES systems with very different constraint
structures is far from intuitive. This result is also differ-
ent from relaxation rates predicted using Boltzman transport
[41–44], obtained assuming that the occupations of different
energy levels are independent, rather than fully accounting for
the constraints. Interestingly, even in the absence of an exact
treatment of the constraints, HES systems have been found
to exhibit a universal 1D ballistic thermal conductance [45],
though both electrical conductance [45] and shot noise [46]
depend on the details of the exclusion statistics.

We emphasize that, unlike many previous investigations of
both the thermodynamics [47–53] and transport [41–46,54]
of systems of free HES particles, our framework allows us to
treat the Fock space constraints exactly. Though in the case
of thermodynamics this exact treatment leads to small cor-
rections, its impact on dynamics—especially in certain initial
states—is much more significant.

This article is organized as follows. In Sec. II, we re-
view the original definition of Haldane exclusion statistics,
as well as Wu’s [27] approximation to the partition function.
In Sec. III, we review how Haldane exclusion statistics arises
in an exactly solvable model, i.e., the Calogero-Sutherland
model, and develop a microscopic description of the associ-
ated Fock space occupancy constraints which elaborates on
the exact solutions of Refs. [37,38]. We also review the key
features of the thermodynamics of free HES particles, and
show that treating the constraints exactly has only a minor
impact on thermodynamics compared to Wu’s results [27]. In
Sec. IV, we formulate a second quantized description of HES
based on our description of the microscopic occupancy con-
straints. In Sec. V, we use this second quantized framework to
study the energy relaxation dynamics of an ideal gas of HES
particles coupled to a bath, and find a universal relaxation
behavior for all species of HES particles. We summarize our
results and discuss its wider implications in Sec. VI.

II. REVIEW OF HALDANE EXCLUSION STATISTICS

A. Exclusion statistics: Definition and basic considerations

We will begin with a review of Haldane’s original for-
mulation of HES [16]. For a finite many-body system with
fixed boundary conditions, the dimension dα (N ) of the single
particle Hilbert space accessible to the N th particle of species
α depends linearly on the total number particles in the system.
This dependence is parametrized by a statistical interaction
gαβ : �dα = −�βgαβ�Nβ , where �Nβ is allowed change of
particle number of species β. In this work, we will primarily

be concerned with the case where there is only one species of
particle. In this case, we may drop the indices α and β. Then,
the dimension DN (g) of the N-particle many-body Hilbert
space is1

DN (g) = [d (N ) + N − 1]!

N![d (N ) − 1]!
, (1)

where d (N ) is the dimension of single-particle Hilbert space
with N particles in the system, which satisfies

d (N + �N ) = d (N ) − g�N. (2)

Here g must be rational (i.e., g = q/p, with q and p coprime
integers) to ensure that d (N ) and DN (g) are integers for suit-
able N and �N . Taking g = 0 yields bosonic statistics, since
d (N ) = d (N − 1) = d (1), implying that each added boson
can occupy the same number of orbitals as the first one.
Fermions are described by taking g = 1, which gives d (N ) =
d (N − 1) − 1, indicating Pauli exclusion.

In this work, we focus on the case 0 < g < 1, for which
Eq. (1) describes exclusion statistics distinct from those of
fermions or bosons. For example, in the fractional quantum
Hall effect with the filling fraction 1/m, the correct exclusion
statistics are obtained by taking g = 1/m[16]; Eq. (2) reflects
the fact that the number of single-particle orbitals available to
a given quasiparticle is reduced by one when m quasiparticles
are added, i.e., d (N + m) = d (N ) − 1. In this case, Eq. (2)
appears to be valid only when �N is a multiple of m, as
otherwise the number of available states d is fractional. In
the quantum Hall context, this is not unnatural, since this
corresponds to requiring that an integer number of electrons is
added to the system. However, this requirement is less natural
in other applications, such as in one-dimensional systems. In
Appendix A, we show how framing HES in terms of con-
straints allows us to define an integral D(N ) for any N .

B. Approximate treatment of HES systems
in equilibrium: Wu’s method

To understand the physical implications of the statistics
obtained by taking g �= 0, 1, one must first know how to
compute the associated partition functions. The first attempt
to solve this problem was made by Wu [27], who considered
a system where the dimension of the Fock space at energy
εi is given by Eq. (1). This literally describes a system with
a discrete spectrum and exact degeneracies; however, it is
useful to view it as arising from grouping the single-particle
energy levels into“cells,” where the ith cell has di levels and
an average energy of εi, and the difference in energies within
a given cell is small compared to kBT [28]. In this case, using
d (Ni ) = di(1) − g(Ni − 1), Wu found the dimension of the
total Fock space

D({Ni}) =
∏
{Ni}

[di + (1 − g)(Ni − 1)]!

Ni![di − 1 − g(Ni − 1)]!
, (3)

1Here we use the original counting proposed by Haldane; for other
generalizations starting from the same statistical interaction, see
Refs. [29,59].
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where di ≡ di(1) is the number of states at energy εi acces-
sible to the first particle in the system. Importantly, Eq. (3)
assumes that the occupancy of different energy levels is in-
dependent. The grand canonical partition function associated
with the many-body counting (3) can be written down exactly;
extremizing it with respect to ni ≡ Ni/di gives the average
number of particles with energy εi:

ni(εi ) = 1

w(e(εi−μ)/kBT ) + g
. (4)

Here w(ζ ) satisfies

wg(ζ )[1 + w(ζ )]1−g = ζ ≡ eβ(ε−μ), (5)

where β and μ are the inverse temperature 1/(kBT ) and the
chemical potential of the system, respectively.

Interestingly, Eq. (4) also follows from a factorized grand
canonical partition function:

ZG =
∏

i

(
1 + w−1

i

)
, (6)

where wi ≡ w(eβ(εi−μ) ). It is straightforward to check that
taking n(εk ) = −∂ ln ZG/β∂εk gives exactly Eq. (4) [47,55].
This form is computationally very convenient, since it gives
a simple expression from which one can compute quantities
independently at each level i. Evidently, a factorization of the
form (6) is possible only when we treat the occupations of
different energy levels as independent.

However, Wu’s approach is not exact: as first observed by
Nayak and Wilczek [28], Wu’s distribution function cannot be
derived from the exact partition function of a physical system,
since for g �= 0, 1, Eq. (4) implies the existence of negative
Boltzmann weights for certain occupancies ni [28–30]. This
indicates that for g �= 0, 1, HES describes physical systems
where the occupation of energy level i is not independent of
the occupations of other energy levels, and the grand canoni-
cal partition function cannot be factored. We will explore the
relevant interenergy occupancy constraints in detail in the next
section.

Though Eq. (4) is not exact, it nonetheless constitutes a
very good approximation to the behavior of generic many-
body HES systems in the thermodynamic limit. Specifically,
Wu’s description becomes effectively exact for large systems
when the number di of states in each cell is extensive in
the volume [28]. Fortunately in a generic many-body system,
where the level spacing at finite energy density is exponen-
tially small in the volume, such a grouping is natural, and we
may expect Wu’s approximation to provide a good description
of HES thermodynamics in these typical cases. In Sec. III D,
we will compare Wu’s approximation to an exact result in the
opposite limit, where the level spacing is not small compared
to the temperature.

III. HALDANE EXCLUSION STATISTICS IN THE
CALOGERO-SUTHERLAND MODEL

In order to explore HES beyond Wu’s approximation, it
is useful to work with a specific model. Here we will focus
on the Calogero-Sutherland model (CSM) [31–36], which
exactly realizes the simplest version of HES, with gαβ =
gδα,β [23,40,47]. As discussed above, any physical system

that exactly realizes HES must exhibit occupancy constraints
between different energy levels. Murthy and Shankar [38]
showed how constraints of this form arise in the exact solu-
tions of the CSM. Here we review in detail the nature of these
constraints, and provide a simple explicit description of all
states allowed in the resulting Fock space.

A. The Calogero-Sutherland model

The CSM describes fermions in a one dimensional har-
monic trap, interacting via a 1/r2 potential [31–36]. The
Hamiltonian for an N fermion system is

H =
N∑

i=1

[
−1

2

∂2

∂x2
i

+ 1

2
ω2x2

i

]
+ 1

2

∑
i< j

g(g − 1)

(xi − x j )2
, (7)

where, as we will see, g is the statistical interaction param-
eter defined by Haldane. The many-body eigenstates of this
Hamiltonian are labeled by a set of fermionic occupation
numbers nk , k = 0, 1, . . . ,∞ with nk = 0, 1 and

∑∞
i=0 ni = N

[47]. The corresponding energies are

E [{nk}] =
∞∑

k=0

εs(k, g)nk, (8)

where the shifted single particle energy is

εs(k, g) = εk − (1 − g)N (εk )ω. (9)

Here εk = kω is the energy of the kth eigenstate of the single-
particle 1D harmonic oscillator, and N (ε) is the number of
particles with energy less than ε, i.e., N (ε) = ∑∞

j=1 θ (ε −
ε j )n j . [Here θ (x) is step function: θ (x) = 1 for x > 0 and 0
for x � 0.]2

There are several properties of the shifted energies (9) that
are worth emphasizing. First, inspecting Eq. (9), we see that
the spacing between energy levels is gω. Correspondingly
there are no more than ceil(1/g) states in an energy cell of
size ω, and the occupation number n j of the jth cell must
satisfy n j � ceil(1/g). Second, we may describe the many-
body eigenstates by a set of integers {ki}, i = 1, 2, . . . , N
indicating which of the shifted single-particle energy levels
are occupied. If we choose the labels i in order of increasing
energy (i.e., k1 < k2 < · · · < kN ), we have N (εki ) = i − 1 for
ith particle. Note that if we add particles into the system,
we must re-define N (ε) so as to include all of the particles
ultimately added with energy less than ε, thereby shifting the
corresponding energies. In constructing many-body states, we
will therefore always think of adding particles to the vacuum
in order of increasing k value.

B. Hilbert space dimension and HES in the
Calogero-Sutherland model

In order to see how HES emerges in the CSM, we must
divide the shifted energy levels into cells. Here we will show
that by choosing cells of size ω, we can exactly reproduce the
counting in Eqs. (1) and (2).

2We note that strictly speaking the g = 0 result of the above formula
should be interpreted as obtained from the limit g → 0.
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FIG. 1. (a) The ground and (b) an excited states with four particles in the spectrum of CSM with g = 1/2. Labels to the right of each level
indicate the corresponding energies in unit of ω. All levels are grouped up into cells of size one (i.e., ω). When particles are enumerated in order
of increasing energy, particles with odd ordinal number occupy levels with integer energies, while particles with even ordinal numbers occupy
levels with half integer energies. To map this onto an abstract configuration of HES particles, we ignore the energy differences between states
in the same cell and take particles on the lower chain to have pseudospin down (α = 1), while particles on the upper chain have pseudospins
up, labeled by α = 2.

Consider first the simplest case, g = 1/2. Figure 1 shows
how to group the spectrum into cells of size ω: the jth cell
contains 1/g = 2 distinct fermionic states, with energies jω
and ( j + 1/2)ω. Each of these states can either be occupied
or vacant, such that the maximum number of particles in each
cell is 2. To make the connection to HES, observe that if we
identify the single-particle Hilbert space dimension d (n) with
the number of cells (rather than distinct energy levels) that
any one of the n particles can occupy, we see that adding two
particles reduces d (n) by one, i.e., this choice of d (n) satisfies
Eq. (2).

More generally, following Murthy and Shankar [38], we
can argue that Eq. (3) correctly describes the dimension of
the many-body Hilbert space of the CSM for N = 1 + np,
if we take d (N ) to be the number of cells of size ω avail-
able to a particle added to a system with N particles. To
match Haldane’s assumption of a system with a finite Hilbert
space, we constrain the maximum single-particle energy to
be ε0max = kmaxω. This gives a maximum shifted single parti-
cle energy of εmax = ω(kmax − (1 − g)(N − 1)). If we divide
these shifted energies into cells of size ω, we find a total
of d = kmax − (1 − g)(N − 1) such cells. [Here, we choose
N such that (1 − g)(N − 1) ∈ Z, i.e., N = 1 + np; the cases
that kmax or (1 − g)(N − 1) is not an integer are discussed in
Appendix A]. It follows that

kmax = d + (1 − g)(N − 1). (10)

The total number of many-body states must therefore be given
by the number of ways to arrange N fermions into the first
kmax eigenstates of the 1D simple harmonic oscillator, which
is given by Eq. (3), with d (N ) = d − g(N − 1), where d
describes the number of energy cells available for the first
particle to occupy.

Thus quite generally, we recover the counting appropriate
to HES by treating each energy cell of size ω as comprising
a single quantum state. As noted above, this state can contain
a maximum of ceil(1/g) particles; hence if g = q/p, adding
p particles decreases the number of available states by q, in
agreement with Haldane’s ansatz.

One might wonder whether choosing a cell size of ω is
a fundamental requirement for obtaining a description of the

CSM in terms of particles that obey HES. Suppose we divide
the spectrum into cells with n levels, each of size ngω, with
g = q/p. There are a total of ncell = floor[εmax/(ngω)] + 1 =
floor[(kmax − (1 − g)(N − 1))/ng] + 1 cells available to the
first particle in the system. Thus with this cellulation, we
obtain:

kmax = ng(ncell − 1 + R) + (1 − g)(N − 1), (11)

where R is the remainder of the quantity (kmax − (1 − g)(N −
1))/ng. In this case, we see that the total Hilbert space size
does not satisfy Eq. (1) with d (N ) = ncell − g(N − 1); in-
stead, we must take d (N ) = ng(ncell − 1 + R) − g(N − 1). If
we choose a cell size that is not an integer multiple of ω, such
that ng is nonintegral, then ng(ncell − 1 + R) is not an integer
in general, and cannot be identified with d (1) − 1; hence we
cannot obtain a description of our counting in terms of free
HES particles.

Moreover, suppose we choose cells of size mω, m ∈ Z,
and, as above, consider particle numbers N , where (N − 1)g
is an integer. [In this case mR = mod((kmax − (1 − g)(N −
1)), m) is also an integer]. Then, formally, we recover
Eq. (2) with d (1) − 1 = m(ncell − 1) + mR, and d (N ) =
d (1) − g(N − 1). In particular, the statistical parameter is still
g, even though the maximum number of particles in a cell is
now m ceil (1/g), in contradiction with our basic expectation
of exclusion for HES particles.3 Thus we see that a cell size

3One can easily check that choosing m species of particle in each
cell does not remedy this: taking gαβ ≡ g for all α and β, we would
have

∑
α �dα = −∑

αβ gαβ�Nβ = −mg
∑

β �Nβ , and adding one
particle would remove too many states. Choosing gαβ = gδαβ we
recover the correct change in the total number of available states;
however, when calculating the total Hilbert space dimension for a
given choice of

∑
α Nα , we necessarily over-count, since for ex-

ample we separately count configurations with N1 = N − k, N2 = k
and configurations where N2 = N − k, N1 = k. Taking g = 1/2 and
m = 2, these choices exhaust our options, and we conclude that in
general cells of size mω do not lead to a simple correspondence with
HES.
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FIG. 2. The ground state (3300 . . . ) (a) and an excited state (211200 . . . ) (b) of the ideal gas of HES particles with g = 1/3. Other excited
states can be generated by moving one or more particles up in energy, while respecting the rule that the single-particle energies must be ordered
by increasing pseudospin, as described in the main text.

of ω is the unique correct choice to interpret excitations in the
CSM as a gas of free HES particles.

C. Occupancy constraints of HES particles in the CSM

As observed above, choosing HES quantum states to cor-
respond to energy cells of size ω automatically produces one
constraint on the occupancy of our quantum states: namely,
we can have no more than ceil(1/g) particles in each state.
However, as emphasized by Murthy and Shankar [38], this
is not the only constraint governing how these states can be
occupied. To see why this is so, consider the case of semions
(g = 1/2), in which case the shifted single-particle energies
are ε(k) = k − 1

2 N (k), where N (k) is the total number of par-
ticles with energy less than ε(k). If we enumerate the particles
in terms of increasing energy, then particles 1, 3, 5, . . . have
integer energies (in units of ω), while particles 2, 4, 6, . . .

have half-integral energies. Thus, if there is only one particle
in the first energy cell, then the lowest energy particle in
the second cell must have half-integral energy—and thus the
second cell can only contain a single particle.

For the case g = 1/m, these constraints can be solved
exactly in the following way [37,38]. If ni represents the
number of particles in cell i, the allowed many-body states
of the CSM correspond to sequences of partitions of m, with
an arbitrary number of zeros inserted between each nonzero
element. For example, with g = 1/2 in a system of d = 4
cells and N = 5 particles, we may have (n1, n2, n3, n4) =
(2210), (2201), (2021), (0221), (2111), or (1121), since the
partitions of 2 are [2], [11]. One can check the Haldane for-
mula (3) gives exactly D5(1/2, 4) = 6.

For our purposes, it will be useful to introduce a differ-
ent representation of the allowed occupancy configurations,
which is convenient for the second-quantized formalism
which we will use to study the dynamics of HES particles.
Figure 1 summarizes this picture for the case g = 1/2. We
replace the two energy levels in each cell with a pseudospin
index α = 0(1), represented in Fig. 1 by the upper and lower
rows of states. Thus pseudospin-1 (0) particles have half-
integer (integer) energies. If we enumerate the particles i =
1, 2, . . . in order of increasing energy, then the constraints

can be summarized as follows. (i) If the ith particle is in the
jth cell and has pseudospin 0, the (i + 1)st particle, which
by definition is in the kth cell with k � j, necessarily has
pseudospin 1; (ii) If the ith particle occupies the jth cell and
has pseudospin 1, the (i + 1)st particle, which occupies the
kth cell with k > j, necessarily has pseudospin 0.

For g = 1/m, with m an integer, we can generalize this pic-
ture as follows. We replace the m distinct energies within each
cell of size ω with a pseudospin index α = 0, 1, . . . m − 1,
where particles of the same pseudospin have energies that dif-
fer by an integer multiple of ω. Diagramatically, we represent
this with m chains, instead of the two shown in Fig. 1. Enu-
merating the particles in order of increasing energy, we find
that if the ith particle has pseudospin α, the (i + 1)st particle
must have pseudospin α + 1 mod m. This implies that if the
ith particle has pseudospin α = 1, then the (i − 1)st particle
must be in a cell of lower energy. (By definition, it cannot be
in a cell of higher energy). Similarly, if the ith particle has
pseudospin α = m, then the (i + 1)st particle must be in a cell
of strictly higher energy. For g = 1 (g = 1/m, m → ∞), this
reproduces fermionic (bosonic) exclusion statistics.

Evidently, these constraints ensure that the ground state has
n1 = n2 = nfloor(N/m) = m, with the remainder of the particles
in the floor[(N/m) + 1]st cell. As for the excited states, they
are constructed by moving particles to higher-energy cells,
while respecting the energetic ordering of the pseudospin
indices. In terms of the occupancies ni, this gives exactly the
configurations identified by Murthy and Shankar. Figure 2
shows the example of g = 1/3, d = 3 and N = 4, for which
the allowed states are (310), (301), (031), (211), (121), since
the partitions of 3 are [21], [12] and [111]. One can check
that this agrees with the formula in Eq.(3), which gives
D4(1/3, 3) = 5.

Finally, we extend our description to g = q/p, for which
Ref. [38] did not explicitly solve the constraints.4 Here,
q and p are coprime integers with q < p. In the ground

4See, however, Ref. [37] for a general solution to the periodic
Calogero-Sutherland model, in which eigenstates are labeled by
pseudomomenta rather than oscillator states.
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FIG. 3. The ground state (3232 . . . ) (a) and an excited state (3112 . . . ) (b) of the ideal gas of HES particles for g = 2/5. In this case, there
are five pseudospin chains, or α = 1, 2, . . . , 5, which are labeled in the order of first five particles’ energies in the ground state. The first cell
consists of only three levels, compared to five levels in the case of g = 1/5.

state, the occupancies of the cells first floor(gN ) cells are
(x1, x2, . . . , xq, x1, x2 . . . , xq, x1, x2 . . . . . . ).

Here the repeated block [x1, x2, . . . , xq] is the solution to
the q linear equations:

n∑
i=1

xi = ceil

(
n

p

q

)
, n = 1, 2, . . . , q. (12)

For example, if g = 2/5, we have x1 = ceil(5/2) = 3, and
x1 + x2 = ceil(5), implying that x2 = 2. Thus the ground state
is (323232 . . . ).

Excited states are obtained by increasing εs(k, g) for one or
more particles. Since the particles are identical, we can gener-
ate all such configurations by increasing k for some number of
particles in a way that preserves the particle ordering in energy
space. As a consequence, we need think only of processes in
which a particle changes its energy by an integer amount, i.e.,
where both the pseudospin of each particle, and the ordering
of different pseudospins in energy, are preserved.

The resulting allowed occupancy patterns of a 1D ideal gas
of HES particles with g = q/p can be constructed as follows.
Our elementary building blocks consist of all partitions
of the basic occupancy pattern (x1, x2, . . . , xq ), with zeros
inserted at arbitrary positions in the sequence. Excited states
are obtained by concatenating these elementary building
blocks. For example, if g = 2/5 above, the elementary
building blocks are formed by first choosing one of the
four partitions {[3], [12], [21], [111]} of 3, followed by one
of the two partitions of 2: {[2], [11]}. Explicitly, this gives
[32], [311], [122], [1211], [212], [2111], [1112], [11111].
Excited states are described by concatenating these building
blocks, with zeros inserted at arbitrary locations in the se-
quence. For g = 2/5 and N = 6, the possible concatenations
are [321], [2121], [1221], [11121], [3111], [21111], [12111],
and [111111]. If we take the number of cells d to be 5

the last partition is not allowed, and there are 28 ways of
inserting zeros in the remaining partitions to fully describe
the occupancies of all five cells, matching the prediction of
Eq. (3) that D6(2/5, 5) = 28.

As for the g = 1/m case described above, it is convenient
to introduce a diagrammatic visualization of the allowed occu-
pancy patterns. For g = q/p, for all cells except the first there
are p distinct energies (modulo ω), which we represent with
p possible pseudospin values. The first cell has only ceil(1/g)
possible energies, due to the fact that there are no cells below
it that can be occupied; hence we assign it only ceil(1/g)
pseudospin values. In this representation, the constraints are
as follows. First, when we enumerate the particles in order of
increasing energy, if the ith particle has pseudospin α, then
the (i + 1)st particle has pseudospi α + 1 mod p. In general,
the (i + 1)st particle cannot be in a lower-energy cell than
the ith particle, i.e., if the ith particle is in the jth cell, then
the (i + 1)st particle is in the kth cell with k � j. Further, we
may have k = j only if in the ground state the ith and (i + 1)st
particles are in the same cell. The ground state and one excited
state are shown for the case g = 2/5 in Fig. 3.

In summary, our diagrammatic representation of the
many-body eigenstates of the CSM captures the physics un-
derpinning HES as follows. First, although the underlying
particles in the CSM are fermions, by grouping the energy
levels into cells of size ω, and identifying ni as the occupancy
of the ith cell, we obtain many-body occupancy patterns that
exhibit exact HES. In this description, HES arises due to in-
tercell constraints in the allowed occupancy patterns. Second,
we may conveniently represent the allowed occupancy con-
figurations using a p-leg fermionic ladder, with a pseudospin
index α to keep track of which leg each particle occupies. In
this representation the contstraints can be described straight-
forwardly: for example, an α = 1 particle must be followed
by an α = 2 particle occupying either the same cell or a cell
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FIG. 4. (a) Exact distribution function of an ideal gas of g = 2/3 HES particles at temperature T = ω compared to Wu’s approximation.
The two-cell structure of the ground state (212121......) is not captured by Wu’s approximation. (b) Averaging the exact distribution function
over two cells with both a forward (n̄i = 1/2(ni + ni+1) and backward (n̄i = 1/2(ni + ni−1) two-cell average gives a distribution that matches
well to Wu’s result away from the Fermi level. (c) Averaging over three adjacent cells reduces the magnitude of the oscillations below the
Fermi surface, but does not eliminate them. (d) Difference between the various MCMC averages and Wu’s approximation. The error of each
MCMC data point is 0.003 with 90% confidence.

of higher energy, while an α = p particle must be followed by
an α = 1 particle in a cell of strictly larger energy.

D. Thermodynamics in the limit KBT ∼ ω

The description of the HES Fock space outlined above
allows us to evaluate the partition function for HES particles
exactly at low temperatures KBT ≈ ω using a Markov Chain
Monte Carlo (MCMC) method. Note that our algorithm as-
sumes that all pseudospin levels in the same cell have the
same energy, and is thus a slight simplification of the exact
Calogero-Sutherland model. We now use this to compare the
exact thermodynamics of HES particles with that described by
Wu’s approximation, in the regime KBT ∼ ω where the latter
is not well-controlled.

Before discussing our exact results, it is worth review-
ing what can be deduced about thermodynamics of HES
particles on general grounds, and from Wu’s approximation
[23,28,49,51,53,55]. First, the distribution function of HES

particles (with 0 < g � 1) is necessarily similar to the Fermi-
Dirac distribution function, in the sense that both have a Fermi
level, with states far below Fermi level fully occupied, and
states far above it empty. This simply follows from the exis-
tence of a maximum number of particles per cell. Second, the
existence of this Fermi level ensures that the low temperature
specific heat scales linearly with T , since only states within
KBT of the Fermi surface can be thermally occupied, with
an average energy increase proportional to KBT [49,55–57].
Both of these features are apparent in the numerical results
for g = 1/2 and 2/3, shown in Figs. 4–6.

However, our numerical results also highlight some fea-
tures not captured by Wu’s approximation, as it assumes that
the number of particles in each cell is large. Notably, for 1/g
nonintegral, the occupancy of energy cells below Fermi en-
ergy is not uniform, because the ground state does not consist
of a uniform occupation within each cell. Fig. 4(a) shows this
difference for g = 2/3, where the ground state is given by
(2, 1, 2, 1, 2, 1, . . . ). Wu’s approximation cannot resolve this
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FIG. 5. (a) Exact distribution functions of g = 1/2 HES particles with T = ω calculated using MCMC, compared to Wu’s distribution
function, and the distribution function of spinful fermions. (b) The absolute values of the differences between the MCMC distribution function
of HES particles and Wu’s approximation, shown for the exact MCMC distribution, as well as forward (n̄i = (ni−1 + ni )/2) and backward
(n̄i = (ni + ni+1)/2) two-cell averages and a three-cell average (n̄i = (ni−1 + ni + ni+1)/3). (c) Heat capacity vs temperature (both in units of
ω) with linear fit (R2 = 0.985) for g = 1/2. The error of MCMC in this case is 0.003 [(a) and (b)] and 0.06 (c) with 90% confidence.

fine structure in the occupancy of adjacent energy levels, and
instead predicts a uniform plateau at the height of the average
occupation number. We can resolve the discrepancy for states
below the Fermi level by averaging the MCMC results over
an even number of cells [Figs. 4(b) and 4(c)]; this leads to
a distribution that resembles Wu’s both well below and well
above the Fermi surface and shows quantitative differences
near the Fermi energy. (Averaging over an odd number of
adjacent cells [Fig. 4(c)], in contrast, does not remove the
discrepancy.)

Moreover, for every g �= 0, 1, in the regime KBT ∼ ω we
expect quantitative differences with Wu’s prediction. This is
because in this regime, the number of particles in each cell is
not large, as a cell’s energetic extent must be small relative
to KBT . Figure 5(b) shows the differences between the two

FIG. 6. Energy expectation values of g = 1/2 and g = 2/3 vs
temperature, both measured in units of ω. The results for both values
of g agree to within the statistical error. Error bars indicate a 90%
confidence interval.

distributions at energies near the Fermi level for g = 1/2,
which is not greatly reduced by averaging over multiple cells.
However, even in this regime such differences are small for all
values of g that we have examined.

A final interesting feature not captured by Wu’s approxi-
mation is that for fixed temperature T , the energy expectation
values are the same for different species of HES particles
(shown for g = 1/2 and g = 2/3 in Fig. 6), where we fix the
ground state energy to be zero. We will elaborate on the origin
of this phenomenon in Sec. V, where we show that this holds
for all different values of g. This leads to a surprising result:
the thermal energy of the ideal gas of HES particles, relative
to the ground state, doesn’t depend on g.

IV. SECOND QUANTIZATION OF HES PARTICLES

In order to study the dynamics of (open) systems with
HES, it is convenient to use a second-quantized formalism
appropriate to the constrained Hilbert space. Here we de-
velop such a formalism, based on the exact description of the
constrained Hilbert space described in Sec. III C. Several pro-
tocols for second quantization of HES particles [58–61] have
been proposed; however many of these do not fully capture
the constraints on Fock space. Specifically, Ref. [59] intro-
duces a probabilistic treatment of the exclusion constraints
or g = 1/m, treating the occupancy probabilities of different
energy levels as independent, and hence does not exclude
configuration such as | . . . m, m − 1, m . . . 〉, which we have
shown are not in the true many-particle Fock space. The
construction of Refs. [58] and [60] similarly respects the gen-
eralized Pauli exclusion, but does not discuss the structure of
the interlevel occupancy constraints. Reference [61] discusses
a second quantization specific to the Calogero-Sutherland
model, which does fully capture the constraints in Fock space.
The framework we present here is equivalent to theirs, but
has the advantage that it can be interpreted straightforwardly
in terms of free fermion operators and constraints, which we
will use to understand the impact of constraints on relaxation
dynamics in the next section.
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A. Basic formulation: Definitions of states and operators

As described above, the HES particles of the Calogero-
Sutherland model with g = q/p can be described using a p-leg
(or p pseudospin) fermionic ladder. Our second quantization
procedure thus begins with the set of fermion creation and
annihilation operators f α

i , ( f α
i )†, where i indexes the energy

of the cell (εi = iω), and α is the pseudospin. To obtain a
second-quantized representation of HES particles, we must
account for two differences relative to ordinary fermionic
ladders. First, the number operator Ni associated with HES
particles in cell i is described by ignoring the fermion pseu-
dospin α, and simply counting the total number of fermions
in a given cell i:

Ni =
p∑

α=1

n(α)
i , (13)

where n(α)
i = f α†

i f α
i is the fermion number operator for the

state in cell i with pseudospin α.
Second, we must impose the occupancy constraints on our

Fock space, which we do by projecting states in the fermionic
Fock space onto states in the constrained Fock space. Thus a
state |�〉h in the Fock space of HES particles can be written
as, for g = q/p,

|�〉h =
∏
⊗i

|Ni〉 = P
∏
⊗i

∣∣n(1)
i , n(2)

i , . . . , n(p)
i

〉
, (14)

where P is a projector onto states obeying the HES occupancy
constraints.

To describe the possible operators acting on this Fock
space, it is useful to introduce the creation and annihilation
operators ĥ†

i , ĥi:

hi =
p∑

α=1

f (α)
i , h†

i =
p∑

α=1

f (α)†
i . (15)

The operator hi creates a superposition of all possible ways
that one fermion can be added to cell i, before imposing the
constraints. Physical operators acting within the constrained
Fock space of HES particles can be expressed in terms of
linear combinations of operators On,m, where On,m is a product
of n fermion creation operators and m fermion annihilation
operators, projected to the constrained Hilbert space:

On,m = Ph†
i1

h†
i2

. . . h†
in

h j1 h j2 . . . h jm P

=
∑
{αk}

P f
(αi1 )†
i1

f
(αi2 )†
i2

. . . f (αin )†
in

f
(α j1 )
j1

. . . f
(α jm )
jm

P. (16)

Here the sum in the second line is over all possible pseu-
dospins, and as above, P projects onto states satisfying the
constraint.

For example, the HES number operator N̂i can be expressed
as

Ni ≡ Ph†
i hiP =

p∑
α=1

P f (α)†
i f (α)

i P +
∑
α �=β

P f (α)†
i f (β )

i P. (17)

The second term is zero because the constraints do not al-
low pseudospin-changing processes. The first term does not
change the occupancy of any pseudospin level, and thus is

always nonzero provided it acts on a state within the con-
strained Fock space. Thus we recover the expression above,
Ni = ∑p

α=1 n(α)
i P. [In Eq. (13), we have dropped the projector,

as we are implicitly assuming that Ni acts only on states within
the constrained Fock space.]

B. Tools for calculating matrix elements of HES operators

For practical purpose, we would like to derive a general
expression describing how an arbitrary second-quantized op-
erator of HES particle acts on states in the constrained Fock
space. This must be done with care, since∑

{αk}
P f (α1 )†

i1
f (α2 )†
i2

. . . f (αn−1 )
in−1

f (αn )
in

P

�=
∑
{αk}

P f (α1 )†
i1

P f (α2 )†
i2

P . . . P f (αn−1 )
in−1

P f (αn )
in

P. (18)

For example, the O1,1 operator Ph†
i hiP cannot be expressed

as a product of an O1,0 operator and an O0,1 operator. This
is because such products have the form Ph†

i PhiP, but PhiP =∑
α P f α

i P is zero unless hi annihilates a particle in the highest
energy occupied cell, since in all other cases it fails to preserve
the pseudospin-energy ordering. On the other hand, Ph†

i hiP
is nonzero acting on any state in which there is at least one
particle in the ith cell, irrespective of the occupancy of cells
with higher energy.

Here we describe some tools to quickly determine whether
an arbitrary operator P f (α1 )†

i1
f (α2 )†
i2

. . . f (αn−1 )
in−1

f (αn )
in

P acting on
any state |�〉h is zero or not. If it’s nonzero, the associ-
ated matrix elements are the same as those of the relevant
fermionic operator. We will first consider single-particle pro-
cesses, described by operators of the form P f (α)†

i f (β )
j P. These

are the processes relevant to relaxation dynamics, which we
will study in Sec. V. We then briefly comment on the more
general case.

1. Single-particle processes

We begin by considering operators of the form
P f (α)†

i±1 f (β )
i P, with (g = 1/2, α, β = 1, 2), which describe

processes that “hop” fermions between cells i and i + 1,
taking a many-body state of energy E to one with energy
E ± ω. Within the constrained Fock space, such processes
must satisfy two conditions. First, we require that α = β.
This is because for α �= β the resulting final states do not
obey the correct ordering of the pseudospin relative to energy.
Second, in order to maintain the correct pseudospin order, an
α = 1 fermion cannot hop past an α = 2 fermion, and vice
versa. More specifically, an α = 1 fermion in the ith cell can
move to the (i + 1)st cell only if n(2)

i = 0; it can move to the
(i − 1)st cell only if n(2)

i−1 = 0. Similarly an α = 2 fermion in
the ith cell can move to the (i + 1)st cell only if n(1)

i+1 = 0, and
to the (i − 1)st cell only if n(2)

i = 0. For example, in Fig. 1(a),
the α = 1 particle in cell 2 cannot hop to cell 3, while in
Fig. 1(b), the α = 2 particle in cell 4 cannot hop to cell 3.
(In contrast, the α = 2 particle in Fig. 1(a) [α = 1 particle in
Fig. 1(b)] can hop up (down) in energy.)

The remaining matrix elements of the oper-
ator P f (α)†

i±1 f (α)
i P, when acting on states |�〉h ≡
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FIG. 7. In single-particle processes with g = 1/2, the α = 1 particle with energy εi can only move inside a box whose boundary is fixed
by the nearest α = 2 particles. In the example shown, these have energies εi+1 and εi−2, and the box is given by εi−2 < ε � εi+1. Similarly, an
α = 2 particle of energy ε j is constrained to move inside a box whose boundaries are fixed by the positions of the nearest α = 1 particles. In a
configuration where these have energies ε j−1 and ε j+2, this box includes the levels ε j−1 � ε < ε j+2.

P |. . . , Ni, Ni+1, . . .〉 = P |. . . , n(1)
i , n(2)

i , n(1)
i+1, n(2)

i+1, . . .〉, can
be obtained by dropping the projectors P and using the usual
fermionic operator relations. For example,

P f (1)†
i+1 f (1)

i P
∣∣. . . , n(1)

i , n(2)
i , n(1)

i+1, n(2)
i+1, . . .

〉
= (−1)n(2)

i n(1)
i

(
1 − n(1)

i+1

)
P

∣∣. . . , n(1)
i

− 1, n(2)
i , n(1)

i+1 + 1, n(2)
i+1, . . .

〉
(19)

= n(1)
i

(
1 − n(1)

i+1

)(
1 − n(2)

i

)
P

∣∣. . . , n(1)
i

− 1, n(2)
i , n(1)

i+1 + 1, n(2)
i+1, . . .

〉
. (20)

In the last line, we have used the fact that, if the initial con-
figuration is allowed by the constraints, the hopping process
creates an allowed configuration only if n(2)

i = 0; this ensures
that the matrix element is always positive. Similar expressions
hold for the α = 2 process and for hopping processes to cells
of lower energy (see Appendix B).

We can now straightforwardly generalize this analysis to
processes of the form P f (α)†

j f (β )
i P, and general g. First, as

above, the operator is nonzero only if α = β. Second, pro-
cesses in which a particle of pseudospin α hops past a particle
of pseudospin α ± 1 fail to preserve the order of pseudospins
relative to energy. Here our definition of “past” includes a
particle of lower (higher) pseudospin in the same cell for
processes that decrease (increase) the energy. In other words,
we find that single-particle processes can never hop a particle
past any other particle. As a consequence, the matrix elements
of nonvanishing single-particle operators are always 1, as they
never exchange fermions. In Appendix B, we give an example
of how the above rules can be used to compute Ph†

p+1hpP |�〉h
for g = 1/3.

A convenient way to describe the allowed single-particle
hopping processes is to define a “box” for each particle. The
left (right) boundary of the box is fixed at the position of
the nearest particle on the left (right), which necessarily has
pseudospin α − 1 (α + 1) modulo p for g = q/p. The hopping
constraints for single particle processes can then be viewed as
a constraint that the particle cannot hop past the boundaries of
this box. (An example is shown in Fig. 7.) We define the box
number  of a particle of pseudospin α by counting the num-
ber of particles with the same pseudospin, but lower energy.
Enumerating the particles in order of increasing energy, the
1st p particles have box number  = 1, the 2nd p particles
have box number  = 2, and so on. Because each particle

can hop only within its box, these box numbers—as well
as the pseudospin ordering within each box—are necessarily
conserved under any dynamics that respects the constraints.

It is straightforward to see that this description captures
the structure of excited states described in Sec. III C. Recall
that the ground state of ideal gas of g = q/p HES particles
is described by the occupancy pattern (x1, x2, . . . , xq ) (x1 +
x2 + · · · + xq = p), repeated for all cells below the Fermi
level (except possibly the last, which may be partially oc-
cupied). The excited states are obtained by moving particles
above the Fermi level while conserving both the pseudospin
ordering in each box and the box number of each particle—in
other words, they are obtained by moving the boundaries of
each box while preserving the particle ordering. This leads
to occupancy patterns obtained by concatenating the integer
partitions of (x1, x2, . . . , xq ) and inserting zeros at arbitrary
points in the sequence.

2. Multiparticle processes

We now turn to more generic particle-
number-conserving operators, of the form On,n =
P

∏
f (α1 )†
i1

. . . f (αn )†
in

f (β1 )
j1

. . . f (βn )
jn

P. For general g = q/p,
the number of particles of each pseudospin must be
conserved; otherwise, the pseudospin-energy ordering cannot
be preserved. Further, suppose that our operator destroys a
set of particles with pseudospin {αk}, and box numbers {k}.
There are two possibilities: first, our operator could delete
an integer number of boxes. The resulting occupancy pattern
will also satisfy the constraints, and creation operators can
then reinsert complete boxes at arbitrary energies, as long
as they do not “chop up” any of the existing boxes. Second,
our operator could annihilate only some of the particles
in box i. In this case, the resulting occupancy pattern is
not in the constrained Fock space. To ensure the final state
satisfies the occupancy constraints, acting with the creation
operators must fill the holes in box i. In other words, a
general particle-number-conserving operator can be viewed
as describing multi particle hopping processes in which
each particle’s pseudospin and box number are conserved.
However, unlike the case of single-particle-hopping operators
P f (α)†

j f (α)
k P, the matrix elements of multiple-particle-hopping

operators can involve an odd number of fermion exchanges,
and thus can be negative. Figure 8 shows some examples of
two-particle-hopping processes for g = 1/2.
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FIG. 8. Allowed [(a),(b), and (d)] and forbidden (c) two-particle hopping process. (a) P f (1)†
i+1 f (1)†

i+3 f (1)
i+4 f (1)

i P and (b) P f (1)†
i+3 f (1)†

i+1 f (1)
i+4 f (1)

i P
are allowed two-particle processes connecting the same initial and final states, which differ by a relative − sign. (c) represents an illegal
two-particle hopping, because the final state is not in the Fock space of HES particles; in contrast, process (d), P f (2)†

i+1 f (1)†
i+2 f (1)

i+3 f (2)
i P, which

preserves the pseudospin-energy ordering, is allowed.

Operators that do not conserve particle number can be
expressed as a product of a particle-number-conserving op-
erator, times some numbers of either only creation or only
annihilation operators, such as f (α)†

i f (β )†
j and f (α)

i f (β )
j . The

whole operator acting on a state is nonzero only if both com-
ponents of the operator acting individually on the state give
nonvanishing results. For the part consisting of only creation
(only annihilation) operators to be nonzero acting the state, it
must either create (annihilate) a set of particles with energy
strictly greater than the existing (remaining) particles in the
system, or insert (delete) a complete box into the system.

The above rules are sufficient to determine whether a
general operator of the form P f (α1 )†

i1
f (α2 )†
i2

. . . f (αn−1 )
in−1

f (αn )
in

P an-
nihilates a state |�〉h. If |�〉h is not annihilated, the relevant
matrix element can be calculated from the usual calculus of
the fermionic operators f (α)

i , f (β )†
j .

V. DYNAMICS

In the previous section, we have shown how HES in the
Calogero-Sutherland model is intimately linked to the emer-
gence of constraints in the allowed occupancy configurations
of the many-body Hilbert space. We have also shown that
these constraints have a minor impact on properties in ther-
modynamic equilibrium.

We now turn to an area where the constraints can be ex-
pected to have a more noticeable physical impact, namely,
dynamics. Because the Calogero-Sutherland model is inte-
grable, here we will study open-system dynamics, in which
an ideal gas of HES particles is coupled to an external bath.
Our main focus will be on understanding how the constraints
affect relaxation times in our HES system, relative to systems
of free fermions. As one might expect, we find that the con-
straints typically slow relaxation times relative to fermionic
systems—though, surprisingly, the magnitude of this effect is
independent of g. We also find an interesting exception: when
the bath can only increase or decrease the energy of the system
by ω, we show that for any rational g ∈ (0, 1], the relaxation
rate is equivalent to that of an ideal gas of spinless fermions.

Here, we analyze energy relaxation in HES systems using
the Lindblad formalism, which successfully models relax-
ation of energy (among other observables) provided that (1)
the system-bath coupling is weak compared to the scales
of both system and bath Hamiltonains, and (2) the bath is
well-approximated as a thermal resevoir, meaning that the
relaxation timescale of the system is long compared to the
correlation time of the bath. In practice, these conditions
are experimentally realized in a number of cold-atom sys-
tems (see, e.g., Refs. [62,63]); here we assume a bath and
system-bath coupling with these properties, and investigate
the resulting energy relaxation dynamics of HES particles.
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A. Review of the Lindblad formalism

We first briefly review the Lindblad formalism (see
Ref. [64] for a pedagogical overview). Suppose that our ideal
gas of HES particles is coupled to an external (bosonic) bath,
via the Hamiltonian:

H = HS + HB + HBS =
∑

i

εiPh†
i hiP

+
∑

j

ε jb
†
jb j + λ

∑
i,k

(b†
kPh†

i hi+kP + H.c.), (21)

where εn = nω (n = 0, 1, 2 . . . ), Ph†
i hiP and Ph†

i hi+kP are
given by Eq. (16), and b†

j (b j) creates (annihilates) a boson
with energy ε j . For simplicity, we assume that the coupling
constant λ is independent of the energy level. It is convenient
to split the interaction between the system and the bath into
different channels according to the value of k. For instance,
for the channel of k = 1, particles in the ideal gas system can
only move up or down by one energy unit ω.

In general, when the coupling is weak and the bath can be
treated as a thermal resevoir (which we will assume here), the
time evolution of the density matrix of our system can be de-
scribed using the Lindblad formalism [65]. For a Hamiltonian
of the form in Eq. (21), the Lindblad equation has the form

d

dt
ρ = −i[H0, ρ]

+
∑

k, j,a=±
�ka

[
Lk jaρL†

k ja − 1

2
{L†

k jaLk ja, ρ}
]
, (22)

where H0 is the Hamiltonian of the ideal gas system, and the
sum runs over all energy levels j and interaction channels
k. Here, a = + for a process that creates excitations in the
system, while a = − for a relaxation process. Explicitly, the
associated Lindblad operators are

Lk j+ = Ph†
j+kh jP, Lk j− = Ph†

j h j+kP. (23)

The rates �k+ and �k− are given by

�k+ = �0nB(kω), �k− = �0(1 + nB(kω)), (24)

where �0 = 2π |λ|2D (D is the density of states in the bath)
and nB(ε) is the Bose-Einstein distribution function.

In practice, we will solve the Lindblad equation (22) by
considering a finite set {k � kmax} of interaction channels
between the system and bath, such that the allowed transi-
tions have energy kω, with k � kmax. For systems where only
energy cells within a finite distance of the Fermi level can
deviate from their ground-state occupation numbers, we can
solve Eq. (22) numerically by simulating a system with a finite
number of energy cells. We expect that the dynamics will be
well-approximated by such a finite-level system when βω is
larger than unity, such that excitations in the bath are expo-
nentially suppressed with k, and the equilibrium distribution
of our HES particles deviates from the ground state only on a
finite number of levels near the Fermi energy.

B. Lindblad relaxation dynamics of HES systems

To illustrate how constraints can have a dramatic qualita-
tive impact on relaxation processes, we begin with a somewhat

contrived example. Suppose that, rather than coupling our
system to a many-body thermal bath, we couple it to a system
of oscillators with a discrete spectrum, such that the allowed
transitions in the bath can change the energy only by multi-
ples of 2ω. We initialize our HES system in a high-energy
many-body eigenstate for which the difference in energies
between any two successive occupied levels is at most 2ω.
In terms of the underlying fermions, such states correspond
to clusters of some number l of consecutive occupied or-
bitals, separated by a single unoccupied orbital. Since any
given fermion can change its energy only by a multiple of
2ω, relaxation processes require “hopping” a fermion past
another fermion in energy space, i.e., by having the second-
lowest energy particle in a given cluster decrease its energy
by 2ω. However, this transition is not allowed for HES parti-
cles, since it fails to respect the pseudospin-energy ordering;
hence this particular initial configuration is stable. Thus,
if we allow for an appropriately fine-tuned bath (or fine-
tuned couplings to the bath), the constraints associated with
HES can lead to high-energy excited states that cannot relax
at all.

This phenomenon is illustrated for g = 1/2 and 2/3
in Figs. 9(b) and 9(d), which compare the time evolution
of these two HES systems to that of spinless fermions
(g = 1), with only the k = 2 channel (i.e., only transitions
that change the energy by 2ω). In Fig. 9(b), the system
is initiated in a random initial state with energy 5ω. In
Fig. 9(d), we show the time evolution of three of these
states, which for k = 2 are completely unable to relax
for HES particles due to the constraint. For g = 1/2,
in our particle occupancy representation, these excited
states are [. . . 2221102000 . . . ], [. . . 2221111000 . . . ]
and [. . . 222122000 . . . ], with the ground state being
[. . . 22222000 . . . ]. For g = 2/3, with ground state
[. . . 212121000..], they are [. . . 21210111000 . . . ],
[. . . 21201201000 . . . ] and [. . . 2111121000 . . . ]. Though
the similarities between these states are not apparent in
the occupancy representation that we use here, in Sec. V D
we will introduce an energy-based representation of the
many-body states, in which these correspond to the same
states, [221]e, [2111]e, and [11111]e. We also show the time
evolution of the corresponding states for spinless fermions,
which in occupancy representation are [. . . 11101011000 . . . ],
[. . . 111011101000 . . . ] and [. . . 111011111000 . . . ]. In
the channel k = 2, the fermionic states can respectively
relax to [. . . 11101000 . . . ], [. . . 1110101000 . . . ] and
[. . . 11101000 . . . ] by hopping a fermion past another fermion
of lower energy. (Since the initial energy is an odd multiple
of ω, clearly for k = 2 the system cannot relax to its true
ground state regardless of the dynamics). For HES particles,
in contrast, there are no allowed relaxation transitions of
energy 2ω, and the configurations are stable. Evidently,
there are allowed transitions of energy ω, and coupling to
such transitions allows our HES systems to relax, as seen
in Figs. 9(a) and 9(c). In this sense, the stability of these
configurations results from a fine-tuning of the system-bath
coupling.

Figure 9 also illustrate a second striking feature of relax-
ation in HES systems. Panels (a) and (c) show relaxation for
two different initial configurations, for g = 1, 1/2, and 2/3,
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FIG. 9. Energy expectation value versus time at temperature T = 0.01ω. In the top two panels, the initial density matrix is a random one
in the subspace of E = 5. In the bottom two panels, we start with a random density matrix in the subspace spanned by the three states [221]e,
[2111]e and [11111]e.(This notation of states are introduced in Sec.(V D)). In (a) and (c), the only interaction channel turned on is k = 1. In
(b) and (d), the only interaction channel turned on is k = 2. In all four cases, the curve for g = 1/2 exactly falls on the top of the curve for
g = 2/3. Time and energy are in units of 1/ω and ω, respectively, and the rate is taken to be �0 = 10ω.

in the case that the only allowed transitions have energy ω

(i.e., k = 1). Strikingly, the relaxation dynamics is identical
for all three systems, in spite of their very different constraints.
Panels (b) and (d) show relaxation for these same values of g
and choices of initial states, but now with the only allowed
transitions having energy 2ω (i.e., k = 2). In this case, we see
that spinless fermions (g = 1) relax more quickly than HES
particles, but that the relaxation dynamics is identical for g =
1/2 and 2/3. In the remainder of this section, we will show
that this universal relaxation dynamics is a ubiquitous feature
of HES particles, and explain why, for k = 1, it corresponds
to that of spinless fermions.

Before doing this, however, it is worth emphasizing in what
sense the relaxation dynamics of HES particles is “slow.” A
useful benchmark for the effect of particle statistics on dy-
namics is to compare the relaxation time of a spinful fermion
system and a HES system of semions (i.e., g = 1/2), since
both allow at most two particles in a given energy cell. This
is shown for T � ω in Fig. 10, for kmax = 1 and 2 (note that
the latter includes both k = 1 and k = 2 channels), which also
show the time evolution of the occupancy of a few levels near
the Fermi level. Figure 11 shows the intermediate temperature
regime, T = ω, again for kmax = 1 and 2. In all cases, energy
relaxes more slowly for semions than spinful fermions. In
addition, these figures again exhibit the qualitative behavior
described above. For kmax = 1, the relaxation rates of semions
are identical to spinless fermions (which in turn necessarily re-
lax more slowly than spinful fermions). For kmax = 2, semions

relax more slowly than spinless fermions, which in turn relax
more slowly than spinful fermions.

C. Relaxation rates from relaxation paths

To explain the qualitative features of Figs. 9–11, we now
review how the number of relaxation paths available to a
system at a given time t determines its instantaneous relax-
ation rate γ (t ). Our analysis focuses on the low-temperature
regime T � ω, where excitation processes can be neglected.
In the next section, we will compare how HES occupancy
constraints affect the number of such relaxation paths, relative
to those available for spinless fermions, thereby quantifying
the impact of constraints on relaxation dynamics.

We can see that the energy relaxation shown in Figs. 9–11
depends on the number of available relaxation paths in two
ways. First, the dynamics is not described by a single re-
laxation rate. Rather, it has the form E (t ) = E0 exp[−β(t )],
where the instantaneous dissipation rate γ ≡ dβ/dt varies
with time. It is convenient to convert this time dependence to a
dependence on the energy E (t ), and plot γ = −d ln(E (t ))/dt
vs E (t ) for the various conditions, as shown in Fig. 12.
Moreover, the effective dissipation rate at a given energy
depends not only on the energy, but also on the initial state
of the system. This is shown in Fig. 13, which plots γ =
−d ln(E (t ))/dt vs E (t ) for kmax = 1 and kmax = 2 at T =
0.01ω with different initial states. Each line represents the
dynamics of a single initial many-body state. We see that
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FIG. 10. Time evolution of energy and occupation numbers near the Fermi level in the low- temperature limit (T = 0.01ω), for both
kmax = 1 (a single relaxation channel), and kmax = 2 (energy changes of ω and 2ω are allowed). Time and energy are shown in units of 1/ω

and ω, respectively. The initial state has six particles fully occupying the cells of energy 3ω, 4ω, and 5ω, with the lowest energy level being 0.
The rate �0 = 10ω. (a) Occupation number of the level just below the Fermi level vs time. (b) Occupation number of the Fermi level vs time.
(c) Occupation number of the level just above the Fermi level vs time. (d) Total energy vs time.

the curves tend to agglomerate after some dependence on the
initial state, but do initially show a significant dependence on
the specific choice of initial state. Together, Figs. 12 and 13
clearly show that how quickly the system relaxes depends on
its current configuration.

This dependence arises because relaxation processes must
satisfy the occupancy constraints, which restrict the number
of paths available between a given state of total energy E ,
and states of total energy E − ω. We illustrate this with a
simple example. Consider a two-level system (with single-
particle energy levels 0 and ε), containing either two spinful
fermions, or two semions with g = 1/2 (see Fig. 14). Suppose
both systems are initially in the state of energy 2ε, with
both particles in the excited state. For spinful fermions there
are two available relaxation paths between this initial state
and the ground state, as either the spin up or the spin down
fermion may relax first. For semions, on the other hand, the
semion with pseudospin α = 1 must relax first, and there
is only one possible relaxation path. If the probability of
interacting with the bath per unit time is the same for all
particles, then the energy of the fermionic system will initially
approach the ground state at twice the rate as for the semionic
system.

To quantify the relationship between relaxation paths and
the instantaneous relaxation rate γ (t ) more precisely, we con-
sider initializing our system in an eigenstate. In this case, the

density matrix is diagonal in the energy eigenbasis, and the
time evolution of the vector �ρ of diagonal elements of density
matrix (defined by �ρ · î ≡ ρii) is described by

d �ρ
dt

=
( ∑

k,a=±
�k,aAk,a

)
�ρ. (25)

Here, Ak,± is a lower (upper) triangular matrix encoding the
relaxation (excitation) paths for channel k. The off-diagonal
entry (Ak,±)βα = 1 if a process in which a single particle
moves k units down (up) in energy leads to a transition be-
tween eigenstate α and eigenstate β, and is 0 otherwise; these
correspond to processes described by Lk jaρL†

k ja in Eq. (22).
The diagonal entry −(Ak,±)αα describes the total number of
transitions out of eigenstate α by moving a single particle
down (up) in energy by k energy levels; such processes are
described by the anti-commutator in Eq. (22). This ensures
that all columns in Ak,± sum to zero, and Eq. (25) conserves
|�ρ| (i.e., conserves probability).

If the matrix B ≡ ∑
k,a=± �k,aAk,a, and {�xa} is nondegen-

erate, such that its eigenvectors span the whole Hilbert space,
Eq. (25) is solved by

�ρ(t ) =
∑

a

cae−λat �xa, (26)
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FIG. 11. Time evolution of energy and occupation numbers near the Fermi level in the intermediate-temperature limit (T = ω), for both
kmax = 1 and kmax = 2. (a) Occupation number of the level just below the Fermi level vs time. (b) Occupation number of the Fermi level vs
time. (c) Occupation number of the level just above the Fermi level vs time. (d) Total energy vs time. The initial state and all other parameters
are the same as in Fig. 10.

FIG. 12. Energy dissipation rate γ ≡ −d ln(E (t ))/dt vs energy E (t ), as extracted from the time-dependent relaxation dynamics of both
spinful fermions and semions. (a) T = 0.01ω, kmax = 1. (b) T = 0.01ω, kmax = 2. (c) T = ω, kmax = 1. (d) T = ω, kmax = 2. The energy of
the many-body ground state is assumed to be zero. Both quantities are plotted in units of ω. The initial state and all other parameters are the
same as Fig. 10.
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FIG. 13. Energy dissipation rate γ ≡ −d ln(E (t ))/dt vs energy E (t ), for g = 1/2 (blue) and spinful fermions (red), with (a) kmax = 1 and
(b) kmax = 2 at T = 0.01ω. Here we compare curves resulting from the time evolution of several different initial states, including states with
different initial energies (corresponding to the largest projection of data points onto the x axis), and different initial states with the same total
energy. Note that the y-axis scale in (a) goes from 0 to 3, while in (b) it goes from 0 to 8. The rate �0 = 10ω.

where {ca} specifies a choice of initial eigenstates, {−λa}
are the eigenvalues of B are the corresponding eigenvectors.
Since B conserves probability, one of the eigenvalues is zero;
the corresponding eigenvector gives the steady-state density
matrix, for which the energy takes on its value in thermal
equilibrium. Moreover, in the low temperature limit of interest
here, B is a lower-triangular matrix. In this case, we have

−λa = Baa =
∑

k

�k,−np(a, Ea − kω), (27)

where np(a, Ea − kω) is the total number of states of energy
Ea − kω that can be reached from state a using single-particle

FIG. 14. (a) Four possible states of two spinful fermions in a two-
level system. (b) Three possible states of two semions in a two-level
system. Starting with the excited state (1), spinful fermions can go
through either state (2) or state (3) to relax to ground state (4), while
semions can only reach ground state (3) through state (2).

processes. In other words, −λa is given by the total number of
relaxation paths from a to any state of lower energy, weighted
by the corresponding decay rates �k,−.

We can use Eq. (26) to solve for the instantaneous re-
laxation rate γ (t ) as follows. Defining �ε as a row vector of
energies in the basis used to construct �ρ, we have

〈E (t )〉 = �ε · �ρ(t ) = �ε ·
∑

a

cae−λat �xa ≡
∑

a

caEa(t ), (28)

where Ea(t ) = �ε · �xae−λat is a single dissipation mode associ-
ated with eigenvector �xa. The instantaneous relaxation rate is
γ (t ) ≡ −d ln(〈E〉)/dt thus given by

γ (t ) =
∑

a caEa(t )λa∑
a caEa(t )

. (29)

Equations (27) and (29) quantify how the instantaneous relax-
ation rate is determined by the number of relaxation paths into
and out of of each state a.

For a given initial configuration in the low temperature
limit, the total energy E = E (t ) decays monotonically with t ,
such that we can express t in terms of the average energy E to
obtain γ = γ (E ). In Appendix C, we use this fact to estimate
how relaxation rates of channels k = 1, 2, and 3 depend on
energy at low temperatures for very high-energy initial states.

D. Universal Lindblad dynamics of HES

Having argued that differences in relaxation rates stem
from differences in the number of available relaxation paths
in the presence of constraints, we now focus on understanding
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how the number of relaxation paths available to a particular
system depends on the HES parameter g. We will show that
for all rational g �= 0, 1 the number of relaxation paths is
universal. In other words, there is a universal relaxation rate
common to all HES systems. We further show that with a sin-
gle interaction channel k = 1 this relaxation rate is identical to
that of spinless fermions, while for k > 1 HES systems gener-
ically have slower relaxation rates than spinless fermions. This
explains the striking dynamics observed in Fig. 9.

To establish this universality, we first show a one-
to-one correspondence between ordered integer partitions
[x1, x2, . . . xn]e (x1 � x2 � · · · � xn) and many-body eigen-
states of both HES particles and spinless fermions. (Note
that this representation of the excited states is distinct from
that of Murthy and Shankar [38] described in Sec. III C.) In
both cases, we set the energy of the many-body ground state
to zero, and take the single-particle spectrum to consist of
discrete energy levels εi, with εi+1 − εi = ω. We assign an
index i to each particle in the many-body ground state as
follows. First, particles in cells farther from the Fermi surface
have higher index; for g = 1/p, i = 1, . . . , p for particles in
the first cell below the Fermi surface, and so on. Second, for
particles in the same cell, particles with higher pseudospin
have lower index. Then a many-body excited state can be
described by a sequence of integers [x1, x2, . . . xn]e, where xi

indicates how much energy the ith particle has gained relative
to the many-body ground state, in units of ω– i.e., particle 1
moves up by x1ω, particle 2 moves up by x2ω, etc. The energy
E of the corresponding excited state is given by E = ω

∑
i xi

– i.e., [x1, x2, . . . xn]e is an ordered integer partition of E/ω.
Figure 15 shows three states [3]e, [21]e, and [111]e with total
energy 3ω for g = 1/2.

Clearly, all ordered integer partitions of m give excited
statess with energy mω. Moreover, this correspondence is
one-to-one: every excited state with energy mω corresponds
to an ordered integer partion of m. To obtain excited states
with energy mω above the ground state, the energy mω must
be distributed among some number of excited particles, i.e.,
the excited state is necessarily described by some partition of
m. For g ∈ (0, 1), however, the HES occupancy constraints
ensure that this partition must be ordered, since every ex-
cited state must respect the pseudospin ordering, and hence is
equivalent to a configuration that can be obtained by exciting
particles from the ground state such that the ordering of their
energies is preserved, i.e., any particles of index i gains at least
as much energy as every particle of index j > i.5 For g = 1,
or spinless fermions, there is no pseudospin, and hence no
ordering constraint. However, since only states corresponding
to distinct occupancy patterns of excited levels are distinct, not
every partition of m describes a distinct excited state. Indeed,
since every occupancy pattern can be obtained by exciting
particles from the ground state while preserving the ordering
of their energies, each distinct excited state can be identified
with an ordered partition of m. Thus, for any g ∈ (0, 1], we

5In more detail, this ordering can be violated only by permuting
entire cells’ worth of particles. However, as for spinless fermions,
any such permutation leads to an occupancy that is identical to that
obtained from an ordered partition.

FIG. 15. The three many-body states of g = 1/2 HES particles
with energy 3ω [(a)–(c)] correspond to the three energy assignments
[3]e, [21]e, and [111]e, respectively. All excited particles are boxed.

have a one-to-one corresponce between the ordered integer
partitions of m and excited states with energy mω.

To illustrate how this works, consider the many-body
eigenstates of E − E0 = 3ω. Regardless of the choice of
g we find three such states, corresponding to the three
integer partitions of 3, i.e., [3]e, [21]e, and [111]e (see
Fig. 15). For semions, for example, where the ground
state is |. . . 2222000 . . .〉, [3]e, [21]e and [111]e respectively
refer to the states |. . . 222100100 . . .〉, |. . . 22201100 . . .〉,
and |. . . 2211200 . . .〉. For spinless fermions, where the
ground state is |. . . 11111000 . . .〉, [3]e, [21]e, and [111]e

respectively correspond to the states |. . . 1111000100 . . .〉,
|. . . 111010100 . . .〉, and |. . . 11011100 . . .〉.

Thus we see that any excited state of energy E in a
HES system with any rational 0 < g � 1 can be specified
by an ordered partition of E/ω. What about the allowed
transitions between such states? For spinless fermions (g =
1), a transition between states [x1, x2, . . . x j, . . . xn]e and
[x1, x2, . . . x′

j, . . . xn]e exists if x′
j �= xi + i − j for any i, and

|x′
j − x j | � k, where k is the largest energy transfer allowed

with the bath. The second partition need not be ordered;
in general, the equivalent ordered partition differs from the
original one at more than one point in the sequence. For HES
particles (0 < g < 1), however, we have seen above that pre-
serving the pseudospin ordering also requires that transitions
cannot move HES particles past each other. (More precisely,
such transitions would require moving an entire cell’s worth of
particles, i.e., it would require multiparticle transitions, which
we do not include here). For a single interaction channel with
k = 1 in Eq. (21), these two constraints amount to the same
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thing, and the number of relaxation paths out of a given eigen-
state is the same for HES particles as for spinless fermions.
For k > 1, generically we find that some transitions that are
allowed for spinless fermions are generically forbidden for
HES particles, reducing the number of available relaxation
paths and slowing the overall relaxation rate.

To see how this leads to universal Lindblad dynamics,
observe that the 1-1 correspondence between the excited
states of our HES system and those of a system of spinless
fermions always allows us to write the relevant Lindblad
operators in a common basis, given by the integer parti-
tions [x1, x2, . . . xn]e, xi+1 � xi. For k = 1, we also find that
in this basis the allowed transitions are the same for any
rational g ∈ (0, 1]. The nonvanishing matrix elements of
single-particle-hopping operators are necessarily +1 since no
fermion exchange is allowed. It follows that the k = 1 Lind-
blad matrices of all species of HES particles are identical.
Thus we have shown the surprising result that for k = 1 the
relaxation dynamics of any HES system is identical to that
of a system with spinless fermions, as seen in Figs. 9(a)
and 9(c). For k > 1, we have shown that the dynamics of
different species of HES particles are identical for rational
g ∈ (0, 1), though in this case they are not equivalent to spin-
less fermions, as seen in Figs. 9(b) and 9(d).

Our proof of universal dynamics also explains why dif-
ferent species of HES particles have the same thermal
equilibirum energy, shown in Fig. 6, assuming the many-
body ground state energy is 0. In the basis of ordered
integer partitions, different species of HES particles have the
same Lindblad transition matrices for all interaction channels.
Therefore the Lindblad dynamics of different species of HES
particles will relax to the same steady-state Gibbs density
matrix in the basis of ordered integer partitions, which leads
to identical thermal energy.

VI. DISCUSSION AND SUMMARY

This work details the Lindblad dynamics of a system
obeying Haldane Exclusion statistics (HES), coupled to a
bosonic thermal bath. We have shown how the constraints
on the occupancy of different energy levels that define HES
generically lead to slower energy relaxation, and in some
situations can even lead to blockaded relaxation and stable
excited states. Moreover, we have shown that for rational
g ∈ (0, 1), HES systems coupled quadratically to a bosonic
thermal bath exhibit universal energy relaxation dynamics, in
the sense that the relaxation is independent of the parameter
g. An interesting corolary of this result is that the energy of
an HES system in thermal equilibrium is also independent
of g.

One key takeaway from our study is that, unlike in
the context of thermodynamics, where neglecting interlevel
occupancy constraints leads at worst to small quantitative
corrections in most measurable quantities, in the context of
dynamics, the constraints between different energy levels have
distinctive, physically observable consequences. For example,
the slower relaxation dynamics of semions relative to spinless
fermions is a direct consequence of the interlevel occupancy
constraints, which reduces the number of relaxation paths for
semions. Indeed both the universal relaxation dynamics, and

the presence of relaxation blockade, are possible only when
such constraints exist.

It is worth pointing out that we do not expect these qualita-
tive results to be sensitive to the specific method used to model
the bath and can thus reasonably be expected to apply to
energy relaxation even in situations where the approximations
leading to the Lindblad master equation fail to apply. This is
because the mapping between HES and spinless fermions is
a feature only of the system, and hence any model of energy
relaxation for HES particles can be mapped onto a model of
energy relaxation in spinless fermions.

In establishing these results, we have also described a
second-quantized treatment appropriate for HES particles,
which is based on a comprehensive microscopic picture of the
corresponding allowed occupancy patterns, which generalizes
the results of Ref. [38]. This second-quantized description
gives an appealingly simple picture of the constraints, in terms
of multiple flavors of fermions that are restricted to respect a
particular pseudospin ordering in energy space. Though other
frameworks for second quantization of particles with novel
exclusion statistics exist [58–61], ours has the advantage of
allowing a straightforward computation of matrix elements,
with projections that are easily implemented numerically. As
such, this formalism may be useful for investigating the im-
pact of interoccupancy constraints on other aspects of HES
systems.

For example, Wu’s approximation, which ignores inter-
level occupancy constraints, has been employed to study many
response functions in HES systems, including electrical and
thermal conductance [45] and shot noise [46]. The premise of
these studies is that the main role of statistics is to alter the
underlying distribution in occupancies of various states, and
that this distribution is well described by Wu’s approximation.
If the number of states at the relevant energy density is large,
we expect this to be correct; however, it would be interesting
to search for transport regimes where this approximation may
break down.

It is also interesting to compare our results, which de-
scribe a universal dynamics independent of g, to the dynamics
that emerges from the Boltzmann equation. The latter has
been studied by several authors [41–44], using techniques
in which occupancy constraints between different energy
levels are neglected. In general, the associated dynamics—
including effective relaxation rates as calculated by a modified
Fermi’s golden rule [41]—depends on g, although some trans-
port quantities are found to be universal [43,45]. Though
our analysis does not immediately lend itself to studying
transport, it does suggest that the occupancy constraints
could be qualitatively important for Boltzmann relaxation
dynamics as well, and it would be interesting to under-
stand how incorporating the exact constraints changes these
results.
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APPENDIX A: DIMENSION OF MANY-BODY HILBERT
SPACE AT ARBITRARY PARTICLE NUMBER

Equation (3), which appears elsewhere in the literature
[27,28,38], does not in general produce an integral many-
body Hilbert space dimension. This is because for g = q/p,
the expression d (N + �N ) = d (N ) − �Nq/p gives an inte-
ger single-particle Hilbert space dimension only if �N = np.
Thus we may take d (Ni ) = di(1) − g(Ni − 1) only if Ni =
np + 1 with n an integer.

For a generic particle number N = np + m (1 � m � p),
we can instead use our understanding of the HES con-
straints to count the single-particle and many-body Hilbert
space dimensions d (N ) and DN (g). d (N ) can be calculated
using Eq. (2): d (N ) = d (m) − nq, where d (m) = d (1) −
floor((m − 1)q/p). Here, we use the fact that if the particle
number is enough to fully occupy one cell, the number of
accessible cells to each particle decreases by one.

In the context of the CSM, as discussed in the main text,
the dimension of the many-body Hilbert space is

DN (g) =
(

kmax − kmin + 1

N

)
, (A1)

where kmax and kmin are determined by the maximum and
minimum shifted single-particle energies εmax

s and εmin
s , re-

spectively. We wish to show that this is the correct Hilbert

space dimension for our HES particles, which will be true if
kmax − kmin + 1 = d (N ) + N − 1. Setting εmin

s = kmin = 0 for
simplicity, this will be true provided that

d (N ) = kmax + 2 − N. (A2)

With the shifted energy levels divided into cells of
size ω, i.e., [0, ω), [ω, 2ω), [2ω, 3ω), . . . , we find
d (1) = floor(εmax

s /ω) + 1. Substituting εmax
s /ω = kmax −

(1 − q/p)(N − 1), we obtain d (1) = kmax + 2 − N + nq +
floor((m − 1)q/p). Thus

d (N ) = d (m) − nq

= d (1) − floor((m − 1)q/p) − nq

= kmax + 2 − N. (A3)

APPENDIX B: MATRIX ELEMENTS OF GENERIC
SINGLE-PARTICLE OPERATORS FOR g = 1/2

For g = 1/2, the matrix elements for hopping a particle to
a neighboring cell are

P f (1)†
i+1 f (1)

i P
∣∣. . . , n(1)

i , n(2)
i , n(1)

i+1, n(2)
i+1, . . .

〉 = n(1)
i

(
1 − n(1)

i+1

)
c(1/2)

1 (i)P
∣∣. . . , n(1)

i − 1, n(2)
i , n(1)

i+1 + 1, n(2)
i+1, . . .

〉
,

P f (1)†
i−1 f (1)

i P
∣∣. . . , n(1)

i−1, n(2)
i−1, n(1)

i , n(2)
i , . . .

〉 = n(1)
i

(
1 − n(1)

i−1

)
c(1/2)

1 (i − 1)P
∣∣. . . , n(1)

i−1 + 1, n(2)
i−1, n(1)

i − 1, n(2)
i , . . .

〉
,

P f (2)†
i+1 f (2)

i P
∣∣. . . , n(1)

i , n(2)
i , n(1)

i+1, n(2)
i+1, . . .

〉 = n(2)
i

(
1 − n(2)

i+1

)
c(1/2)

2 (i)P
∣∣. . . , n(1)

i , n(2)
i − 1, n(1)

i+1, n(2)
i+1 + 1, . . .

〉
,

P f (2)†
i−1 f (2)

i P
∣∣. . . , n(1)

i−1, n(2)
i−1, n(1)

i , n(2)
i , . . .

〉 = n(2)
i

(
1 − n(2)

i−1

)
c(1/2)

2 (i − 1)P
∣∣. . . , n(1)

i−1, n(2)
i−1 + 1, n(1)

i , n(2)
i − 1, . . .

〉
, (B1)

where c(1/2)
1 (i) = 1 − n(2)

i and c(1/2)
2 (i) = (1 − n(1)

i+1) describe the effect of the left-most projector. For hopping processes to more
distant cells, we again have the appropriate fermionic matrix element, multiplied by a projector that ensures that our particle
cannot hop past any particle of the opposite pseudospin (which, in configurations allowed by the constraint, is sufficient to also
ensure it cannot hop past any particles of the same type) :

P f (1)†
i+k f (1)

i P
∣∣.., n(1)

i , n(2)
i , .., n(1)

i+k, n(2)
i+k, ..

〉 = n(1)
i

(
1 − n(1)

i+k

) k∏
j=1

c(1/2)
1 (i + j − 1)P

∣∣.., n(1)
i − 1, n(2)

i , .., n(1)
i+k + 1, n(2)

i+k, ..
〉
,

P f (1)†
i−k f (1)

i P
∣∣.., n(1)

i−k, n(2)
i−k, .., n(1)

i , n(2)
i , ..

〉 = n(1)
i

(
1 − n(1)

i−k

) k∏
j=1

c(1/2)
1 (i − j)P

∣∣.., n(1)
i−k + 1, n(2)

i−k, .., n(1)
i − 1, n(2)

i , ..
〉
,

P f (2)†
i+k f (2)

i P
∣∣.., n(1)

i , n(2)
i , .., n(1)

i+k, n(2)
i+k, ..

〉 = n(2)
i

(
1 − n(2)

i+k

) k∏
j=1

c(1/2)
2 (i + j − 1)P

∣∣.., n(1)
i , n(2)

i − 1, .., n(1)
i+k, n(2)

i+k + 1, ..
〉
,

P f (2)†
i−k f (2)

i P
∣∣.., n(1)

i−k, n(2)
i−k, .., n(1)

i , n(2)
i , ..

〉 = n(2)
i

(
1 − n(2)

i−k

) k∏
j=1

c(1/2)
2 (i − j)P

∣∣.., n(1)
i−k, n(2)

i−k + 1, .., n(1)
i , n(2)

i − 1, ..
〉
,

Again, we find that the nonzero matrix elements of single-particle-hopping processes can only be 1.
Note that within a given cell, only one of the two species of particles can have a nonzero hopping matrix element in either

direction: if n(2)
i = 0 then there is no particle on the top ladder to hop; on the other hand, if n(2)

i = 1, then particles of type 1
cannot hop to cells of higher energy. Similarly, if n(1)

i �= 0, particles of type 2 cannot hop to cells of lower energy. Hence for an
allowed occupancy | . . . Ni, Ni+1, . . . Ni+k, . . . 〉 of the energy cells,

Ph†
i+khiP| . . . Ni, Ni+1, . . . Ni+k, . . . 〉 = | . . . Ni − 1, Ni+1, . . . Ni+k + 1, . . . 〉. (B2)
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Next, we consider a similar calculation for g = 1/3. Substituting the expressions of h†
p+1 and hp into

Ph†
p+1hpP |. . . , Np, Np+1, . . .〉, we get

Ph†
p+1hpP |. . . , Np, Np+1, . . .〉 = P

[
f (1)†

p+1 f (1)
p + f (2)†

p+1 f (2)
p + f (3)P†

p+1 f (3)
p

]
P

∣∣. . . , n(1)
p , n(2)

p , n(3)
p , n(1)

p+1, n(2)
p+1, n(3)

p+1, . . .
〉

= n(1)
p

(
1 − n(1)

p+1

)(
1 − n(2)

p

)(
1 − n(3)

p

)
P

∣∣. . . , n(1)
p − 1, n(2)

p , n(3)
p , n(1)

p+1 + 1, n(2)
p+1, n(3)

p+1, . . .
〉

+ n(2)
p

(
1 − n(2)

p+1

)(
1 − n(3)

p

)(
1 − n(1)

p+1

)
P

∣∣. . . , n(1)
p , n(2)

p − 1, n(3)
p , n(1)

p+1, n(2)
p+1 + 1, n(3)

p+1, . . .
〉

+ n(3)
p

(
1 − n(3)

p+1

)(
1 − n(1)

p+1

)(
1 − n(2)

p+1

)
P

∣∣. . . , n(1)
p , n(2)

p , n(3)
p − 1, n(1)

p+1, n(2)
p+1, n(3)

p+1 + 1, . . .
〉
.

(B3)

Evidently, all the three of the final microscopic
states are identified with the same HES configuration
|. . . , Np − 1, Np+1 + 1, . . .〉.

As for g = 1/2, the constraints impose considerable
structure on the nonvanishing matrix elements. First, the

signs (−1)n(2)
p +n(3)

p , (−1)n(3)
p +n(1)

p+1 and (−1)n(1)
p+1+n(2)

p+1 have been
dropped, since particles cannot hop past each other. Second,
only one of the three matrix elements can take the value +1;
the other two are zero. For example, n(1)

i = 1, then matrix
elements hopping particles of type 2 or 3 to a cell of lower
energy vanish, with similar constraints for other configura-
tions. Indeed, both of these conditions are a generic feature of
single-particle-hopping operators (Ph†

khlP) for any g = q/p.
This structure simply reflects the fact that pseudospin-energy
ordering prevents particles from hopping past each other: a
fermion of pseudospin i1 cannot move up in energy past a
fermion of pseudospin j1( j1 > i1), and a fermion of pseu-
dospin i2 cannot move down past a fermion of pseudospin
j2( j2 < i2). Thus at most one of the possible fermionic hop-
pings is allowed.

APPENDIX C: ESTIMATING RELAXATION RATES AT
HIGH ENERGIES

Since the instantaneous relaxation rate depends on the
weighted average of relaxation paths, we can estimate the
energy dependence of typical relaxation rates in high energy
states by examining the distribution P(N (E )) of available
transition paths at each energy E , for a given choice of in-
teraction channels.

We illustrate this for the case of a single interac-
tion channel, k = 1. A many-body excited state of energy
E is described by an ordered integer partition of E ,
[x1, x2, . . . xn]|ω ∑

i xi = E , with x j=1 � x j . For k = 1, tran-
sitions to a state represented by [x1, x2, . . . x j − 1, . . . xn] are
allowed only if x j � x j−1 + 1. We call a consecutive set of
particles with the same x j a cluster; when x j+1 � x j−1 + 1, we
say there is a gap between two adjacent clusters. For example,
in Fig. 15, the configurations shown in (a) and (c) have only
one cluster, while the configuration in (b) has two. Then the
number of relaxation paths available to a given configuration
is equal to the number of clusters.

To understand the typical relaxation dynamics, we wish to
describe the average number of relaxation paths N̄ (E ), and
hence the average number of clusters, in a configuration of
total energy E . Suppose that we have a typical configuration

N̄ (E ), and let us consider the possible configurations with
total energy E + 1 that can be obtained by exciting a single
particle in this configuration. If we excite a particle that is
in a cluster of size greater than one, then a new cluster will
be created if and only if the gap to the next highest energy
cluster has size greater than 1 – i.e we take x j → x j + 1, with
x j+1 − x j > 1. If the particle that we excite is in a cluster of
size one, then we can either decrease the number of clusters (if
x j+1 − x j = 1), or leave it unchanged. Since there are a total
of N̄ (E ) + 1 clusters (including the lowest energy cluster, i.e.,
the Fermi sea), and we must average over all possible moves
that raise E by ω, we conclude that

N̄ (E + 1) = N̄ (E ) + c(E )

N̄ (E ) + 1
, (C1)

where c(E ) = (pg(E ) + pc(E ) − 1)N̄ (E ) + 1, with pc(E ) the
probability of a cluster containing more than one particle, and
pg(E ) being the probability that the gap between two clusters
is greater than one. At high energies, we can approximate this
by a differential equation dN/dE = c/N , where for k = 1 we
find a good fit to our numerical data (shown in Fig. 16) by
taking c(E ) = c to be independent of energy. This gives an
approximate functional form N̄ (E ) = a + √

b + dE with a,
b, and d constant. This suggests that for highly excited states

FIG. 16. The average number of relaxation paths N̄ (E ) of all
states with energy E for the interaction channel k = 1 versus energy.
The exact result is fitted by a trial solution N̄ (E ) = a + √

b + dE ,
where a = −0.1449, b = 0.0795, and d = 0.6014/ω. The inset
shows the differences between exact results and the fit.
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FIG. 17. The average number of relaxation paths N̄ (E ) of all
states with energy E for the interaction channel k = 2 and k = 3
vs energy. The data fit well to the line N̄ (E ) = aE + b, with a =
0.0305/ω and b = 0.9282 (a = 0.0201/ω and b = 0.4875) for k = 2
(k = 3). R2 of the two fits are 0.999.

that have been relaxing for some time (such that they have
attained a typical distribution of clusters), we will find γ̄ (E ) ∼√

E for k = 1.We note that the exact simulations presented in
the main text are performed on relatively small energies, and
hence need not exhibit this regime.

For k = m > 1 (but still with a single relaxation chan-
nel), we may follow a similar logic, by defining a cluster
as a contiguous set of x j such that x j1 − x j < m. In other
words, our new clusters contain energy gaps up to size mω,
since HES particles on the interior of such clusters cannot
relax. Following the same logic as for k = 1, we can obtain
a similar difference equation relating N̄ (E + 1) and N̄ (E ),
with c(E ) replaced by c′(E ) = (p′

g(E ) + pc(E ) − 1)N̄ (E ) +
1. Here, p′

g(E ) is the probability of an energy gap greater
than m energy units. Numerically, we find in this case that
c(E ) ∼ cN̄ (E ) + 1 (see Fig. 17), such that at high energies,
we have dN/dE = c and solutions depend linearly on E . Thus
the best estimation of γ (E ) from our result for k = 2 and
k = 3 is γ (E ) ∼ E .
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